
PC-DMIS Basic

Language Reference

By Brown and Sharpe Mfg. Co.

This manual was produced using Doc-To-Help®, by WexTech Systems, Inc.

PC-DMIS Basic Language Reference Contents • i

Contents

Basic Script Editor 11
Introduction...11
File Menu11

New.. 11
Open...11
Save..11
Save As ..12
Print ...12
Print Preview..12
Exit...12

Edit Menu...12
Undo ..12
Cut..12
Copy...12
Paste...12
Delete...12
Select All ...13
Find ..13
Find Next ...13
Replace ..13

View...14
Run...14
Help..14

Basic Help..14
Syntax Help ...14
Syntax Help File ..15

Basic Script Toolbar...15
New..15
Open...15
Save..15
Print ...15
Print Preview..15
Find ..15
Cut..16
Copy...16
Paste...16
Undo ..16
Start..16
Pause ..16
Stop..16
Set Breakpoint..16
Quick Watch ..17
Step Into...17
Step Over ...17

ii • Contents PC-DMIS Basic Language Reference

Cypress Enable Scripting Language Elements 19
Comments ... 19

Statements: .. 19
Line Continuation Character: .. 20

Numbers .. 20
Variable and Constant Names ... 20
Variable Types .. 20

Variant .. 20
Variants and Concatenation .. 21

Other Data Types .. 21
Data Types .. 21
Scope of Variables .. 22
Declaration of Variables ... 22

Control Structures ... 22
Loop Structures... 22

Subroutines and Functions .. 24
ByRef and ByVal .. 25

Scalar Variables .. 25
Passing User Defined Types by Ref to DLL’s and Enable functions 26

Calling Procedures in DLLs .. 27
Passing and Returning Strings .. 27

File Input/Output ... 28
File I/O Examples ... 28

Arrays.. 29
Ways to Declare a Fixed-Size Array... 30
Manipulating Arrays ... 31
MultiDimensional Arrays ... 31

User Defined Types... 32
Dialog Support .. 33

Dialog Box controls .. 33
OK and Cancel Buttons... 34
List Boxes, Combo Boxes and Drop-down List Boxes... 34
Check Boxes ... 35
Text Boxes and Text ... 36
Option Buttons and Group Boxes ... 37
The Dialog Function ... 38
The Dialog Box Controls .. 39
The Dialog Function Syntax ... 39

Statements and Functions Used in Dialog Functions .. 40
DlgControlId Function.. 41
DlgFocus Statement, DlgFocus() Function... 42
DlgListBoxArray, DlgListBoxArray().. 42
DlgSetPicture .. 42
DlgValue, DlgValue()... 43

OLE Automation... 44
Accessing an Object .. 45
What is an OLE Object?.. 46
OLE Fundamentals.. 47

OLE Object ... 47
OLE Automation... 48
Class..48

OLE Automation and Microsoft Word Example: ... 48
Making Applications Work Together.. 49

WIN.INI.. 49
The Registration Database. ... 49

PC-DMIS Basic Language Reference Contents • iii

The Registration database49
Associations. ..49
Shell Operations...49
OLE Object Servers. ..49
DDE/OLE Automation. ...50

Scripting Language Overview 51
Quick Reference of the Functions and Statements Available ...51

Data Types ...53
Operators..53
Operator Precedence ..54
Functions, Statements, Reserved words - Quick Reference.......................................54

Language Reference A - Z 57
Abs Function ..57
AppActivate Statement ..58
Asc Function ..58
Atn Function ..59
Beep Statement...60
Call Statement ..60
CBool Function ..61
CDate Function ..62
CDbl Function..62
ChDir Statement...63
ChDrive Statement ...64
CheckBox...64
Choose Function...65
Chr Function ..65
CInt Function ...66
CLng Function ...67
Close Statement..67
Const Statement ...68
Cos Function ..69
CreateObject Function ...70
CSng Function..71
CStr Function ...72
CurDir Function ...72
CVar Function..73
Date Function...74
DateSerial Function..75
DateValue Function ...76
Day Function..76
Declare Statement ..77
Dialog, Dialog Function...78
Dim Statement..80
Dir Function ...81
DlgEnable Statement..82
DlgText Statement ...84
DlgVisible Statement ...84
Do...Loop Statement ..85
End Statement ..86
EOF Function...86
Erase Statement..87
Exit Statement ..88

iv • Contents PC-DMIS Basic Language Reference

Exp 89
FileCopy Function.. 89
FileLen Function ... 90
Fix Function .. 90
For each … Next Statement .. 91
For...Next Statement.. 91
Format Function .. 92

Predefined numeric format names: ... 93
Characters for Creating User-Defined Number Formats... 93
Sample Format Number Expressions.. 96

FreeFile Function .. 100
Function Statement.. 101
Get Statement .. 102
Get Object Function .. 103
Global Statement ... 103
GoTo Statement... 104
Hex .. 104
Hour Function ... 105
HTMLDialog... 107
If...Then...Else Statement .. 107
Input # Statement .. 109
Input Function ... 109
InputBox Function... 110
InStr... 111
Int Function ... 111
IsArray Function ... 112
IsDate .. 112
IsEmpty ... 113
IsNull... 113
IsNumeric.. 114
IsObject Function .. 115
Kill Statement.. 115
LBound Function... 116
LCase, Function .. 117
Left .. 118
Len .. 118
Let Statement... 119
Line Input # Statement .. 120
LOF ... 120
Log .. 121
Mid Function... 122
Minute Function .. 123
MkDir.. 124
Month Function... 125
MsgBox Function MsgBox Statement ... 125
Name Statement .. 128
Now Function.. 128
Oct Function.. 128
OKButton .. 129
On Error .. 130

Defined x Value Descriptions ... 131
Open Statement ... 133
Option Base Statement ..134
Option Explicit Statement ... 135
Print Method.. 136
Print # Statement ... 136

PC-DMIS Basic Language Reference Contents • v

Randomize Statement.. .139
ReDim Statement ...139
Rem Statement ...140
Right Function..140
RmDir Statement..141
Rnd Function..142
Second Function...143
Seek Function...145
Seek Statement ...145
Select Case Statement ..146
SendKeys Function ..147
Set Statement..148
Shell Function ..149
Sin Function ...150
Space Function...150
Sqr Function...151
Static Statement..152
Stop Statement ...153
Str Function..154
StrComp Function ..154
String Function...155
Sub Statement ..155
Tan Function ..156
Text Statement ...157
TextBox Statement...158
Time Function ..158
Timer Event...159
TimeSerial - Function ..159
TimeValue - Function ..160
Trim, LTrim, RTrim Functions ..160
Type Statement...161
UBound Function...163
UCase Function..164
Val..165
VarType ...165
Weekday Function ...166
While...Wend Statement...166
With Statement...167
Write # - Statement ..168
Year Function...169

Automation 171
Introduction...171
Active Tip Object Overview ..171
Active Tip Members ..171

Properties: ..171
Methods: ..171

AlignCommand Object Overview..172
AlignCommand Members ..172

Properties: ..172
Methods: ..176

Application Object Overview...177
Application members ...177

Properties: ..177
Methods: ..179

vi • Contents PC-DMIS Basic Language Reference

Array Index Object Overview ... 181
Array Index Members ... 1 81

Methods: ... 181
Attach Object Overview.. 183
Attach Members .. 183

Properties: ... 183
BasicScanCommand Object Overview ... 183
BasicScanCommand Members.. 184

Properties .. 184
Methods: ... 189
Basic Scan Object Combinations .. 198

CadWindow Object Overview: ... 200
CadWindow Members... 200

Properties: ... 200
Methods: ... 201

CadWindows Object Overview... 201
CadWindows Members ... 202

Properties: ... 202
Methods: ... 202

Calibration Object Overview... 202
Calibration Members... 202

Properties: ... 202
Command Object Overview.. 203
Command Members .. 203

Properties: ... 203
Methods: ... 213

Commands Object Overview .. 215
Commands Members... 216

Properties: ... 216
Methods: ... 216

Comment Object Overview... 217
Comment Members ... 217

Properties: ... 217
Methods: ... 218

DimData Object Overview.. 219
DimData Members .. 220

Properties .. 220
DimensionCommand Object Overview... 220
DimensionCommand Members... 221

Properties: ... 221
Dimension Format Object Overview... 225
Dimension Format Members... 225

Properties: ... 225
Methods: ... 225

Dimension Information Object Overview ... 226
Dimension Information Members ... 227

Properties: ... 227
Methods: ... 227

Display Metafile Object Overview.. 231
Display Metafile Members.. 231

Properties: ... 231
DmisDialog Object Overview... 231
DmisDialog Members ... 231

Properties: ... 231
DmisMatrix Object Overview... 231
DmisMatrix Members ... 232

PC-DMIS Basic Language Reference Contents • vii

Properties: ..232
Methods: ..232

EditWindow Object Overview...235
EditWindow Class Members..235

Properties: ..235
Methods: ..237

ExternalCommand Object Overview ...238
ExternalCommand Members..238

Properties: ..238
FeatCommand Object Overview..238
FeatCommand Members ..238

Properties: ..238
Methods: ..249

FeatData Object Overview...257
FeatData Members ...257

Properties ...257
File IO Object Overview..259
File IO Members ..259

Properties: ..259
FlowControlCommand Object Overview...260
FlowControlCommand Members...261

Properties: ..261
Methods: ..263

Leitz Motion Object Overview...268
Leitz Motion Members...268

Properties: ..268
Load Machine Object Overview ..269
Load Machine Members...269

Properties: ..269
Load Probes Object Overview ...269
Load Probes Members..269

Properties: ..269
Machine Object Overview ...269
Machine Object Members ..270

Properties: ..270
Events: ...270

Machines Object Overview..270
Machines Object Members...271

Properties: ..271
Methods: ..271

ModalCommand Object Overview ..272
ModalCommand Members...272

Properties: ..272
MoveCommand Object Overview..274
MoveCommand Members..274

Properties: ..274
Opt Motion Object Overview...275
Opt Motion Members...276

Properties: ..276
PartProgram Object Overview ...276
PartProgram Members ...276

Properties: ..276
Methods: ..278

PartPrograms Object Overview..280
PartPrograms Object Members ..280

Properties: ..280

viii • Contents PC-DMIS Basic Language Reference

Methods: ... 280
PointData Object Overview... 282
PointData Members... 282

Properties .. 282
Probe Object Overview ... 283
Probe Members ... 283

Properties: ... 283
Methods: ... 285

Probes Object Overview.. 286
Probes Object Members .. 286

Properties: ... 286
Methods: ... 286

ScanCommand Object Overview .. 287
ScanCommand Members .. 287

Properties .. 287
Methods: ... 293

Statistics Object Overview .. 299
Statistics Members .. 299

Properties: ... 299
Methods: ... 300

Temperature Compensation Object Overview .. 301
Temperature Compensation Members .. 301

Properties: ... 301
Methods: ... 302

Tip Object Overview... 303
Tip Members ... 303

Properties: ... 303
Tips Object Overview ... 305
Tips Members.. 305

Properties: ... 305
Methods: ... 305

Tool Object Overview... 306
Tool Members ... 306

Properties: ... 306
Tools Object Overview ... 307
Tools Members.. 307

Properties: ... 307
Methods: ... 307

Tracefield Object Overview .. 308
Tracefield Members .. 308

Properties: ... 308

Old PC-DMIS Basic Functions 309
Introduction ... 309
Fuctions A ... 309

AddBoundaryPoint.. 309
AddFeature.. 309
AddLevelFeat.. 309
AddOriginFeat .. 310
AddRotateFeat .. 310
ArcSin ... 310
ArcCos .. 310

Functions B ... 310
BestFit2D .. 310
BestFit3D .. 310

PC-DMIS Basic Language Reference Contents • ix

Functions C311
Calibrate...311
CatchMotionError..311
Check ...311
ClearPlane..311
Column132 ..311
Comment..312
CreatID ..312

Functions D ..312
DefaultAxes ...312
DefaultHits...313
DimFormat...313

Functions E ..313
EndAlign..313
EndDim..313
EndFeature ...313
EndGetFeatPoint ..313
EndScan ...314
EquateAlign ...314

Functions F...314
Feature ...314
Flatness ..314

Functions G ..314
GapOnly...314
GetDimData ...315
GetDimOutTol...315
GetFeatData ...315
GetFeatID ..316
GetFeatPoint ..317
GetFeature..317
GetPH9Status...317
GetProbeOffsets...317
GetProbeRadius ...317
GetProgramOption...317
GetProgramValue ..318
GetTopMachineSpeed ...318
GetType ...318
GetUnits ...318

Functions H ..318
Hit ..318

Functions I..319
IgnoreMotionError...319
Iterate ...319

Functions L ..319
Level ..319
LoadProbe..319

Functions M ...319
MaxMineAve...319
Mode..320
Move..320
MoveSpeed ..320

Functions O ..320
OpenCommConnection..320

Functions P...321
Prehit..321
ProbeComp ..321

x • Contents PC-DMIS Basic Language Reference

PutFeatData... 321
Functions R ... 321

ReadCommBlock.. 321
RecallIn ... 322
RecallEx.. 322
Retract ... 322
RetroOnly.. 322
Rotate .. 322
RotateCircle .. 322
RotateOffset .. 323
Roundness ... 323
Runout... 323

Functions S.. 323
SaveAlign.. 323
SetAutoParams.. 323
SetAutoVector... 324
SetNoms.. 324
SetPrintOptions ... 325
SetProgramOption... 325
SetProgramValue .. 325
SetReportOptions .. 325
SetRmeasMode ... 325
SetSlaveMode ... 326
SetScanHitParams... 326
SetScanHitVectors .. 326
SetScanParams.. 326
SetScanVectors ... 327
SetTheos.. 327
ShowXYZWindow.. 327
Sleep.. 327
StartAlign.. 328
StartDim.. 328
StartFeature ... 328
StartGetFeatPoint .. 330
StartScan ... 330
Straitness ... 331
Stats... 331

Functions T.. 331
Tip... 331
Touchspeed ... 332
Trace ... 332
Translate.. 332
TranslateOffset.. 332

Functions W .. 332
Wait... 332
Workplane... 332
WriteCommBlock ... 332

Glossary of Terms 335

Index 337

PC-DMIS Basic Language Reference Basic Script Editor • 11

Basic Script Editor

Introduction
The UTILITIES | SCRIPTING | BASIC SCRIPT EDITOR menu option opens the
Basic Script Editor. The Basic Script Editor can be used to create and edit basic
scripts that can be used in Basic Script objects during execution or from the Basic
Script toolbar.The Basic Script Editor consists of the following menus:

1) File menu

2) Edit menu

3) View menu

4) Run menu

5) Help menu

File Menu
The Basic Script Editor’s FILE menu gives you the following commands and
options:

New
The FILE | NEW men option opens a new Basic Script Editor in which you can write
a new script.

Open
The FILE | OPEN menu option allows you to navigate to and open an existing script.
In order for files to appear in the Basic Script Editor, files must be of file type .BAS.

Save
The FILE | SAVE menu option allows you to save a script. With a new script, the
first time this option is selected, the Save As Dialog box will appear.

12 • Basic Script Editor PC-DMIS Basic Language Reference

Save As
The FILE | SAVE AS menu option allows you to save a new script, or an already
existing script by a new file name. The Save As Dialog box appears, allowing you to
select the file name and the directory to which you will be saving the script.

Print
The FILE | PRINT menu option allows you to print the script in the Basic Script
Editor from your system’s printer.

Print Preview
The FILE | PRINT PREVIEW menu option allows you to preview what will be sent
to the printer when PRINT is selected from the Basic Script Editor’s FILE menu.

Exit
The FILE | EXIT menu option allows you to exit out of the Basic Script Editor
without saving any changes you have made to any open scripts. Choosing FILE |
EXIT will return you the the main user interface. The menu bar will return to normal
PC-DMIS functions.

Edit Menu
The EDIT menu of the Basic Script Editor allows you to use basic Edit functions to
manipulate the text displayed in the Basic Script Editor.

Undo
The EDIT | UNDO menu option allows you to undo the most recent action taken in
the Basic Script Editor.

Cut
The EDIT | CUT menu option allows you to cut selected text from the Basic Script
Editor. Cut text is stored in the Windows clipboard to later be pasted elsewhere.

Copy
The EDIT | COPY menu option allows you to copy selected text. Copied text is
stored in the Windows clipboard to later be pasted elsewhere.

Paste
The EDIT | PASTE command allows you to paste text that is stored in the Windows
clipboard.

Delete
The EDIT | DELETE command allows you to delete highlighted text.

PC-DMIS Basic Language Reference Basic Script Editor • 13

Select All
The EDIT | SELECT ALL menu option automatically selects all the text within the
Basic Script Editor. You can then CUT, COPY, or DELETE the selected text.

Find
The EDIT | FIND menu option brings up the Find Dialog box.

Find Dialog box

This dialog allows you to search for a specific word, or term within the Basic Script
Editor.

• If you choose the Match whole word only check box the
dialog will display only those words that match the entire
word.

• If you choose the Match Case check box, then the dialog
will display only those terms that match the case
(Uppercase or Lowercase) that you used in the Find what
field.

Find Next
The EDIT | FIND NEXT will search in the Basic Script Editor for the next term that
meets the qualifications specified in the Find Dialog box (See EDIT | FIND above.)

Replace
The EDIT | REPLACE menu option brings up the Replace Dialog box

Replace Dialog box

This dialog is an extension of the EDIT | FIND command. This allows you to search
for a specific term and then replace it with the term entered in the Replace with field.

14 • Basic Script Editor PC-DMIS Basic Language Reference

Find Next

The Find Next button searches through the Basic Script Editor and brings up the
first instance that meets the qualifications entered in the dialog box.

Replace

The Replace button allows you to replace what has been found (using the Find
Next button) with what is in the Replace with field.

Replace All

The Replace All button allows you to replace all instances in the Basic Script
Editor that meet the search qualifications with what is in the Replace with field.

Cancel

The Cancel button closes the Replace Dialog box.

View
The VIEW menu allows you to choose if the Basic Script Editor’s Toolbar and / or
Status Bar is being displayed. Select VIEW | TOOLBAR to toggle the toolbar on or
off. Select VIEW | STATUS BAR to toggle the status bar on or off.

Run
The RUN menu allows you to COMPILE a scriptor EXECUTE a script. Use the
compile command to test the script for syntactic errors. The execute command
executes the script.

Help
The HELP menu allows you to access various options that aid you in using the Basic
Script Editor.

Basic Help
The HELP | BASIC HELP command brings up the on-line help file created for the
add on Basic Module.

Syntax Help
The HELP | SYNTAX HELP toggles the option to use the syntax help when using
the Basic Script Editor. If this option is selected, a pop up scroll box appears within
the Basic Script Editor whenever you type in a command or term used in the Basic
programming language. You can use arrow keys to select the appropriate term. Once
selected, hit the TAB key and that term will appear in the Basic Script Editor.
Hitting the Spacebar displays the syntax needed for the command.

PC-DMIS Basic Language Reference Basic Script Editor • 15

Syntax Help File
The HELP | SYNTAX HELP FILE allows you to select the syntax file used in the
HELP | SYNTAX HELP command. An Open File Dialog box will appear. Navigate
to the directory that contains PC-DMIS for Windows and select the "Pcdmis.syn"
file.

Basic Script Toolbar

The Basic Editor Toolbar supports the following functions:

New

This button allows you to create a new basic script in the editor.

Open

This button brings up an Open File Dialog box allowing you opens an existing basic
script into the editor.

Save

This button saves the current basic script. If you have not already named the current
script, a Save As Dialog box asking for the name of the script will appear.

Print

This button prints the current basic script.

Print Preview

This button allows you to see the current basic script in the Print Preview window as
it will appear when printed.

Find

16 • Basic Script Editor PC-DMIS Basic Language Reference

This button allows you to search for text in the current basic script.

Cut

Ths button cuts currently selected text and put text on the clipboard.

Copy

This button copies currently selected text and put text on the clipboard.

Paste

This button pastes text from the clipboard into the editor at the current insertion
point.

Undo

This button allows you to undo the last editing change.

Start

This button compiles and runs the current basic script.

Note: Scripts run from the editor using the PC-DMIS basic commands can insert
objects into the current part program.

Pause

This button pauses the currently running basic script

Stop

This button stops the currently running basic script

Set Breakpoint

PC-DMIS Basic Language Reference Basic Script Editor • 17

This button allows you to set a breakpoint at the current line of the insertion point in
the editor.

Quick Watch

This button allows you to evaluate and show the current value of selected variable in
basic editor

Step Into

This button moves the basic script execution pointer forward to the next basic
instruction. This command is used in conjunction with break points and execution of
a basic script.

Step Over

This button steps over the current basic function call to the next statement following
the call. Clicking Step Into while on a basic function call will cause the execution
pointer to point at the first command of the called function.

PC-DMIS Basic Language Reference Cypress Enable Scripting Language Elements • 19

Cypress Enable Scripting
Language Elements

In this Section, the general elements of the Enable language are described. Enable
scripts can include comments, statements, various representations of numbers, 11
variable data types including user defined types, and multiple flow of control
structures. Enable is also extendable by calling external DLL’s or calling functions
back in the applications .exe file.

Comments
Comments are non-executed lines of code which are included for the benefit of the
programmer. Comments can be included virtually anywhere in a script. Any text
following an apostrophe or the word Rem is ignored by Enable. Rem and all other
keywords and most names in Enable are not case sensitive

’ This whole line is a comment

rem This whole line is a comment

REM This whole line is a comment

Rem This whole line is a comment

Comments can also be included on the same line as executed code:

MsgBox Msg ’ Display message.

Everything after the apostrophe is a comment.

Statements:
In Enable there is no statement terminator. More than one statement can be put on a
line if they are separated by a colon.

X.AddPoint(25, 100) : X.AddPoint(0, 75)

Which is equivalent to:
X.AddPoint(25, 100)

X.AddPoint(0, 75)

20 • Cypress Enable Scripting Language Elements PC-DMIS Basic Language Reference

Line Continuation Character:
The underscore is the line continuation character in Enable. There must be a space
before and after the line continuation character.

X.AddPoint _

(25, 100)

Numbers
Cypress Enable supports three representations of numbers: Decimal, Octal and
Hexadecimal. Most of the numbers used in this manual are decimal or base 10
numbers. However, if you need to use Octal (base 8) or hexadecimal (base 16)
numbers simply prefix the number with &O or &H respectively.

Variable and Constant Names
Variable and Constant names must begin with a letter. They can contain the letters A
to Z and a to z, the underscore “_”, and the digits 0 to 9. Variable and constant names
must begin with a letter, be no longer than 40 characters. and cannot be reserved
words. For a table of reserved words, see the Language Overview section of this
manual. One exception to this rule is that object member names and property names
may be reserved words.

Variable Types

Variant

As is the case with Visual Basic, when a variable is introduced in Cypress Enable, it
is not necessary to declare it first (see option explicit for an exception to this rule).
When a variable is used but not declared then it is implicitly declared as a variant
data type. Variants can also be declared explicitly using "As Variant" as in Dim x As
Variant. The variant data type is capable of storing numbers, strings, dates, and
times. When using a variant you do not have to explicitly convert a variable from
one data type to another. This data type conversion is handled automatically.

Sub Main

Dim x ’variant variable

x = 10

x = x + 8

x = "F" & x

print x ’prints F18

End Sub

PC-DMIS Basic Language Reference Cypress Enable Scripting Language Elements • 21

A variant variable can readily change its type and its internal representation can be
determined by using the function VarType. VarType returns a value that
corresponds to the explicit data types. See VarType in A-Z Reference for return
values.

When storing numbers in variant variables the data type used is always the most
compact type possible. For example, if you first assign a small number to the variant
it will be stored as an integer. If you then assign your variant to a number with a
fractional component it will then be stored as a double.

For doing numeric operations on a variant variable it is sometimes necessary to
determine if the value stored is a valid numeric, thus avoiding an error. This can be
done with the IsNumeric function.

Variants and Concatenation
If a string and a number are concatenated the result is a string. To be sure your
concatenation works regardless of the data type involved use the & operator. The &
will not perform arithmetic on your numeric values it will simply concatenate them
as if they were strings.

The IsEmpty function can be used to find out if a variant variable has been
previously assigned.

Other Data Types
The twelve data types available in Cypress Enable are shown below:

Data Types
Variable Symbol Type Declaration Size
Byte Dim BVar As Byte 0 to 255

Boolean Dim BoolVar As
Boolean

True or False

String $ Dim Str_Var As String 0 to 65,500 char

Integer % Dim Int_Var As Integer 2 bytes

Long & Dim Long_Var As Long 4 bytes

Single ! Dim Sing_Var As Single 4 bytes

Double # Dim Dbl_Var As Double 8 bytes

Variant Dim X As Any

Currency Dim Cvar As Currency 8 bytes

Object Dim X As Object 4 bytes

22 • Cypress Enable Scripting Language Elements PC-DMIS Basic Language Reference

Date Dim D As Date 8 bytes

User Defined Types size of each
element

Scope of Variables
Cypress Enable scripts can be composed of many files and each file can have many
subroutines and functions in it. Variable names can be reused even if they are
contained in separate files. Variables can be local or global.

Declaration of Variables
In Cypress Enable variables are declared with the Dim statement. To declare a
variable other than a variant the variable must be followed by As or appended by a
type declaration character such as a % for Integer type.

Sub Main

 Dim X As Integer

 Dim Y As Double

 Dim Name$, Age% ’ multiple declaration on one line Dim v

End Sub

Control Structures
Cypress Enable has complete process control functionality. The control structures
available are Do loops, While loops, For loops, Select Case, If Then , and If Then
Else. In addition, Cypress Enable has one branching statement: GoTo. The Goto
Statement branches to the label specified in the Goto Statement.

Goto label1

.

.

.

label1:

The program execution jumps to the part of the program that begins with the label
"Label1:".

Loop Structures

Do Loops
The Do...Loop allows you to execute a block of statements an indefinite number of
times. The variations of the Do...Loop are Do While, Do Until, Do Loop While,
and Do Loop Until.

Do While|Until condition

 Statement(s)...

 [Exit Do]

PC-DMIS Basic Language Reference Cypress Enable Scripting Language Elements • 23

 Statement(s)...

Loop

Do Until condition

Statement(s)...

Loop

Do

Statements...

Loop While condition

Do

statements...

Loop Until condition

Do While and Do Until check the condition before entering the loop, thus the block
of statements inside the loop are only executed when those conditions are met. Do
Loop While and Do Loop Until check the condition after having executed the block
of statements thereby guaranteeing that the block of statements is executed at least
once.

While Loop
The While...Wend loop is similar to the Do While loop. The condition is checked
before executing the block of statements comprising the loop.

While condition

statements...

Wend

For ... Next Loop
The For...Next loop has a counter variable and repeats a block of statements a set
number of times. The counter variable increases or decreases with each repetition
through the loop. The counter default is one if the Step variation is not used.

For counter = beginning value To ending value [Step increment]

statements...

Next

If and Select Statements
The If...Then block has a single line and multiple line syntax. The condition of an If
statement can be a comparison or an expression, but it must evaluate to True or
False.

If condition Then Statements... ’single line syntax

If condition Then ’multiple line syntax

24 • Cypress Enable Scripting Language Elements PC-DMIS Basic Language Reference

statements...

End If

The other variation on the If statement is the If...Then...Else statement. This
statement should be used when there is different statement blocks to be executed
depending on the condition. There is also the If...Then...ElseIf... variation, these can
get quite long and cumbersome, at which time you should consider using the Select
statement.

If condition Then

statements...

ElseIf condition Then

statements...

Else

End If

The Select Case statement tests the same variable for many different values. This
statement tends to be easier to read, understand and follow and should be used in
place of a complicated If...Then...ElseIf statement.

Select Case variable to test

Case 1

statements...

Case 2

statements...

Case 3

statements...

Case Else

statements...

End Select

See Language Reference A - Z for exact syntax and code examples.

Subroutines and Functions

Naming conventions
Subroutine and Function names can contain the letters A to Z and a to z, the
underscore “_” and digits 0 to 9. The only limitation is that subroutine and function
names must begin with a letter, be no longer than 40 characters, and not be reserved
words. For a list of reserved words, see the table of reserved words in the Language
Overview section of this manual.

Cypress Enable allows script developers to create their own functions or subroutines
or to make DLL calls. Subroutines are created with the syntax "Sub <subname>

PC-DMIS Basic Language Reference Cypress Enable Scripting Language Elements • 25

End Sub". Functions are similar "Function <funcname> As <type> ... <funcname> =
<value> ... End Function.” DLL functions are declared via the Declare statement.

ByRef and ByVal
ByRef gives other subroutines and functions the permission to make changes to
variables that are passed in as parameters. The keyword ByVal denies this
permission and the parameters cannot be reassigned outside their local procedure.
ByRef is the Enable default and does not need to be used explicitly. Because ByRef
is the default all variables passed to other functions or subroutines can be changed,
the only exception to this is if you use the ByVal keyword to protect the variable or
use parentheses which indicate the variable is ByVal.

If the arguments or parameters are passed with parentheses around them, you will
tell Enable that you are passing them ByVal

SubOne var1, var2, (var3)

The parameter var3 in this case is passed by value and cannot be changed by the
subroutine SubOne.

Function R(X As String, ByVal n As Integer)

In this example the function R is receiving two parameters X and n. The second
parameter n is passed by value and the contents cannot be changed from within the
function R.

In the following code samples scalar variable and user defined types are passed by
reference.

Scalar Variables

Sub Main

 Dim x(5) As Integer

 Dim i As Integer

 for i = 0 to 5

 x(i) = i

 next i

 Print i

 Joe (i), x ‘ The parenthesis around it turn it into an
expression which passes by value

 print "should be 6: "; x(2), i

End Sub

Sub Joe(ByRef j As Integer, ByRef y() As Integer)

 print "Joe: "; j, y(2)

 j = 345

 for i = 0 to 5

26 • Cypress Enable Scripting Language Elements PC-DMIS Basic Language Reference

 print "i: "; i; "y(i): "; y(i)

 next i

 y(2) = 3 * y(2)

End Sub

Passing User Defined Types by Ref to DLL’s and
Enable functions

’ OpenFile() Structure

Type OFSTRUCT

cBytes As String * 1

fFixedDisk As String * 1

nErrCode As Integer

reserved As String * 4

szPathName As String * 128

End Type

’ OpenFile() Flags

Global Const OF_READ = &H0

Global Const OF_WRITE = &H1

Global Const OF_READWRITE = &H2

Global Const OF_SHARE_COMPAT = &H0

Global Const OF_SHARE_EXCLUSIVE = &H10

Global Const OF_SHARE_DENY_WRITE = &H20

Global Const OF_SHARE_DENY_READ = &H30

Global Const OF_SHARE_DENY_NONE = &H40

Global Const OF_PARSE = &H100

Global Const OF_DELETE = &H200

Global Const OF_VERIFY = &H400

Global Const OF_CANCEL = &H800

Global Const OF_CREATE = &H1000

Global Const OF_PROMPT = &H2000

Global Const OF_EXIST = &H4000

Global Const OF_REOPEN = &H8000

Declare Function OpenFile Lib "Kernel" (ByVal lpFileName As
String, lpReOpenBuff As OFSTRUCT, ByVal wStyle As Integer)
As Integer

Sub Main

 Dim ofs As OFSTRUCT

 ’ Print OF_READWRITE

 ofs.szPathName = "c:\enable\openfile.bas"

 print ofs.szPathName

PC-DMIS Basic Language Reference Cypress Enable Scripting Language Elements • 27

 ofs.nErrCode = 5

 print ofs.nErrCode

 OpenFile "t.bas", ofs

 print ofs.szPathName

 print ofs.nErrCode

End Sub

Calling Procedures in DLLs

DLLs or Dynamic-link libraries are used extensively by Engineers to funtions and
subroutines located there. There are two main ways that Enable can be extended, one
way is to call functions and subroutines in DLLs and the other way is to call
functions and subroutines located in the calling application. The mechanisms used
for calling procedures in either place are similar. (See the Declare Statement for
more deatils)

To declare a DLL procedure or a procedure located in your calling application place
a declare statement in your declares file or outside the code area. All declarations in
Enable are Global to the run and accesible by all subroutines and functions. If the
procedure does not return a value, declare it as a subroutine. If the procedure does
have a return value declare it as a function.

