DEA –RS232 INTERFACE
Installation Information

Interface dll - DEA.DLL

PCDLRN.INI/Settings Editor  Section header title - [DEA_Interface]

This information covers machines with the Tutor, Tutor P and DEAC (includes B3P, B3PS, etc.) controllers.

If the PC has Tutor for Windows already installed carry out a straightforward install. The first time PCDMIS is run it will locate the WTUTOR.INI file and extract the relevant information regarding location of the compensation map, mechanical offsets, etc. and set the corresponding options in the PCDLRN.INI file. It will look in up to 3 different locations to try and find WTUTOR.INI . First it will look in the PC-DMIS installation directory, if not found it will then look in the directory in which the currently running windows system was installed (as returned by the GetWindowsDirectory function in the WIN32 API - typical examples are C:\WINNT or C:\WINDOWS) and if still not found it will finally explicitly look in C:\WINDOWS if it exists.

If you are installing on a computer that does not have Tutor installed then you will need to make the relevant changes to the PCDLRN.INI file and obtain copies of the relevant files. The two main file categories are the COSDAT file and the compensation files.

COSDAT File –

If needed, the file must be called COSDAT1.BIN. If the \TUTOR directory exists and if the COSDAT1.BIN file is in that directory PC-DMIS can use it directly from that location without needing to copy it to the PC-DMIS installation directory. If the \TUTOR directory does not exist, the file must be placed in the PC-DMIS installation directory that is typically \PCDMISW. This is a binary data file and must be in the appropriate format for use on a 32-bit Windows system. This file cannot be copied directly from a 64-bit Alpha system.

Controllers in the DEAC family have the capability of having a COSDAT that is resident in the controller. If you are using version 2.23 or later of PCDMIS the interface can utilize this stored COSDAT for those controllers and in that case you do not need the COSDAT1.BIN file. If you are using an older version of PCDMIS, you do not have one of the DEAC family of controllers, or your DEAC controller has not had the COSDAT data stored into its non-volatile memory you must have the COSDAT1.BIN file available. If it is a DEAC controller and it does have resident COSDAT data it can be initialized without having to download a COSDAT file. Whether or not,

PC-DMIS will try to use the resident COSDAT vs. the COSDAT1.BIN file for DEAC controllers that is controlled by the DEACForceDownload entry in the INI file as detailed below.

Compensation Files –
The exact files needed depend on the method of volcomp that is selected. If NONE is selected then no files are needed.

DEA Standard Volcomp is the method that has been in use with this interface for quite some time. It requires a compensation file in the standard TUTOR format. The file can be named as desired and exist in any desired directory as long as the INI file entry for COMPENS_FILE_NAME is set correctly. If copied into the PCDMIS installation directory it is often called COMPENS.DAT. No sink compensation is performed by this method. If TUTOR is not present on the system the file will need to be placed in the PC-DMIS installation directory. When TUTOR is present on the system, the first time PC-DMIS is run, it examines the WTUTOR.INI file and automatically sets the file name accordingly. If the file is in the \TUTOR directory PC-DMIS will then use it directly from that location without the need to copy the file. In that case, PC-DMIS and TUTOR will both share a single copy of the file.

NOTE: If the TUTOR configuration is later changed to use a different file, PC-DMIS will not know about the change even though the WTUTOR.INI file was updated because it does not examine that file every time it is run. It only does that the first time PC-DMIS is run.

DEA.DLL (wcompens32) Volcomp is a DEA proprietary method utilizing a DLL provided by DEA that performs the compensation. There are 2 versions of this DLL. The older version supports a format for the compensation data that has been replaced with a newer format. The newer version of the DLL supports only the newer data format. PC-DMIS expects the filename for the older format dll to be WCOMPENS32.DLL. It expects the filename for the newer format dll to be WCOMPENS32_2.DLL. Both of these dll’s require a compensation file in the same format as that used by TUTOR (older versions of TUTOR use the older format for that data while newer versions of TUTOR use the newer format). In addition, it also requires three additional files named RCXFILE.TXT, RMXFILE.TXT and FZYFILE.TXT be utilized for the sink compensation. The compensation data file itself is identified by the INI file entry for NEWCOMPENS_FNAME. Additionally, if being used on one of the large systems with dual readers on one axis (usually the X axis), there is another file called LXXD1.DAT that the DLL automatically looks for in the C:\WTUTOR directory. The three .TXT files and the DLL itself must be in the PCDMIS installation directory. See "Additional Notes" for more details about the various DLL’s and related files that must be present for this volcomp method to function properly. This volcomp method will most typically be used on horizontal arm machines or dual reader machines.