Declare Function GetPrivateProfileString Lib "Kernel32"
(ByVal lpApplicationName As String, ByVal _ lpKeyName As
String, ByVal lpDefault As String, ByVal lpReturnedString
As String, ByVal nSize As _ Integer, ByVal lpFileName As
String) As Integer

Declare Sub InvertRect Lib “User” (ByVal hDC AS Integer,
aRect As Rectangle)

Notice the line extension character “-“ the underscore. If a piece of code is too long
to fit on one line a line extension character can be used when needed.

Once a procedure is declared, you can call it just as you would another Enable
Function.

It is important to note that Enable cannot verify that you are passing correct values to
a DLL procedure. If you pass incorrect values, the procedure may fail.

Passing and Returning Strings
Cypress Enable maintains variable-length strings internally as BSTRs. BSTRs are
defined in the OLE header files as OLECHAR FAR *. An OLECHAR is a
UNICODE character in 32-bit OLE and an ANSI character in 16-bit OLE. A BSTR
can contain NULL values because a length is also maintained with the BSTR.
BSTRs are also NULL terminated so they can be treated as an LPSTR. Currently
this length is stored immediately prior to the string. This may change in the future,
however, so you should use the OLE APIs to access the string length.

28 • Cypress Enable Scripting Language Elements PC-DMIS Basic Language Reference

You can pass a string from Cypress Enable to a DLL in one of two ways. You can
pass it "by value" (ByVal) or "by reference". When you pass a string ByVal,
Cypress Enable passes a pointer to the beginning of the string data (i.e. it passes a
BSTR). When a string is passed byreference, Enable passes a pointer to a pointer
to the string data (i.e. it passes a BSTR *).

OLE API

SysAllocString/SysAllocStringLen

SysAllocString/SysAllocStringLen

SysFreeString

SysStringLen

SysReAllocStringLen

SysReAllocString

Note:: The BSTR is a pointer to the string, so you don’t need to dereference it.

File Input/Output

Enable supports full sequential and binary file I/O.

Functions and Statements that apply to file access:

Dir, EOF, FileCopy, FileLen, Seek, Open, Close, Input, Line Input, Print and
Write

File I/O Examples
Sub Main

 Open "TESTFILE" For Input As #1 ’ Open file.

 Do While Not EOF(1) ’ Loop until end of file.

 Line Input #1, TextLine ’ Read line into variable.

Print TextLine ’ Print to Debug window.

 Loop

 Close #1 ’ Close file.

End Sub

Sub test

Open "MYFILE" For Input As #1 ’ Open file for input.

Do While Not EOF(1) ’ Check for end of file.

Line Input #1, InputData ’ Read line of data.

MsgBox InputData

Loop

PC-DMIS Basic Language Reference Cypress Enable Scripting Language Elements • 29

Close #1 ’ Close file.

End Sub

Sub FileIO_Example()

Dim Msg ’ Declare variable.

Call Make3Files() ’ Create data files.

Msg = "Several test files have been created on your disk. "

Msg = Msg & "Choose OK to remove the test files."

MsgBox Msg

For I = 1 To 3

 Kill "TEST" & I ’ Remove data files from disk.

 Next I

End Sub

Sub Make3Files ()

Dim I, FNum, FName ’ Declare variables.

For I = 1 To 3

FNum = FreeFile ’ Determine next file number.

FName = "TEST" & FNum

Open FName For Output As FNum ’ Open file.

Print #I, "This is test #" & I ’ Write string to
file.

Print #I, "Here is another "; "line"; I

Next I

Close ’ Close all files.

End Sub

Arrays
Cypress Enable supports single and multi dimensional arrays. Using arrays you can
refer to a series of variables by the same name each with a separate index. Arrays
have upper and lower bounds. Enable allocates space for each index number in the
array. Arrays should not be declared larger then necessary.

All the elements in an array have the same data type. Enable supports arrays of
bytes, Booleans, longs, integers, singles, double, strings, variants and User Defined
Types.

30 • Cypress Enable Scripting Language Elements PC-DMIS Basic Language Reference

Ways to Declare a Fixed-Size Array
q Global array, use the Dim statement outside the procedure

section of a code module to declare the array.

q To create a local array, use the Dim statement inside a
procedure.

q Cypress Enable supports Dynamic arrays.

Declaring an Array
The array name must be followed by the upper bound in parentheses. The upper
bound must be an integer.

Dim ArrayName (10) As Interger

Dim Sum (20) As Double

Creating a Global Array
To create a global array, you simply use Dim outside the procedure:

Dim Counters (12) As Integer

Dim Sums (26) As Double

Sub Main () …

The same declarations within a procedure use Static or Dim:

Static Counters (12) As Integer

Static Sums (22) As Double

The first declaration creates an array with 11 elements, with index numbers running
from 0 to 10. The second creates an array with 21 elements. To change the default
lower bound to 1 place an Option Base statement in the Declarations section of a
module:

Option Base 1

Another way to specify the lower bound is to provide it explicitly (as an integer, in
the range -32,768 to 32,767) using the To key word:

Dim Counters (1 To 13) As Integer

Dim Sums (100 To 126) As String

In the preceding declarations, the index numbers of Counters run from 1 to 13, and
the index numbers of Sums run from 100 to 126.

Note: Many other versions of Basic allow you to use an array without first
declaring it. Enable Basic does not allow this; you must declare an array before using
it.

PC-DMIS Basic Language Reference Cypress Enable Scripting Language Elements • 31

Manipulating Arrays
Loops often provide an efficient way to manipulate arrays. For example, the
following For loop initializes all elements in the array to 5:

Static Counters (1 To 20) As Integer

Dim I As Integer

For I = 1 To 20

Counter (I) = 5

Next I

…

MultiDimensional Arrays
Cypress Enable supports multidimensional arrays. For example the following
example declares a two-dimensional array within a procedure.

Static Mat(20, 20) As Double

Either or both dimensions can be declared with explicit lower bounds.

Static Mat(1 to 10, 1 to 10) As Double

You can efficiently process a multidimensional array with the use of for loops. In the
following statements the elemtents in a multidimensional array are set to a value.

Dim L As Integer, J As Integer

 Static TestArray(1 To 10, 1 to 10) As Double

 For L = 1 to 10

For J = 1 to 10

TestArray(L,J) = I * 10 + J

Next J

 Next L

Arrays can be more than two dimensional. Enable does not have an arbitrary upper
bound on array dimensions.

Dim ArrTest(5, 3, 2)

This declaration creates an arrray that has three dimensions with sizes 6 by 4, by 3
unless Option Base 1 is set previously in the code. The use of Option Base 1 sets the
lower bound of all arrays to 1 instead of 0.

32 • Cypress Enable Scripting Language Elements PC-DMIS Basic Language Reference

User Defined Types
Users can define their own types that are composites of other built-in or user defined
types. Variables of these new composite types can be declared and then member
variables of the new type can be accessed using dot notation. Only variables of user
defined types that contain simple data types can be passed to DLL functions
expecting ‘C’ structures.

User Defined types are created using the type statement, which must be placed
outside the procedure in your Enable Code. User defined types are global. The
variables that are declared as user defined types can be either global or local. User
Defined Types in Enable cannot contain arrays at this time

Type type1

 a As Integer

 d As Double

 s As String

End Type

Type type2

 a As Integer

 o As type1

End Type

Dim type2a As type2

Dim type1a As type1

Sub TypeExample ()

 a = 5

 type1a.a = 7472

 type1a.d = 23.1415

 type1a.s = "YES"

 type2a.a = 43

 type2a.o.s = "Hello There"

 MsgBox type1a.a

 MsgBox type1a.d

 MsgBox type1a.s

 MsgBox type2a.a

 MsgBox type2a.o.s

 MsgBox a

End Sub

PC-DMIS Basic Language Reference Cypress Enable Scripting Language Elements • 33

Dialog Support
Cypress Enable has support for custom dialogs. The syntax is similar to the syntax
used in Microsoft Word Basic. The dialog syntax is not part of Microsoft Visual
Basic or Microsoft Visual Basic For Applications (VBA). Enable has complete
support for dialogs. The type of dialogs supported are outlined below.

Dialog Box controls
Enable Basic supports the standard Windows dialog box controls. This section
introduces the controls available for custom dialog boxes and provides guidelines for
using them.

The Dialog Box syntax begins with the statement “Begin Dialog”. The first two
parameters of this statement are optional. If they are left off the dialog will
automatically be centered.

Begin Dialog DialogName1 240, 184, "Test Dialog"

Begin Dialog DialogName1 60, 60,240, 184, "Test Dialog"

34 • Cypress Enable Scripting Language Elements PC-DMIS Basic Language Reference

OK and Cancel Buttons

Sub Main

Begin Dialog ButtonSample 16,32,180,96,"OK and Cancel"

OKButton 132,8,40,14

CancelButton 132,28,40,14

End Dialog

Dim Dlg1 As ButtonSample

Button = Dialog (Dlg1)

End Sub

Every custom dialog box must contain at least one “command” button - a OK button
or a Cancel button. Enable includes separate dialog box definition statements for
each of these two types of buttons.

List Boxes, Combo Boxes and Drop-down List
Boxes

Sub Main

Dim MyList$ (5)

MyList (0) = "line Item 1"

MyList (1) = "line Item 2"

MyList (2) = "line Item 3"

PC-DMIS Basic Language Reference Cypress Enable Scripting Language Elements • 35

MyList (3) = "line Item 4"

MyList (4) = "line Item 5"

MyList (5) = "line Item 6"

Begin Dialog BoxSample 16,35,256,89,"List Box, Combo Box, and
Drop-Down List Box"

OKButton 204,24,40,14

CancelButton 204,44,40,14

ListBox 12,24,48,40, MyList$(),.Lstbox

DropListBox 124,24,72,40, MyList$(),.DrpList

ComboBox 68,24,48,40, MyList$(),.CmboBox

Text 12,12,32,8,"List Box:"

Text 124,12,68,8,"Drop-Down List Box:"

Text 68,12,44,8,"Combo Box:"

End Dialog

Dim Dlg1 As BoxSample

Button = Dialog (Dlg1)

End Sub

You can use a list box, drop-down list box, or combo box to present a list of items
from which the user can select. A drop-down list box saves space (it can drop down
to cover other dialog box controls temporarily). A combo box allows the user either
to select an item from the list or type in a new item. The items displayed in a list box,
drop-down list box, or combo box are stored in an array that is defined before the
instructions that define the dialog box.

Check Boxes

Sub Main

Begin Dialog CheckSample15,32,149,96,"Check Boxes"

OKButton 92,8,40,14

CancelButton 92,32,40,14

CheckBox 12,8,45,8,"CheckBox",.CheckBox1

36 • Cypress Enable Scripting Language Elements PC-DMIS Basic Language Reference

CheckBox 12,24,45,8,"CheckBox",.CheckBox2

CheckBox 12,40,45,8,"CheckBox",.CheckBox3

CheckBox 12,56,45,8,"CheckBox",.CheckBox4

End Dialog

Dim Dlg1 As CheckSample

Button = Dialog (Dlg1)

End Sub

You use a check box to make a “yes or no” or “on or off” choice. for example, you
could use a check box to display or hide a toolbar in your application.

Text Boxes and Text

Sub Main

Begin Dialog TextBoxSample 16,30,180,96,"Text Boxes and
Text"

OKButton 132,20,40,14

CancelButton 132,44,40,14

Text 8,8,32,8,"Text Box:"

TextBox 8,20,100,12,.TextBox1

Text 8,44,84,8,"Multiline Text Box:"

TextBox 8,56,100,32,.TextBox2

End Dialog

Dim Dlg1 As TextBoxSample

Button = Dialog (Dlg1)

End Sub

A text box control is a box in which the user can enter text while the dialog box is
displayed. By default, a text box holds a single line of text. Enable support single and
multi-line text boxes. The last parameter of the textbox function contains a variable
to set the textbox style.
’===
’ This sample shows how to implement a multiline textbox
’===
Const ES_LEFT = &h0000& ’Try these different styles or-ed
together

PC-DMIS Basic Language Reference Cypress Enable Scripting Language Elements • 37

Const ES_CENTER = &h0001& ’ as the last parameter of Textbox
the change
Const ES_RIGHT = &h0002& ’ the text box style.
Const ES_MULTILINE = &h0004& ’ A 1 in the last parameter
position defaults to
Const ES_UPPERCASE = &h0008& ’ A multiline, Wantreturn,
AutoVScroll testbox.
Const ES_LOWERCASE = &h0010&
Const ES_PASSWORD = &h0020&
Const ES_AUTOVSCROLL = &h0040&
Const ES_AUTOHSCROLL = &h0080&
Const ES_NOHIDESEL = &h0100&
Const ES_OEMCONVERT = &h0400&
Const ES_READONLY = &h0800&
Const ES_WANTRETURN = &h1000&
Const ES_NUMBER = &h2000&

Sub Multiline
 Begin Dialog DialogType 60, 60, 140, 185, "Multiline text Dialog",
.DlgFunc
 TextBox 10, 10, 120, 150, .joe, ES_MULTILINE Or ES_AUTOVSCROLL
Or ES_WANTRETURN ’ Indicates multiline TextBox

 ’TextBox 10, 10, 120, 150, .joe, 1 ’ indicates multi-line
textbox

 CancelButton 25, 168, 40, 12
 OKButton 75, 168, 40, 12
 End Dialog
 Dim Dlg1 As DialogType
 Dlg1.joe = "The quick brown fox jumped over the lazy dog"
 ’ Dialog returns -1 for OK, 0 for Cancel
 button = Dialog(Dlg1)
 ’MsgBox "button: " & button
 If button = 0 Then Exit Sub

 MsgBox "TextBox: "& Dlg1.joe
End Sub

Option Buttons and Group Boxes

You can have option buttons to allow the user to choose one option from several.
Typically, you would use a group box to surround a group of option buttons, but you
can also use a group box to set off a group of check boxes or any related group of
controls.

Begin Dialog GroupSample 31,32,185,96,"Option Button and Check
Box"

OKButton 28,68,40,14

38 • Cypress Enable Scripting Language Elements PC-DMIS Basic Language Reference

CancelButton 120,68,40,14

GroupBox 12,8,72,52,"GroupBox",.GroupBox1

GroupBox 100,12,72,48,"GroupBox",.GroupBox2

OptionGroup .OptionGroup1

OptionButton 16,24,54,8,"OptionButton",.OptionButton1

OptionButton 16,40,54,8,"OptionButton",.OptionButton2

CheckBox 108,24,45,8,"CheckBox",.CheckBox1

CheckBox 108,40,45,8,"CheckBox",.CheckBox2

End Dialog

Dim Dlg1 As GroupSample

Button = Dialog (Dlg1)

End Sub

Sub Main

 Begin Dialog DialogName1 60, 60, 160, 70

 TEXT 10, 10, 28, 12, "Name:"

 TEXTBOX 42, 10, 108, 12, .nameStr

 TEXTBOX 42, 24, 108, 12, .descStr

 CHECKBOX 42, 38, 48, 12, "&CHECKME", .checkInt

 OKBUTTON 42, 54, 40, 12

 End Dialog

 Dim Dlg1 As DialogName1

 Dialog Dlg1

 MsgBox Dlg1.nameStr

 MsgBox Dlg1.descStr

 MsgBox Dlg1.checkInt

End Sub

The Dialog Function
Cypress Enable supports the dialog function. This function is a user-defined function
that can be called while a custom dialog box is displayed. The dialog function
makes nested dialog boxes possible and receives messages from the dialog box while
it is still active.

When the function dialog() is called in Enable it displays the dialog box, and calls
the dialog function for that dialog. Enable calls the dialog function to see if there are

PC-DMIS Basic Language Reference Cypress Enable Scripting Language Elements • 39

any commands to execute. Typical commands that might be used are disabling or
hiding a control. By default all dialog box controls are enabled. If you want a control
to be hidden you must explicitly make it disabled during initialization. After
initialization Enable displays the dialog box. When an action is taken by the user
Enable calls the dialog function and passes values to the function that indicate the
kind of action to take and the control that was acted upon.

The dialog box and its function are connected in the dialog definition. A “function
name” argument is added to the Begin Dialog instruction, and matches the name of
the dialog function located in your Enable program.

Begin Dialog UserDialog1 60,60, 260, 188, "3", .Enable

The Dialog Box Controls
A dialog function needs an identifier for each dialog box control that it acts on. The
dialog function uses string identifiers. String identifiers are the same as the
identifiers used in the dialog record.

CheckBox 8, 56, 203, 16, "Check to display controls",. Chk1

The control’s identifier and label are different. An identifier begins with a period and
is the last parameter in a dialog box control instruction. In the sample code above
“Check to display controls” is the label and .chk1 is the identifier.

The Dialog Function Syntax
The syntax for the dialog function is as follows:

Function FunctionName(ControlID$, Action%, SuppValue%)

Statement Block

FunctionName = ReturnValue

End Function

All parameters in the dialog function are required.

A dialog function returns a value when the user chooses a command button. Enable
acts on the value returned. The default is to return 0 (zero) and close the dialog box.
If a non zero is assigned the dialog box remains open. By keeping the dialog box
open, the dialog function allows the user to do more than one command from the
same dialog box. Dialog examples ship as part of the sample .bas programs and can
be found in your install directory.

ControlID$
ControlID$ Receives the identifier of the dialog box control

Action
Action Identifies the action that calls the dialog function. There are six possibilities,
Enable supports the first 4.

40 • Cypress Enable Scripting Language Elements PC-DMIS Basic Language Reference

Action 1 The value passed before the dialog becomes visible

Action 2 The value passed when an action is taken (i.e. a button is pushed,
checkbox is checked etc...) The controlID$ is the same as the identifier for the
control that was chosen

Action 3 Corresponds to a change in a text box or combo box. This value is passed
when a control loses the focus (for example, when the user presses the TAB key to
move to a different control) or after the user clicks an item in the list of a combo box
(an Action value of 2 is passed first). Note that if the contents of the text box or
combo box do not change, an Action value of 3 is not passed. When Action is 3,
ControlID$ corresponds to the identifier for the text box or combo box whose
contents were changed.

Action 4 Corresponds to a change of focus. When Action is 4, ControlID$
corresponds to the identifier of the control that is gaining the focus. SuppValue
corresponds to the numeric identifier for the control that lost the focus. A Dialog
function cannot display a message box or dialog box in response to an Action value
of 4

Supp Value
SuppValue receives supplemental information about a change in a dialog box
control. The information SuppValue receives depends on which control calls the
dialog function. The following SuppValue values are passed when Action is 2 or 3.

Control SuppValue passed

ListBox, DropListBox,
or ComboBox

Number of the item selected where 0 (zero) is the
first item in the list box, 1 is the second item, and so
on.

CheckBox 1 if selected, 0 (zero) if cleared.

OptionButton Number of the option button selected, where 0
(zero) is the first option button within a group, 1 is
the second option button, and so on.

TextBox Number of characters in the text box.

ComboBox If Action is 3, number of characters in the combo
box.

CommandButton A value identifying the button chosen. This value is
not often used, since the same information is
available from the ControlID$ value.

Statements and Functions Used in Dialog Functions

Statement or Action or Result

PC-DMIS Basic Language Reference Cypress Enable Scripting Language Elements • 41

Function

DlgControlId Returns the numeric equivalent of Identifier$, the
string identifier for a dialog box control.

DlgEnable, DlgEnable() The DlgEnable statement is used to enable or
disable a dialog box control. When a control is
disabled, it is visible in the dialog box, but is
dimmed and not functional. DlgEnable() is used to
determine whether or not the control is enabled.

DlgFocus, DlgFocus() The DlgFocus statement is used to set the focus on
a dialog box control. (When a dialog box control
has the focus, it is highlighted.) DlgFocus() returns
the identifier of the control that has the focus.

DlgListBoxArray,
DlgListBoxArray()

The DlgListBoxArray statement is used to fill a list
box or combo box with the elements of an array. It
can be used to change the contents of a list box or
combo box while the dialog box is displayed.
DlgListBoxArray() returns an item in an array and
the number of items in the array.

DlgSetPicture The DlgSetPicture statement is used in a dialog
function to set the graphic displayed by a picture
control.

DlgText, DlgText The DlgText statement is used to set the text or text
label for a dialog box control. TheDlgText()
function returns the label of a control.

DlgValue, DlgValue() The DlgValue statement is used to select or clear a
dialog box control. Then DlgValue() function
returns the setting of a control.

DlgVisible,
DlgVisible()

The DlgVisible statement is used to hide or show a
dialog box control. The DlgVisible() function is
used to determine whether a control is visible or
hidden.

DlgControlId Function
DlgControlId(Identifier)

Used within a dialog function to return the numeric identifier for the dialog box
control specified by Identifier, the string identifier of the dialog box control.
Numeric identifiers are numbers, starting at 0 (zero) , that correspond to the positions
of the dialog box control instructions within a dialog box definition. For example,
consider the following instruction in a dialog box definition:

CheckBox 90, 50, 30, 12, “&Update”, .MyCheckBox

The instruction DlgControlId(“MyCheckBox”) returns 0 (zero) if the CheckBox
instruction is the first instruction in the dialog box definition, 1 if it is the second,
and so on.

In most cases, your dialog functions will perform actions based on the string
identifier of the control that was selected.

42 • Cypress Enable Scripting Language Elements PC-DMIS Basic Language Reference

DlgFocus Statement, DlgFocus() Function
DlgFocus Identifier

DlgFocus()

The DlgFocus statement is used within a dialog function to set the focus on the
dialog box control identified by Identifier while the dialog box is displayed. When a
dialog box control has the focus, it is active and responds to keyboard input. For
example, if a text box has the focus, any text you type appears in that text box.

The DlgFocus() function returns the string identifier for the dialog box control that
currently has the focus.

Example
This example sets the focus on the control “MyControl1” when the dialog box is
initially displayed. (The main subroutine that contains the dialog box definition is not
shown.)

Function MyDlgFunction(identifier, action, suppvalue)

Select Case action

 Case 1 ‘ The dialog box is displayed

 DlgFocus “MyControl1”

 Case 2

 ‘ Statements that perform actions based on which
control is selected

 End Select

End Function

DlgListBoxArray, DlgListBoxArray()

DLGLISTBOXARRAY I DENTIFIER, A RRAYVARIABLE()

DLGLISTBOXARRAY(I DENTIFIER, A RRAYVARIABLE())

The DlgListBoxArray statement is used within a dialog function to fill a ListBox,
DropListBox, or ComboBox with the contents of ArrayVariable() while the dialog
box is displayed.

The DlgListBoxArray() function fills ArrayVariable() with the contents of the
ListBox, DropListBox, or ComboBox specified by Identifier and returns the number
of entries in the ListBox, DropListBox, or ComboBox. The ArrayVariable()
parameter is optional (and currently not implemented) with the DlgListBoxArray()
function; if ArrayVariable() is omitted, DlgListBoxArray() returns the number of
entries in the specified control.

DlgSetPicture
DlgSetPicture Identifier, PictureName

The DlgSetPicture function is used to set the graphic displayed by a
picture control in a dialog.

The Identifier is a string or numeric representing the dialog box. The
PictureName is a string that identifies the picture to be displayed.

PC-DMIS Basic Language Reference Cypress Enable Scripting Language Elements • 43

DlgValue, DlgValue()

DlgValue Identifier, Value

DlgValue(Identifier)

The DlgValue statement is used in a dialog function to select or clear a dialog box
control by setting the numeric value associated with the control specified by
Identifier. For example, DlgValue “MyCheckBox”, 1 selects a check box, DlgValue
“MyCHeckBox”, 0 clears a check box, and DlgValue “MyCheckBox”, -1 fills the
check box with gray. An error occurs if Identifier specifies a dialog box control such
as a text box or an option button that cannot be set with a numeric value.

The following dialog function uses a Select Case control
structure to check the value of Action. The SuppValue is
ignored in this function.

’This sample file outlines dialog capabilities, including
nesting dialog boxes.

Sub Main

 Begin Dialog UserDialog1 60,60, 260, 188, "3", .Enable

Text 8,10,73,13, "Text Label:"

TextBox 8, 26, 160, 18, .FText

CheckBox 8, 56, 203, 16, "Check to display controls",. Chk1

GroupBox 8, 79, 230, 70, "This is a group box:", .Group

CheckBox 18,100,189,16, "Check to change button text",
.Chk2

PushButton 18, 118, 159, 16, "File History", .History

OKButton 177, 8, 58, 21

CancelButton 177, 32, 58, 21

 End Dialog

 Dim Dlg1 As UserDialog1

 x = Dialog(Dlg1)

End Sub

Function Enable(ControlID$, Action%, SuppValue%)

Begin Dialog UserDialog2 160,160, 260, 188, "3", .Enable

Text 8,10,73,13, "New dialog Label:"

TextBox 8, 26, 160, 18, .FText

CheckBox 8, 56, 203, 16, "New CheckBox",. ch1

CheckBox 18,100,189,16, "Additional CheckBox", .ch2

PushButton 18, 118, 159, 16, "Push Button", .but1

OKButton 177, 8, 58, 21

44 • Cypress Enable Scripting Language Elements PC-DMIS Basic Language Reference

CancelButton 177, 32, 58, 21

 End Dialog

 Dim Dlg2 As UserDialog2

 Dlg2.FText = "Your default string goes here"

Select Case Action%

Case 1

DlgEnable "Group", 0

DlgVisible "Chk2", 0

DlgVisible "History", 0

Case 2

If ControlID$ = "Chk1" Then

 DlgEnable "Group"

 DlgVisible "Chk2"

 DlgVisible "History"

End If

If ControlID$ = "Chk2" Then

 DlgText "History", "Push to display nested
dialog"

End If

If ControlID$ = "History" Then

 Enable =1

 x = Dialog(Dlg2)

End If

Case Else

End Select

Enable =1

End Function

OLE Automation

What is OLE Automation?
OLE Automation is a standard, promoted by Microsoft, that applications use to
expose their OLE objects to development tools, Enable Basic, and containers that

PC-DMIS Basic Language Reference Cypress Enable Scripting Language Elements • 45

support OLE Automation. A spreadsheet application may expose a worksheet, chart,
cell, or range of cells all as different types of objects. A word processor might expose
objects such as application, paragraph, sentence, bookmark, or selection.

When an application supports OLE Automation, the objects it exposes can be
accessed by Enable Basic. You can use Enable Basic to manipulate these objects by
invoking methods on the object, or by getting and setting the object’s properties, just
as you would with the objects in Enable Basic. For example, if you created an OLE
Automation object named MyObj, you might write code such as this to manipulate
the object:

Sub Main

Dim MyObj As Object

Set MyObj = CreateObject ("Word.Basic")

MyObj.FileNewDefault

MyObj.Insert "Hello, world."

MyObj.Bold 1

End Sub

The following syntax is supported for the GetObject function:

Set MyObj = GetObject ("", class)

Where class is the parameter representing the class of the object to retrieve. The first
parameter at this time must be an empty string.

The properties and methods an object supports are defined by the application that
created the object. See the application's documentation for details on the properties
and methods it supports.

Accessing an Object
The following functions and properties allow you to access an OLE Automation
object:

Name. Description

CreateObject Function Creates a new object of a specified type

46 • Cypress Enable Scripting Language Elements PC-DMIS Basic Language Reference

GetObject Function Retrieves an object pointer to a running
application

What is an OLE Object?
An OLE Automation Object is an instance of a class within your application that you
wish to manipulate programmatically, such as with Cypress Enable. These may be
new classes whose sole purpose is to collect and expose data and functions in a way
that makes sense to your customers.

The object becomes programmable when you expose those member functions. OLE
Automation defines two types of members that you may expose for an object:

Methods are member functions that perform an action on an object. For example, a
Document object might provide a Save method.

Properties are member function pairs that set or return information about the state of
an object. For example, a Drawing object might have a style property.

For example, Microsoft suggests the following objects could be exposed by
implementing the listed methods and properties for each object:

OLE Automation
object

Methods Properties

Application Help ActiveDocument

Quit Application

Add Data Caption

Repeat DefaultFilePath

Undo Documents

Height

Name

Parent

Path

Printers

StatusBar

Top

Value

Visible

Width

Document Activate Application

Close Author

NewWindow Comments

Print FullName

PrintPreview Keywords

PC-DMIS Basic Language Reference Cypress Enable Scripting Language Elements • 47

RevertToSaved Name

Save Parent

SaveAs Path

ReadOnly

Saved

Subject

Title

Value

To provide access to more than one instance of an object, expose a collection object.
A collection object manages other objects. All collection objects support iteration
over the objects they manage. For example, Microsoft suggests an application with a
multiple document interface (MDI) might expose a Documents collection object with
the following methods and properties:

Collection object Methods Properties

Documents Add Application

Close Count

Item Parent

Open

OLE Fundamentals
Object linking and embedding (OLE) is a technology that allows a programmer of
Windows-based applications to create an application that can display data from many
different applications, and allows the user to edit that data from within the
application in which it was created. In some cases, the user can even edit the data
from within their application.

The following terms and concepts are fundamental to understanding OLE.

OLE Object
An OLE object refers to a discrete unit of data supplied by an OLE application. An
application can expose many types of objects. For example a spreadsheet application
can expose a worksheet, macro sheet, chart, cell, or range of cells all as different
types of objects. You use the OLE control to create linked and embedded objects.
When a linked or embedded object is created, it contains the name of the application
that supplied the object, its data (or, in the case of a linked object, a reference to the
data), and an image of the data.

48 • Cypress Enable Scripting Language Elements PC-DMIS Basic Language Reference

OLE Automation
Some applications provide objects that support OLE Automation. You can use
Enable Basic to programmatically manipulate the data in these objects. Some objects
that support OLE Automation also support linking and embedding. You can create
an OLE Automation object by using the CreateObject function.

Class
An objects class determines the application that provides the objects data and the
type of data the object contains. The class names of some commonly used Microsoft
applications include MSGraph, MSDraw, WordDocument, and ExcelWorksheet.

OLE Automation and Microsoft Word Example:

Sub OLEexample()

 Dim word As Object

 Dim myData As String

 myData = 4 * Atn(1) ’ Demonstrates Automatic type
conversion

 Set word = CreateObject("Word.Basic")

 Word.AppShow

 word.FileNewDefault

 word.Insert "The following was computed in Cypress Enable:
"

 word.Bold 1 ’ Show value in boldface

 word.Insert myData

 word.Bold 0

 MsgBox "Done"

End Sub

PC-DMIS Basic Language Reference Cypress Enable Scripting Language Elements • 49

Making Applications Work Together
Operations like linking and object embedding need applications to work together in a
coordinated fashion. However, there is no way that Windows can be set up, in
advance, to accommodate all the applications and dynamic link libraries that can be
installed. Even within an application, the user has the ability to select various
components to install.

As part of the installation process, Windows requires that applications supporting
DDE/OLE features register their support by storing information in several different
locations. The most important of these to cypress enable is the registration database.

WIN.INI
The win.ini file contains a special section called [embedding] that contains
information about each of three applications that operate as object servers.

The Registration Database.
Starting with Windows 3.1, Each Windows system maintains a registration database
file that records details about the DDE and OLE functions supported by the installed
applications. The database is stored in file called REG.DAT in the \ WINDOWS
directory.

The Registration database
The registration database is a file called REG.DAT. The file is a database that
contains information that controls a variety of activities relating to data integration
using DDE and OLE. The information contained in the REG.DAT database can be
divided into four basic categories.

Associations.
The table contains information that associates files with specific extensions to
particular applications. This is essentially the same function performed by the
[extensions] section of the WIN.INI.

Shell Operations.
Windows contains two programs that are refered to as Shell programs. The term
Shell refers to a program that organizes basic operating system tasks, like running
applications, opening files, and sending files to the printer. Shell programs use list,
windows, menus, and dialog boxes to perform these operations. In contrast,
command systems like DOS require the entry of explicit command lines to
accomplish these tasks

OLE Object Servers.
The registration database maintains a highly structured database of the details needed
by programs that operate as object servers. This is by far the most complex task
performed by the database. There is no WIN.INI equivalent for this function.

50 • Cypress Enable Scripting Language Elements PC-DMIS Basic Language Reference

DDE/OLE Automation.
The registration database contains the details and the applications that
support various types of DDE/OLE Automation operations.