NOTE: If using this volcomp method it is important that the WCompensMode option is set correctly and if using a dual-arm machine it is important to set ARM2CompMode=TRUE for the arm with a negative stroke. For more details, see "Options in the PCDLRN.INI File."

ASI Volcomp is the normal method used by ASI service representatives when performing their own laser calibration of a machine. Normally this will result in a compensation file called COMPENS.DAT that will be stored in the PCDMIS installation directory. Note that the internal format of this file is not the same as the TUTOR standard format.

Brown & Sharpe Volcomp is the method frequently used on controllers such as the SHARPE32 but can be applied to other controllers as well. This method uses a compensation file called COMP.DAT.

Interface Specific Options :
· CMM = COM1 9600 E,8,1 – This sets the communication protocols for the DCC controllers, default is comm port 1, 9600 baud, Even parity, 8 data bits and 1 stop bit. It is highly unlikely that you will need to change anything other than the comm port.

· The setting for the communication protocol on Manual Cmms is COM1 9600 N,8,1
· PH9 = COM2 4800 N,8,1 – This sets the communication protocols for the PH9, default is comm port 2, 4800 baud, No parity, 8 data bits and 1 stop bit. It is highly unlikely that you will need to change anything other than the comm port.

· COMPENS_FILE_NAME = compens.dat – This file name should be edited to reflect the machine specific compensation file name for machines that are normally compensated (not using wcompens32).

· NEWCOMPENS_FNAME = wcompens.dat – This file name should be edited to reflect the machine specific file name for the wcompens32 compensation file. Used only when UseVolcomp = 2.

· Controller = 0 – Indicates the type of controller. 0 for TutorP, 1 for DEAC, 2 for Arrow, 3 for F Controller, 4 for N Controller. Default is 0. Note that for DEAC controllers this value will be determined automatically during interface startup (based on responses from the controller) regardless of the INI setting. For older controllers this must be set manually.

· PH9ManualMode = 0 – If the PH9 has the PHD manual 'pendant' controller then make this option 1.

· MAX_MOVES = 8 – This is the number of moves we send to the controller buffer at one time. Some machines will give errors if we send too many moves in advance so reducing this will help. Lowering this value will however reduce the system performance, if for example we set it to 1 then we will only send the next move command when the machine has finished the previous one, this will cause the machine to pause between moves as each command is sent.

· HasPH9 = 0 – Set this to 1 if you are using a PH9.

· UseStartButton = 0 – The newer DEAC controllers typically require the operator to press the controller start button before the machine switches into DCC. By setting this option to 1 PC-DMIS will prompt the operator to press start before any DCC sequence begins. By setting this option to 0 PC-DMIS will bypass the need to press the start button and will immediately begin the DCC sequence.

· NoControllerIdle = 0 – Some older controllers will not respond properly to the command to idle the controller, which PC-DMIS normally sends when a stop is requested. Setting this to 1 will prevent the idle command from being sent. There are also some older controllers that respond to the idle command under normal circumstances but do not respond to it when it is sent as part of recovering from an error. Setting this to 2 causes PD-DMIS to go ahead and send the idle command after an error but not wait for a response to that command.

· ManualCmm = 0 – If this is the manual 'Swift' type interface then make this option 1. For many “Swift” machines it will also be necessary to set Controller=2 for Arrow mode.

· StretchX = 10000.0
· StretchY = 10000.0
· StretchZ = 10000.0 – These values allow you to specify the scale factor for the each axis. This is normally a value of 10000.

· StretchA = 3600.0
· StretchB = 3600.0 – These values allow you to specify the scale factor for the A and B axes when a DEA continuous motion wrist is present.

· SpeedAB = 100.0 – Maximum allowable speed (percent) for movement of continuous motion wrist.

· UseScaleDat = 0 – By setting this option to 1 PC-DMIS will try to read SCALE.DAT from the PC-DMIS root directory and copy its settings into the PCDLRN.INI file. The only time this is used is if you copied a SCALE.DAT file from an older DOS based PC-DMIS system in order to try and extract PCDLRN.INI option information from it. The first time PC-DMIS is run it will look for the WTUTOR.INI file. If not found it will look for the SCALE.DAT file. PC-DMIS will automatically reset this option to 0.