It is useful to appreciate the difference in structure between the WIN.INI file and the
REG.DAT database. WIN.INI is simply a text document. There are no special
structures other than headings (simply titles enclosed in brackets) that organize the
information. If you want to locate an item in the WIN.INI file, you must search
through the file for the specific item you want to locate. The registration database is
a tree-like, structured database used for storing information relating to program and
file operations, in particular, those that involve the use of DDE or OLE. The tree
structure makes it easier to keep the complex set of instructions, needed to
implement DDE and OLE operations, organized and accessible by the applications
that need to use them. This is not possible when you are working with a text
document like WIN.INI. The WIN.INI file records all sorts or information about the
Windows system in a simple sequential listing.

PC-DMIS Basic Language Reference Scripting Language Overview • 51

Scripting Language Overview

Quick Reference of the Functions and Statements
Available

Type/Functions/Statements

Flow of Control

Goto, End, OnError, Stop, Do...Loop, Exit Loop, For...Next, Exit For, If..Then..Else...End If,
Return, Stop, While...Wend, Select Case

Converting

Chr, Hex, Oct, Str, CDbl, CInt, Clng, CSng, CStr, CVar, CVDate, Asc, Val, Date, DateSerial,
DateValue, Format, Fix, Int, Day, Weekday, Month, Year, Hour, Minute, Second, TimeSerial,
TimeValue

Dialog

Text, TextBox, ListBox, DropList, ComboBox, CheckBox, OKButton, BeginDialog,
EndDialog, OptionGroup, OKButton, CancelButton, PushButton, Picture, GroupBox, Multi-
line TextBox,

File I/O

FileCopy, ChDir, ChDrive, CurDir, CurDir, MkDir,RmDir, Open, Close, Print #, Kill,
FreeFile, LOF, FileLen, Seek, EOF, Write #, Input, Line Input, Dir, Name, GetAttr, SetAttr,
Dir, Get, Put

52 • Scripting Language Overview PC-DMIS Basic Language Reference

Math

Exp, Log, Sqr, Rnd, Abs, Sgn, Atn, Cos, Sin, Tan, Int, Fix

Procedures

Call, Declare, Function, End Function, Sub, End Sub, Exit, Global

Strings

Let, Len, InStr, Left, Mid, Asc, Chr, Right, LCase, Ucase, InStr, LTrim, RTrim, Trim, Option
Compare, Len, Space, String, StrComp Format,

Variables and Constants

Dim, IsNull, IsNumeric,VarType, Const, IsDate, IsEmpty, IsNull, Option Explicit, Global,
Static,

Error Trapping

On Error, Resume

Date/Time

Date, Now, Time, Timer

DDE

DDEInitiate, DDEExecute, DDETerminate

Arrays

Option Base, Option Explicit, Static, Dim, Global, Lbound, Ubound, Erase, ReDim

Miscellaneous

PC-DMIS Basic Language Reference Scripting Language Overview • 53

SendKeys, AppActivate, Shell, Beep, Rem, CreateObject, GetObject

Randomize

Data Types

Variable Type Specifier

String $ Dim St

Integer % Dim In

Long & Dim Lo

Single ! Dim Sin

Double # Dim Db

Variant Dim

Boolean Dim

Byte Dim

Object Dim

Currency (Not cur

Operators

Arithmetic Operators

Operator Function U

^ Exponentiation

- Negation

* Multiplication x

/ division

Mod Modulo x

+ Addition x

- Subtraction

*Arithmetic operators follow mathematical rules of precedence

* ’+’ or ’&’ can be used for string concatenation.

Relational Operators

Operator Function

< Less than

<= Less than or equal to

54 • Scripting Language Overview PC-DMIS Basic Language Reference

= Equals x =

>= Greater than or equal to x >=

> Greater than x >

<> Not equal to x <>

Logical Operators

Operator Function Usa

Not Logical Negation If No

And Logical And If (x> y) A

Or Logical Or if (x = y) O

Operator Precedence

Operator Description Ord

() Parenthesis High
^ Exponentiation

- Unary minus

/,* Division / Multplication

mod Modulo

+, -, & Addition, subtraction,
concatenation

=, <>, <, >,<=,>= Relational

not Logical negation

and Logical conjunction

or Logical disjunction

Xor Logical exclusion

Eqv Logical Equivalence

Imp Logical Implication Low

Functions, Statements, Reserved words - Quick
Reference
Abs, Access, Alias, And Any

App, AppActivate, Asc, Atn, As

Base, Beep, Begin, Binary, ByVal

Call, Case, ChDir, ChDrive, Choose, Chr, Const, Cos, CurDir, CDbl, CInt, CLng,
CSng, CStr, CVar, CVDate,Close, CreateObject

Date, Day, Declare, Dim, Dir, Do...Loop,Dialog, DDEInitiate

PC-DMIS Basic Language Reference Scripting Language Overview • 55

DDEExecute, DateSerial, DateValue, Double

Else, ElseIf, End, EndIf, EOF, Eqv, Erase, Err, Error

Exit, Exp, Explicit

False, FileCopy, FileLen, Fix, For,

For...Next, Format, Function

Get, GetAttr, GoTo, Global, Get Object

Hex, Hour

If...Then...Else...[End If], Imp, Input, InputBox, InStr, Int, Integer, Is, IsEmpty,
IsNull, IsNumeric, IsDate

Kill

LBound, LCase, Left, Len, Let, LOF,Log, Long, Loop, LTrim Line Input

Mid,Minute, MkDir, Mod, Month, MsgBox

Name, Next, Not, Now

Oct,On, Open, OKButton,Object, Option, Optional, Or, On Error

Print, Print #, Private, Put

Randomize, Rem, ReDim, RmDir, Rnd, Return, Rtrim

Seek, SendKeys, Set, SetAttr, Second, Select, Shell, Sin, Sqr, Stop,Str, Sng, Single,
Space, Static, Step, Stop, Str, String, Sub, StringComp

Tan,Text, TextBox, Time, Timer, TimeSerial, TimeVale, Then, Type, Trim, True,
To, Type

UBound, UCase, Ucase, Until

Val, Variant, VarType

Write #, While, Weekday, Wend, With

Xor

Year

PC-DMIS Basic Language Reference Language Reference A - Z • 57

Language Reference A - Z

Abs Function

Abs (number)

Returns the absolute value of a number.

The data type of the return value is the same as that of the number argument.
However, if the number argument is a Variant of VarType (String) and can be
converted to a number, the return value will be a Variant of VarType (Double). If the
numeric expression results in a Null, _Abs returns a Null.

Example:

Sub Main

Dim Msg, X, Y

X = InputBox("Enter a Number:")

Y = Abs(X)

Msg = "The number you entered is " & X

Msg = Msg + ". The Absolute value of " & X & " is " & Y

MsgBox Msg ’Display Message.

End Sub

58 • Language Reference A - Z PC-DMIS Basic Language Reference

AppActivate Statement

AppActivate “ app”

Activates an application.

The parameter app is a string expression and is the name that appears in the title bar
of the application window to activate.

Related Topics: Shell, SendKeys

Example:

Sub Main ()

AppActivate "Microsoft Word"

SendKeys “%F,%N,Cypress Enable”,True

Msg = “Click OK to close Word”

MsgBox Msg

AppActivate “Microsoft Word”

SendKeys “%F,%C,N”, True

End Sub

Asc Function

Asc (str)

PC-DMIS Basic Language Reference Language Reference A - Z • 59

Returns a numeric value that is the ASCII code for the first character in a string.

Example:

Sub Main ()

 Dim I, Msg ’ Declare variables.

 For I = Asc("A") To Asc("Z") ’ From A through Z.

 Msg = Msg & Chr(I) ’ Create a string.

 Next I

 MsgBox Msg ’ Display results.

End Sub

Atn Function

Atn (rad)

Returns the arc tangent of a number

The argument rad can be any numeric expression. The result is expressed in radians

Related Topics: Cos, Tan, Sin

Example:

Sub AtnExample ()

 Dim Msg, Pi ’ Declare variables.

 Pi = 4 * Atn(1) ’ Calculate Pi.

 Msg = "Pi is equal to " & Str(Pi)

 MsgBox Msg ’ Display results.

End Sub

60 • Language Reference A - Z PC-DMIS Basic Language Reference

Beep Statement

Beep

Sounds a tone through the computer’s speaker. The frequency and duration of the
beep depends on hardware, which may vary among computers.

Example:

Sub BeepExample ()

 Dim Answer, Msg ’ Declare variables.

 Do

 Answer = InputBox("Enter a value from 1 to 3.")

 If Answer >= 1 And Answer <= 3 Then ’ Check range.

 Exit Do ’ Exit Do...Loop.

 Else

 Beep ’ Beep if not in
range.

 End If

 Loop

 MsgBox "You entered a value in the proper range."

End Sub

Call Statement

Call funcname [(parameter(s)]

or

[parameter(s)]

PC-DMIS Basic Language Reference Language Reference A - Z • 61

Activates an Enable Subroutine called name or a DLL function with the name name.
The first parameter is the name of the function or subroutine to call, and the second
is the list of arguments to pass to the called function or subroutine.

You are never required to use the Call statement when calling an Enable subroutine
or a DLL function. Parentheses must be used in the argument list if the Call
statement is being used.

Example:

Sub Main ()

Call Beep

MsgBox "Returns a Beep"

End Sub

CBool Function

CBool (expression)

Converts expressions from one data type to a boolean. The parameter expression
must be a valid string or numeric expression.

Example:

Sub Main

 Dim A, B, Check

 A = 5: B = 5

 Check = CBool(A = B)

 Print Check

 A = 0

 Check = CBool(A)

 Print Check

62 • Language Reference A - Z PC-DMIS Basic Language Reference

End Sub

CDate Function

CVDate (expression)

Converts any valid expression to a Date variable with a vartype of 7.

The parameter expression must be a valid string or numeric date expression and can
represent a date from January 1, 30 through December 31, 9999.

Example:

Sub Main

Dim MyDate, MDate, MTime, MSTime

MybDate = "May 29, 1959" ’ Define date.

MDate = CDate(MybDate) ’ Convert to Date data type.

MTime = "10:32:27 PM" ’ Define time.

MSTime = CDate(MTime) ’ Convert to Date data type.

Print MDate

Print MSTime

End Sub

CDbl Function

CDbl (expression)

Converts expressions from one data type to a double. The parameter expression must
be a valid string or numeric expression.

Example:

Sub Main ()

PC-DMIS Basic Language Reference Language Reference A - Z • 63

 Dim y As Integer

 y = 25555 ’the integer expression only allows for 5 digits

 If VarType(y) = 2 Then

Print y

 x = CDbl(y) ’Converts the integer value of y to a
double value in x

 x = x * 100000 ’y is now 10 digits in the form of x ’

 Print x

 End If

End Sub

ChDir Statement

ChDir pathname

Changes the default directory

Pathname: [drive:] [\] dir[\dir]...

The parameter pathname is a string limited to fewer then 128 characters. The drive
parameter is optional. The dir parameter is a directory name. ChDir changes the
default directory on the current drive, if the drive is omitted.

Related Topics: CurDir, CurDir$, ChDrive, Dir, Dir$, MkDir, RmDir

Example:

Sub Main ()

Dim Answer, Msg, NL ’ Declare variables.

NL = Chr(10) ’ Define newline.

CurPath = CurDir() ’ Get current path.

ChDir "\"

Msg = "The current directory has been changed to "

Msg = Msg & CurDir() & NL & NL & "Press OK to change back "

Msg = Msg & "to your previous default directory."

Answer = MsgBox(Msg) ’ Get user response.

ChDir CurPath ’ Change back to user default.

Msg = "Directory changed back to " & CurPath & "."

MsgBox Msg ’ Display results.

End Sub

64 • Language Reference A - Z PC-DMIS Basic Language Reference

ChDrive Statement

ChDrive drivename

Changes the default drive

The parameter drivename is a string and must correspond to a an existing drive. If
drivename contains more than one letter, only the first character is used.

Example:

Sub Main ()

Dim Msg, NL’ Declare variables.

NL = Chr(10) ’ Define newline.

CurPath = CurDir() ’ Get current path.

ChDir "\"

ChDrive "C:"

Msg = "The current directory has been changed to "

Msg = Msg & CurDir() & NL & NL & "Press OK to change back "

Msg = Msg & "to your previous default directory."

MsgBox Msg ’ Get user response.

ChDir CurPath ’ Change back to user default.

Msg = "Directory changed back to " & CurPath & "."

MsgBox Msg ’ Display results.

End Sub

Related Topics: ChDir, CurDir, CurDir$, MkDir, RmDir

CheckBox

CheckBox starting x position, starting y position, width, height

For selecting one or more in a series of choices

Example:

Sub Main ()

 Begin Dialog DialogName1 60, 70, 160, 50, "ASC - Hello"

PC-DMIS Basic Language Reference Language Reference A - Z • 65

 CHECKBOX 42, 10, 48, 12, "&CHECKME", .checkInt

 OKBUTTON 42, 24, 40, 12

 End Dialog

 Dim Dlg1 As DialogName1

 Dialog Dlg1

 If Dlg1.checkInt = 0 Then

 Q = "didn’t check the box."

 Else

 Q = "checked the box."

 End If

 MsgBox "You " & Q

End Sub

Choose Function

Choose(number, choice1, [choice2,] [choice3,]…)

Returns a value from a list of arguments

Choose will return a null value if number is less than one or greater than the number
of choices in the list. If number is not an integer it will be rounded to the nearest
integer.

Example:

Sub Main

 number = 2

 GetChoice = Choose(number, "Choice1", "Choice2", "Choice3")

 Print GetChoice

End Sub

Chr Function

Chr(int)

Returns a one-character string whose ASCII number is the argument

Chr returns a String

66 • Language Reference A - Z PC-DMIS Basic Language Reference

Example:

Sub ChrExample ()

Dim X, Y, Msg, NL

NL = Chr(10)

For X = 1 to 2

For Y = Asc("A") To Asc("Z")

Msg = Msg & Chr(Y)

Next Y

Msg = Msg & NL

Next X

MsgBox Msg

End Sub

CInt Function

CInt (expression)

Converts any valid expression to an integer.

Example:

Sub Main ()

 Dim y As Long

 y = 25

 If VarType(y) = 2 Then

Print y

x = CInt(y) ’Converts the long value of y to an integer
value in x

 Print x

 End If

PC-DMIS Basic Language Reference Language Reference A - Z • 67

End Sub

CLng Function

CLng (expression)

Converts any valid expression into a long.

Example:

Sub Main ()

 Dim y As Integer

 y = 25000 ’the integer expression can only hold five
digits

 If VarType(y) = 2 Then

Print y

 x = CLng(y) ’Converts the integer value of x to a long
value in x

 x = x * 10000 ’y is now ten digits in the form of x

 Print x

 End If

End Sub

Close Statement

Close [[#filenumber] [, [#]filenumber],,,

The Close Statement takes one argument filenumber. Filenumber is the number used
with the Open Statement to open the file. If the Close Statement is used without any
arguments it closes all open files.

Example:

Sub Main

Open "c:\test.txt" For Input As #1

Do While Not EOF(1)

MyStr = Input(10, #1)

MsgBox MyStr

68 • Language Reference A - Z PC-DMIS Basic Language Reference

Loop

Close #1

End Sub

Sub Make3Files ()

Dim I, FNum, FName ’ Declare variables.

For I = 1 To 3

FNum = FreeFile ’ Determine next file number.

FName = "TEST" & FNum

Open FName For Output As FNum ’ Open file.

Print #I, "This is test #" & I ’ Write string to
file.

Print #I, "Here is another "; "line"; I

Next I

Close ’ Close all files.

End Sub

Const Statement

Const name = expression

Assigns a symbolic name to a constant value.

A constant must be defined before it is used.

PC-DMIS Basic Language Reference Language Reference A - Z • 69

The definition of a Const in Cypress Enable outside the procedure or at the module
level is a global. The syntax Global Const and Const are used below outside the
module level are identical.

A type declaration character may be used however if none is used Enable will
automatically assign one of the following data types to the constant, long (if it is a
long or integer), Double (if a decimal place is present), or a String (if it is a string).

Example:

Global Const Height = 14.4357 ’

Const PI = 3.14159 ’Global to all procedures in a module

Sub Main ()

Begin Dialog DialogName1 60, 60, 160,70, "ASC - Hello"

TEXT 10, 10, 100, 20, "Please fill in the radius of circle
x"

TEXT 10, 40, 28, 12, "Radius"

TEXTBOX 42, 40, 28, 12, .Radius

OKBUTTON 42, 54,40, 12

End Dialog

Dim Dlg1 As DialogName1

Dialog Dlg1

CylArea = Height * (Dlg1.Radius * Dlg1.Radius) * PI

MsgBox "The volume of Cylinder x is " & CylArea

End Sub

Cos Function

Cos (rad)

Returns the cosine of an angle

The argument rad must be expressed in radians and must be a valid
numeric expression.Cos will by default return a double unless a single
or integer is specified as the return value.

Example:

Sub Main()

 Dim J As Double

 Dim I As Single ’ Declare variables.

 Dim K As Integer

 For I =1 To 10 ’

 Msg = Msg & Cos(I) & ", " ’Cos function call

70 • Language Reference A - Z PC-DMIS Basic Language Reference

 J=Cos(I)

 Print J

 K=Cos(I)

 Print K

 Next I

 MsgBox Msg ’ Display results.

 MsgBox Msg1

End Sub

CreateObject Function

CreateObject (class)

Creates an OLE automation object.

Sub Command1_Click ()

 Dim word6 As object

 Set word6 = CreateObject("Word.Basic")

 word6.FileNewDefault

 word6.InsertPara

 word6.Insert "Attn:"

 word6.InsertPara

 word6.InsertPara

 word6.InsertPara

 word6.Insert " Vender Name: "

 word6.Bold 1

 name = "Some Body"

 word6.Insert name

 word6.Bold 0

 word6.InsertPara

 word6.Insert " Vender Address:"

 word6.InsertPara

 word6.Insert " Vender Product:"

 word6.InsertPara

 word6.InsertPara

 word6.Insert "Dear Vender:"

 word6.InsertPara

 word6.InsertPara

 word6.Insert "The letter you are reading was created with
Cypress Enable."

 word6.Insert " Using OLE Automation Cypress Enable can call
any other OLE _ enabled "

PC-DMIS Basic Language Reference Language Reference A - Z • 71

 word6.Insert "application. Enable is a Basic Scripting
Language for _ applications"

 word6.InsertPara

 word6.InsertPara

 word6.Insert " Product Name: Cypress Enable"

 word6.InsertPara

 word6.Insert " Company Name: Cypress Software Inc."

 word6.InsertPara

 word6.InsertPara

 MsgBox "You have just called Word 6.0 using OLE"

End Sub

Vender Name: Client Name

Vender Address:

Vender Product:

Dear Vender:

The letter you are reading was created with Cypress
Enable.Using OLE Automation Cypress Enable can call any
other OLE enabled application. Enable is a Basic Scripting
Language for applications

 Product Name: Cypress Enable

 Company Name: Cypress Software Inc.

CSng Function

CSng (expression)

Converts any valid expression to a Single.

Example:

72 • Language Reference A - Z PC-DMIS Basic Language Reference

Sub Main ()

 Dim y As Integer

 y = 25

 If VarType(y) = 2 Then

Print y

x = CSng(y) ’Converts the integer value of y to a single
value in x

 Print x

 End If

CStr Function
CStr(expression)

Converts any valid expression to a String.

Example:
Sub Main

 Dim Y As Integer

 Y = 25

 Print Y

 If VarType(Y) = 2 Then

 X = CStr(Y) ’converts Y To a Str

 X = X + "hello" ’It is now possible to combine Y with
strings

 Print X

 End If

End Sub

CurDir Function

CurDir (drive)

Returns the current path for the specified drive

CurDir returns a Variant; CurDir$ returns a String.

PC-DMIS Basic Language Reference Language Reference A - Z • 73

Example:

’Declare Function CurDir Lib "NewFuns.dll" () As String

Sub Form_Click ()

Dim Msg, NL’ Declare variables.

NL = Chr(10) ’ Define newline.

Msg = "The current directory is: "

Msg = Msg & NL & CurDir()

MsgBox Msg ’ Display message.

End Sub

CVar Function

CVar (expression)

Converts any valid expression to a Variant.

Example:

Sub Main

Dim MyInt As Integer

MyInt = 4534

Print MyInt

MyVar = CVar(MyInt & "0.23") ’makes MyInt a Variant + 0.32

Print MyVar

End Sub

74 • Language Reference A - Z PC-DMIS Basic Language Reference

Date Function

Date, Date()

Returns the current system date

Date returns a Variant of VarType 8 (String) containing a date.

Example:

’ Format Function Example

’ This example shows various uses of the Format function to
format values

’ using both named and user-defined formats. For the date
separator (/),

’ time separator (:), and AM/ PM literal, the actual formatted
output

’ displayed by your system depends on the locale settings on
which the code

’ is running. When times and dates are displayed in the
development

’ environment, the short time and short date formats of the
code locale

’ are used. When displayed by running code, the short time and
short date

’ formats of the system locale are used, which may differ from
the code

’ locale. For this example, English/United States is assumed.

’ MyTime and MyDate are displayed in the development
environment using

’ current system short time and short date settings.

Sub Main

x = Date()

Print Date

Print x

Print “VarType: “ & VarType(Date)

MyTime = "08:04:23 PM"

MyDate = "03/03/95"

MyDate = "January 27, 1993"

SysDate = Date

MsgBox Sysdate,0,"System Date"

MsgBox Now,0,"Now"

PC-DMIS Basic Language Reference Language Reference A - Z • 75

MsgBox MyTime,0,"MyTime"

MsgBox Second(MyTime) & " Seconds"

MsgBox Minute(MyTime) & " Minutes"

MsgBox Hour(MyTime) & " Hours"

MsgBox Day(MyDate) & " Days"

MsgBox Month(MyDate) & " Months"

MsgBox Year(MyDate) & " Years"

’ Returns current system time in the system-defined long time
format.

MsgBox Format(Time, "Short Time") & " Short Time"

MsgBox Format(Time, "Long Time") & "Long Time"

’ Returns current system date in the system-defined long date
format.

MsgBox Format(Date, "Short Date") & " Short Date"

MsgBox Format(Date, "Long Date") & " Long Date"

MyDate = "30 December 91" ’ use of European date

print Mydate

MsgBox MyDate,0,"MyDate International..."

MsgBox Day(MyDate),0,"day"

MsgBox Month(MyDate),0,"month"

MsgBox Year(MyDate),0,"year"

MyDate = "30-Dec-91" ’ another of European date usage

print Mydate

MsgBox MyDate,0,"MyDate International..."

MsgBox Day(MyDate),0,"day"

MsgBox Month(MyDate),0," month"

MsgBox Year(MyDate),0,"year"

MsgBox Format("This is it", ">") ’ Returns "THIS IS IT".

End Sub

DateSerial Function

76 • Language Reference A - Z PC-DMIS Basic Language Reference

DateSerial (year, month,day)

Returns a variant (Date) corresponding to the year, month and day that were passed
in. All three parameters for the DateSerial Function are required and must be valid.

Related Topics: DateValue, TimeSerial, TimeValue

Example:

Sub Main

Dim MDate

MDate = DateSerial(1959, 5, 29)

Print MDate

End Sub

DateValue Function

DateValue(dateexpression)

Returns a variant (Date) corresponding to the string date expression that was passed
in. dateexpression can be a string or any expression that can represent a date, time or
both a date and a time.

Related Topics: DateSerial, TimeSerial, TimeValue

Example:

Sub Main()

Dim v As Variant

Dim d As Double

 d = Now

 Print d

 v = DateValue("1959/05/29")

 MsgBox (VarType(v))

 MsgBox (v)

End Sub

Day Function

Day(dateexpression)

PC-DMIS Basic Language Reference Language Reference A - Z • 77

Returns a variant date corresponding to the string date expression that was passed in.
dateexpression can be a string or any expression that can represent a date.

Related Topics: Month, Weekday, Hour, Second

Example:

Sub Main

Dim MDate, MDay

MDate = #May 29, 1959#

MDay = Day(MDate)

Print "The Day listed is the " & MDay

End Sub

Declare Statement

Declare Sub procedurename Lib Libname$ [Alias aliasname$][(argument list)]

Declare Function procedurename Lib Libname$ [Alias aliasname$] [(argument list)][As Type]

The Declare statement makes a reference to an external procedure in a Dynamic
Link Library (DLL).

The procedurename parameter is the name of the function or subroutine being called.

The Libname parameter is the name of the DLL that contains the procedure.

The optional Alias aliasname clause is used to supply the procedure name in the
DLL if different from the name specified on the procedure parameter. When the
optional argument list needs to be passed the format is as follows:

([ByVal] variable [As type] [,ByVal] variable [As type]]…])

The optional ByVal parameter specifies that the variable is [passed by value instead
of by reference (see “ByRef and ByVal” in this manual). The optional As type
parameter is used to specify the data type. Valid types are String, Integer, Double,
Long, and Varaint (see “Variable Types” in this manual).

If a procedure has no arguments, use double parentheses () only to assure that no
arguments are passed. For example:

Declare Sub OntTime Lib “Check” ()

78 • Language Reference A - Z PC-DMIS Basic Language Reference

Cypress Enable extentions to the declare statement. The following syntax is not
supported by Microsoft Visual Basic.

Declare Function procedurename App [Alias aliasname$] [(argument list)][As Type]

This form of the Declare statement makes a reference to a function located in the
executable file located in the application where Enable is embedded.

Related Topics: Call

Example:

Declare Function GetFocus Lib "User" () As Integer

Declare Function GetWindowText Lib "User" (ByVal hWnd%, ByVal
Mess$, ByVal cbMax%) As _ Integer

Sub Main

 Dim hWindow%

 Dim str1 As String *51

 Dim str2 As String * 25

 hWindow% = GetFocus()

 print "GetWindowText returned: ", GetWindowText(hWindow%,
str1,51)

 print "GetWindowText2 returned: ", GetWindowText(hWindow%,
str2, 25)

 print str1

 print str2

End Sub

Dialog, Dialog Function

Dialog(DialogRecord)

PC-DMIS Basic Language Reference Language Reference A - Z • 79

Returns a value corresponding to the button the user chooses.

The Dialog() function is used to display the dialog box specified by DialogRecord .
DialogRecord is the name of the dialog and must be defined in a preceeding Dim
statement.

The return value or button:

 -1 = OK button

 0 = Cancel button

> 0 A command button where 1 is the first PushButton in the definition of the dialog
and 2 is the second and so on.

Example:

’ This sample shows all of the dialog controls on one dialog
and how to

’ vary the response based on which PushButton was pressed.

Sub Main ()

 Dim MyList$(2)

 MyList(0) = "Banana"

 MyList(1) = "Orange"

 MyList(2) = "Apple"

 Begin Dialog DialogName1 60, 60, 240, 184, "Test Dialog"

 Text 10, 10, 28, 12, "Name:"

 TextBox 40, 10,50, 12, .joe

 ListBox 102, 10, 108, 16, MyList$(), .MyList1

 ComboBox 42, 30, 108, 42, MyList$(), .Combo1

 DropListBox 42, 76, 108, 36, MyList$(), .DropList1$

 OptionGroup .grp1

 OptionButton 42, 100, 48, 12, "Option&1"

 OptionButton 42, 110, 48, 12, "Option&2"

 OptionGroup .grp2

 OptionButton 42, 136, 48, 12, "Option&3"

 OptionButton 42, 146, 48, 12, "Option&4"

 GroupBox 132, 125, 70, 36, "Group"

 CheckBox 142, 100, 48, 12, "Check&A", .Check1

 CheckBox 142, 110, 48, 12, "Check&B", .Check2

 CheckBox 142, 136, 48, 12, "Check&C", .Check3

 CheckBox 142, 146, 48, 12, "Check&D", .Check4

 CancelButton 42, 168, 40, 12

 OKButton 90, 168, 40, 12

 PushButton 140, 168, 40, 12, "&Push Me 1"

 PushButton 190, 168, 40, 12, "Push &Me 2"

80 • Language Reference A - Z PC-DMIS Basic Language Reference

 End Dialog

 Dim Dlg1 As DialogName1

 Dlg1.joe = "Def String"

 Dlg1.MyList1 = 1

 Dlg1.Combo1 = "Kiwi"

 Dlg1.DropList1 = 2

 Dlg1.grp2 = 1

 ’ Dialog returns -1 for OK, 0 for Cancel, button # for
PushButtons

 button = Dialog(Dlg1)

 ’MsgBox "button: " & button ’uncomment for button return
vale

 If button = 0 Then Return

 MsgBox "TextBox: "& Dlg1.joe

 MsgBox "ListBox: " & Dlg1.MyList1

 MsgBox Dlg1.Combo1

 MsgBox Dlg1.DropList1

 MsgBox "grp1: " & Dlg1.grp1

 MsgBox "grp2: " & Dlg1.grp2

 Begin Dialog DialogName2 60, 60, 160, 60, "Test Dialog 2"

 Text 10, 10, 28, 12, "Name:"

 TextBox 42, 10, 108, 12, .fred

 OkButton 42, 44, 40, 12

 End Dialog

 If button = 2 Then

 Dim Dlg2 As DialogName2

 Dialog Dlg2

 MsgBox Dlg2.fred

 ElseIf button = 1 Then

 Dialog Dlg1

 MsgBox Dlg1.Combo1

 End If

End Sub

Dim Statement

Dim variablename[(subscripts)][As Type][,name][As Type]]

Allocates storage for and declares the data type of variables and arrays in a module.

The types currently supported are integer, long, single, double and string and variant.

PC-DMIS Basic Language Reference Language Reference A - Z • 81

Example:

Sub Main

 Dim x As Long

 Dim y As Integer

 Dim z As single

 Dim a As double

 Dim s As String

 Dim v As Variant ’ This is the same as Dim x or Dim x as
any

End Sub

Dir Function

Dir[(path,attributes)]

Returns a file/directory name that matches the given path and attributes.

Example:

’===

’ Bitmap sample using the Dir Function

’===

Sub DrawBitmapSample

 Dim MyList()

 Begin Dialog BitmapDlg 60, 60, 290, 220, "Enable bitmap
sample", .DlgFunc

 ListBox 10, 10, 80, 180, MyList(), .List1, 2

 Picture 100, 10, 180, 180, "Forest.bmp", 0, .Picture1

 CancelButton 42, 198, 40, 12

 OKButton 90, 198, 40, 12

 End Dialog

 Dim frame As BitmapDlg

 ’ Show the bitmap dialog

 Dialog frame

End Sub

Function DlgFunc(controlID As String, action As Integer,
suppValue As Integer)

82 • Language Reference A - Z PC-DMIS Basic Language Reference

 DlgFunc = 1 ’ Keep dialog active

 Select Case action

 Case 1 ’ Initialize

 temp = Dir("c:\Windows*.bmp")

 count = 0

 While temp <> ""

 count = count + 1

 temp = Dir

 Wend

 Dim x() As String

 ReDim x(count)

 x(0) = Dir("c:\Windows*.bmp")

 For i = 1 To count

 x(i) = dir

 Next i

 DlgListBoxArray "List1", x()

 Case 2 ’ Click

 fileName = "c:\windows\" & DlgText("List1")

 DlgSetPicture "Picture1", fileName

 End Select

End Function

DlgEnable Statement

DlgEnable “ControlName”, Value

This statement is used to enable or disable a particular control on a dialog box.

The parameter ControlName is the name of the control on the dialog box. The
parameter Value is the value to set it to. 1 = Enable, 0 = Disable. On is equal to 1 in
the example below. If the second parameter is omitted the status of the control
toggles. The entire example below can be found in the dialog section of this manual
and in the example .bas files that ship with Cypress Enable.