· UseVolcomp = 1 – Selects the volcomp method to be used. Use 0 for NONE, 1 for DEA Standard, 2 for DEA DLL (wcompens32), 3 for ASI, or 4 for Brown & Sharpe.  NOTE: There are 2 different versions of the wcompens32 dll. The older version supports a format for the compensation data map that has since been replaced with a newer format. The newer version of the dll supports only the newer data format. This interface supports both. If using the older version the dll must be named “wcompens32.dll” and UsingOldWcompens32 must be set to TRUE. If using the newer version the dll must be named “wcompens32_2.dll” and UsingOldWcompens32 must be set to FALSE.
· RecordButton = 0 – This option allows you to designate a PC-DMIS function to the record key on the jog box, set to 0 if you want it to erase the last hit, 1 to store a move or 2 to act as the end/done key.

· PollCtrlComm = FALSE – This option will periodically poll the serial port to prevent loss of communication. Only set this option to TRUE if you suspect communication problems.

· BadChecksumRetry = TRUE – By making this TRUE PC-DMIS will perform checksum calculations on the data received from the DEA controller and will request a re-transmission if the checksum is not valid. It will also enable re-sending the last transmission to the controller if the controller indicates that it found a checksum error. This will improve the reliability of communications in an environment where noise is present on the communications line. It’s normally best to leave this TRUE.

· WristAOffset = 0.0
· WristBOffset = 0.0 – These values are used to “square” up the home position of a DEA continuous motion wrist.

· ARM2CompMode = FALSE – This should be set to TRUE for any horizontal arm that has a negative stroke as it extends (the common example is when the arm extends in the –Y direction). This is usually the case for arm2 on a dual arm system.

· DEACForceDownload = FALSE – Set to TRUE if you want to force downloading of a COSDAT1.BIN file on a DEAC controller instead of using the controller resident COSDAT. If set to TRUE the COSDAT1.BIN file must be present. If the DEAC controller has not had the COSDAT data stored into its non-volatile memory it will not be able to initialize properly unless you set this variable to TRUE and use the COSDAT1.BIN file. This entry has no effect on non-DEAC controllers.

· WcompensMode = 1 – Set this to 0 for a horizontal arm machine, 1 for a regular vertical arm machine, and 2 for a dual reader machine. For a horizontal arm, also make sure ARM2CompMode is set correctly if running on a dual arm machine.

· UsingOldWcompens32 = FALSE – Set to FALSE when using the newer version of the wcompens32 dll, in which case the dll file must be named “wcompens32_2.dll”. Set to TRUE if using the older version of the dll, in which case the dll file must be named “wcompens32.dll”.

· AllowForcedHits = TRUE – This option is only applicable when using a fixed probe. If set to TRUE this will allow a hit to be taken by typing CTRL-H at the keyboard. If set to FALSE this feature is disabled. When enabled, pressing CTRL-H will cause current position to be read and interpreted as a hit at that position. When not using a fixed probe CTRL-H will have no effect regardless of the setting of this variable.

· ScanAutoRecovery = TRUE – This controls the type of movement used during scanning. If set to TRUE the moves within a scan will use “measurement” type move commands. This movement is slower but allows for software only recovery in the event of an unexpected hit during a move. If set to FALSE regular move commands will be used. This is faster but in the event of an unexpected hit motor on and so forth to recover. 

· FlipBAxis = TRUE – This will reverse the direction of rotation of the B axis for the CW43, CW43Lite, or IW42C type wrists.

· LowerThreadPriority = FALSE – This controls the priority of the separate thread that reads data from the controller and gives the ACK or NAK response. If FALSE, the thread will be created with normal priority. If TRUE, it will be created with below normal priority. Normally this should be left as FALSE. This will maximize the likelihood that the thread can respond to controller events in time to avoid a timeout and the resulting loss of synchronization for the communications. 

· DisengageDrives = FALSE – Set to TRUE for DCC machines which have drives that can be disengaged and is going to be used manually.

· RotateWristFromController = FALSE – Set this to TRUE if the machine is equipped with an infinite type wrist (e.g. IW42C) that you wish to use as if it’s an indexable wrist (more like a PH10). Also set this to TRUE when using a CW43 or CW43L that is equipped with a C angle joint. When this is set to TRUE, the option for DEAWrist in the Options section will automatically be set to 0 the next time PC-DMIS is restarted.