Related Topics: DlgVisible, DlgText

Example:

Function Enable(ControlID$, Action%, SuppValue%)

Begin Dialog UserDialog2 160,160, 260, 188, "3", .Enable

PC-DMIS Basic Language Reference Language Reference A - Z • 83

Text 8,10,73,13, "New dialog Label:"

TextBox 8, 26, 160, 18, .FText

CheckBox 8, 56, 203, 16, "New CheckBox",. ch1

CheckBox 18,100,189,16, "Additional CheckBox", .ch2

PushButton 18, 118, 159, 16, "Push Button", .but1

OKButton 177, 8, 58, 21

CancelButton 177, 32, 58, 21

 End Dialog

 Dim Dlg2 As UserDialog2

 Dlg2.FText = "Your default string goes here"

Select Case Action%

Case 1

DlgEnable "Group", 0

DlgVisible "Chk2", 0

DlgVisible "History", 0

Case 2

If ControlID$ = "Chk1" Then

 DlgEnable "Group", On

 DlgVisible "Chk2"

 DlgVisible "History"

End If

If ControlID$ = "Chk2" Then

 DlgText "History", "Push to display nested
dialog"

End If

If ControlID$ = "History" Then

 Enable =1

 Number = 4

 MsgBox SQR(Number) & " The sqr of 4 is 2"

 x = Dialog(Dlg2)

End If

If ControlID$ = "but1" Then

End If

Case Else

End Select

84 • Language Reference A - Z PC-DMIS Basic Language Reference

Enable =1

End Function

DlgText Statement

DLGTEXT “CONTROLNAME”, STRING

This statement is used to set or change the text of a dialog control.

The parameter ControlName is the name of the control on the dialog box. The
parameter String is the value to set it to.

Related Topics: DlgEnable, DlgVisible

Example:

If ControlID$ = "Chk2" Then

 DlgText "History", "Push to display nested dialog"

End If

DlgVisible Statement

DlgVisible “ControlName”, Value

This statement is used to hide or make visible a particular control on a dialog box.

The parameter ControlName is the name of the control on the dialog box. The
parameter Value is the value to set it to. 1 = Visible, 0 = Hidden. On is equal to 1. If
the second parameter is omitted the status of the control toggles. The entire example
below can be found in the dialog section of this manual and in the example .bas files
that ship with Cypress Enable.

Related Topics: DlgEnable, DlgText

Example:

If ControlID$ = "Chk1" Then

 DlgEnable "Group", On

 DlgVisible "Chk2"

PC-DMIS Basic Language Reference Language Reference A - Z • 85

 DlgVisible "History"

End If

Do...Loop Statement

Do [{While|Until} condition]

 [statements]

 [Exit Do]

 [statements]

Loop

Do

[statements]

[Exit Do]

[statements]

Loop [{While|Until} condition]

Repeats a group of statements while a condition is true or until a condition is met.

Related Topics: While, Wend

Example:

Sub Main ()

 Dim Value, Msg ’ Declare variables.

 Do

 Value = InputBox("Enter a value from 5 to 10.")

 If Value >= 5 And Value <= 10 Then

 Exit Do ’ Exit Do...Loop.

 Else

 Beep ’ Beep if not in range.

 End If

 Loop

End Sub

86 • Language Reference A - Z PC-DMIS Basic Language Reference

End Statement

End[{Function | If | Sub}]

Ends a program or a block of statements such as a Sub procedure or a function.

Related Topics: Exit, Function, If...Then...Else, Select Case, Stop

Example:

Sub Main()

Dim Var1 as String

Var1 = "hello"

MsgBox " Calling Test"

Test Var1

MsgBox Var1

End Sub

Sub Test(wvar1 as string)

wvar1 = "goodbye"

MsgBox "Use of End Statement"

End

End Sub

EOF Function

PC-DMIS Basic Language Reference Language Reference A - Z • 87

EOF(Filenumber)

Returns a value during file input that indicates whether the end of a file has been
reached.

Related Topics: Open Statement

Example:
’ Input Function Example

’ This example uses the Input function to read 10 characters at
a time from a ’ file and display them in a MsgBox. This
example assumes that TESTFILE is a ’text file with a few
lines of ’sample data.

Sub Main

 Open "TESTFILE" For Input As #1 ’ Open file.

 Do While Not EOF(1) ’ Loop until end of file.

MyStr = Input(10, #1) ’ Get ten characters.

MsgBox MyStr

 Loop

 Close #1 ’ Close file.

End Sub

Erase Statement

Erase arrayname[,arrayname]

Reinitializes the elements of a fixed array.

Related Topics: Dim

Example:

’ This example demonstrates some of the features of arrays.
The lower bound

’ for an array is 0 unless it is specified or option base has
set it as is

’ done in this example.

Option Base 1

Sub Main

88 • Language Reference A - Z PC-DMIS Basic Language Reference

’ Declare array variables.

Dim Num(10) As Integer ’ Integer array.

Dim StrVarArray(10) As String ’ Variable-string array.

Dim StrFixArray(10) As String * 10 ’ Fixed-string array.

Dim VarArray(10) As Variant ’ Variant array.

Dim DynamicArray() As Integer ’ Dynamic array.

ReDim DynamicArray(10) ’ Allocate storage space.

Erase Num ’ Each element set to 0.

Erase StrVarArray ’ Each element set to zero-length

 ’ string ("").

Erase StrFixArray ’ Each element set to 0.

Erase VarArray ’ Each element set to Empty.

Erase DynamicArray ’ Free memory used by array.

End Sub

Exit Statement

Exit {Do | For | Function | Sub }

Exits a loop or procedure

Related Topics: End Statement, Stop Statement

Example:

’ This sample shows Do ... Loop with Exit Do to get out.

Sub Main ()

 Dim Value, Msg ’ Declare
variables.

 Do

 Value = InputBox("Enter a value from 5 to 10.")

 If Value >= 5 And Value <= 10 Then ’ Check range.

 Exit Do ’ Exit
Do...Loop.

 Else

 Beep ’ Beep if
not in range.

 End If

 Loop

End Sub

PC-DMIS Basic Language Reference Language Reference A - Z • 89

Exp

Exp(num)

Returns the base of the natural log raised to a power (e ^ num).

The value of the constant e is approximately 2.71828.

Related Topics: Log

Example:

Sub ExpExample ()

’ Exp(x) is e ^x so Exp(1) is e ^1 or e.

Dim Msg, ValueOfE ’ Declare variables.

ValueOfE = Exp(1) ’ Calculate value of e.

Msg = "The value of e is " & ValueOfE

MsgBox Msg ’ Display message.

End Sub

FileCopy Function

FileCopy(sourcefile, destinationfile)

Copies a file from source to destination.

The sourcefile and destinationfile parameters must be valid string expressions.
sourcefile is the file name of the file to copy, destinationfile is the file name to be
copied to.

Example:
Dim SourceFile, DestinationFile

SourceFile = "SRCFILE" ’ Define source file name.

90 • Language Reference A - Z PC-DMIS Basic Language Reference

DestinationFile = "DESTFILE" ’ Define target file name.

FileCopy SourceFile, DestinationFile ’ Copy source to target.

FileLen Function

FileLen(filename)

Returns a Long integer that is the length of the file in bytes

Related Topics: LOF Function

Example:

Sub Main

 Dim MySize

 MySize = FileLen("C:\TESTFILE") ’ Returns file
length (bytes).

 Print MySize

End Sub

Fix Function

Fix(number)

Returns the integer portion of a number

Related Topics: Int

Example:

Sub Main

 Dim MySize

 MySize = Fix(4.345)

 Print MySize

End Sub

PC-DMIS Basic Language Reference Language Reference A - Z • 91

For each … Next Statement

For Each element in group

[statements]

[Exit For]

[statements]

Next [element]

Repeats the group of statments for each element in an array of a collection. For each
… Next statements can be nested if each loop element is unique. The For
Each…Next statement cannot be used with and array of user defined types.

Example:

Sub Main

 dim z(1 to 4) as double

 z(1) = 1.11

 z(2) = 2.22

 z(3) = 3.33

 For Each v In z

 Print v

 Next v

End Sub

For...Next Statement

For counter = expression1 to expression2 [Step increment]

[statements]

Next [counter]

Repeats the execution of a block of statements for a specified number of times.

Example:

Sub main ()

Dim x,y,z

For x = 1 to 5

For y = 1 to 5

92 • Language Reference A - Z PC-DMIS Basic Language Reference

For z = 1 to 5

Print "Looping" ,z,y,x

Next z

Next y

Next x

End Sub

Format Function

Format (expression [,fmt])

Formats a string, number or variant datatype to a format expression.

Format returns returns a string

Part Description

Expression Expression to be
formatted.

Fmt A string of characters
that specify how the
expression is to
displayed. or the name
of a commonly-used
format that has been
predefined in Enable
Basic. Do not mix
different type format
expressions in a single
fmt parameter.

If the fmt parameter is omitted or is zero-length and the expression parameter is a
numeric, Format[$] provides the same functionality as the Str[$] function by
converting the numeric value to the appropriate return data type, Positive numbers
convert to strings using Format[$] lack the leading space reserved for displaying the
sign of the value, whereas those converted using Str[$] retain the leading space.

To format numbers, you can use the commonly-used formats that have been
predefined in Enable Basic or you can create user-defined formats with standard
characters that have special meaning when used in a format expression.

PC-DMIS Basic Language Reference Language Reference A - Z • 93

Predefined numeric format names:

Format
Name Description

General Display the number as
is, with no thousand
Separators Number.

Fixed Display at least one
digit to the left and two
digits to the right of the
decimal separator.

Standard Display number with
thousand separator, if
appropriate; display
two digits to the right
of the decimal
separator.

Format
Name Description
Scientific Use standard scientific

notation.

True/False Display False if
number is 0, otherwise
display True.

Characters for Creating User-Defined Number
Formats
The following shows the characters you can use to create user-defined number
formats.

Character Meaning

Null string Display the number with no formatting.

0 Digit placeholder. Display a digit or a zero.

If the number being formatted has fewer digits than there are
zeros (on either side of the decimal) in the format expression,
leading or trailing zeros are displayed.

If the number has more digits to the right of the decimal
separator than there are zeros to the right of the decimal
separator in the format expression, the number is rounded to
as many decimal places as there are zeros.

If the number has more digits to left of the decimal separator
than there are zeros to the left of the decimal separator in the

94 • Language Reference A - Z PC-DMIS Basic Language Reference

format expression, the extra digits are displayed without
modification.

Digit placeholder. Displays a digit or nothing. If there is a
digit in the expression being formatted in the position where
the # appears in the format string, displays it; otherwise,
nothing is displayed.

. Decimal placeholder.The decimal placeholder determines
how many digits are displayed to the left and right of the
decimal separator.

Character Meaning Description
% Percentage

placeholder.
The percent character (%) is inserted
in the position where it appears in the
format string. The expression is
multiplied by 100.

, Thousand separator. The thousand separator separates
thousands from hundreds within a
number that has four or more places to
the left of the decimal separator.

Use of this separator as specified in
the format statement contains a
comma surrounded by digit
placeholders(0 or #). Two adjacent
commas or a comma immediately to
the left of the decimal separator
(whether or not a decimal is specified)
means “scale the number by dividing
it by 1000, rounding as needed.”

E-E+e-e+ Scientific format. If the format expression contains at
least one digit placeholder (0 or #) to
the right of E-,E+,e- or e+, the number
is displayed in scientific formatted E
or e inserted between the number and
its exponent. The number of digit
placeholders to the right determines
the number of digits in the exponent.
Use E- or e- to place a minus sign
next to negative exponents. Use E+ or
e+ to place a plus sign next to positive
exponents.

: Time separator. The actual character used as the time
separator depends on the Time Format
specified in the International section
of the Control Panel.

/ Date separator. The actual character used as the date
separator in the formatted out depends

PC-DMIS Basic Language Reference Language Reference A - Z • 95

on Date Format specified in the
International section of the Control
Panel.

Character Meaning

- + $ ()

space

Display a literal character.

To display a character other than one of those listed, precede it
with a backslash (\).

\ Display the next character in the format string.

The backslash itself isn’t displayed. To display a backslash, use
two backslashes (\\).
Examples of characters that can’t be displayed as literal characters
are the date- and time- formatting characters
(a,c,d,h,m,n,p,q,s,t,w,y, and /:), the numeric -formatting
characters(#,0,%,E,e,comma, and period), and the string-
formatting characters (@,&,<,>, and !).

“String” Display the string inside the double quotation marks.

To include a string in fmt from within Enable, you must use the
ANSI code for a double quotation mark Chr(34) to enclose the
text.

* Display the next character as the fill character.

Any empty space in a field is filled with the character following
the asterisk.

Unless the fmt argument contains one of the predefined formats, a format expression
for numbers can have from one to four sections separated by semicolons.

If you use The result is

One section only The format expression applies to all values.

Two The first section applies to positive values, the second to
negative sections values.

Three The first section applies to positive values, the second to
negative sections values, and the third to zeros.

Four The first section applies to positive values, the second to
negative section values, the third to zeros, and the fourth
to Null values.

96 • Language Reference A - Z PC-DMIS Basic Language Reference

The following example has two sections: the first defines the format for positive
values and zeros; the second section defines the format for negative values.

“$#,##0; ($#,##0)”

If you include semicolons with nothing between them. the missing section is printed
using the format of the positive value. For example, the following format displays
positive and negative values using the format in the first section and displays “Zero”
if the value is zero.

“$#,##0;;\Z\e\r\o”

Sample Format Number Expressions
Some sample format expressions for numbers are shown below. (These examples all
assume the Country is set to United States in the International section of the Control
Panel.) The first column contains the format strings. The other columns contain the
output the results if the formatted data has the value given in the column headings

Format
(fmt)

Positive 3 Negative 3 Decimal .3 Null

Null string 3 -3 0.3

0 3 -3 1

0.00 3.00 -3.00 0.30

#,##0 3 -3 1

#,##0.00;;;Nil 3.00 -3.00 0.30 Nil

$#,##0;($#,##
0)

$3 ($3) $1

$#,##0.00;($
#,##0.00)
$3.00

($3.00) $0.30

0% 300% -300% 30%

0.00% 300.00% -300.00% 30.00%

0.00E+00 3.00E+00 -3.00E+00 3.00E-01

0.00E-00 3.00E00 -3.00E00 3.00E-01

Numbers can also be used to represent date and time information. You can format
date and time serial numbers using date and time formats or number formats because
date/time serial numbers are stored as floating-point values.

To format dates and times, you can use either the commonly used format that have
been predefined or create user-defined time formats using standard meaning of each:

The following table shows the predefined data format names you can use and the
meaning of each.

Format

PC-DMIS Basic Language Reference Language Reference A - Z • 97

Name Description

General Display a date and/or time. for real numbers, display a date and
time.(e.g. 4/3/93 03:34 PM); If there is no fractional part,
display only a date (e.g. 4/3/93); if there is no integer part,
display time only (e.g. 03:34 PM).

Long Date Display a Long Date, as defined in the International section of
the Control Panel.

Medium Display a date in the same form as the Short Date, as defined in
the international section of the Control Panel, except spell out
the month abbreviation.

Short Date Display a Short Date, as defined in the International section of
the Control Panel.

Long Time Display a Long Time, as defined in the International section of
the Control panel. Long Time includes hours, minutes, seconds.

Medium Time Display time in 12-hour format using hours and minutes and
the Time AM/PM designator.

Short Time Display a time using the 24-hour format (e.g. 17:45)

This table shows the characters you can use to create user-defined date/time formats.

Character Meaning

c Display the date as dddd and display the time as ttttt. in the
order.

d Display the day as a number without a leading zero (1-31).

dd Display the day as a number with a leading zero (01-31).

ddd Display the day as an abbreviation (Sun-Sat).

ddddd Display a date serial number as a complete date (including day
, month, and year).

Character Meaning

w Display the day of the week as a number (1- 7).

ww Display the week of the year as a number (1-53).

m Display the month as a number without a leading zero (1-12). If
m immediately follows h or hh, the minute rather than the
month is displayed.

mm Display the month as a number with a leading zero (01-12). If
mm immediately follows h or hh, the minute rather than the
month is displayed.

mmm Display the month as an abbreviation (Jan-Dec).

mmmm Display the month as a full month name (January-December).

q display the quarter of the year as a number (1-4).

y Display the day of the year as a number (1-366).

yy Display the day of the year as a two-digit number (00-99)

yyyy Display the day of the year as a four-digit number (100-9999).

h Display the hour as a number without leading zeros (0-23).

hh Display the hour as a number with leading zeros (00-23).

98 • Language Reference A - Z PC-DMIS Basic Language Reference

n Display the minute as a number without leading zeros (0-59).

nn Display the minute as a number with leading zeros (00-59).

s Display the second as a number without leading zeros (0-59).

ss Display the second as a number with leading zeros (00-59).

ttttt Display a time serial number as a complete time (including
hour, minute, and second) formatted using the time separator
defined by the Time Format in the International section of the
Control Panel. A leading zero is displayed if the Leading Zero
option is selected and the time is before 10:00 A.M. or P.M.
The default time format is h:mm:ss.

AM/PM Use the 12-hour clock and display an uppercase AM/PM

am/pm Use the 12-hour clock display a lowercase am/pm

Character Meaning

A/P Use the 12-hour clock display a uppercase A/P

a/p Use the 12-hour clock display a lowercase a/p

AMPM Use the 12-hour clock and display the contents of the 11:59
string (s1159) in the WIN.INI file with any hour before noon;
display the contents of the 2359 string (s2359) with any hour
between noon and 11:59 PM. AMPM can be either uppercase
or lowercase, but the case of the string displayed matches the
string as it exists in the WIN.INI file. The default format is
AM/PM.

The Following are examples of user-defined date and time formats:

Format Display

m/d/yy 2/26/65

d-mmmm-yy 26-February-65

d-mmmm 26 February

mmmm-yy February 65

hh:nn AM/PM 06:45 PM

h:nn:ss a/p 6:45:15 p

h:nn:ss 18:45:15

m/d/yy/h:nn 2/26/65 18:45

Strings can also be formatted with Format[$]. A format expression for strings can
have one section or two sections separated by a semicolon.

If you use The result is

One section only The format applies to all string data.

Two sections The first section applies to string data, the second to Null
values and zero-length strings.

The following characters can be used to create a format expression for strings:

PC-DMIS Basic Language Reference Language Reference A - Z • 99

Character Meaning

@ Character placeholder. Displays a character or a space.
Placeholders are filled from right to left unless there is an !
character in the format string.

& Character placeholder. Display a character or nothing.

< Force lowercase.

> Force uppercase.

! Force placeholders to fill from left to right instead of right to
left.

Related Topics: Str, Str$ Function.

Example:

’ Format Function Example

’ This example shows various uses of the Format function to
format values

’ using both named and user-defined formats. For the date
separator (/),

’ time separator (:), and AM/ PM literal, the actual formatted
output

’ displayed by your system depends on the locale settings on
which the code

’ is running. When times and dates are displayed in the
development

’ environment, the short time and short date formats of the
code locale

’ are used. When displayed by running code, the short time and
short date

’ formats of the system locale are used, which may differ from
the code

’ locale. For this example, English/United States is assumed.

’ MyTime and MyDate are displayed in the development
environment using

’ current system short time and short date settings.

Sub Main

MyTime = "08:04:23 PM"

MyDate = "03/03/95"

MyDate = "January 27, 1993"

MsgBox Now

MsgBox MyTime

100 • Language Reference A - Z PC-DMIS Basic Language Reference

MsgBox Second(MyTime) & " Seconds"

MsgBox Minute(MyTime) & " Minutes"

MsgBox Hour(MyTime) & " Hours"

MsgBox Day(MyDate) & " Days"

MsgBox Month(MyDate) & " Months"

MsgBox Year(MyDate) & " Years"

’ Returns current system time in the system-defined long time
format.

MsgBox Format(Time, "Short Time")

MyStr = Format(Time, "Long Time")

’ Returns current system date in the system-defined long date
format.

MsgBox Format(Date, "Short Date")

MsgBox Format(Date, "Long Date")

MyStr Format(MyTime, "h:n:s") ’ Returns "17:4:23".

MyStr Format(MyTime, "hh:nn:ss")’ Returns "20:04:22 ".

MyStr Format(MyDate, "dddd, mmm d yyyy")’ Returns "Wednesday,
Jan 27 1993".

’ If format is not supplied, a string is returned.

MsgBox Format(23) ’ Returns "23".

’ User-defined formats.

MsgBox Format(5459.4, "##,##0.00") ’ Returns "5,459.40".

MsgBox Format(334.9, "###0.00") ’ Returns "334.90".

MsgBox Format(5, "0.00%") ’ Returns "500.00%".

MsgBox Format("HELLO", "<") ’ Returns "hello".

MsgBox Format("This is it", ">") ’ Returns "THIS IS IT".

End Sub

FreeFile Function

FreeFile

Returns an integer that is the next available file handle to be used by the Open
Statement.

Related Topics: Open, Close, Write

PC-DMIS Basic Language Reference Language Reference A - Z • 101

Example:

Sub Main

Dim Mx, FileNumber

For Mx = 1 To 3

FileNumber = FreeFile

Open "c:\e1\TEST" & Mx For Output As #FileNumber

Write #FileNumber, "This is a sample."

Close #FileNumber

Next Mx

Open "c:\e1\test1" For Input As #1

Do While Not EOF(1)

MyStr = Input(10, #1)

MsgBox MyStr

Loop

Close #1

End Sub

Function Statement

Function Fname [(Arguments)] [As type]

[statements]

Functionname = expression

 [statements]

 Functionname = expression

End Function

Declares and defines a procedure that can receive arguments and return a value of a
specified data type.

When the optional argument list needs to be passed the format is as follows:

([ByVal] variable [As type] [,ByVal] variable [As type]]…])

The optional ByVal parameter specifies that the variable is [passed by value instead
of by reference (see “ByRef and ByVal” in this manual). The optional As type
parameter is used to specify the data type. Valid types are String, Integer, Double,
Long, and Varaint (see “Variable Types” in this manual).

Related Topics: Dim, End, Exit, Sub

102 • Language Reference A - Z PC-DMIS Basic Language Reference

Example:

Sub Main

Dim I as integer

For I = 1 to 10

Print GetColor2(I)

Next I

End Sub

Function GetColor2(c%) As Long

 GetColor2 = c% * 25

 If c% > 2 Then

 GetColor2 = 255 ’ 0x0000FF - Red

 End If

 If c% > 5 Then

 GetColor2 = 65280 ’ 0x00FF00 - Green

 End If

 If c% > 8 Then

 GetColor2 = 16711680 ’ 0xFF0000 - Blue

 End If

End Function

Get Statement

GetStatement [#] filenmber,[recordnumber], variablename

Reads from a disk file into a varable

The Get Statement has these parts:

Filenumber The number used to Open the file with.

Recordnumber For files opened in Binary mode recordnumber is the byte position
where reading starts.

VariableName The name of the variable used to receive the data from the file.

PC-DMIS Basic Language Reference Language Reference A - Z • 103

Related Topics: Open, Put

Get Object Function

GetObject(filename[,class])

 The GetObject Function has two parameters a filename and a class. The filename is
the name of the file containing the object to retrieve. If filename is an empty string
then class is required. Class is a string containing the class of the object to retrieve.

Related Topics: CreateObject

Global Statement

Global Const constant

The Global Statement must be outside the procedure section of the script. Global
variables are available to all functions and subroutines in your program

Related Topics: Dim, Const and Type Statements

Example:

Global Const Height = 14.4357 ’

Const PI = 3.14159 ’Global to all procedures in a module

Sub Main ()

Begin Dialog DialogName1 60, 60, 160,70, "ASC - Hello"

TEXT 10, 10, 100, 20, "Please fill in the radius of circle
x"

TEXT 10, 40, 28, 12, "Radius"

TEXTBOX 42, 40, 28, 12, .Radius

OKBUTTON 42, 54,40, 12

End Dialog

Dim Dlg1 As DialogName1

Dialog Dlg1

CylArea = Height * (Dlg1.Radius * Dlg1.Radius) * PI

MsgBox "The volume of Cylinder x is " & CylArea

End Sub

104 • Language Reference A - Z PC-DMIS Basic Language Reference

GoTo Statement

GoTo label

Branches unconditionally and without return to a specified label in a procedure.

Example:

Sub main ()

Dim x,y,z

For x = 1 to 5

For y = 1 to 5

For z = 1 to 5

Print "Looping" ,z,y,x

If y > 3 Then

GoTo Label1

End If

Next z

Next y

Next x

Label1:

End Sub

Hex

Hex (num)

Returns the hexadecimal value of a decimal parameter.

PC-DMIS Basic Language Reference Language Reference A - Z • 105

Hex returns a string

The parameter num can be any valid number. It is rounded to nearest whole number
before evaluation.

Related Topics: Oct, Oct$

Example:

Sub Main ()

Dim Msg As String, x%

x% = 10

Msg =Str(x%) & " decimal is "

Msg = Msg & Hex(x%) & " in hex "

MsgBox Msg

End Sub

Hour Function

Hour(string)

The Hour Function returns an integer between 0 and 23 that is the hour of the day
indicated in the parameter number.

The parameter string is any number expressed as a string that can represent a date
and time from January 1, 1980 through December 31, 9999.

Example:

’ This example shows various uses of the Format function to
format values

106 • Language Reference A - Z PC-DMIS Basic Language Reference

’ using both named and user-defined formats. For the date
separator (/),

’ time separator (:), and AM/ PM literal, the actual formatted
output

’ displayed by your system depends on the locale settings on
which the code

’ is running. When times and dates are displayed in the
development

’ environment, the short time and short date formats of the
code locale

’ are used. When displayed by running code, the short time and
short date

’ formats of the system locale are used, which may differ from
the code

’ locale. For this example, English/United States is assumed.

’ MyTime and MyDate are displayed in the development
environment using

’ current system short time and short date settings.

Sub Main

MyTime = "08:04:23 PM"

MyDate = "03/03/95"

MyDate = "January 27, 1993"

MsgBox Now

MsgBox MyTime

MsgBox Second(MyTime) & " Seconds"

MsgBox Minute(MyTime) & " Minutes"

MsgBox Hour(MyTime) & " Hours"

MsgBox Day(MyDate) & " Days"

MsgBox Month(MyDate) & " Months"

MsgBox Year(MyDate) & " Years"

’ Returns current system time in the system-defined long time
format.

MsgBox Format(Time, "Short Time")

MyStr = Format(Time, "Long Time")

’ Returns current system date in the system-defined long date
format.

MsgBox Format(Date, "Short Date")

MsgBox Format(Date, "Long Date")

’ This section not yet supported

PC-DMIS Basic Language Reference Language Reference A - Z • 107

’MyStr = Format(MyTime, "h:n:s") ’ Returns "17:4:23".

’MyStr = Format(MyTime, "hh:nn:ss AMPM")’ Returns "05:04:23
PM".

’MyStr = Format(MyDate, "dddd, nnn d yyyy")’ Returns
"Wednesday, Jan 27 1993".

’ If format is not supplied, a string is returned.

MsgBox Format(23) ’ Returns "23".

’ User-defined formats.

MsgBox Format(5459.4, "##,##0.00") ’ Returns "5,459.40".

MsgBox Format(334.9, "###0.00") ’ Returns "334.90".

MsgBox Format(5, "0.00%") ’ Returns "500.00%".

MsgBox Format("HELLO", "<") ’ Returns "hello".

MsgBox Format("This is it", ">") ’ Returns "THIS IS IT".

End Sub

HTMLDialog

HTMLDialog (path, number)

Runs a DHTML dialog that is specified in the path.

Example:

x =HtmlDialog("c:\enable40\htmlt.htm", 57)

‘See sample code on the samples disk htmldlg.bas

If...Then...Else Statement

Syntax 1

If condition Then thenpart [Else elsepart]

Syntax 2

If condition Then

 [statement(s)]

ElseIf condition Then

108 • Language Reference A - Z PC-DMIS Basic Language Reference

 [statement(s)]

Else

 [statements(s)].

End If

Syntax 2

If conditional Then statement

Allows conditional statements to be executed in the code.

Related Topics: Select Case

Example:

Sub IfTest

’ demo If...Then...Else

Dim msg as String

Dim nl as String

Dim someInt as Integer

nl = Chr(10)

msg = "Less"

someInt = 4

If 5 > someInt Then msg = "Greater" : Beep

MsgBox “” & msg

If 3 > someInt Then

msg = "Greater"

Beep

Else

msg = "Less"

End If

MsgBox “” & msg

If someInt = 1 Then

msg = "Spring"

ElseIf someInt = 2 Then

msg = "Summer"

ElseIf someInt = 3 Then

msg = "Fall"

ElseIf someInt = 4 Then

PC-DMIS Basic Language Reference Language Reference A - Z • 109

msg = "Winter"

Else

msg = "Salt"

End If

MsgBox “” & msg

End Sub

Input # Statement

Input # filenumber, variablelist

Input # Statement reads data from a sequential file and assigns that data to variables.

The Input # Statement has two parameters filenumber and variablelist. filenumber is
the number used in the open statement when the file was opened and variablelist is a
Comma-delimited list of the variables that are assigned when read from the file..

Example:

Dim MyString, MyNumber

Open "c:\TESTFILE" For Input As #1 ' Open file for input.

Do While Not EOF(1) ' Loop until end of file.

 Input #1, MyString, MyNumber ' Read data into two
variables.

Loop

Close #1 ' Close file.

Input Function

Input(n , [#] filenumber)

Input returns characters from a sequential file.

The input function has two parameters n and filenumber. n is the number of bytes to
be read from a file and filenumber is the number used in the open statement when
the file was opened.

Example:

Sub Main

110 • Language Reference A - Z PC-DMIS Basic Language Reference

 Open "TESTFILE" For Input As #1 ’ Open file.

 Do While Not EOF(1) ’ Loop until end of file.

MyStr = Input(10, #1) ’ Get ten characters.

MsgBox MyStr

 Loop

 Close #1 ’ Close file.

End Sub

InputBox Function

InputBox(prompt[,[title][,[default][,xpos,ypos]]])

InputBox returns a String.

Prompt is string that is displayed usually to ask for input type or information.

Title is a string that is displayed at the top of the input dialog box.

Default is a string that is displayed in the text box as the default entry.

Xpos and Ypos and the x and y coodinates of the relative location of the input dialog
box.

Example:

Sub Main ()

Title$ = "Greetings"

Prompt$ = "What is your name?"

Default$ = ""

X% = 200

Y% = 200

N$ = InputBox$(Prompt$, Title$, Default$, X%, Y%)

End Sub

PC-DMIS Basic Language Reference Language Reference A - Z • 111

InStr

InStr(numbegin, string1, string2)

Returns the character position of the first occurrence of string2 within string1.

The numbegin parameter is not optional and sets the starting point of the search.
numbegin must be a valid positive integer no greater than 65,535.

string1 is the string being searched and string2 is the string we are looking for.

Related Topics: Mid Function

Example:

Sub Main ()

B$ = "Good Bye"

A% = InStr(2, B$, "Bye")

C% = Instr(3, B$, "Bye")

End Sub

Int Function

Int(number)

Returns the integer portion of a number

Related Topics: Fix

112 • Language Reference A - Z PC-DMIS Basic Language Reference

IsArray Function

IsArray(variablename)

Returns a boolean value True or False indicating whether the parameter vaiablename
is an array.

Related Topics: IsEmpty, IsNumeric, VarType, IsObject

Example:

Sub Main

Dim MArray(1 To 5) As Integer, MCheck

MCheck = IsArray(MArray)

Print MCheck

End Sub

IsDate

IsDate(variant)

Returns a value that indicates if a variant parameter can be converted to a date.

Related Topics: IsEmpty, IsNumeric, VarType

Example:

Sub Main

Dim x As String

Dim MArray As Integer, MCheck

MArray = 345

x = "January 1, 1987"

MCheck = IsDate(MArray)

MChekk = IsDate(x)

PC-DMIS Basic Language Reference Language Reference A - Z • 113

MArray1 = CStr(MArray)

MCheck1 = CStr(MCheck)

Print MArray1 & " is a date " & Chr(10) & MCheck

Print x & " is a date" & Chr(10) & MChekk

End Sub

IsEmpty

IsEmpty(variant)

Returns a value that indicates if a variant parameter has been initialized.

Related Topics: IsDate, IsNull, IsNumeric, VarType

Example:

’ This sample explores the concept of an empty variant

Sub Main

 Dim x ’ Empty

 x = 5 ’ Not Empty - Long

 x = Empty ’ Empty

 y = x ’ Both Empty

 MsgBox “x” & " IsEmpty: " & IsEmpty(x)

End Sub

IsNull

IsNull(v)

Returns a value that indicates if a variant contains the NULL value.

The parameter v can be any variant. IsNull returns a TRUE if v contains NULL. If
isNull returns a FALSE the variant expression is not NULL.

The NULL value is special because it indicates that the v parameter contains no data.
This is different from a null-string, which is a zero length string and an empty string
which has not yet been initialized.