· SupportsProbeDisable = FALSE – Must be set to TRUE when using a CW43L toolchanger.

· SupportsIOChannelCommands = TRUE – This is only used on controllers which support the CW43Lite toolchanger.

· TCAirInputChannel = 8 – This is the default I/O channel used to write commands to the CW43Lite toolchanger.

· TCAirOutputChannel = 8 – This is the default I/O channel used to read commands sent from the CW43Lite toolchanger.

· TCRackClearance = 150.0 – The default distance in front of a CW43Lite toolchanger to which the probe head will move prior to beginning the tool change cycle.

· TCPortClearance = 35.0 – This distance is the default used to lift the cover of the CW43Lite toolchanger station.

· TCLiftDistance = 115.0 – This is the default distance below the change point through which the probe head will move when lifting the CW43Lite toolchanger garage cover.

· TestAirOn = TRUE – When TRUE, the cmm will verify air is present to the CW43Lite toolchanger prior to beginning a tool change cycle.

· Ph9IsCJoint = FALSE – This should only be set to TRUE when a CW43 or CW43Lite is present and equipped with a C angle joint which is similar to a PH9.

· InPositionToolChangerDelay = 2.0 – Time in seconds that the cmm will wait in position at the change point for the CW43Lite toolchanger after arriving in position to allow for the locking and unlocking of the joint.

· DebugLogReset = FALSE – Setting this flay to TRUE will reset the debug delete the existing debug file and start re-writing to the debug file when DebugLog = TRUE.

· DisableTraxCal = FALSE – If set to TRUE, the interface will not issue commands related to support for Trax style analog probe calibration.

· DisableSP6LowMatrixUpdate = FALSE – By default the interface will support setting the SP600 lower level deflection matrix on controllers for which it recognizes that the functionality is available.  If set to TRUE, updates of the lower level SP600 matrix will not be allowed regardless of the controller type.

· UseOldStyleTP200Filter = FALSE – This should only be set to TRUE on older firmware controllers using a TP200.

· UseFeedDisable =TRUE – Enable/Disable the feed during the tool change cycle. When set = TRUE (default value), the feed is disabled starting from the mount point poisition before to begin the change cycle until the mount point is reached again after the change cycle is terminated. When set = FALSE, the speed can be modified by the feed along all the change cycle.

Licensing DEA DLL (wcompens32) Volcomp

The licensing requirements have been removed and are no longer applicable to this dll.

Note Regarding Use of TP200 Probe

For version 2.3 and 3.0 of PC-DMIS the ToolChangerType should be set to TP200 when using a TP200 probe with the DEA interface, regardless of whether or not the tip change rack is actually being used. The rest of the usual tool changer setup does not need to be done if not using the rack.

For version 3.1 and later this is not necessary. The presence of a TP200 will automatically be determined based on the components selected when building the probe in PC-DMIS.

On startup the DEA interface will enable the TP200 filter in the controller if a TP200 is being used.

Note on Dual Arm Use (Special INI Entry and Startup Order)

DEA dual arm systems can typically be run in two different modes.

1) Independent arms

This is similar to dual arm use on most other type CMM’s where each arm is independent of the other and separate jog boxes are used for manually controlling the arms, etc. On machines with F controllers this is frequently referred to as F1+F1 mode. There is no special setup required for PC-DMIS in this mode other than the specifics for the interface. In this independent mode the startup order of the arms in unimportant.

2) Dual Arm mode

In this mode the two arms act together.  You can jog either arm from one jog box and an error on one arm automatically stops both arms. On machines with F controllers this is frequently referred to as F2 mode. When using dual arm mode you must add a DEADualDriveMode=1 entry in the [Option] section of the PCDLRN.INI file as shown:

[Option]

DEADualDriveMode=1

When starting the machine (after being powered off) in dual arm mode both arms must be started at the same time. The correct sequence is as follows:

a) Make sure the controllers are powered on and properly switched into dual arm mode.

b) Start PC-DMIS on the master controller and wait until it prompts to reset/press machine start.

c) Start PC-DMIS on the slave controller and wait until it also prompts to reset/press machine start.

d) Do a reset and machine start (only one button on some machines) on the master controller (starts both arms).

e) Wait until both PC’s prompt for OK to home and then answer OK on both.

f) Some systems require pressing a start button to begin the homing. Make sure you’ve answered OK to home on both PC’s before pressing that start button.