114 • Language Reference A - Z PC-DMIS Basic Language Reference

Related Topics: IsDate, IsEmpty, IsNumeric, VarType

IsNumeric

IsNumeric(v)

Returns a TRUE or FALSE indicating if the v parameter can be converted to a
numeric data type.

The parameter v can be any variant, numeric value, Date or string (if the string can
be interpreted as a numeric).

Related topics: IsDate, IsEmpty, IsNull, VarType

Example:

Sub Form_Click ()

Dim TestVar’ Declare variable.

TestVar = InputBox("Please enter a number, letter, or
symbol.")

If IsNumeric(TestVar) Then’ Evaluate variable.

MsgBox "Entered data is numeric." ‘ Message if number.

Else

MsgBox "Entered data is not numeric." ' Message if not.

End If

End Sub

PC-DMIS Basic Language Reference Language Reference A - Z • 115

IsObject Function

IsObject(objectname)

Returns a boolean value True or False indicating whether the parameter objectname
is an object.

Related Topics: IsEmpty, IsNumeric, VarType, IsObject

Example:

Sub Main

Dim MyInt As Integer, MyCheck

Dim MyObject As Object

Dim YourObject As Object

 Set MyObject = CreateObject("Word.Basic")

Set YourObject = MyObject

MyCheck = IsObject(YourObject)

 Print MyCheck

End Sub

Kill Statement

Kill filename

Kill will only delete files. To remove a directory use the RmDir Statement

Related Topics: RmDir

Example:

Const NumberOfFiles = 3

Sub Main ()

116 • Language Reference A - Z PC-DMIS Basic Language Reference

 Dim Msg ’ Declare variable.

 Call MakeFiles() ’ Create data files.

 Msg = "Several test files have been created on your disk.
You may see "

 Msg = Msg & "them by switching tasks. Choose OK to remove
the test files."

 MsgBox Msg

 For I = 1 To NumberOfFiles

 Kill "TEST" & I ’ Remove data files from
disk.

 Next I

End Sub

Sub MakeFiles ()

 Dim I, FNum, FName ’ Declare variables.

 For I = 1 To NumberOfFiles

 FNum = FreeFile ’ Determine next file
number.

 FName = "TEST" & I

 Open FName For Output As FNum ’ Open file.

 Print #FNum, "This is test #" & I ’ Write string to
file.

 Print #FNum, "Here is another "; "line"; I

 Next I

 Close ’ Close all files.

 Kill FName

End Sub

LBound Function

LBound(array [,dimension])

Returns the smallest available subscript for the dimension of the indicated array.

Related Topics: UBound Function

Example:
’ This example demonstrates some of the features of arrays.

The lower bound

’ for an array is 0 unless it is specified or option base has
set as is

’ done in this example.

Option Base 1

PC-DMIS Basic Language Reference Language Reference A - Z • 117

Sub Main

 Dim a(10) As Double

 MsgBox "LBound: " & LBound(a) & " UBound: " & UBound(a)

 Dim i As Integer

 For i = 0 to 3

 a(i) = 2 + i * 3.1

 Next i

 Print a(0),a(1),a(2), a(3)

End Sub

LCase, Function

Lcase[$](string)

Returns a string in which all letters of the string parameter have been converted to
upper case.

Related Topics: Ucase Function

Example:

’ This example uses the LTrim and RTrim functions to strip
leading and

’ trailing spaces, respectively, from a string variable. It

’ uses the Trim function alone to strip both types of spaces.

’ LCase and UCase are also shown in this example as well as the
use

’ of nested function calls

Sub Main

 MyString = " <-Trim-> " ’ Initialize string.

 TrimString = LTrim(MyString) ’ TrimString = "<-Trim->
".

 MsgBox "|" & TrimString & "|"

 TrimString = LCase(RTrim(MyString)) ’ TrimString = "
<-trim->".

 MsgBox "|" & TrimString & "|"

 TrimString = LTrim(RTrim(MyString)) ’ TrimString = "<-
Trim->".

 MsgBox "|" & TrimString & "|"

 ’ Using the Trim function alone achieves the same result.

 TrimString = UCase(Trim(MyString)) ’ TrimString = "<-
TRIM->".

118 • Language Reference A - Z PC-DMIS Basic Language Reference

 MsgBox "|" & TrimString & "|"

End Sub

Left

Left(string, num)

Returns the left most num characters of a string parameter.

Left returns a Variant, Left$ returns a String

Example:

Sub Main ()

Dim LWord, Msg, RWord, SpcPos, UsrInp ’ Declare
variables.

Msg = "Enter two words separated by a space."

UsrInp = InputBox(Msg) ’ Get user input.

print UsrInp

SpcPos = InStr(1, UsrInp, " ") ’ Find space.

If SpcPos Then

LWord = Left(UsrInp, SpcPos - 1) ’ Get left word.

print "LWord: "; LWord

RWord = Right(UsrInp, Len(UsrInp) - SpcPos) ’ Get right
word.

Msg = "The first word you entered is " & LWord

Msg = Msg & "." & " The second word is "

Msg = "The first word you entered is <" & LWord & ">"

Msg = Msg & RWord & "."

Else

Msg = "You didn’t enter two words."

End If

MsgBox Msg ’ Display message.

MidTest = Mid("Mid Word Test", 4, 5)

Print MidTest

End Sub

Len

Len(string)

PC-DMIS Basic Language Reference Language Reference A - Z • 119

Returns the number of characters in a string.

Related Topics: InStr

Example:

Sub Main ()

A$ = "Cypress Enable"

StrLen% = Len(A$) ’the value of StrLen is 14

MsgBox StrLen%

End Sub

Let Statement

[Let] variablename = expression

Let assigns a value to a variable.

Let is an optional keyword that is rarely used. The Let statement is required in older
versions of BASIC.

Example:

Sub Form_Click ()

 Dim Msg, Pi ’ Declare variables.

 Let Pi = 4 * Atn(1) ’ Calculate Pi.

 Msg = "Pi is equal to " & Str(Pi)

 MsgBox Msg ’ Display results.

End Sub

120 • Language Reference A - Z PC-DMIS Basic Language Reference

Line Input # Statement

Line Input # filenumber and name

Reads a line from a sequential file into a String or Variant variable.

The parameter filenumber is used in the open statement to open the file. The
parameter name is the name of a variable used to hold the line of text from the file.

Related Topics: Open

Example:
’ Line Input # Statement Example:

’ This example uses the Line Input # statement to read a line
from a

’ sequential file and assign it to a variable. This example
assumes that

’ TESTFILE is a text file with a few lines of sample data.

Sub Main

 Open "TESTFILE" For Input As #1 ’ Open file.

 Do While Not EOF(1) ’ Loop until end of file.

Line Input #1, TextLine ’ Read line into variable.

Print TextLine ’ Print to Debug window.

 Loop

 Close #1 ’ Close file.

End Sub

LOF

LOF(filenumber)

Returns a long number for the number of bytes in the open file.

PC-DMIS Basic Language Reference Language Reference A - Z • 121

The parameter filenumber is required and must be an integer.

Related Topics: FileLen

Example:

Sub Main

Dim FileLength

Open "TESTFILE" For Input As #1

FileLength = LOF(1)

 Print FileLength

Close #1

End Sub

Log

Log(num)

Returns the natural log of a number

The parameter num must be greater than zero and be a valid number.

Related Topics: Exp, Sin, Cos

Example:

Sub Form_Click ()

Dim I, Msg, NL

NL = Chr(13) & Chr(10)

Msg = Exp(1) & NL

For I = 1 to 3

Msg = Msg & Log(Exp(1) ^ I) & NL

Next I

MsgBox Msg

End Sub

122 • Language Reference A - Z PC-DMIS Basic Language Reference

Mid Function

string = Mid(strgvar,begin,length)

Returns a substring within a string.

Example:

Sub Main ()

Dim LWord, Msg, RWord, SpcPos, UsrInp ’ Declare
variables.

Msg = "Enter two words separated by a space."

UsrInp = InputBox(Msg) ’ Get user input.

print UsrInp

SpcPos = InStr(1, UsrInp, " ") ’ Find space.

If SpcPos Then

LWord = Left(UsrInp, SpcPos - 1) ’ Get left word.

print "LWord: "; LWord

RWord = Right(UsrInp, Len(UsrInp) - SpcPos) ’ Get right
word.

Msg = "The first word you entered is " & LWord

Msg = Msg & "." & " The second word is "

Msg = "The first word you entered is <" & LWord & ">"

Msg = Msg & RWord & "."

Else

Msg = "You didn’t enter two words."

End If

MsgBox Msg ’ Display message.

MidTest = Mid("Mid Word Test", 4, 5)

PC-DMIS Basic Language Reference Language Reference A - Z • 123

Print MidTest

End Sub

Minute Function

Minute(string)

Returns an integer between 0 and 59 representing the minute of the hour.

Example:
’ Format Function Example

’ This example shows various uses of the Format function to
format values

’ using both named and user-defined formats. For the date
separator (/),

’ time separator (:), and AM/ PM literal, the actual formatted
output

’ displayed by your system depends on the locale settings on
which the code

’ is running. When times and dates are displayed in the
development

’ environment, the short time and short date formats of the
code locale

’ are used. When displayed by running code, the short time and
short date

’ formats of the system locale are used, which may differ from
the code

’ locale. For this example, English/United States is assumed.

’ MyTime and MyDate are displayed in the development
environment using

’ current system short time and short date settings.

Sub Main

MyTime = "08:04:23 PM"

MyDate = "03/03/95"

MyDate = "January 27, 1993"

MsgBox Now

MsgBox MyTime

MsgBox Second(MyTime) & " Seconds"

MsgBox Minute(MyTime) & " Minutes"

124 • Language Reference A - Z PC-DMIS Basic Language Reference

MsgBox Hour(MyTime) & " Hours"

MsgBox Day(MyDate) & " Days"

MsgBox Month(MyDate) & " Months"

MsgBox Year(MyDate) & " Years"

End Sub

MkDir

MkDir path

Creates a new directory.

The parameter path is a string expression that must contain fewer than 128
characters.

Example:

Sub Main

 Dim DST As String

 DST = "t1"

 mkdir DST

 mkdir "t2"

End Sub

PC-DMIS Basic Language Reference Language Reference A - Z • 125

Month Function

Month(number)

Returns an integer between 1 and 12, inclusive, that represents the month of the year.

Related Topics: Day, Hour, Weekday, Year

Example:

Sub Main

MyDate = "03/03/96"

print MyDate

 x = Month(MyDate)

print x

End Sub

MsgBox Function MsgBox Statement

MsgBox (msg, [type] [, title])

Displays a message in a dialog box and waits for the user to choose a button.

126 • Language Reference A - Z PC-DMIS Basic Language Reference

The first parameter msg is the string displayed in the dialog box as the message. The
second and third parameters are optional and respectively designate the type of
buttons and the title displayed in the dialog box.

MsgBox Function returns a value indicating which button the user has chosen; the
MsgBox statement does not.

Value Meaning

Group 1

0 Display OK button only

1 Display OK and Cancel buttons

2 Display Abort, Retry, and Ignore buttons

3 Display Yes, No, and Cancel buttons

4 Display Yes and No buttons

5 Display Retry and Cancel buttons

Group 2

16 Stop Icon

32 Question Icon

48 Exclamation Icon

64 Information Icon

Group 3

0 First button is default

256 Second button is default

512 Third button is default

Group 4

768 Fourth button is default

0 Application modal

4096 System modal

The first group of values (1-5) describes the number and type of buttons displayed in
the dialog box; the second group (16, 32, 48, 64) describes the icon style; the third
group (0, 256, 512) determines which button is the default; and the fourth group (0,
4096) determines the modality of the message box. When adding numbers to create a
final value for the argument type, use only one number from each group. If omitted,
the default value for type is 0.

title:

String expression displayed in the title bar of the dialog box. If you omit the
argument title, MsgBox has no default title.

The value returned by the MsgBox function indicates which button has been
selected, as shown below:

PC-DMIS Basic Language Reference Language Reference A - Z • 127

Value Meaning

1 OK button selected.

2 Cancel button selected.

3 Abort button selected.

4 Retry button selected.

5 Ignore button selected.

6 Yes button selected.

7 No button selected.

If the dialog box displays a Cancel button, pressing the Esc key has the same effect
as choosing Cancel.

MsgBox Function, MsgBox Statement Example
The example uses MsgBox to display a close without saving message in a dialog box
with a Yes button a No button and a Cancel button. The Cancel button is the default
response. The MsgBox function returns a value based on the button chosen by the
user. The MsgBox statement uses that value to display a message that indicates
which button was chosen.

Related Topics: InputBox, InputBox$ Function

Example:

Dim Msg, Style, Title, Help, Ctxt, Response, MyString

Msg = "Do you want to continue ?" ’ Define message.

’Style = vbYesNo + vbCritical + vbDefaultButton2 ’ Define
buttons.

Style = 4 + 16 + 256 ’ Define buttons.

Title = "MsgBox Demonstration" ’ Define title.

Help = "DEMO.HLP" ’ Define Help file.

Ctxt = 1000 ’ Define topic

 ’ context.

 ’ Display message.

Response = MsgBox(Msg, Style, Title, Help, Ctxt)

If Response = vbYes Then ’ User chose Yes.

 MyString = "Yes" ’ Perform some action.

Else ’ User chose No.

 MyString = "No" ’ Perform some action.

End If

128 • Language Reference A - Z PC-DMIS Basic Language Reference

Name Statement

Name oldname As newname

Changes the name of a directory or a file.

The parameters oldname and newname are strings that can optionally contain a path.

Related Topics: Kill, ChDir

Now Function

Now

Returns a date that represents the current date and time according to the setting of the
computer’s system date and time

The Now function returns a Variant data type containing a date and time that are
stored internally as a double. The number is a date and time from January 1, 100
through December 31, 9999, where January 1, 1900 is 2. Numbers to the left of the
decimal point represent the date and numbers to the right represent the time.

Example:

Sub Main ()

Dim Today

Today = Now

End Sub

Oct Function

Oct (num)

Returns the octal value of the decimal parameter

Oct returns a string

PC-DMIS Basic Language Reference Language Reference A - Z • 129

Related Topics: Hex

Example:

Sub Main ()

Dim Msg, Num ’ Declare variables.

Num = InputBox("Enter a number.") ’ Get user input.

Msg = Num & " decimal is &O"

Msg = Msg & Oct(Num) & " in octal notation."

MsgBox Msg ’ Display results.

End Sub

OKButton

OKBUTTON starting x position, starting y position, width, Height

For selecting options and closing dialog boxes

Example:

Sub Main ()

 Begin Dialog DialogName1 60, 60, 160, 70, "ASC - Hello"

 TEXT 10, 10, 28, 12, "Name:"

 TEXTBOX 42, 10, 108, 12, .nameStr

 TEXTBOX 42, 24, 108, 12, .descStr

 CHECKBOX 42, 38, 48, 12, "&CHECKME", .checkInt

 OKBUTTON 42, 54, 40, 12

 End Dialog

 Dim Dlg1 As DialogName1

 Dialog Dlg1

130 • Language Reference A - Z PC-DMIS Basic Language Reference

 MsgBox Dlg1.nameStr

 MsgBox Dlg1.descStr

 MsgBox Dlg1.checkInt

End Sub

On Error

On Error { GoTo line | Resume Next | GoTo 0 }

Enables error-handling routine and specifies the line label of the error-handling
routine.

Related Topics: Resume

The line parameter refers to a label. That label must be present in the code or an
error is generated.

Example:

Sub Main

 On Error GoTo dude

 Dim x as object

 x.draw ’ Object not set

 jpe ’ Undefined function call

 print 1/0 ’ Division by zero

 Err.Raise 6 ’ Generate an "Overflow" error

 MsgBox "Back"

 MsgBox "Jack"

 Exit Sub

PC-DMIS Basic Language Reference Language Reference A - Z • 131

dude:

 MsgBox "HELLO"

 Print Err.Number, Err.Description

 Resume Next

 MsgBox "Should not get here!"

 MsgBox "What?"

End Sub

Errors can be raised with the syntax:

Err.Raise x

Defined x Value Descriptions
The list below shows the corresponding descriptions for the defined values

of x:

3: "Return without GoSub";

5: "Invalid procedure call";

6: "Overflow";

7: "Out of memory";

9: "Subscript out of range";

10: "Array is fixed or temporarily locked";

11: "Division by zero";

13: "Type mismatch";

14: "Out of string space";

16: "Expression too complex";

17: "Can’t perform requested operation";

18: "User intrrupt occurred";

20: "Resume without error";

28: "Out of stack space";

35: "Sub, Function, or Property not defined";

47: "Too many DLL application clients";

48: "Error in loading DLL";

49: "Bad DLL calling convention";

51: "Internal error";

52: "Bad file name or number";

53: "File not found";

54: "Bad file mode";

55: "File already open";

57: "Device I/O error";

58: "File already exists";

59: "Bad record length";

60: "Disk full";

132 • Language Reference A - Z PC-DMIS Basic Language Reference

62: "Input past end of file";

63: "Bad record number";

67: "Too many files";

68: "Device unavailable";

70: "Permission denied";

71: "Disk not ready";

74: "Can’t rename with different drive";

75: "Path/File access error";

76: "Path not found";

91: "Object variable or With block variable not set";

92: "For loop not initialized";

93: "Invalid pattern string";

94: "Invalid use of Null";

// OLE Automation Messages

429: "OLE Automation server cannot create object";

430: "Class doesn’t support OLE Automation";

432: "File name or class name not found during OLE Automation
operation";

438: "Object doesn’t support this property or method";

440: "OLE Automation error";

443: "OLE Automation object does not have a default value";

445: "Object doesn’t support this action";

446: "Object doesn’t support named arguments";

447: "Object doesn’t support current local setting";

448: "Named argument not found";

449: "Argument not optional";

450: "Wrong number of arguments";

451: "Object not a collection";

// Miscellaneous Messages

444: "Method not applicable in this context";

452: "Invalid ordinal";

453: "Specified DLL function not found";

457: "Duplicate Key";

460: "Invalid Clipboard format";

461: "Specified format doesn’t match format of data";

480: "Can’t create AutoRedraw image";

481: "Invalid picture";

482: "Printer error";

483: "Printer driver does not supported specified property";

484: "Problem getting printer information from from the
system.";

 // Make sure the printer is setp up correctly.

485: "invalid picture type";

520: "Can’t empty Clipboard";

PC-DMIS Basic Language Reference Language Reference A - Z • 133

521: "Can’t open Clipboard";

Open Statement

Open filename$ [For mode] [Access access] As [#]filenumber

Opens a file for input and output operations.

You must open a file before any I/O operation can be performed on it.

The Open statement has these parts:

Part Description

file File name or path.

mode Reserved word that specifies the file mode: Append, Binary
Input, Output

Access Reserved word that specifies which operations are permitted on
the open file: Read, Write.

filenumber Integer expression with a value between 1 and 255, inclusive.
When an Open statement is executed, filenumber is associated
with the file as long as it is open. Other I/O statements can use
the number to refer to the file.

If file doesn’t exist, it is created when a file is opened for Append, Binary or Output
modes.

The argument mode is a reserved word that specifies one of the following file modes.

Mode Description

Input Sequential input mode.

Output. Sequential output mode

Append Sequential output mode. Append sets the file pointer to the end of the file. A
Print # or Write # statement then extends (appends to) the file.

The argument access is a reserved word that specifies the operations that can be
performed on the opened file. If the file is already opened by another process and the
specified type of access is not allowed, the Open operation fails and a Permission
denied error occurs. The Access clause works only if you are using a version of MS-
DOS that supports networking (MS-DOS version 3.1 or later). If you use the Access
clause with a version of MS-DOS that doesn’t support networking, a feature
unavailable error occurs. The argument access can be one of the following reserved
words.

134 • Language Reference A - Z PC-DMIS Basic Language Reference

Access type Description

Read Opens the file for
reading only.

Write Opens the file for
writing only.

Read Write Opens the file for both
reading and riting. This
mode is valid only for
Random and Binary
files and files opened for
Append mode.

The following example writes data to a test file and reads it back.

Example:

Sub Main ()

Open "TESTFILE" For Output As #1 ’ Open to write file.

userData1$ = InputBox("Enter your own text here")

userData2$ = InputBox("Enter more of your own text here")

Write #1, "This is a test of the Write # statement."

Write #1,userData1$, userData2

Close #1

Open "TESTFILE" for Input As #2 ’ Open to read file.

Do While Not EOF(2)

Line Input #2, FileData ’ Read a line of data.

PRint FileData ’ Construct message.

Loop

Close #2 ’ Close all open files.

MsgBox "Testing Print Statement" ’ Display message.

Kill "TESTFILE" ’ Remove file from disk.

End Sub

Option Base Statement

Option Base number

Declares the default lower bound for array subscripts.

PC-DMIS Basic Language Reference Language Reference A - Z • 135

The Option Base statement is never required. If used, it can appear only once in a
module, it can occur only in the Declarations section, and must be used before you
declare the dimensions of any arrays.

The value of number must be either 0 or 1. The default base is 0.

The To clause in the Dim, Global, and Static statements provides a more flexible
way to control the range of an array’s subscripts. However, if you don’t explicitly set
the lower bound with a To clause, you can use Option Base to change the default
lower bound to 1.

The example uses the Option Base statement to override the default base array
subscript value of 0.

Related Topics: Dim, Global and Lbound Statements

Example:

Option Base 1 ’ Module level statement.

Sub Main

Dim A(), Msg, NL ’ Declare variables.

NL = Chr(10) ’ Define newline.

ReDim A(20)’ Create an array.

Msg = "The lower bound of the A array is " & LBound(A) &
"."

Msg = Msg & NL & "The upper bound is " & UBound(A) & "."

MsgBox Msg ’ Display message.

End Sub

Option Explicit Statement

Option Explicit

Forces explicit declaration of all variables.

The Option explicit statement is used outside of the script in the declarations section.
This statement can be contained in a declare file or outside of any script in a file or
buffer. If this statement is contained in the middle of a file the rest of the compile
buffer will be affected.

Related Topics: Const and Global Statements

136 • Language Reference A - Z PC-DMIS Basic Language Reference

Example:

Option Explicit

Sub Main

Print y ‘because y is not explicitly dimmed an error
will occur.

End Sub

Print Method

Print [expr, expr...] Print a string to an object.

Example:

Sub PrintExample ()

 Dim Msg, Pi ' Declare variables.

 Let Pi = 4 * _Atn(1) ' Calculate Pi.

 Msg = "Pi is equal to " & Str(Pi)

 MsgBox Msg ' Display results.

 Print Pi ‘Pints the results in the

' compiler messages window

End Sub

Print # Statement

Print # filenumber, [[{Spc(n) | Tab(n)}][expressionlist] [{;
| ,}]]

Writes data to a sequential file.

Print statement Description:

PC-DMIS Basic Language Reference Language Reference A - Z • 137

filenumber:

Number used in an Open statement to open
a sequential file. It can be any

number of an open file. Note that the

number sign (#) preceding filenumber is not optional.

Spc(n):

Name of the Basic function optionally used to insert n spaces into the printed

output. Multiple use is permitted.

Tab(n):

Name of the Basic function optionally used to tab to the nth column before printing

expressionlist. Multiple use is permitted.

expressionlist :

Numeric and/or string expressions to be written to the file.

{;|,}

Character that determines the position of the next character printed. A semicolon
means the next character is printed immediately after the last character; a comma
means the next character is printed at the start of the next print zone. Print zones
begin every 14 columns. If neither character is specified, the next character is printed
on the next line.

If you omit expressionlist, the Print # statement prints a blank line in the file, but you
must include the comma. Because Print # writes an image of the data to the file, you
must delimit the data so it is printed correctly. If you use commas as delimiters, Print
also writes the blanks between print fields to the file.

The Print # statement usually writes Variant data to a file the same way it writes any
other data type. However, there are some exceptions:

If the data being written is a Variant of VarType 0 (Empty), Print # writes nothing to
the file for that data item.

If the data being written is a Variant of VarType 1 (Null), Print # writes the literal
#NULL# to the file.

If the data being written is a Variant of VarType 7 (Date), Print # writes the date to
the file using the Short Date format defined in the WIN.INI file. When either the date

138 • Language Reference A - Z PC-DMIS Basic Language Reference

or the time component is missing or zero, Print # writes only the part provided to the
file.

The following example writes data to a test file.

Example:

Sub Main

Dim I, FNum, FName ’ Declare variables.

For I = 1 To 3

FNum = FreeFile ’ Determine next file number.

FName = "TEST" & FNum

Open FName For Output As FNum ’ Open file.

Print #I, "This is test #" & I ’ Write string to
file.

Print #I, "Here is another "; "line"; I

Next I

Close ’ Close all files.

End Sub

The following example writes data to a test file and reads it
back.

Sub Main ()

Dim FileData, Msg, NL ’ Declare variables.

NL = Chr(10) ’ Define newline.

Open "TESTFILE" For Output As #1 ’ Open to write file.

Print #2, "This is a test of the Print # statement."

Print #2 ’ Print blank line to file.

Print #2, "Zone 1", "Zone 2" ’ Print in two print
zones.

Print #2, "With no space between" ; "." ’ Print two
strings together.

Close

Open "TESTFILE" for Input As #2 ’ Open to read file.

Do While Not EOF(2)

Line Input #2, FileData ’ Read a line of data.

Msg = Msg & FileData & NL ’ Construct message.

MsgBox Msg

Loop

Close ’ Close all open files.

MsgBox "Testing Print Statement" ’ Display message.

Kill "TESTFILE" ’ Remove file from disk.

End Sub

PC-DMIS Basic Language Reference Language Reference A - Z • 139

Randomize Statement

Randomize[number]

Used to Initialize the random number generator.

The Randomize statement has one optional parameter number. This parameter can be
any valid number and is used to initialize the random number generator. If you omit
the parameter then the value returned by the Timer function is used as the default
parameter to seed the rando number generator.

Example:

Sub Main

Dim MValue

Randomize ’ Initialize random-number generator.

MValue = Int((6 * Rnd) + 1)

Print MValue

End Sub

ReDim Statement

ReDim varname(subscripts)[As Type][,varname(subscripts)]

Used to declare dynamic arrays and reallocate storage space.

The ReDim statement is used to size or resize a dynamic array that has already been
declared using the Dim statement with empty parentheses. You can use the ReDim
statement to repeatedly change the number of elements in and array but not to
change the number of dimensions in an array or the type of the elements in the array.

Example:

Sub Main

140 • Language Reference A - Z PC-DMIS Basic Language Reference

Dim TestArray() As Integer

Dim I

ReDim TestArray(10)

For I = 1 To 10

 TestArray(I) = I + 10

 Print TestArray(I)

Next I

End Sub

Rem Statement

Rem remark ‘remark

Used to include explanatory remarks in a program.

The parameter remark is the text of any comment you wish to include in the code.

Example:
Rem This is a remark

Sub Main()

 Dim Answer, Msg ' Declare
variables.

 Do

 Answer = InputBox("Enter a value from 1 to 3.")

Answer = 2

 If Answer >= 1 And Answer <= 3 Then ' Check range.

 Exit Do ' Exit
Do...Loop.

 Else

 Beep ' Beep if
not in range.

 End If

 Loop

 MsgBox "You entered a value in the proper range."

End Sub

Right Function

PC-DMIS Basic Language Reference Language Reference A - Z • 141

Right (stringexpression, n)

Returns the right most n characters of the string parameter.

The parameter stringexpression is the string from which the rightmost characters
are returned.

The parameter n is the number of characters that will be returned and must be a long
integer.

Related Topics: Len, Left, Mid Functions.

Example:

’ The example uses the Right function to return the first of
two words

’ input by the user.

Sub Main ()

Dim LWord, Msg, RWord, SpcPos, UsrInp ’ Declare
variables.

Msg = "Enter two words separated by a space."

UsrInp = InputBox(Msg) ’ Get user input.

print UsrInp

SpcPos = InStr(1, UsrInp, " ") ’ Find space.

If SpcPos Then

LWord = Left(UsrInp, SpcPos - 1) ’ Get left word.

print "LWord: "; LWord

RWord = Right(UsrInp, Len(UsrInp) - SpcPos) ’ Get right
word.

Msg = "The first word you entered is " & LWord

Msg = Msg & "." & " The second word is "

Msg = "The first word you entered is <" & LWord & ">"

Msg = Msg & RWord & "."

Else

Msg = "You didn’t enter two words."

End If

MsgBox Msg ’ Display message.

End Sub

RmDir Statement

RmDir path

142 • Language Reference A - Z PC-DMIS Basic Language Reference

Removes an existing directory.

The parameter path is a string that is the name of the directory to be removed.

Related Topics: ChDir, CurDir

Example:

’ This sample shows the functions mkdir (Make Directory)

’ and rmdir (Remove Directory)

Sub Main

 Dim dirName As String

 dirName = "t1"

 mkdir dirName

 mkdir "t2"

 MsgBox "Directories: t1 and t2 created. Press OK to remove
them"

 rmdir "t1"

 rmdir "t2"

End Sub

Rnd Function

Rnd (number)

Returns a random number.

The parameter number must be a valid numeric expression.

Example:

’Rnd Function Example

’The example uses the Rnd function to simulate rolling a pair
of dice by

’generating random values from 1 to 6. Each time this program
is run,

Sub Main ()

PC-DMIS Basic Language Reference Language Reference A - Z • 143

Dim Dice1, Dice2, Msg ’ Declare variables.

Dice1 = CInt(6 * Rnd() + 1) ’ Generate first die
value.

Dice2 = CInt(6 * Rnd() + 1) ’ Generate second die
value.

Msg = "You rolled a " & Dice1

Msg = Msg & " and a " & Dice2

Msg = Msg & " for a total of "

Msg = Msg & Str(Dice1 + Dice2) & "."

MsgBox Msg ’ Display message.

End Sub

Second Function

Second (number)

Returns an integer that is the second portion of the minute in the time parameter.

The parameter number must be a valid numeric expression.

Related Topics: Day, Hour, Minute, Now.

Example:

’ Format Function Example

’ This example shows various uses of the Format function to
format values

’ using both named and user-defined formats. For the date
separator (/),

’ time separator (:), and AM/ PM literal, the actual formatted
output

’ displayed by your system depends on the locale settings on
which the code

’ is running. When times and dates are displayed in the
development

’ environment, the short time and short date formats of the
code locale

’ are used. When displayed by running code, the short time and
short date

’ formats of the system locale are used, which may differ from
the code

’ locale. For this example, English/United States is assumed.

144 • Language Reference A - Z PC-DMIS Basic Language Reference

’ MyTime and MyDate are displayed in the development
environment using

’ current system short time and short date settings.

Sub Main

MyTime = "08:04:23 PM"

MyDate = "03/03/95"

MyDate = "January 27, 1993"

MsgBox Now

MsgBox MyTime

MsgBox Second(MyTime) & " Seconds"

MsgBox Minute(MyTime) & " Minutes"

MsgBox Hour(MyTime) & " Hours"

MsgBox Day(MyDate) & " Days"

MsgBox Month(MyDate) & " Months"

MsgBox Year(MyDate) & " Years"

’ Returns current system time in the system-defined long time
format.

MsgBox Format(Time, "Short Time")

MyStr = Format(Time, "Long Time")

’ Returns current system date in the system-defined long date
format.

MsgBox Format(Date, "Short Date")

MsgBox Format(Date, "Long Date")

’This section not yet supported

MsgBox Format(MyTime, "h:n:s") ’ Returns "17:4:23".

MsgBox Format(MyTime, "hh:nn:ss")’ Returns "05:04:23".

MsgBox Format(MyDate, "dddd, mmm d yyyy")’ Returns "Wednesday,
Jan 27 1993".

’ If format is not supplied, a string is returned.

MsgBox Format(23) ’ Returns "23".

’ User-defined formats.

MsgBox Format(5459.4, "##,##0.00") ’ Returns "5,459.40".

MsgBox Format(334.9, "###0.00") ’ Returns "334.90".

MsgBox Format(5, "0.00%") ’ Returns "500.00%".

MsgBox Format("HELLO", "<") ’ Returns "hello".

PC-DMIS Basic Language Reference Language Reference A - Z • 145

MsgBox Format("This is it", ">") ’ Returns "THIS IS IT".

End Sub

Seek Function

Seek (filenumber)

The parameter filenumber is used in the open statement and must be a valid numeric
expression.