Note on Infinite Wrist

If using a machine with an infinite wrist that you wish to use in infinite wrist mode (for example a CW43L) you must set DEAWrist=1 in the [Option] section of the PCDLRN.INI file as shown:

[Option]

DEAWrist=1

You must also make sure RotateWristFromController=FALSE in the dea interface settings as described above.

If using a machine with an infinite wrist that you wish to use like an indexable wrist (for example an IW42C) you must set DEAWrist=0 in the [Option section of the PCDLRN.INI file as shown:

[Option]

DEAWrist=0

You must also make sure RotateWristFromController=TRUE in the dea interface settings as described above.

Updates

4.338 PR#216056 : problem during the "cold" controller startup 

4.337 PR#211738 : problem of manual hit after rotary table rotation in DCC 

4.336 PR#215992 : C250MinZ no longer used
4.335 Manual Cmm : removed display of message "Press Motor on"

4.334 PR#215660 : driver_stop_probe(), the cmm was not stopping when pressing cancel or stop button on execute dialog

4.333 PR#214669 Must turn on probe if lastSystem5TCSlot was wrong

4.332 PR#211738 : problem of rotary table rotation in DCC

4.331 Add a wait before validate data for Manual Cmm hits problem (PR#212637)

4.330 Make sure air is turned off before SYSTEM5 tool change

4.329 Remove the killing timer in the TimerPositionUpdate (for priority problems)

4.328 disabled the fly during the tool change phase

4.327 added an option to force the TP200 filter enable command to send slightly different parameters

4.326 added a fix to the problem when we are waiting to go to manual mode and then we get some interface commands before we do

4.325 added another fix to logic to make the interface wait until prior ph9 commands have been completed

4.324 fixed logic to make the interface wait until prior ph9 commands have been completed

4.323 Fixes to tool CW43 tool changer. Also cleaned up the ignore motion errors code

4.322 Added option to turn off air pressure check. Also added option for C wrist joint.

4.321 Additional cleanup/support for CW43L tool changer

4.320 Add support for CW43L tool changer

4.319 made sure the driver read ph9 command returned the last commanded C angle when there are three joints

4.335 The prior fix didn't work so I added a variable last_commanded_ph9 to keep track of which angle was

commanded -180 or +180. This way, it will always switch it to the correct quadrant

4.317 Changed so we adjust the wrist angles only if > 190 or < -190

4.316 If STOP then Continue during a loadcolumn move that's forced to XY only, also force the resulting "continue" loadcolumn move to be XY only. Make changes to how the IOChannel commands operate since INPUT bits returned via I00 are not related to output bits set via O00 .

4.315 update driver_load_column to set m_pPartProgram and to output debug info

4.314 driver_get_cmm_limits needs to account for the mechanical offset in cases where it will be applied as an offset to the machine coordinates  rather than just an adjustment to a tip offset (i.e. DEA or ASI volcomp

being used)

4.313 Added support for the C Joint motion, when they are using a wrist AB through the controller and then they are controlling the B axis of the ph10 for the C joint

4.312 Various fixes when using RotateWristFromController

4.311 Don't automatically turn on the DeaWrist option if RotateWristFromController is set to TRUE
4.310 Change to use new TP200 bit in tip type instead of an INI entry for enabling the TP200 filter.  This way it's automatic if they've built a TP200 based probe.

4.309 Fix problem with format of TP200 filter command and change to using an INI entry to signal that it's present

4.308 Support IOCHANNEL operations. Fix TP200 filter command not getting sent when TP200 present

4.307 Support enabling/disabling the probe according to global_IgnoreMotionErrors setting

4.306 Use different filename for newer wcompens32 (wcompens32_2.dll)

4.305 Support RotateWristFromController option so that we can treat the IW42C wrist as a ph10 and calibrate it as one.

4.304 Support newer wcompens32.dll format in addition to older one

4.303 Fix problem where readouts response on ph9 is causing the ph9 to start turning before the moves are complete. We were setting current_command = DRIVER_MOVE_PH9 before we started the move ph9 commands (we should wait until current commanded moves are complete). A ph9 status response from a readouts request was then fooling the ph9_notify code into thinking it was in the middle of a ph9 change.