Seek returns a number that represents the byte position where the next operation is to
take place. The first byte in the file is at position 1.

Related Topics: Open

Example:

Sub Main

 Open "TESTFILE" For Input As #1 ’ Open file for reading.

 Do While Not EOF(1) ’ Loop until end of file.

MyChar = Input(1, #1) ’ Read next character of data.

Print Seek(1) ’ Print byte position .

 Loop

 Close #1 ’ Close file.

End Sub

Seek Statement

Seek filenumber, position

The parameter filenumber is used in the open statement and must be a valid numeric
expression, the parameter position is the number that indicates where the next read or
write is to occur. In Cypress Enable Basic position is the byte position relative to the
beginning of the file.

Seek statement sets the position in a file for the next read or write

Related Topics: Open

146 • Language Reference A - Z PC-DMIS Basic Language Reference

Example:
Sub Main

 Open "TESTFILE" For Input As #1 ’ Open file for reading.

 For i = 1 To 24 Step 3 ’ Loop until end of file.

Seek #1, i ’ Seek to byte position

MyChar = Input(1, #1) ’ Read next character of data.

Print MyChar ’Print character of data

 Next i

 Close #1 ’ Close file.

End Sub

Select Case Statement

Executes one of the statement blocks in the case based on the test variable

Select Case testvar

Case var1

Statement Block

Case var2

Statement Block

Case Else

Statement Block

End Select

The syntax supported by the Select statement includes the “To” keyword, a coma
delimited list and a constant or variable.

Select Case Number ' Evaluate Number.

Case 1 To 5 ' Number between 1 and 5, inclusive.

…

’ The following is the only Case clause that evaluates to True.

Case 6, 7, 8 ’ Number between 6 and 8.

…

Case 9 To 10 ’ Number is 9 or 10.

…

Case Else ' Other values.

…

End Select

PC-DMIS Basic Language Reference Language Reference A - Z • 147

Related Topics: If...Then...Else

Example:

’ This rather tedious test shows nested select statements and
if uncommented,

’ the exit for statement

Sub Test ()

 For x = 1 to 5

 print x

 Select Case x

 Case 2

 Print "Outer Case Two"

 Case 3

 Print "Outer Case Three"

’ Exit For

 Select Case x

 Case 2

 Print "Inner Case Two"

 Case 3

 Print "Inner Case Three"

’ Exit For

 Case Else ’ Must be something else.

 Print "Inner Case Else:", x

 End Select

 Print "Done with Inner Select Case"

 Case Else ’ Must be something else.

 Print "Outer Case Else:",x

 End Select

 Next x

 Print "Done with For Loop"

End Sub

SendKeys Function

SendKeys (Keys, [wait])

Sends one or more keystrokes to the active window as if they had been entered at the
keyboard

The SendKeys statement has two parameters. The first parameter keys is a string and
is sent to the active window. The second parameter wait is optional and if omitted is

148 • Language Reference A - Z PC-DMIS Basic Language Reference

assumed to be false. If wait is true the keystrokes must be processed before control is
returned to the calling procedure.

Example:

Sub Main ()

Dim I, X, Msg ’ Declare variables.

X = Shell("Calc.exe", 1) ’ Shell Calculator.

For I = 1 To 5 ’ Set up counting loop.

SendKeys I & "{+}", True ’ Send keystrokes to
Calculator

Next I ’ to add each value of I.

AppActivate "Calculator" ’ Return focus to Calculator.

SendKeys "%{F4}", True ’ Alt+F4 to close Calculator.

End Sub

Set Statement

Set Object = {[New] objectexpression | Nothing}

Assigns an object to an object variable.

Related Topics: Dim, Global, Static

Example:

Sub Main

Dim visio As Object

Set visio = CreateObject("visio.application")

Dim draw As Object

Set draw = visio.Documents

draw.Open "c:\visio\drawings\Sample1.vsd"

MsgBox "Open docs: " & draw.Count

Dim page As Object

Set page = visio.ActivePage

Dim red As Object

Set red = page.DrawRectangle (1, 9, 7.5, 4.5)

red.FillStyle = "Red fill"

Dim cyan As Object

Set cyan = page.DrawOval (2.5, 8.5, 5.75, 5.25)

PC-DMIS Basic Language Reference Language Reference A - Z • 149

cyan.FillStyle = "Cyan fill"

Dim green As Object

Set green = page.DrawOval (1.5, 6.25, 2.5, 5.25)

green.FillStyle = "Green fill"

Dim DarkBlue As Object

set DarkBlue = page.DrawOval (6, 8.75, 7, 7.75)

DarkBlue.FillStyle = "Blue dark fill"

visio.Quit

End Sub

Shell Function

Shell (app [, style])

Runs an executable program.

The shell function has two parameters. The first one, app is the name of the program
to be executed. The name of the program in app must include a .PIF, .COM, .BAT,
or .EXE file extension or an error will occur. The second argument, style is the
number corresponding to the style of the window . It is also optional and if omitted
the program is opened minimized with focus.

Window styles:

Normal with focus 1,5,9

Minimized with focus (default) 2

Maximized with focus 3

normal without focus 4,8

minimized without focus 6,7

Return value: ID, the task ID of the started program.

150 • Language Reference A - Z PC-DMIS Basic Language Reference

Example:

’ This example uses Shell to leave the current application and
run the

’ Calculator program included with Microsoft Windows; it then

’ uses the SendKeys statement to send keystrokes to add some
numbers.

Sub Main ()

Dim I, X, Msg ’ Declare variables.

X = Shell("Calc.exe", 1) ’ Shell Calculator.

For I = 1 To 5 ’ Set up counting loop.

SendKeys I & "{+}", True ’ Send keystrokes to
Calculator

Next I ’ to add each value of I.

AppActivate "Calculator" ’ Return focus to Calculator.

SendKeys "%{F4}", True ’ Alt+F4 to close Calculator.

End Sub

Sin Function

Sin (rad)

Returns the sine of an angle that is expressed in radians

Example:

Sub Main ()

pi = 4 * Atn(1)

rad = 90 * (pi/180)

x = Sin(rad)

print x

End Sub

Space Function

Space[$] (number)

PC-DMIS Basic Language Reference Language Reference A - Z • 151

Skips a specified number of spaces in a print# statement.

The parameter number can be any valid integer and determines the number of blank
spaces.

Example:

’ This sample shows the space function

Sub Main

 MsgBox "Hello" & Space(20) & "There"

End Sub

Sqr Function

Sqr(num)

Returns the square root of a number.

The parameter num must be a valid number greater than or equal to zero.

Example:

Sub Form_Click ()

Dim Msg, Number ’ Declare variables.

Msg = "Enter a non-negative number."

Number = InputBox(Msg) ’ Get user input.

If Number < 0 Then

Msg = "Cannot determine the square root of a negative
number."

Else

Msg = "The square root of " & Number & " is "

Msg = Msg & Sqr(Number) & "."

End If

MsgBox Msg ’ Display results.

End Sub

152 • Language Reference A - Z PC-DMIS Basic Language Reference

Static Statement

Static variable

Used to declare variables and allocate storage space. These variables will retain their
value through the program run

Related Topics: Dim, Function, Sub

Example:

’ This example shows how to use the static keyword to retain
the value of

’ the variable i in sub Joe. If Dim is used instead of Static
then i

’ is empty when printed on the second call as well as the
first.

Sub Main

 For i = 1 to 2

 Joe 2

 Next i

End Sub

Sub Joe(j as integer)

PC-DMIS Basic Language Reference Language Reference A - Z • 153

 Static i

 print i

 i = i + 5

 print i

End Sub

Stop Statement

Stop

Ends execution of the program

The Stop statement can be placed anywhere in your code.

Example:

Sub main ()

Dim x,y,z

For x = 1 to 5

For y = 1 to 5

For z = 1 to 5

Print "Looping" ,z,y,x

Next z

Next y

 Stop

Next x

End Sub

154 • Language Reference A - Z PC-DMIS Basic Language Reference

Str Function

Str(numericexpr)

Returns the value of a numeric expression.

Str returns a String.

Related topics: Format, Val

Example:

Sub main ()

Dim msg

a = -1

msgBox "Num = " & Str(a)

MsgBox "Abs(Num) =" & Str(Abs(a))

End Sub

StrComp Function

StrComp(nstring1,string2, [compare])

Returns a variant that is the result of the comparison of two strings

Example:

Sub Main

Dim MStr1, MStr2, MComp

PC-DMIS Basic Language Reference Language Reference A - Z • 155

MStr1 = "ABCD": MStr2 = "today" ’ Define variables.

print MStr1, MStr2

MComp = StrComp(MStr1, MStr2) ’ Returns -1.

print MComp

MComp = StrComp(MStr1, MStr2) ’ Returns -1.

print MComp

MComp = StrComp(MStr2, MStr1) ’ Returns 1.

print MComp

End Sub

String Function

String (numeric, charcode)

String returns a string.

String is used to create a string that consists of one character repeated over and over.

Related topics: Space Function

Example:

Sub Main

 Dim MString

 MString = String(5, "*") ’ Returns "*****".

 MString = String(5, 42) ’ Returns "44444".

 MString = String(10, "Today") ’ Returns "TTTTTTTTTT".

 Print MString

End Sub

Sub Statement

Sub SubName [(arguments)]

Dim [variable(s)]

[statementblock]

[Exit Function]

End Sub

156 • Language Reference A - Z PC-DMIS Basic Language Reference

Declares and defines a Sub procedures name, parameters and code.

When the optional argument list needs to be passed the format is as follows:

([ByVal] variable [As type] [,ByVal] variable [As type]]…])

The optional ByVal parameter specifies that the variable is [passed by value instead
of by reference (see “ByRef and ByVal” in this manual). The optional As type
parameter is used to specify the data type. Valid types are String, Integer, Double,
Long, and Varaint (see “Variable Types” in this manual).

Related Topics: Call, Dim, Function

Example:

Sub Main

 Dim DST As String

 DST = "t1"

 mkdir DST

 mkdir "t2"

End Sub

Tan Function

Tan(angle)

Returns the tangent of an angle as a double.

The parameter angle must be a valid angle expressed in radians.

Related Topic: Atn, Cos, Sin

Example:
’ This sample program show the use of the Tan function

Sub Main ()

 Dim Msg, Pi ’ Declare variables.

 Pi = 4 * Atn(1) ’ Calculate Pi.

 Msg = "Pi is equal to " & Pi

 MsgBox Msg ’ Display results.

 x = Tan(Pi/4)

PC-DMIS Basic Language Reference Language Reference A - Z • 157

 MsgBox x & " is the tangent of Pi/4"

End Sub

Text Statement

Text Starting X position, Starting Y position, Width, Height,
Label

Creates a text field for titles and labels.

Example:

Sub Main ()

 Begin Dialog DialogName1 60, 60, 160, 70, "ASC - Hello"

 TEXT 10, 10, 28, 12, "Name:"

 TEXTBOX 42, 10, 108, 12, .nameStr

 TEXTBOX 42, 24, 108, 12, .descStr

 CHECKBOX 42, 38, 48, 12, "&CHECKME", .checkInt

 OKBUTTON 42, 54, 40, 12

 End Dialog

 Dim Dlg1 As DialogName1

 Dialog Dlg1

 MsgBox Dlg1.nameStr

 MsgBox Dlg1.descStr

 MsgBox Dlg1.checkInt

End Sub

158 • Language Reference A - Z PC-DMIS Basic Language Reference

TextBox Statement

TextBox Starting X position, Starting Y position, Width,
Height, Default String

Creates a Text Box for typing in numbers and text

Example:

Sub Main ()

 Begin Dialog DialogName1 60, 60, 160, 70, "ASC - Hello"

 TEXT 10, 10, 28, 12, "Name:"

 TEXTBOX 42, 10, 108, 12, .nameStr

 TEXTBOX 42, 24, 108, 12, .descStr

 CHECKBOX 42, 38, 48, 12, "&CHECKME", .checkInt

 OKBUTTON 42, 54, 40, 12

 End Dialog

 Dim Dlg1 As DialogName1

 Dialog Dlg1

 MsgBox Dlg1.nameStr

 MsgBox Dlg1.descStr

 MsgBox Dlg1.checkInt

End Sub

Time Function

Time[()]

Returns the current system time.

Related topics: To set the time use the TIME$ statement.

Example:

Sub Main

 x = Time$(Now)

 Print x

End Sub

PC-DMIS Basic Language Reference Language Reference A - Z • 159

Timer Event

Timer

Timer Event is used to track elapsed time or can be display as a stopwatch in a
dialog. The timers value is the number of seconds from midnight.

Related topics: DateSerial, DateValue, Hour, Minute, Now, Second, TimeValue.

Example:

Sub Main

Dim TS As Single

Dim TE As Single

Dim TEL As Single

TS = Timer

MsgBox "Starting Timer"

TE = Timer

TT = TE - TS

Print TT

End Sub

TimeSerial - Function

TimeSerial (hour, minute, second)

Returns the time serial for the supplied parameters hour, minute, second.

Related topics: DateSerial, DateValue, Hour, Minute, Now, Second, TimeValue.

160 • Language Reference A - Z PC-DMIS Basic Language Reference

Example:

Sub Main

Dim MTime

MTime = TimeSerial(12, 25, 27)

Print MTime

End Sub

TimeValue - Function

TimeValue (TimeString)

Returns a double precision serial number based of the supplied string parameter.

Midnight = TimeValue(“23:59:59”)

Related topics: DateSerial, DateValue, Hour, Minute, Now, Second, TimeSerial.

Example:

Sub Main

Dim MTime

MTime = TimeValue("12:25:27 PM")

Print MTime

End Sub

Trim, LTrim, RTrim Functions

[L| R] Trim (String)

Ltrim, Rtrim and Trim all Return a copy of a string with leading, trailing or both
leading and trailing spaces removed.

Ltrim, Rtrim and Trim all return a string

PC-DMIS Basic Language Reference Language Reference A - Z • 161

Ltrim removes leading spaces.

Rtrim removes trailing spaces.

Trim removes leading and trailing spaces.

Example:

’ This example uses the LTrim and RTrim functions to strip
leading and

’ trailing spaces, respectively, from a string variable. It

’ uses the Trim function alone to strip both types of spaces.

’ LCase and UCase are also shown in this example as well as the
use

’ of nested function calls

Sub Main

 MyString = " <-Trim-> " ’ Initialize string.

 TrimString = LTrim(MyString) ’ TrimString = "<-Trim->
".

 MsgBox "|" & TrimString & "|"

 TrimString = LCase(RTrim(MyString)) ’ TrimString = "
<-trim->".

 MsgBox "|" & TrimString & "|"

 TrimString = LTrim(RTrim(MyString)) ’ TrimString = "<-
Trim->".

 MsgBox "|" & TrimString & "|"

 ’ Using the Trim function alone achieves the same result.

 TrimString = UCase(Trim(MyString)) ’ TrimString = "<-
TRIM->".

 MsgBox "|" & TrimString & "|"

End Sub

Type Statement

Type usertype elementname As typename

[elementname As typename]

. . .

End Type

Defines a user-defined data type containing one or more elements.

The Type statement has these parts:

162 • Language Reference A - Z PC-DMIS Basic Language Reference

Part Description

Type Marks the beginning of a user-defined type.

usertype Name of a user-defined data type. It follows standard variable
naming conventions.

elementname Name of an element of the user-defined data type. It follows
standard variable-naming conventions.

subscripts Dimensions of an array element. You can declare multiple
dimensions. (not currently implemented)

typename One of these data types: Integer, Long, Single, Double, String
(for variable-length strings), String * length (for fixed-length
strings), Variant, or another user-defined type. The argument
typename can’t be an object type. End Type Marks the end of a
user-defined type.

Once you have declared a user-defined type using the Type statement, you can
declare a variable of that type anywhere in your script. Use Dim or Static to declare a
variable of a user-defined type. Line numbers and line labels aren’t allowed in
Type...End Type blocks.

User-defined types are often used with data records because data records frequently
consist of a number of related elements of different data types. Arrays cannot be an
element of a user defined type in Enable.

Example:

’ This sample shows some of the features of user defined types

Type type1

 a As Integer

 d As Double

 s As String

End Type

Type type2

 a As String

 o As type1

End Type

Type type3

 b As Integer

 c As type2

End Type

Dim type2a As type2

Dim type2b As type2

Dim type1a As type1

Dim type3a as type3

PC-DMIS Basic Language Reference Language Reference A - Z • 163

Sub Form_Click ()

 a = 5

 type1a.a = 7472

 type1a.d = 23.1415

 type1a.s = "YES"

 type2a.a = "43 - forty three"

 type2a.o.s = "Yaba Daba Doo"

 type3a.c.o.s = "COS"

 type2b.a = "943 - nine hundred and forty three"

 type2b.o.s = "Yogi"

 MsgBox type1a.a

 MsgBox type1a.d

 MsgBox type1a.s

 MsgBox type2a.a

 MsgBox type2a.o.s

 MsgBox type2b.a

 MsgBox type2b.o.s

 MsgBox type3a.c.o.s

 MsgBox a

End Sub

UBound Function

Ubound(arrayname[,dimension])

Returns the value of the largest usable subscript for the specified dimension of an
array.

Related Topics: Dim, Global, Lbound, and Option Base

Example:

’ This example demonstrates some of the features of arrays.
The lower bound

’ for an array is 0 unless it is specified or option base is
set it as is

’ done in this example.

Option Base 1

164 • Language Reference A - Z PC-DMIS Basic Language Reference

Sub Main

 Dim a(10) As Double

 MsgBox "LBound: " & LBound(a) & " UBound: " & UBound(a)

 Dim i As Integer

 For i = 1 to 3

 a(i) = 2 + i

 Next i

 Print a(1),a(1),a(2), a(3)

End Sub

UCase Function

Ucase (String)

Returns a copy of String in which all lowercase characters have been converted to
uppercase.

Related Topics: Lcase, Lcase$ Function

Example:

’ This example uses the LTrim and RTrim functions to strip
leading and

’ trailing spaces, respectively, from a string variable. It

’ uses the Trim function alone to strip both types of spaces.

’ LCase and UCase are also shown in this example as well as the
use

’ of nested function calls

Sub Main

 MyString = " <-Trim-> " ’ Initialize string.

 TrimString = LTrim(MyString) ’ TrimString = "<-Trim->
".

 MsgBox "|" & TrimString & "|"

 TrimString = LCase(RTrim(MyString)) ’ TrimString = "
<-trim->".

 MsgBox "|" & TrimString & "|"

 TrimString = LTrim(RTrim(MyString)) ’ TrimString = "<-
Trim->".

 MsgBox "|" & TrimString & "|"

 ’ Using the Trim function alone achieves the same result.

 TrimString = UCase(Trim(MyString)) ’ TrimString = "<-
TRIM->".

PC-DMIS Basic Language Reference Language Reference A - Z • 165

 MsgBox "|" & TrimString & "|"

End Sub

Val

Val(string)

Returns the numeric value of a string of characters.

Example:

Sub main

Dim Msg

Dim YourVal As Double

YourVal = Val(InputBox$("Enter a number"))

Msg = "The number you enered is: " & YourVal

MsgBox Msg

End Sub

VarType

VarType(varname)

Returns a value that indicates how the parameter varname is stored internally.

The parameter varname is a variant data type.

VarType return values:

Empty 0

Null 1

Integer 2

Long 3

Single 4

Double 5

Currency 6 (not available at this time)

Date/Time 7

String 8

166 • Language Reference A - Z PC-DMIS Basic Language Reference

Related Topics: IsNull, IsNumeric

Example:

If VarType(x) = 5 Then Print "Vartype is Double" ’Display
variable type

Weekday Function

Weekday(date,firstdayof week)

Returns a integer containing the whole number for the weekday it is representing.

Related Topics: Hour, Second, Minute, Day

Example:

Sub Main

x = Weekday(#5/29/1959#)

Print x

End Sub

While...Wend Statement

While condition

.

.

.

[StatementBlock]

.

.

.

Wend

While begins the while...Wend flow of control structure. Condition is any numeric or
expression that evaluates to true or false. If the condition is true the statements are
executed. The statements can be any number of valid Enable Basic statements. Wend
ends the While...Wend flow of control structure.

PC-DMIS Basic Language Reference Language Reference A - Z • 167

Related Topics: Do...Loop Statement

Example:

Sub Main

Const Max = 5

Dim A(5) As String

A(1) = "Programmer"

A(2) = "Engineer"

A(3) = "President"

A(4) = "Tech Support"

A(5) = "Sales"

Exchange = True

While Exchange

Exchange = False

For I = 1 To Max

MsgBox A(I)

Next I

Wend

With Statement

With object

[STATEMENTS]

End With

The With statement allows you to proeform a series of commands or statements on a
particular object without again refering to the name of that object. With statements
can be nested by putting one With block within another With block. You will need
to fully specify any object in an inner With block to any memeber of an object in an
outer With block.

Related Topics: While Statement and Do Loop

Example:

’ This sample shows some of the features of user defined types
and the with

’ statement

168 • Language Reference A - Z PC-DMIS Basic Language Reference

Type type1

 a As Integer

 d As Double

 s As String

End Type

Type type2

 a As String

 o As type1

End Type

Dim type1a As type1

Dim type2a As type2

Sub Main ()

 With type1a

 .a = 65

 .d = 3.14

 End With

 With type2a

 .a = "Hello, world"

 With .o

 .s = "Goodbye"

 End With

 End With

 type1a.s = "YES"

 MsgBox type1a.a

 MsgBox type1a.d

 MsgBox type1a.s

 MsgBox type2a.a

 MsgBox type2a.o.s

End Sub

Write # - Statement

Write #filenumber [,parameterlist]

Writes and formats data to a sequential file that must be opened in output or append
mode.

PC-DMIS Basic Language Reference Language Reference A - Z • 169

A comma delimited list of the supplied parameters is written to the indicated file. If
no parameters are present, the newline character is all that will be written to the file.

Related Topics: Open and Print# Statements

Example:

Sub Main ()

Open "TESTFILE" For Output As #1 ’ Open to write file.

userData1$ = InputBox ("Enter your own text here")

userData2$ = InputBox ("Enter more of your own text here")

Write #1, "This is a test of the Write # statement."

Write #1,userData1$, userData2

Close #1

Open "TESTFILE" for Input As #2 ’ Open to read file.

Do While Not EOF(2)

Line Input #2, FileData ’ Read a line of data.

PRint FileData ’ Construct message.

Loop

Close #2 ’ Close all open files.

MsgBox "Testing Print Statement" ’ Display message.

Kill "TESTFILE" ’ Remove file from disk.

End Sub

Year Function

Year(serial#)

Returns an integer representing a year between 1930 and 2029, inclusive. The
returned integer represents the year of the serial parameter.

The parameter serial# is a string that represents a date.

If serial is a Null, this function returns a Null.

Related Topics: Date, Date$ Function/Statement, Day, Hour, Month, Minute, Now,
Second.

170 • Language Reference A - Z PC-DMIS Basic Language Reference

Example:

Sub Main

 MyDate = "11/11/94"

 x = Year(MyDate)

 print x

End Sub

PC-DMIS

PC-DMIS Basic Language Reference Automation • 171

Automation

Introduction
This section contains a detailed list of methods and properties for PC-DMIS
Automation Objects. The various objects are listed in alphabetical order.

A bold item is the default property or method for this object.

Note: For information on when to use or ommit parentheses, please refer to your
Basic Language documentation.

 Active Tip Object Overview
The Active Tip object gives access to the properties of the PC-DMIS Set Active Tip
command.

Active Tip Members

Properties:

ActiveTip.Angle
DOUBLE value representing the rotation angle of the tip transformation matrix.

Read/Write Double

ActiveTip.TipID
STRING value representing the ID of the tip to be made active.

Read/Write String

Methods:

ActiveTip.GetShankVector
Syntax:

172 • Automation PC-DMIS Basic Language Reference

expression.GetOrigin (I, J, K)

Return Value: Boolean value representing whether the call successfully retrieved the
values or not.

expression: Required expression that evaluates to a PC-DMIS ActiveTip object.

I: Required Long variable that receives the I component of the shank vector.

J: Required Long variable that receives the J component of the shank vector.

K: Required Long variable that receives the K component of the shank vector.

ActiveTip.SetShankVector
Syntax:

expression.SetOrigin (I, J, K)

Return Value: Boolean value representing whether the call successfully set the
shank vector values.

expression: Required expression that evaluates to a PC-DMIS ActiveTip object.

I: Required Long used to set the I component of the shank vector.

J: Required Long used to set the J component of the shank vector.

K: Required Long used to set the K component of the shank vector.

AlignCommand Object Overview
Objects of type AlignCommand are created from more generic Command objects
to pass alignment information back and forth.

AlignCommand Members

Properties:

AlignCommand.Angle
Represents the offset angles of a 3D or 2D alignment. Read/write PointData. If used
on an object other than a 3D or 2D alignment, setting this variable will do nothing,
and getting this variable will return Nothing.

AlignCommand.AboutAxis
Represents the axis about which the alignment object rotates. Read/write Long.

Remarks

This function only works for objects of type ROTATE_ALIGN,
ROTATE_CIRCLE_ALIGN, and ROTATEOFF_ALIGN. For other object types,
trying to set this property does nothing, and trying to get this property always returns
PCD_ZPLUS.

Valid Settings to set this property to are as follows:

PCD_XPLUS
PCD_XMINUS
PCD_YPLUS

PC-DMIS Basic Language Reference Automation • 173

PCD_YMINUS
PCD_ZPLUS
PCD_ZMINUS

AlignCommand.AverageError
Represents whether or not error averaging is used during the iterative alignment.
Read/write Boolean.

Remarks

This property is only valid for objects of type ITER_ALIGN. For other objects,
getting this property always returns FALSE, and setting it does nothing.

AlignCommand.Axis
Represents the axis that the alignment object uses. Read/write Long.

Remarks

This function only works for objects of type ROTATE_ALIGN,
ROTATE_CIRCLE_ALIGN, TRANS_ALIGN, and TRANSOFF_ALIGN. For other
object types, trying to set this property does nothing, and trying to get this property
always returns PCD_ZPLUS.

Valid Settings to set this property to are as follows:

PCD_XPLUS
PCD_XMINUS
PCD_YPLUS
PCD_YMINUS
PCD_ZPLUS
PCD_ZMINUS

AlignCommand.BFOffset
Represents the offsets of a 3D or 2D alignment. Read/write PointData. If used on an
object other than a 3D or 2D alignment, setting this variable will do nothing, and
getting this variable will return Nothing.

AlignCommand.CadToPartMatrix
Represents the matrix used to transform points between the cad and part alignment
systems. Read only DmisMatrix.

If used on an object other than a start alignment or a recall alignment, the identity
matrix will be returned.

AlignCommand.ExternalID
Represents the external ID. Read/write String.

Remarks

This function only works for objects of type RECALL_ALIGN and SAVE_ALIGN.
If used on an object other than a RECALL_ALIGN or SAVE_ALIGN, setting this
variable will do nothing, and getting this variable will return the empty string.

AlignCommand.FeatID
Represents the first (or only) feature ID used by this alignment object. Read/write
String.

Remarks

174 • Automation PC-DMIS Basic Language Reference

This function only works for objects of type LEVEL_ALIGN, ROTATE_ALIGN,
ROTATE_CIRCLE_ALIGN, TRANS_ALIGN, and EQUATE_ALIGN. If used on
any other object type, setting this variable will do nothing, and getting this variable
will return the empty string.

AlignCommand.FeatID2
Represents the second feature ID used by this alignment object. Read/write String.

Remarks

This function only works for objects of type ROTATE_CIRCLE_ALIGN and
EQUATE_ALIGN. If used on any other object type, setting this variable will do
nothing, and getting this variable will return the empty string.

AlignCommand.FindCad
Represents the Find Cad property status of this best fit alignment object. Read/write
Boolean.

Remarks

This function only works for objects of type BF2D_ALIGN and BF3D_ALIGN. If
used on any other object type, setting this variable will do nothing, and getting this
variable will return FALSE.

AlignCommand.ID
Represents the ID of this alignment object. Read/write String.

Remarks

This function only works for objects of type START_ALIGN and
RECALL_ALIGN. If used on any other object type, setting this variable will do
nothing, and getting this variable will return the empty string.

AlignCommand.InitID
Represents the intial ID of this alignment object. The intial ID is the ID of the
alignment to recall before modifying it with this alignment. Read/write String.

Remarks

This function only works for objects of type START_ALIGN and
RECALL_ALIGN. If used on any other object type, setting this variable will do
nothing, and getting this variable will return the empty string.

AlignCommand.MachineToPartMatrix
Represents the matrix used to transform points between the machine and part
alignment systems. Read only DmisMatrix.

If used on an object other than a start alignment or a recall alignment, the identity
matrix will be returned.

AlignCommand.MeasAllFeat
Represents the “Measure All Features” property of this iterative alignment object.
Read/write Boolean.

Remarks

PC-DMIS Basic Language Reference Automation • 175

This function only works for objects of type ITER_ALIGN. If used on any other
object type, setting this variable will do nothing, and getting this variable will return
FALSE.

AlignCommand.NumInputs
Returns the number of inputs to this alignment object. Read-only Long.

Remarks

This function only works for objects of type ITER_ALIGN, BF2D_ALIGN, and
BF3D_ALIGN. If used on any other object type, setting this variable will do nothing,
and getting this variable will return zero.

AlignCommand.Offset
Represents the offset property of this offset alignment object. For objects of type
TRANSOFF_ALIGN, it is the number of MM or inches to offset the alignment. For
objects of type ROTATEOFF_ALIGN, it is the number of radians to offset the
alignment. Read/write Double.

Remarks

This function only works for objects of type TRANSOFF_ALIGN and
ROTATEOFF_ALIGN. If used on any other object type, setting this variable will do
nothing, and getting this variable will return zero.

AlignCommand.Parent
Returns the parent Command object. Read-only.

Remarks

The parent of an AlignCommand object is the same underlying PC-DMIS object as
the AlignCommand object itself. Getting the parent allows you to access the generic
Command properties and methods of a given object.

AlignCommand.PointTolerance
Represents the “Point Tolerance” property of this alignment object. Read/write
Double.

Remarks

This function only works for objects of type ITER_ALIGN, BF2D_ALIGN, and
BF3D_ALIGN. If used on any other object type, setting this variable will do nothing,
and getting this variable will return zero.

AlignCommand.RepierceCad
Represents whether or not to repierce the cad model during the execution of this
iterative alignment object. Read/write Boolean.

Remarks

This function only works for objects of type ITER_ALIGN. If used on any other
object type, setting this variable will do nothing, and getting this variable will return
FALSE.

AlignCommand.UseBodyAxis
Represents whether or not to use the “Body Axis” method during the calculation of
this iterative alignment object. Read/write Boolean.

176 • Automation PC-DMIS Basic Language Reference

Remarks

This function only works for objects of type ITER_ALIGN. If used on any other
object type, setting this variable will do nothing, and getting this variable will return
FALSE.

AlignCommand.Workplane
Represents the workplane of this alignment object. It can take the values
PCD_XPLUS, PCD_XMINUS, PCD_YPLUS, PCD_YMINUS, PCD_ZPLUS, and
PCD_ZMINUS.Read/write Long.

Remarks

This function only works for objects of type ITER_ALIGN. If used on any other
object type, setting this variable will do nothing, and getting this variable will return
PCD_ZPLUS.

Methods:

AlignCommand.AddBestFitFeat
Syntax

Return Value=expression.AddBestFitFeat(ID, tolerance)

expression: Required expression that evaluates to a PC-DMIS AlignCommand
object.

ID: Required String that is the ID of the feature to add to the level set.

tolerance: Required Double that is the tolerance to associate with ID.

Return Value: This method returns a boolean value. Boolean returns true if the
function succeeds, false if it fails.

Remarks

This function only has an effect on objects of type BF2D_ALIGN and
BF3D_ALIGN. On objects of these types, it adds the feature with the ID ID to the
set of best fit features with tolerance tolerance. On objects of other types, it does
nothing.

AlignCommand.AddLevelFeat
Syntax

Return Value=expression.AddLevelFeat(ID)

expression: Required expression that evaluates to a PC-DMIS AlignCommand
object.

ID: Required String that is the ID of the feature to add to the level set.

Return Value: This method returns a boolean value. Boolean returns true if the
function succeeds, false if it fails.

Remarks

This function only has an effect on objects of type ITER_ALIGN. On objects of this
type, it adds the feature with the ID ID to the set of level features. On objects of
other types, it does nothing.

PC-DMIS Basic Language Reference Automation • 177

AlignCommand.AddOriginFeat
Syntax

Return Value=expression.AddOriginFeat(ID)

expression: Required expression that evaluates to a PC-DMIS AlignCommand
object.

ID: Required String that is the ID of the feature to add to the origin set.

Return Value: This method returns a boolean value. Boolean returns true if the
function succeeds, false if it fails.

Remarks

This function only has an effect on objects of type ITER_ALIGN. On objects of this
type, it adds the feature with the ID ID to the set of origin features. On objects of
other types, it does nothing.

AlignCommand.AddRotateFeat
Syntax

Return Value=expression.AddRotateFeat(ID)

expression: Required expression that evaluates to a PC-DMIS AlignCommand
object.

ID: Required String that is the ID of the feature to add to the Rotate set.

Return Value: This method returns a boolean value. Boolean returns true if the
function succeeds, false if it fails.

Remarks

This function only has an effect on objects of type ITER_ALIGN. On objects of this
type, it adds the feature with the ID ID to the set of rotate features. On objects of
other types, it does nothing.

Application Object Overview
The Application object represents the PC-DMIS application.

To start PC-DMIS using Automation from another application, use CreateObject or
GetObject to return an Application object.

Example:
Dim App as Object.
Set App = CreateObject(“Pcdlrn.Application”)

Application members

Properties:

Application.ActivePartProgram
Represents the currently active part program. Read/Write PartProgram.

178 • Automation PC-DMIS Basic Language Reference

Application.Caption
The text in the title bar of the application. Read/Write String.

Application.DefaultFilePath
The directory in which the File Open dialog starts. Read/Write String.

Application.DefaultProbeFile
The name of the last chosen probe file used when creating a new part program. Read
Only String

Application.DefaultMachineName
The name of the next available machine for attaching to a part program. Read Only
String

Application.FullName
The fully qualified path name of the PC-DMIS executable. Read-only String.

Example: If the PC-DMIS executable is C:\PCDMISW\PCDLRN.EXE, the
FullName property is “C:\PCDMISW\PCDLRN.EXE”.

Application.Height
The height of the PC-DMIS window in screen pixels. Read/Write Long.

Application.Left
The left edge of the PC-DMIS window, measured from the left edge of the Windows
Desktop. Read/Write Long.

Remarks

The Left property is measured in screen pixels.

Application.Machines
Returns the read-only Machines collection object.

Application.Name
The file name of the PC-DMIS executable. Read-only String.

Remarks

The Name property is the default property for the Application object. If the PC-
DMIS executable is C:\PCDMISW\PCDLRN.EXE, the FullName property is
“PCDLRN.EXE”.

Application.OperatorMode
Represents whether or not you are in operator mode. TRUE when in operator mode,
FALSE otherwise. Read/Write Boolean.

Remarks

Changing into or out of operator mode makes significant changes to the appearance
and utility of PC-DMIS.

PC-DMIS Basic Language Reference Automation • 179

Application.PartPrograms
Returns the collection of part programs currently active in PC-DMIS. Read-only
PartPrograms collection.

Application.Path
Returns the directory in which the PC-DMIS executable resides. Read-only String.

Remarks

If the PC-DMIS executable is C:\PCDMISW\PCDLRN.EXE, the FullName property
is “C:\PCDMISW\”.

Application.StatusBar
The text on the status bar of the main PC-DMIS window. Read/Write String.

Application.Top
The top edge of the PC-DMIS window, measured from the top edge of the Windows
Desktop. Read/Write Long.

Remarks

The Top property is measured in screen pixels.

Application.UserExit
TRUE if the PC-DMIS automation engine is will shut down when the user exits PC-
DMIS, otherwise FALSE. Read/Write Boolean.

Application.Visible
TRUE if PC-DMIS is visible, otherwise FALSE. Read/Write Boolean.

Application.Width
The width of the PC-DMIS window in screen pixels. Read/Write Long.

Methods:

Application.Help
Syntax:

expression.Help HelpFile, HelpContext, HelpString

expression: Required expression that evaluates to a PC-DMIS Application object.

HelpFile: Required String parameter that indicates what help file to open.

HelpContext: Optional Long parameter that indicates which Context ID number in
HelpFile to open.

HelpString: Optional String parameter that indicates a string to match among
HelpFile’s topics.

Remarks

If both the HelpContext and HelpString are provided, the HelpString will be ignored.
If neither is provided, the first help page is shown.

180 • Automation PC-DMIS Basic Language Reference

Application.Minimize
Syntax:

expression.Minimize

The Minimize subroutine reduces the PC-DMIS window to the taskbar.

expression: Required expression that evaluates to a PC-DMIS Application object.

Application.Maximize
Syntax:

expression.Maximize

The Maximize Subroutine expands the PC-DMIS window to full-screen size.

expression: Required expression that evaluates to a PC-DMIS Application object.

Application.Post
Syntax:

Return Value=expression.Post(Source, Destination)

expression: Required expression that evaluates to a PC-DMIS Application object.

Source: Required String that indicates the file from which to import or export.

Destination: Required String that indicates the file into which to import or export.

Return Value: This method returns a boolean value. Boolean returns true if the
function succeeds, false if it fails.

The Post function tells PC-DMIS to import or export Source into Destination. It
returns TRUE if the import or export process is successful, FALSE otherwise.

Exactly one of Source and Destination must be a PC-DMIS .prg or .cad file. If it is
Source, then PC-DMIS will export based on the name of the Destination file. If the
Destination file is a PC-DMIS .prg or .cad file, then PC-DMIS will import based on
the name of the Source file.

The Source file must already exist, but the Destination file need not already exist.

Application.Quit
Syntax:

expression.Quit

The Quit function tells PC-DMIS to close. It always returns TRUE.

expression: Required expression that evaluates to a PC-DMIS Application object.

Application.Restore
Syntax:

expression.Restore

The Restore subroutine makes the PC-DMIS window open and neither maximized
nor minimized.

expression: Required expression that evaluates to a PC-DMIS Application object.

PC-DMIS Basic Language Reference Automation • 181

Application.SetActive
Syntax:

Return Value=expression.SetActive

expression: Required expression that evaluates to a PC-DMIS Application object.

Brings PC-DMIS to the foreground, making it the active application.

Return Value: This method returns a boolean value. Boolean returns true if the
function succeeds, false if it fails.

Array Index Object Overview
The Array Index Object is used to set up multi-dimensional feature arrays in PC-
DMIS. Methods are provided to add, remove, or edit array upper and lower bounds
for array indices.

Array Index Members

Methods:

ArrayIndex.AddIndexSet
Syntax:

expression.AddIndexSet (LowerBound, UpperBound)

expression: Required expression that evaluates to a PC-DMIS ArrayIndex object.

LowerBound: Required Long parameter representing the lower bound of the index
set to be added.

UpperBound: Required Long parameter representing the upper bound of the index
set to be added.

Remarks

Adds the supplied index set to the array index command.

ArrayIndex.GetLowerBound
Syntax:

expression.GetLowerBound (Index)

Return Value: Long representing the lower bound of the specified index set.

expression: Required expression that evaluates to a PC-DMIS ArrayIndex object.

Index: Required Long parameter that specifies which index set to use in retrieving
the lower bound.

Remarks

Retrieves the lower bound of the specified index set.

182 • Automation PC-DMIS Basic Language Reference

ArrayIndex.GetUpperBound
Syntax:

expression.GetUpperBound (Index)

Return Value: Long representing the upper bound of the specified index set.

expression: Required expression that evaluates to a PC-DMIS ArrayIndex object.

Index: Required Long parameter that specifies which index set to use in retrieving
the upper bound.

Remarks

Retrieves the upper bound of the specified index set.

ArrayIndex.RemoveIndexSet
Syntax:

expression.RemoveIndexSet (Index)

expression: Required expression that evaluates to a PC-DMIS ArrayIndex object.

Index: Required Long parameter that specifies which index set to remove.

Remarks

Removes the index set specified by index from the array index object.

ArrayIndex.SetLowerBound
Syntax:

expression.SetLowerBound (Index)

expression: Required expression that evaluates to a PC-DMIS ArrayIndex object.

Index: Required Long parameter that specifies which index set to use in setting the
lower bound.

Remarks

Sets the lower bound of the specified index set.

ArrayIndex.SetUpperBound
Syntax:

expression.SetUpperBound (Index)

expression: Required expression that evaluates to a PC-DMIS ArrayIndex object.

Index: Required Long parameter that specifies which index set to use in setting the
upper bound.

Remarks

Setting the upper bound of the specified index set.

PC-DMIS Basic Language Reference Automation • 183

Attach Object Overview
The attach command object attaches part programs to the current part program. The
current part program can then access objects from the attached part programs.

Attach Members

Properties:

Attach.AttachedAlign
ID associated with an alignment in the attached program that corresponds with an
alignment in the attaching program. Read/Write String

Attach.Execute
BOOLEAN value that determines whether or not the attached part program should
be executed when PC-DMIS encounters the attached program.

Read/Write Boolean

Attach.ID
ID associated with the attached part program. This ID identies items in the attached
part program. For example, if the ID for the attach statement is “PART2”, then
feature “F1” in the attached program can be referred to as “F1:PART2”.

Read/Write String

Attach.LocalAlign
ID associated with an alignment in the attaching program that corresponds to an
alignment in the attached program. Read/Write String

Attach.PartName
File name of the attached part program.

Read/Write String

BasicScanCommand Object Overview
Objects of type BasicScanCommand are created from more generic Command
objects to pass information specific to the scan command back and forth. At present
only DCC basic scans are user accessible.

184 • Automation PC-DMIS Basic Language Reference

BasicScanCommand Members

Properties

BasicScan.AutoClearPlane
Determines whether auto clearance planes mode is on or off. Read/Write
BOOLEAN.

BasicScan.BoundaryCondition
Represents the boundary condition type. Read/write of enumeration
BSBOUNDCOND_ENUM.

The allowable values have the following meaning:

BSBOUNDCOND_SPHENTRY: Represents a Spherical Boundary Condition. This
Boundary condition requires the following parameters to be set by you using
Automation Properties and/or Automation Methods : BoundaryConditionCenter,
BoundaryConditionEndApproach, Diameter, number of Crossings.

BSBOUNDCOND_PLANECROSS: Represents a Planar Boundary Condition. This
Boundary condition requires the following parameters to be set by you using
Automation Properties and/or Automation Methods : BoundaryConditionCenter,
BoundaryConditionEndApproach, BoundaryConditionPlaneV, number of Crossings.

BSBOUNDCOND_CYLINDER: Represents a Cylindrical Boundary Condition.
This Boundary condition requires the following parameters to be set by you using
Automation Properties and/or Automation Methods : BoundaryConditionCenter,
BoundaryConditionEndApproach, BoundaryConditionAxisV, Diameter, number of
Crossings.

BSBOUNDCOND_CONE: Represents a Conical Boundary Condition. This
Boundary condition requires the following parameters to be set you user using
Automation Properties and/or Automation Methods : BoundaryConditionCenter,
BoundaryConditionEndApproach, BoundaryConditionAxisV, HalfAngle, number of
Crossings.

The SetBoundaryConditionParams method should be used to set the values for:

• HalfAngle

• Number of Crossings

• Diameter

BasicScan.BoundaryConditionAxisV
Represents the boundary condition axis vector. Read/write PointData object. This
vector is used as the axis of the Cylindrical and Conical BoundaryConditions.

BasicScan.BoundaryConditionCenter
Represents the boundary condition center. Read/write PointData object.

This Point is used by all Boundary Conditions and is the location of the Boundary
Condition.

PC-DMIS Basic Language Reference Automation • 185

BasicScan.BoundaryConditionEndApproach
Represents the boundary condition end approach vector. Read/write PointData
object.

This vector is used by all Boundary Conditions and is the Approach Vector of the
Probe as it crosses the Boundary condition.

BasicScan.BoundaryConditionPlaneV
Represents the boundary condition plane vector. Read/write PointData object.

This vector is the normal vector of the Plane used by the Plane and OldStyle
Boundary Conditions.

Boundary
Condition

Properties Required

Plane BoundaryConditionCenter
BoundaryConditionEndApproach
BoundaryConditionPlaneV

Cone BoundaryConditionCenter
BoundaryConditionEndApproach
BoundaryConditionAxisV

Cylinder BoundaryConditionCenter
BoundaryConditionEndApproach
BoundaryConditionAxisV

Sphere BoundaryConditionCenter
BoundaryConditionEndApproach

BasicScan.BoundaryPointCount
Indicates the number of boundary points to used in a patch scan. Read/Write LONG.

Individual boundary points can be set or retrieved via the
"BasicScan.GetBoundaryPoint" and "BasicScan.SetBoundaryPoint" methods on
page 194.

BasicScan.DisplayHits
Determines whether hits of the scan are displayed in the Edit window or not.
Read/Write BOOLEAN.

BasicScan.Filter
Represents the filter type. Read/write of enumeration BSF_ENUM.

The allowable values have the following meaning:

BSF_DISTANCE: PC-DMIS determines each hit based on the set increment and the
last two measured hits. The approach of the probe is perpendicular to the line
between the last two measured hits. The probe will stay on the cut plane. PC-DMIS
will start at the first boundary point and continue taking hits at the set increment,
stopping when it satisfies the Boundary Condition. In the case of a continous scan,
PC-DMIS would filter the data from the CMM and keep only the hits that are apart
by at least the increment. Both DCC and Manual scans can use this filter.

186 • Automation PC-DMIS Basic Language Reference

BSF_BODYAXISDISTANCE: PC-DMIS will take hits at the set increment along
the current part’s coordinate system. The approach of the probe is perpendicular to
the indicated axis. The probe will stay on the cut plane. The approach vector will be
normal to the selected axis and on the cut plane. This technique uses the same
approach for taking each hit (unlike the previous technique which adjusts the
approach to be perpendicular to the line between the previous two hits). Only DCC
scans should use this filter.

BSF_VARIABLEDISTANCE: This technique allows you to set specific maximum
and minimum angle and increment values that will be used in determining where PC-
DMIS will take a hit. The probe’s approach is perpendicular to the line between the
last two measured hits. You should provide the maximum and minimum values that
will be used to determine the increments between hits. You also must enter the
desired values for the maximum and minimum angles. PC-DMIS will take three hits
using the minimum increment. It will then measure the angle between hit’s 1-2 and 2-
3.

• If the measured angle is between the maximum and minimum
values defined, PC-DMIS will continue to take hits at the
current increment.

• If the angle is greater than the maximum value, PC-DMIS
will erase the last hit and measure it again using one
quarter of the current increment value.

• If the angle is less than the minimum increment, PC-DMIS
will take the hit at the minimum increment value.

PC-DMIS will again measure the angle between the newest hit and the two previous
hits. It will continue to erase the last hit and drop the increment value to one quarter
of the increment until the measured angle is within the range defined, or the
minimum value of the increment is reached.

If the measured angle is less than the minimum angle, PC-DMIS will double the
increment for the next hit. (If this is greater than the maximum increment value it
will take the hit at the maximum increment.) PC-DMIS will again measure the angle
between the newest hit and the two previous hits. It will continue to double the
increment value until the measured angle is within the range defined, or the
maximum increment is reached. Only DCC scans should use this filter.

BasicScan.HitType
Represents the type of hit to use. Read/write of enumeration BSCANHIT_ENUM.

The allowable values have the following meaning:

BSCANHIT_VECTOR – use vector hits for this scan

BSCANHIT_SURFACE – use surface hits for this scan

BSCANHIT_EDGE – use edge hits for this scan.

BSCANHIT_BASIC – use basic hits for this scan. Only Manual scans use this hit
type. Currently there are no Manual BasicScans.

Remarks

Not every hit type can be used with every method and filter combination.
Method EdgeHit Vector

Hit
Surface
Hit

Basic
Hit

Linear - Y Y -

Edge Y - - -

Circle - Y - -

PC-DMIS Basic Language Reference Automation • 187

Cylinder - Y - -

Str Line - Y - -

Center - Y - -

BasicScan.Method
Represents the method type for this scan. Read/write of enumeration
BSMETHOD_ENUM.

The allowable values have the following meaning:

BSCANMETH_LINEAR: This method will scan the surface along a line. This
procedure uses the starting and ending point for the line, and also includes a direction
point. The probe will always remain within the cut plane while doing the scan.

BSCANMETH_EDGE: This method will scan the Edge of the Surface in a Touch
Trigger mode.

BSCANMETH_CIRCLE: This method will scan around a Circle in High Speed,
Continous contact mode.

BSCANMETH_CYLINDER: This method will scan around a Cylinder in High
Speed, Continous contact mode.

BSCANMETH_STRAIGHTLINE: This method will scan a straight line in a plane in
High Speed , Continous contact mode.

BSCANMETH_CENTER: This method will find a Low Point on a surface.

Remarks

The Method type defines the geometry of the feature to be scanned and has
parameters that need to be set properly before scanning. The parameters can be set
using the SetMethodParams method.

BasicScan.MethodCutPlane
Represents the method’s cut plane vector. Read/write PointData object.

BasicScan.MethodEnd
Represents the scan’s end point. Read/write PointData object.

BasicScan.MethodEndTouch
Represents the method’s end touch vector. Read/write PointData object.

BasicScan.MethodInitDir
Represents the method’s initial direction vector. Read/write PointData object.

BasicScan.MethodInitTopSurf
Represents the initial Surface Vector for the Edge method. Read/write PointData
object.

BasicScan.MethodInitTouch
Represents the method’s initial touch vector. Read/write PointData object.

188 • Automation PC-DMIS Basic Language Reference

BasicScan.MethodStart
Represents the scan’s start point. Read/write PointData object.

Method Method
Start

Method
End

Method
CutPlane

Method
InitDir

Method
InitTouch

Method
InitTopSurf

Method
EndTouch

Linear Y Y Y Y Y - Y
Edge Y Y - Y Y Y Y
Circle Y - Y - Y - -
Cylinder Y - Y - Y - -

Str Line Y Y Y - - - -

Center Y Y Y - Y -

BasicScan.NominalMode
Represents how to determine the nominals for this scan. Read/write of enumeration
BSCANNMODE_ENUM.

The allowable values have the following meaning:

BSCANNMODE_FINDCADNOMINAL: This mode would find the Nominal data
from CAD after scanning. This mode is useful only when CAD surface data is
available.

SCANNMODE_MASTERDATA: This mode keeps the data scanned the first time
as Master data.

BasicScan.OperationMode
Represents mode of operation of the scan . Read/write of enumeration
BSOPMODE_ENUM.

The allowable values have the following meaning:

BSCANOPMODE_REGULARLEARN: When this mode is used, PC-DMIS will
execute the scan as though it is learning it. All learned measured data will replace the
new measured data. The nominal will be re-calculated depending on the Nominals
mode.

BSCANOPMODE_DEFINEPATHFROMHITS: This mode is available only when
using analog probe heads that can do continuous contact scanning. When this option
is selected, PC-DMIS allows the controller to ‘define’ a scan. PC-DMIS gathers all
hit locations from the editor and passes them onto the controller for scanning. The
controller will then adjust the path allowing the probe to pass through all the points.
The data is then reduced according to the increment provided and the new data will
replace any old measured data. Currently, this value cannot be used through
Automation since there is no method provided to define a path.

BSCANOPMODE_HIGHSPEEDFEATUREBASED: This execute mode is
available only for Analog Probe Heads. When this is selected, PC-DMIS uses the
built-in High Speed scanning capability of the controller to execute a scan.

Example: If you selected a Circle scan, PC-DMIS would use a corresponding
Circle scanning command in the controller and pass on the parameters to the
controller to execute. In this case, PC-DMIS does not control execution of the scans.

PC-DMIS Basic Language Reference Automation • 189

BSCANOPMODE_NORMALEXECUTION: If a DCC scan is executed, PC-DMIS
will take hits at each of the learned locations in Stitch scanning mode, storing the
newly measured data.

Method Regular
Learn

Defined
Path

Feature
Based

Normal

Linear Y - - Y

Edge Y - - Y

Circle - - Y Y

Cylinder - - Y Y

Str Line - - Y Y

Center Y - - Y

BasicScan.SinglePoint
Determines whether single point mode is on or off. Read/Write BOOLEAN.

When on, each point will be considered as a single measured point.

Methods:

BasicScan.GetBoundaryConditionParams
Syntax

Return Value=expression. GetBoundaryConditionParams (nCrossings,
dRadius, dHalfAngle)

expression: Required expression that evaluates to a PC-DMIS BasicScanCommand
object.

nCrossing: Required Long variable that gets the number of crossings for this
boundary condition. The scan would stop after the probe crosses (breaks) the
Boundary Condition like a Sphere, Cylinder, Cone, or a Plane the given number of
times.

dRadius: Required Double variable that gets the radius of the boundary condition.
This is used by the Spherical and Cylindrical Boundary Conditions.

dHalfAngle: Required Double variable that gets the half-angle of the cone-type
boundary condition, or gets zero if the boundary condition is not of cone type.

Return Value: This method returns a boolean value. Boolean returns true if the
function succeeds, false if it fails.

Remarks

BasicScan.GetBoundaryPoint
Syntax

Return Value=expression. GetBoundaryPoint (Index, X,Y, Z)

Return Value: This method returns a boolean value. Boolean returns true if the
function succeeds, false if it fails.

190 • Automation PC-DMIS Basic Language Reference

expression: Required expression that evaluates to a PC-DMIS BasicScanCommand
object.

Index: Required Long which indicates which boundary point to get.

X: Required Long variable that will hold the X value of the bounday point.

Y: Required Long variable that will hold the Y value of the bounday point.

Z: Required Long variable that will hold the Z value of the bounday point.

Remarks

This function works with patch scans. Use the boundarypointcount property to
determine how many boundary points are available.

BasicScan.GetFilterParams
Syntax

Return Value=expression. GetFilterParams (dCutAxisLocation, nAxis,
dMaxIncrement, dMinIncrement, dMaxAngle, dMinAngle)

Return Value: This method returns a boolean value. Boolean returns true if the
function succeeds, false if it fails.

expression: Required expression that evaluates to a PC-DMIS BasicScanCommand
object.

dCutAxisLocation: Not used.

nAxis: Required Long variable that gets the cut axis. Returns non-zero only for axis
filters. For axis filters, 0 means the X axis, 1 means the Y-axis, and 2 means the Z-
axis.

dMaxIncrement: Required Double variable that gets the maximum increment. For
fixed-length filters, this is simply the fixed increment for Variable Distance Filters.

dMinIncrement: Required Double variable that gets the minimum increment.

dMaxAngle: Required Double variable that gets the maximum angle used in
Variable Distance Filters.

dMinAngle: Required Double variable that gets the minimum angle

used in Variable Distance Filters.

Remarks

Filter GetFilterParams (dCutAxisLocation,
nAxis, dMaxIncrement, dMinIncrement,
dMaxAngle, dMinAngle)

Distance ,,dMaxIncrement
BodyAxisDistance ,nAxis, dMaxIncrement
VariableDistance ,,dMaxIncrement, dMinIncrement,

dMaxAngle, dMinAngle

BasicScan.GetHitParams
Syntax

Return Value=expression. GetHitParams (nInitSamples, nPermSamples,
dSpacer, dIndent, dDepth)

PC-DMIS Basic Language Reference Automation • 191

Return Value: This method returns a boolean value. Boolean returns true if the
function succeeds, false if it fails.

expression: Required expression that evaluates to a PC-DMIS BasicScanCommand
object.

nInitSamples: Required Long variable that gets the number of initial sample hits for
the hits in this scan. It always returns zero for basic hits and vector hits.

nPermSamples: Required Long variable that gets the number of permanent sample
hits for the hits in this scan. It always returns zero for basic hits and vector hits.

dSpacer: Required Double variable that gets the spacing of the sample hits from the
hit center. It always returns zero for basic hits and vector hits.

dIndent: Required Double variable that gets the indent of the sample hits from the hit
center. It always returns zero for basic hits, vector hits, and surface.

dDepth: Required Double variable that gets the depth of the sample hits from the hit
center. It always returns zero for basic hits, vector hits, and surface.

BasicScan.GetMethodParams
Syntax

Return Value=expression. GetMethodParams (bIn, bCenteringType,
nCenteringDirection, dDiameter, dArcAngle, dDepth, dPitch)

Return Value: This method returns a boolean value. Boolean returns true if the
function succeeds, false if it fails.

expression: Required expression that evaluates to a PC-DMIS BasicScanCommand
object.

bIn: Required variable that gets 0 for Inside scans, 1 for Outside scans, and 2 for
Plane Circle scans.

bCenteringType: Required Variable for Centering Scans that gets 0 for Axis
Centering and 1 for Plane centering.

nCenteringDirection: Required Long variable that takes a +1 for measurement with
the direction of the probe and –1 for against the direction of probe.

dDiameter: Required Double variable that gets the diameter of the circle or cylinder
scan, and zero otherwise.

dArcAngle: Required Double variable that gets arc angle for circle and cylinder
scans.

dDepth: Required Double variable that gets the depth for cylinder scans, and zero
otherwise.

dPitch: Required Double variable that gets a Pitch for Cylinder scans.

Remarks

192 • Automation PC-DMIS Basic Language Reference

Method GetMethodParams (bIn, bCenteringType,
nCenteringDirection, dDiameter, dArcAngle,
dDepth, dPitch)

Linear None
Edge None
Circle bIn, , , dDiameter, dArcAngle, dDepth
Cylinder bIn, , , dDiameter, dArcAngle, dDepth, dPitch
Str Line None
Center , bCenteringType, nCenteringDirection

BasicScan.GetMethodPointData
Syntax

Return Value=expression. GetMethodPointData (MethodStart,
MethodEnd, MethodInitTouch, MethodEndTouch, MethodInitDir,
MethodCutPlane)

Return Value: This method returns a boolean value. Boolean returns true if the
function succeeds, false if it fails.

expression: Required expression that evaluates to a PC-DMIS BasicScanCommand
object.

MethodStart: Required PointData object that gets the MethodStart property.

MethodEnd: Required PointData object that gets the MethodEnd property.

MethodInitTouch: Required PointData object that gets the MethodInitTouch
property.

MethodEndTouch: Required PointData object that gets the MethodEndTouch
property.

MethodInitDir: Required PointData object that gets the MethodInitDir property.

MethodCutPlane: Required PointData object that gets the MethodCutPlane
property.

Remarks

If scan is a BasicScanCommand object, and MS, ME, MIT, MET, MID,and MCP
are all Dimensioned as Object, the following are equivalent:

scan.GetMethodParams MS,ME,MIT,MET,MID,MCP

set MS = scan.MethodStart
set ME = scan.MethodEnd
set MIT = scan.MethodInitTouch
set MET = scan.MethodEndTouch
set MID = scan.MethodInitDir
set MCP = scan.MethodCutPlane

This method is provided as a shortcut to getting these commonly used properties all
at once.

BasicScan.GetNomsParams
Syntax

Return Value=expression. GetNomsParams (dFindNomsTolerance,
dSurfaceThickness, dEdgeThickness)

PC-DMIS Basic Language Reference Automation • 193

Return Value: This method returns a boolean value. Boolean returns true if the
function succeeds, false if it fails.

expression: Required expression that evaluates to a PC-DMIS BasicScanCommand
object.

dFindNomsTolerance: Required Double variable that gets the Find Noms tolerance
and is used only when the NominalMode property is
BSCANNMODE_FINDCADNOMINAL.

dSurfaceThickness: Required Double variable that gets the surface thickness and is
used only when the NominalMode property is
BSCANNMODE_FINDCADNOMINAL.

dEdgeThickness: Required Double variable that gets the edge thickness and is used
only when the NominalMode property is BSCANNMODE_FINDCADNOMINAL
and when the Method property is BSCANMETH_EDGE.

BasicScan.GetParams
Syntax

Return Value=expression. GetParams (Method, Filter,
OperationMode, HitType, NominalMode, BoundaryCondition)

Return Value: This method returns a boolean value. Boolean returns true if the
function succeeds, false if it fails.

expression: Required expression that evaluates to a PC-DMIS BasicScanCommand
object.

Method: Required Long variable that gets the Method property.

Filter: Required Long variable that gets the Filter property.

OperationMode: Required Long variable that gets the OperationMode property.

HitType: Required Long variable that gets the HitType property.

NominalMode: Required Long variable that gets the NominalMode property.

BoundaryCondition: Required Long variable that gets the BoundaryCondition
property.

Remarks

If scan is a BasicScanCommand object, and M, F, O, H, N,and B are all
Dimensioned as Object, the following are equivalent:

scan.GetParams M, F, O, H, N, B

M = scan.Method
F = scan.Filter
O = scan.OperationMode
H = scan.HitType
N = scan.NominalMode
B = scan.BoundaryCondition

This method is provided as a shortcut to getting these commonly used properties all
at once.

BasicScan.SetBoundaryConditionParams
Syntax

Return Value=expression.SetBoundaryConditionParams (nCrossings,
dRadius, dHalfAngle)

194 • Automation PC-DMIS Basic Language Reference

Return Value: This method returns a boolean value. Boolean returns true if the
function succeeds, false if it fails.

expression: Required expression that evaluates to a PC-DMIS BasicScanCommand
object.

nCrossing: Required Long that sets the number of crossings for this boundary
condition.

dRadius: Required Double that sets the radius of the boundary condition.

dHalfAngle: Required Double that sets the half-angle of the cone-type boundary
condition, or is ignored if the boundary condition is not of cone type.

Remarks

BasicScan.SetBoundaryPoint
Syntax

Return Value=expression.SetBoundaryPoint (Index, X,Y, Z)

Return Value: This method returns a boolean value. Boolean returns true if the
function succeeds, false if it fails.

expression: Required expression that evaluates to a PC-DMIS BasicScanCommand
object.

Index: Required Long which indicates which boundary point to set.

X: Required Long that indicates the X value of the bounday point.

Y: Required Long that indicates the Y value of the bounday point.

Z: Required Long that indicates the Z value of the bounday point.

Remarks

This function works with patch scans. Use the boundarypointcount property to set
the number of boundary points.

BasicScan.SetFilterParams
Syntax

Return Value=expression.SetFilterParams (dCutAxisLocation, nAxis,
dMaxIncrement, dMinIncrement, dMaxAngle, dMinAngle)

Return Value: This method returns a boolean value. Boolean returns true if the
function succeeds, false if it fails.

expression: Required expression that evaluates to a PC-DMIS BasicScanCommand
object.

dCutAxisLocation: Not used

nAxis: Required Long that sets the cut axis. It is used only for axis filters. For axis
filters, 0 means the X axis, 1 means the Y-axis, and 2 means the Z-axis.

dMaxIncrement: Required Double that sets the maximum increment. For fixed-
length filters, this is simply the fixed increment

dMinIncrement:. Required Double that sets the minimum increment.

dMaxAngle: . Required Double that sets the maximum angle.

PC-DMIS Basic Language Reference Automation • 195

dMinAngle: . Required Double that sets the minimum angle.

Remarks

Filter SetFilterParams (dCutAxisLocation,
nAxis, dMaxIncrement, dMinIncrement,
dMaxAngle, dMinAngle)

Distance ,,dMaxIncrement
BodyAxisDistance ,nAxis, dMaxIncrement
VariableDistance ,,dMaxIncrement, dMinIncrement,

dMaxAngle, dMinAngle

BasicScan.SetHitParams
Syntax

Return Value=expression.SetHitParams (nInitSamples, nPermSamples,
dSpacer, dIndent, dDepth)

Return Value: This method returns a boolean value. Boolean returns true if the
function succeeds, false if it fails.

expression: Required expression that evaluates to a PC-DMIS BasicScanCommand
object.

nInitSamples: Required Long that sets the number of initial sample hits for the hits
in this scan. It is ignored for basic hits and vector hits.

nPermSamples: Required Long that sets the number of permanent sample hits for the
hits in this scan. It is ignored for basic hits and vector hits.

dSpacer: Required Double that sets the spacing of the sample hits from the hit
center. It is ignored for basic hits and vector hits.

dIndent: Required Double that sets the indent of the sample hits from the hit center.
It is ignored for basic hits, vector hits, and surface.

dDepth: Required Double that sets the depth of the sample hits from the hit center. It
is ignored for basic hits, vector hits, and surface.