4.302 Added functionality to disengage the drives.

4.335 Add "Disengage Drives" to CMM Interface Setup dialog. Functionality to actually disengage the drives not yet implemented

4.209 Fix application error when active_call_back was not getting set to NULL after store_point

4.208 Fix problem recognizing hit event codes on the new DEA FW release

4.207 Fix problem with hit vectors for manual hits on some DCC machines that were a side effect of the previous change to the manual hit vectors

4.206 Make a DCC scan that is using g05 moves use regular moves for the first hit.

4.205 Fix problem with hit vectors for manual hits (especially on manual machines)

4.204 Automatically resynchronize (without show_error) on manual machines

4.203 Fix initialization hang (when needing to home) on F controller

4.202 Add support for new DEA FW release with new hit event code

4.201 Add ability to distinguish between F controller vs. N controller

4.200 Implement reading of controller data and ACK/NAK in a separate thread

4.105 Fix problem where occasionally a new command was sent before receiving the ACK from the previous command

4.104 Fix problem in initialization of Wcompens32

4.103 Add ability to automatically determine whether or not a controller resident COSDAT is available on DEAC controllers. Get rid of all attempts to look for obsolete scale.dat file

4.102 Fix problem with speed change affecting moves sent before the change

4.101 Fixes for load column for System 5

4.100 Fix global_top_speed not always set to 0.0 for manual machine

4.038 added support for ACTIV for standard dea error map so that it will re-load the volcomp after re-calc due to temp comp

4.037 fixed syncronization problems when at the end of execute loop

4.036 Added option to flip the B axis

4.035 Fix setup dialog functionality associated with arm 2 vol comp

4.034 Fix for arm 2 vol comp

4.033 Added code for DCC system 5

4.032 Fix for tempcomp status byte

4.031 Fix recovery for ARROW mode (on manual Mistral) when having to resynchronize communications

4.030 Implement option to allow use of regular moves instead of measurement type moves during a scan.  In that mode it will be faster but if an error occurs, auto recovery is not possible. Allow setting of the retract for fly mode or non-fly mode during a DCC sequence instead of only during transition to DCC.

4.020 Add support for Brown & Sharpe volcomp method. Rotary table comp via Brown & Sharpe  method not yet implemented

4.010 Don't automatically turn off the BadChecksumRetry for Arrow mode. Initialization updates for F controller

4.0 Added the DEA Structual Thermal Compensation capability. Created the export function to allow updating of the Wcompens32.dll with new map.

3.707 The DEA wcompens32.dll returns >=0 as a correct response. Therefore lines 786 and 848 were changed to reflect this.

3.706 Don't create a dph9.dat file on first startup. Also includes fix by BILL on approx. 12/7/98 for correct placement of AxisPoint inside xyz_parse and hit_parse

3.705 Fix for G37 speed command outside CNC status (causes error #a5)

3.704 Add the ability to recover from a level 2 error during homing  and continue with the homeing process. Works for E-Stop, Probe deflection, and Air cut off.

3.703 Fix so that moves immediately following a scan will be regular moves instead of "touch" type moves used

for moves within a scan. Better diagnostic messages when setting up for WCOMPENS32 type volcomp. Add support for forcing a hit via ctrl-H when using a fixed probe

3.702 Add use of INIShowActiveValues

3.701 Add NoControllerIdle=2 option.  If 2 then the first idle request after an error will not include a WaitResponse: .  When immediately after an error, some P series controllers will acknowledge the idlecommand but not follow with a response.

3.7 Support for dual reader machines (i.e. dual drive on one axis) and ability to re-establish loss of communication where the controller goes back to sending the 9 8 sequence
3.6 Fixes for communications errors when duplicate  responses received with the same STX character.

3.5 Improved error recovery for both DEAC and non-DEAC controllers and only use FALSE as the default for DEACForceDownload for new installs where the DEA_Interface section doesn't even exist.

3.4 Support for DEA Wrist, use of controller resident COSDAT on DEAC controllers instead of having to download the file, proper support for Arm 2 of a dual-arm system for new Volcomp DLL.

3.3 Support for temp. comp. feedback from controller, newer DLL based volcomp, retransmit request on bad checksum

3.2
Support for user defined action for record button. Option for polling controller comm port. General cleanup of source readability (consistent  spacing, indenting, etc.)