BasicScan.SetMethodParams
Syntax

Return Value=expression.SetMethodParams (bIn, bCenteringType,
nCenteringDirection, dDiameter, dArcAngle, dDepth, dPitch)

Return Value: This method returns a boolean value. Boolean returns true if the
function succeeds, false if it fails.

expression: Required expression that evaluates to a PC-DMIS BasicScanCommand
object.

bIn: Required variable that sets 0 for Inside scans, 1 for Outside scans, nd 2 for Plane
Circle scans.

bCenteringType: Required Variable for Centering Scans that sets 0 for Axis
Centering and 1 for Plane centering.

nCenteringDirection: Required Long variable that sets +1 for measurement with the
direction of the probe and –1 for against the direction of probe.

196 • Automation PC-DMIS Basic Language Reference

dDiameter: Required Double variable that sets the diameter of the circle or cylinder
scan, and zero otherwise.

dArcAngle: Required Double variable that sets arc angle for circle and cylinder
scans.

dDepth: Required Double variable that sets the depth for circle and cylinder scans,
and zero otherwise.

dPitch: Required Double variable that sets Pitch for Cylinder scans.

Remarks

Method SetMethodParams (bIn, bCenteringType,
nCenteringDirection, dDiameter, dArcAngle, dDepth,
dPitch)

Linear None
Edge None
Circle bIn, , , dDiameter, dArcAngle, dDepth
Cylinder bIn, , , dDiameter, dArcAngle, dDepth, dPitch
Str Line None
Center , bCenteringType, nCenteringDirection

BasicScan.SetMethodPointData
Syntax

Return Value=expression.SetMethodPointData (MethodStart, MethodEnd,
MethodInitTouch, MethodEndTouch, MethodInitDir, MethodCutPlane)

Return Value: This method returns a boolean value. Boolean returns true if the
function succeeds, false if it fails.

expression: Required expression that evaluates to a PC-DMIS BasicScanCommand
object.

MethodStart: Required PointData object that sets the MethodStart property.

MethodEnd: Required PointData object that sets the MethodEnd property.

MethodInitTouch: Required PointData object that sets the MethodInitTouch
property.

MethodEndTouch: Required PointData object that sets the MethodEndTouch
property.

MethodInitDir: Required PointData object that sets the MethodInitDir property.

MethodCutPlane: Required PointData object that sets the MethodCutPlane property.

Remarks

If scan is a BasicScanCommand object, and MS, ME, MIT, MET, MID,and MCP
are all Dimensioned as Object, the following are equivalent:

scan.SetMethodParams MS,ME,MIT,MET,MID,MCP

set scan.MethodStart = MS
set scan.MethodEnd = ME
set scan.MethodInitTouch = MIT
set scan.MethodEndTouch = MET
set scan.MethodInitDir = MID
set scan.MethodCutPlane = MCP

PC-DMIS Basic Language Reference Automation • 197

This method is provided as a shortcut to setting these commonly used properties all
at once.

BasicScan.SetNomsParams
Syntax

Return Value=expression.SetNomsParams (dFindNomsTolerance,
dSurfaceThickness, dEdgeThickness)

Return Value: This method returns a boolean value. Boolean returns true if the
function succeeds, false if it fails.

expression: Required expression that evaluates to a PC-DMIS BasicScanCommand
object.

dFindNomsTolerance: Required Double that sets the Find Noms tolerance.

dSurfaceThickness: Required Double that sets the surface thickness.

dEdgeThickness: Required Double that sets the edge thickness.

Remarks

BasicScan.SetParams
Syntax

Return Value=expression.SetParams (Method, Filter, OperationMode,
HitType, NominalMode, BoundaryCondition)

Return Value: This method returns a boolean value. Boolean returns true if the
function succeeds, false if it fails.

expression: Required expression that evaluates to a PC-DMIS BasicScanCommand
object.

Method: Required Long that sets the Method property.

Filter: Required Long that sets the Filter property.

OperationMode: Required Long that sets the OperationMode property.

HitType: Required Long that sets the HitType property.

NominalMode: Required Long that sets the NominalMode property.

BoundaryCondition: Required Long that sets the BoundaryCondition property.

Remarks

If scan is a BasicScanCommand object, and M, F, O, H, N,and B are all
Dimensioned as Object, the following are equivalent:

scan.SetParams M, F, O, H, N, B

scan.Method = M
scan.Filter = F
scan.OperationMode = O
scan.HitType = H
scan.NominalMode = N
scan.BoundaryCondition = B

This method is provided as a shortcut to setting these commonly used properties all
at once.

198 • Automation PC-DMIS Basic Language Reference

Basic Scan Object Combinations
The tables below describes the different combination of Objects that can be used to
create and execute a Basic Scan. The Methods will only work with the combination
of different of Objects selected from this table (i.e. if you decide to set a method type
of BSCANMETH_CIRCLE, then you have to use a Filter type of BSF_DISTANCE
etc).

Table 1

Method Filters

BSCANMETH_LINEAR BSF_DISTANCE
BSF_BODYAXISDISTANCE
BSF_VARIABLEDISTANCE

BSCANMETH_EDGE BSF_DISTANCE
BSF_VARIABLEDISTANCE

BSCANMETH_CIRCLE BSF_DISTANCE

BSCANMETH_CYLINDER BSF_DISTANCE

BSCANMETH_STRAIGHTLINE BSF_DISTANCE

BSCANMETH_CENTER BSF_DISTANCE

Table 2
Method NominalMode

BSCANMETH_LINEAR BSCANNMODE_FINDCADNOMINAL
BSCANNMODE_MASTERDATA

BSCANMETH_EDGE BSCANNMODE_FINDCADNOMINAL
BSCANNMODE_MASTERDATA

BSCANMETH_CIRCLE BSCANNMODE_FINDCADNOMINAL
BSCANNMODE_MASTERDATA

BSCANMETH_CYLINDER BSCANNMODE_FINDCADNOMINAL
BSCANNMODE_MASTERDATA

BSCANMETH_STRAIGHTLINE BSCANNMODE_FINDCADNOMINAL
BSCANNMODE_MASTERDATA

BSCANMETH_CENTER BSCANNMODE_FINDCADNOMINAL
BSCANNMODE_MASTERDATA

PC-DMIS Basic Language Reference Automation • 199

Table 3
Method OperationMode

BSCANMETH_LINEAR BSCANOPMODE_REGULARLEARN
BSCANOPMODE_DEFINEPATHFROMHITS
BSCANOPMODE_NORMALEXECUTION

BSCANMETH_EDGE BSCANOPMODE_REGULARLEARN
BSCANOPMODE_NORMALEXECUTION

BSCANMETH_CIRCLE BSCANOPMODE_HIGHSPEEDFEATUREBASED
BSCANOPMODE_NORMALEXECUTION

BSCANMETH_CYLINDER BSCANOPMODE_HIGHSPEEDFEATUREBASED
BSCANOPMODE_NORMALEXECUTION

BSCANMETH_STRAIGHTLINE BSCANOPMODE_HIGHSPEEDFEATUREBASED
BSCANOPMODE_NORMALEXECUTION

BSCANMETH_CENTER BSCANOPMODE_REGULARLEARN
BSCANOPMODE_NORMALEXECUTION

Table 4
Method HitType

BSCANMETH_LINEAR BSCANHIT_VECTOR
BSCANHIT_SURFACE

BSCANMETH_EDGE BSCANHIT_EDGE

BSCANMETH_CIRCLE BSCANHIT_VECTOR

BSCANMETH_CYLINDER BSCANHIT_VECTOR

BSCANMETH_STRAIGHTLINE BSCANHIT_VECTOR

BSCANMETH_CENTER BSCANHIT_VECTOR

200 • Automation PC-DMIS Basic Language Reference

Table 5
Method BoundaryCondition

BSCANMETH_LINEAR BSBOUNDCOND_SPHENTRY
BSBOUNDCOND_PLANECROSS
BSBOUNDCOND_CYLINDER
BSBOUNDCOND_CONE

BSCANMETH_EDGE BSBOUNDCOND_SPHENTRY
BSBOUNDCOND_PLANECROSS
BSBOUNDCOND_CYLINDER
BSBOUNDCOND_CONE

BSCANMETH_CIRCLE None

BSCANMETH_CYLINDER None

BSCANMETH_STRAIGHTLINE None

BSCANMETH_CENTER None

CadWindow Object Overview:
The CadWindow object is the one and only cad window for a part program.

CadWindow Members

Properties:

CadWindow.Application
Represents the read-only PC-DMIS application. The Application object includes
properties and methods that return top-level objects. For example, the
ActivePartProgram property returns a PartProgram object.

CadWindow.Height
The height of the Cad window in screen pixels. Read/Write Long.

CadWindow.Left
The left edge of the Cad window, measured from the left edge of the Windows
Desktop. Read/Write Long.

Remarks

The Left property is measured in screen pixels.

PC-DMIS Basic Language Reference Automation • 201

CadWindow.Parent
Returns the parent CadWindows object. Read-only.

CadWindow.Top
The top edge of the Cad window, measured from the top edge of the Windows
Desktop. Read/Write Long.

Remarks

The Top property is measured in screen pixels.

CadWindow.Visible
This property is TRUE if the Cad window is visible, FALSE otherwise. Read/write
Boolean.

If you make the Cad window invisible, the only way to make it visible again is to set
this property to TRUE.

CadWindow.Width
The width of the Cad window in screen pixels. Read/Write Long.

Methods:

CadWindow.Print
Syntax

Return Value=expression.Print(long Option, BOOL DrawRuler)

Return Value: This method returns a boolean value. Boolean returns true if the
function succeeds, false if it fails.

expression: Required expression that evaluates to CadWindow object.

Option: Required Long that indicates the type of printing to occur. Options include
Scale to Fit on Single Page, Print Visible Screen Area, Print Complete Views, and
Print Complete View w/ Current Scale. Print Visible Screen Area is only available
one of the views are zoomed. Print Complete Views is only available when multiple
views exist.

DrawRuler: Required BOOL that indicates whether rulers should be included on the
printout. This option is only available if rulers are currently turned on in the cad
drawing.

Prints the Cad window

CadWindows Object Overview
The CadWindows object is an object containing a collection of CadWindow objects
currently available to a part program.

Currently, there is exactly one CadWindow object associated with each part
program, but the CAD Windows object class is made available for future changes.

202 • Automation PC-DMIS Basic Language Reference

CadWindows Members

Properties:

CadWindows.Application
Represents the read-only PC-DMIS application. The Application object includes
properties and methods that return top-level objects. For example, the
ActivePartProgram property returns a PartProgram object.

CadWindows.Count
Returns the number of CadWindow objects active in this part program. Read-only
Long.

Currently, this property always returns one.

CadWindows.Parent
Represents the parent PartProgram object. Read-only.

Methods:

CadWindows.Item
Syntax

Return Value=expression.Item(Item)

Return Value: This method returns the CadWindow object from the parent
CadWindows object. Read-only.

expression: Required expression that evaluates to FlowControlCommand object.

Item: Required Variant that denotes which CadWindow object to return.

Since there is only and exactly one CadWindow object, it does not matter what you
pass into the Item argument. For the sake of future compatibility, you should pass 1.

Calibration Object Overview
The calibration object allows for tip calibration during part program execution. This
object is placed into a part program through the add method of the commands object
and obtained from the command object via the CalibrationCommand property.

Calibration Members

Properties:

Calibration.Moved
BOOLEAN value that represents whether the sphere used as the calibration tool has
moved since the last tip calibration.

PC-DMIS Basic Language Reference Automation • 203

• If this value is true, then the tool’s (identified by ToolID) calibration
data is reset using the data from the sphere (identified by SphereID)
that was just measured.

• If this value is false, then the current tool calibration data is used to
calibrate the active tip.

Read/Write Boolean

Calibration.SphereID
ID of a sphere command that occurs prior to the calibration commmand. The sphere
should have identical characteristics with the tool identified by ToolID.

Read/Write String

Calibration.ToolID
ID of a previously defined calibration tool that is similar to the sphere identified by
SphereID. The tool data is used in the tip calibration or reset depending on the value
of the moved data member.

Command Object Overview
The Command object represents a single command in PC-DMIS.

Command Members
The Command object represents a single command in PC-DMIS. Examples of
single commands in PC-DMIS are the start of a feature, a hit, the end of a feature, a
single X dimension line, an auto feature, etc.

It is also a collection object representing the collection of executions of this object so
far in the current execution or the collection of executions of this object in the
previous execution.

Properties:

Command.ActiveTipCommand
Returns an ActiveTip Command object if Command is of Type SET_ACTIVE_TIP.

Command.AlignmentCommand
Returns this Command object as an AlignCommand object if it can, Nothing
otherwise.

The Commands that have the following Type can become AlignCommand objects
are as follows:

START_ALIGN
LEVEL_ALIGN
ROTATE_ALIGN

204 • Automation PC-DMIS Basic Language Reference

TRANS_ALIGN
TRANSOFF_ALIGN
ROTATEOFF_ALIGN
SAVE_ALIGN
RECALL_ALIGN
EQUATE_ALIGN
ITER_ALIGN
BF2D_ALIGN
ROTATE_CIRCLE_ALIGN
BF3D_ALIGN

Command.Application
Represents the read-only PC-DMIS application. The Application object includes
properties and methods that return top-level objects. For example, the
ActivePartProgram property returns a PartProgram object.

Command.ArrayIndexCommand
Returns an ArrayIndex Command object if Command is of Type ARRAY_INDEX.

Command.AttachCommand
Returns an Attach Command object if Command is of Type ATTACH_PROGRAM.

Command.BasicScanCommand
Returns this Command object as an BasicScanCommand object if it can, Nothing
otherwise. Read-only.

Only Command objects of type BASIC_SCAN_OBJECT can become
BasicScanCommand objects.

Command.CalibrationCommand
Returns a Calibration Command object if Command is of Type CALIB_SPHERE.

Command.Count
Represents the number of copies of this Command are available. If the part program
is currently being executed, it is the number of times it has been executed so far. If
the part program is not currently being executed, it is the number of times it was
executed during the previous execution cycle. If Command has never been
executed, Count has the value one. Read-only Long.

Command.DimensionCommand
Returns this Command object as an DimensionCommand object if it can, Nothing
otherwise. Read-only.

The Command objects that have the following Type can become
DimensionCommand objects:

DIMENSION_START_LOCATION
DIMENSION_X_LOCATION
DIMENSION_Y_LOCATION
DIMENSION_Z_LOCATION
DIMENSION_D_LOCATION
DIMENSION_R_LOCATION
DIMENSION_A_LOCATION
DIMENSION_T_LOCATION
DIMENSION_V_LOCATION
DIMENSION_L_LOCATION
DIMENSION_H_LOCATION

PC-DMIS Basic Language Reference Automation • 205

DIMENSION_PR_LOCATION
DIMENSION_PA_LOCATION
DIMENSION_PD_LOCATION
DIMENSION_RT_LOCATION
DIMENSION_S_LOCATION
DIMENSION_RS_LOCATION
DIMENSION_STRAIGHTNESS
DIMENSION_ROUNDNESS
DIMENSION_FLATNESS
DIMENSION_PERPENDICULARITY
DIMENSION_PARALLELISM
DIMENSION_PROFILE
DIMENSION_3D_DISTANCE
DIMENSION_2D_DISTANCE
DIMENSION_3D_ANGLE
DIMENSION_2D_ANGLE
DIMENSION_RUNOUT
DIMENSION_CONCENTRICITY
DIMENSION_ANGULARITY
DIMENSION_KEYIN
DIMENSION_TRUE_START_POSITION
DIMENSION_TRUE_X_LOCATION
DIMENSION_TRUE_Y_LOCATION
DIMENSION_TRUE_Z_LOCATION
DIMENSION_TRUE_DD_LOCATION
DIMENSION_TRUE_DF_LOCATION
DIMENSION_TRUE_PR_LOCATION
DIMENSION_TRUE_PA_LOCATION
DIMENSION_TRUE_DIAM_LOCATION

Command.DimFormatCommand
Returns a DimFormat Command object if Command is of Type
DIMENSION_FORMAT.

Command.DimInfoCommand
Returns a DimInfo Command object if Command is of Type
DIMENSION_INFORMATION.

Command.DisplayMetaFileCommand
Returns a DispMetaFile Command object if Command is of Type
DISPLAY_METAFILE.

Command.ExternalCommand
Returns an ExternalCommand Command object if Command is of Type
EXTERNAL_COMMAND.

Command.Feature
Represents the kind of feature that this Command object is. If it is not a feature it
will return zero. Otherwise it will return a value from the following list. Read-only
Long.

Type of Feature Return Value

POINT 1

CIRCLE 2

206 • Automation PC-DMIS Basic Language Reference

SPHERE 3

LINE 4

CONE 5

CYLINDER 6

PLANE 7

CURVE 8

SLOT 9

SET 10

ELLIPSE 11

SURFACE 12

Command.FeatureCommand
Returns this Command object as an FeatureCommand object if it can, Nothing
otherwise. Read-only.

The Commands that have the following Type can become FeatureCommand
objects are as follows:

ANGLE_HIT
AUTO_ANGLE_FEATURE
AUTO_CIRCLE
AUTO_CORNER_FEATURE
AUTO_CYLINDER
AUTO_EDGE_FEATURE
AUTO_ELLIPSE
AUTO_HIGH_FEATURE
AUTO_NOTCH
AUTO_ROUND_SLOT
AUTO_SPHERE
AUTO_SQUARE_SLOT
AUTO_SURFACE_FEATURE
AUTO_VECTOR_FEATURE
BASIC_HIT
CONST_ALN_LINE
CONST_ALN_PLANE
CONST_BF_CIRCLE
CONST_BF_CONE
CONST_BF_CYLINDER
CONST_BF_LINE
CONST_BF_PLANE
CONST_BF_SPHERE
CONST_BFRE_CIRCLE
CONST_BFRE_CONE
CONST_BFRE_CYLINDER
CONST_BFRE_LINE
CONST_BFRE_PLANE
CONST_BFRE_SPHERE
CONST_CAST_CIRCLE
CONST_CAST_CONE
CONST_CAST_CYLINDER
CONST_CAST_LINE
CONST_CAST_PLANE
CONST_CAST_POINT
CONST_CAST_SPHERE
CONST_CONE_CIRCLE
CONST_CORNER_POINT
CONST_DROP_POINT
CONST_HIPNT_PLANE
CONST_INT_CIRCLE
CONST_INT_LINE

PC-DMIS Basic Language Reference Automation • 207

CONST_INT_POINT
CONST_MID_LINE
CONST_MID_PLANE
CONST_MID_POINT
CONST_OFF_LINE
CONST_OFF_PLANE
CONST_OFF_POINT
CONST_ORIG_POINT
CONST_PIERCE_POINT
CONST_PLTO_LINE
CONST_PLTO_PLANE
CONST_PROJ_CIRCLE
CONST_PROJ_CONE
CONST_PROJ_CYLINDER
CONST_PROJ_LINE
CONST_PROJ_POINT
CONST_PROJ_SPHERE
CONST_PRTO_LINE
CONST_PRTO_PLANE
CONST_REV_CIRCLE
CONST_REV_CONE
CONST_REV_CYLINDER
CONST_REV_LINE
CONST_REV_PLANE
CONST_REV_SPHERE
CONST_ROUND_SLOT
CONST_SET
CORNER_HIT
EDGE_HIT
GENERIC_CONSTRUCTION
MEASURED_CIRCLE
MEASURED_CONE
MEASURED_CYLINDER
MEASURED_LINE
MEASURED_PLANE
MEASURED_POINT
MEASURED_SET
MEASURED_SPHERE
SURFACE_HIT
VECTOR_HIT

Command.FileIOCommand
Returns a FileIO Command object if Command is of Type FILE_IO_OBJECT.

Command.FlowControlCommand
Returns this Command object as an FlowControlCommand object if it can,
Nothing otherwise. Read-only.

The Commands that have the following Type can become FlowControlCommand
objects are as follows:

LOOP_START
START_SUBROUTINE
CALL_SUBROUTINE
LABEL
GOTO
IF_GOTO_COMMAND
BASIC_SCRIPT
ONERROR
WHILE_COMMAND
ENDWHILE_COMMAND
IF_BLOCK_COMMAND
END_IF_COMMAND
IF_ELSE_COMMAND
END_IF_ELSE_COMMAND,
END_ELSE_COMMAND
DO_COMMAND
UNTIL_COMMAND

208 • Automation PC-DMIS Basic Language Reference

CASE_COMMAND
END_CASE_COMMAND
DEFAULT_CASE_COMMAND
END_DEFAULT_CASE_COMMAND
SELECT_COMMAND
END_SELECT_COMMAND

Command.ID
Represents the ID of the command. Read/write String.

Remarks

Only objects that have ID strings can be set. If a object does not have a string, this
property is the zero-length string “”.

Command.IsAlignment
Returns TRUE if the command is an alignment command type. Read only BOOL.

Remarks

Commands that return TRUE for this property can successfully retrieve an
Alignment Command object using the AlignmentCommand Property.

Command.IsActiveTip
Returns TRUE if the command is an ActiveTip command. Read only BOOL.

Remarks

Commands that return TRUE for this property can successfully retrieve an ActiveTip
Command object using the ActiveTipCommand Property.

Command.IsAttach
Returns TRUE if the command is an Attach command. Read only BOOL.

Remarks

Commands that return TRUE for this property can successfully retrieve an Attach
Command object using the AttachCommand Property.

Command.IsArrayIndex
Returns TRUE if the command is an ArrayIndex command. Read only BOOL.

Remarks

Commands that return TRUE for this property can successfully retrieve an
ArrayIndex Command object using the ArrayIndexCommand Property.

Command.IsBasicScan
Returns TRUE if the command is a basic scan command. Read only BOOL.

Remarks

Commands that return TRUE for this property can successfully retrieve a Basic Scan
Command object using the BasicScanCommand Property.

Command.IsCalibration
Returns TRUE if the command is a Calibration command. Read only BOOL.

Remarks

PC-DMIS Basic Language Reference Automation • 209

Commands that return TRUE for this property can successfully retrieve a Calibration
Command object using the CalibrationCommand Property.

Command.IsComment
Returns TRUE if the command is a Comment command. Read only BOOL.

Remarks

Commands that return TRUE for this property can successfully retrieve a Comment
Command object using the CommentCommand Property.

Command.IsConstructedFeature
Returns TRUE if the command is a constructed feature. Read only BOOL.

Command.IsDCCFeature
Returns TRUE if the command is a DCC (Auto) Feature. Read only BOOL.

Command.IsDimension
Returns TRUE if the command is a dimension command type. Read only BOOL.

Remarks

Commands that return TRUE for this property can successfully retrieve a Dimension
Command object using the DimensionCommand Property.

Command.IsDimFormat
Returns TRUE if the command is a DimFormat command. Read only BOOL.

Remarks

Commands that return TRUE for this property can successfully retrieve a
DimFormat Command object using the DimFormatCommand Property.

Command.IsDimInfo
Returns TRUE if the command is a DimInfo command. Read only BOOL.

Remarks

Commands that return TRUE for this property can successfully retrieve a DimInfo
Command object using the DimInfoCommand Property.

Command.IsDisplayMetaFile
Returns TRUE if the command is a DispMetaFile command. Read only BOOL.

Remarks

Commands that return TRUE for this property can successfully retrieve a
DispMetaFile Command object using the DisplayMetaFileCommand Property.

Command.IsExternalCommand
Returns TRUE if the command is an externalcommand command. Read only BOOL.

Remarks

Commands that return TRUE for this property can successfully retrieve an External
Command object using the ExternalCommand Property.

210 • Automation PC-DMIS Basic Language Reference

Command.IsFileIOCommand
Returns TRUE if the command is a FileIO command. Read only BOOL.

Remarks

Commands that return TRUE for this property can successfully retrieve a FileIO
command object using the FileIOCommand Property.

Command.IsFeature
Returns TRUE if the command is a feature command type. Read only BOOL.

Remarks

Commands that return TRUE for this property can successfully retrieve a Feature
Command object using the FeatureCommand Property.

Command.IsFlowControl
Returns TRUE if the command is a flow control command type. Read only BOOL.

Remarks

Commands that return TRUE for this property can successfully retrieve a Flow
Control Command object using the FlowContorlCommand Property.

Command.IsHit
Returns TRUE if the command is a one of the hit command types. Read only BOOL.

Command.IsLeitzMotion
Returns TRUE if the command is a LeitzMotion command. Read only BOOL.

Remarks

Commands that return TRUE for this property can successfully retrieve a
LetizMotion Command object using the LeitzMotionCommand Property.

Command.IsLoadMachine
Returns TRUE if the command is a LoadMachine command. Read only BOOL.

Remarks

Commands that return TRUE for this property can successfully retrieve a
LoadMachine Command object using the LoadProbeCommand Property.

Command.IsLoadProbe
Returns TRUE if the command is a LoadProbe command. Read only BOOL.

Remarks

Commands that return TRUE for this property can successfully retrieve a LoadProbe
Command object using the LoadProbeCommand Property.

Command.IsModal
Returns TRUE if the command is a modal command type. Read only BOOL.

Remarks

PC-DMIS Basic Language Reference Automation • 211

Commands that return TRUE for this property can successfully retrieve a Modal
Command object using the ModalCommand Property.

Command.IsMeasuredFeature
Returns TRUE if the command is a measured feature command. Read only BOOL.

Command.IsMove
Returns TRUE if the command is a move command type. Read only BOOL.

Remarks

Commands that return TRUE for this property can successfully retrieve a Move
Command object using the MoveCommand Property.

Command.IsOptMotion
Returns TRUE if the command is an OptMotion command. Read only BOOL.

Remarks

Commands that return TRUE for this property can successfully retrieve an
OptMotion Command object using the OptMotionCommand Property.

Command.IsStatistic
Returns TRUE if the command is a Statistics command. Read only BOOL.

Remarks

Commands that return TRUE for this property can successfully retrieve a Statistics
Command object using the StatisticCommand Property.

Command.IsScan
Returns TRUE if the command is a Scan command. Read only BOOL.

Remarks

Commands that return TRUE for this property can successfully retrieve a Scan
Command object using the ScanCommand Property.

Command.IsTempComp
Returns TRUE if the command is a TempComp command. Read only BOOL.

Remarks

Commands that return TRUE for this property can successfully retrieve a
TempComp Command object using the TempCompCommand Property.

Command.IsTraceField
Returns TRUE if the command is a TraceField command. Read only BOOL.

Remarks

Commands that return TRUE for this property can successfully retrieve a TraceField
Command object using the TraceFieldCommand Property.

Command.LeitzMotionCommand
Returns a LietzMotion Command object if Command is of Type OPTIONPROBE.

212 • Automation PC-DMIS Basic Language Reference

Command.LoadMachineCommand
Returns a LoadMachine Command object if Command is of Type
GET_MACHINE_DATA.

Command.LoadProbeCommand
Returns a LoadProbe Command object if Command is of Type
GET_PROBE_DATA.

Command.ModalCommand
Returns this Command object as a ModalCommand object if it can, Nothing
otherwise. Read-only.

The Command objects that have the following Type can become ModalCommand
objects are as follows:

CLAMP
PREHIT
RETRACT
CHECK
MOVE_SPEED
TOUCH_SPEED
SCAN_SPEED
CLEARANCE_PLANES
MAN_DCC_MODE
DISPLAYPRECISION
PROBE_COMPENSATION
POLARVECTORCOMP
SET_WORKPLANE
RMEAS_MODE
GAP_ONLY
RETROLINEAR_ONLY
FLY_MODE
COLUMN132

Command.MoveCommand
Returns this Command object as a MoveCommand object if it can, Nothing
otherwise. Read-only.

The Command objects that have the following Type can become MoveCommand
objects are as follows:

MOVE_POINT = 150,
MOVE_ROTAB = 153,
MOVE_INCREMENT = 154,
MOVE_CIRCULAR = 155,
MOVE_PH9_OFFSET = 156,

Command.OptMotionCommand
Returns an OptMotion Command object if Command is of Type OPTIONMOTION.

Command.Parent
Returns the parent Commands collection object. Read-only.

Command.ScanCommand
Returns a Scan Command object if Command is of Type DCCSCAN_OBJECT or
Type MANSCAN_OBJECT.

PC-DMIS Basic Language Reference Automation • 213

Command.ShowIDOnCad
Property used to indicate/set whether the command ID should be displayed in the
CAD window. Read/Write Boolean

Command.SlaveArm
Property used to indicate/set whether command is a slave arm object. Read/Write
Boolean

Command.StatisticCommand
Returns a Statistics Command object if Command is of Type STATISTICS.

Command.TempCompCommand
Returns a TempComp Command object if Command is of Type TEMP_COMP.

Command.TraceFieldCommand
Returns a TraceField Command object if Command is of Type TRACEFIELD.

Command.Type
Returns the type of the Command. Read-only OBTYPE.

Remarks

The returned type is the same as the type argument to Commands.Add.

Methods:

Command.Execute
Syntax

Return Value=expression.Execute

Return Value: This method returns a boolean value. Boolean returns true if the
function succeeds, false if it fails.

expression: Required expression that evaluates to a PC-DMIS Command object.

Executes the command if the command is immediately executable.

Command.Dialog
Syntax

Return Value=expression.Dialog

Return Value: This method returns a boolean value. Boolean returns true if the
function succeeds, false if it fails.

expression: Required expression that evaluates to a PC-DMIS Command object.

Opens the PC-DMIS dialog for the corresponding command.

Command.Dialog2
Syntax

Return Value=expression.Dialog2(Object *Dialog)

214 • Automation PC-DMIS Basic Language Reference

Return Value: This method returns a boolean value. Boolean returns true if the
function succeeds, false if it fails.

expression: Required expression that evaluates to a PC-DMIS Command object.

Object: Dmis dialog command object returned if the dialog is a modeless dialog.

Opens the PC-DMIS dialog for for the corresponding command.

Command.GetExpression
Syntax

expression.GetExpression(FieldType, TypeIndex)

Return Value: String which is the expression on the given field if it has an
expression. Otherwise, the string will be empty.

expression: Required expression that evaluates to a PC-DMIS Command object.

FieldType: Used to indicate which field the expression is being set for. Type
ENUM_FIELD_TYPES enumeration.

TypeIndex: Long value used to indicate which instance of the supplied field type to
use when an object has more than one instance of a field type.

Gets the expression of the indicated field of the command.

Remarks

Use this command to get expressions for different object fields. The
ENUM_FIELD_TYPES enumeration is a large enumeration. Documentation for
which field types go with which objects is not given here. You can find this
information by creating the desired object in PC-DMIS, inserting the desired
expression in the desired field, and exporting (posting out) the containing part
program to BASIC.

Command.Item
Syntax 1

Return value=expression.Item(Num)

Return Value: The Item function returns a Command object.

expression: Required expression that evaluates to a Machines object.

Num: Required Long that indicates which Command object to return. It is the index
number of the execution in the current or previous execution

Command.Mark
Syntax

expression.Mark SameAlign

expression: Required expression that evaluates to a PC-DMIS Command object.

SameAlign: Required Boolean. If SameAlign is FALSE, the features that are a part of
the alignment for this Command will be marked. Otherwise, they will not be
marked.

Marks the current object and all objects that depend on it. Optionally the features of
the current alignment are also marked.

Remarks

PC-DMIS Basic Language Reference Automation • 215

If the object is a measured feature, its hits are marked. If the object is a constructed
feature, the features on which it depends are marked. If the object is a dimension, the
dimension feature(s) being dimensioned are marked.

Command.Next
Syntax

Return Value=expression.Next

Return Value: This method returns a boolean value. Boolean returns true if the
function succeeds, false if it fails.

expression: Required expression that evaluates to a PC-DMIS Command object.

Sets expression to the next command in the parent Commands list. If expression is
the last command, it remains unchanged. This function returns FALSE if expression
is the last command in the parent Commands list, TRUE otherwise.

Command.Prev
Syntax

Return Value=expression.Prev

Return Value: This method returns a boolean value. Boolean returns true if the
function succeeds, false if it fails.

expression: Required expression that evaluates to a PC-DMIS Command object.

Sets expression to the previous command in the parent Commands list. If expression
is the first command, it remains unchanged. This function returns FALSE if
expression is the first command in the parent Commands list, TRUE otherwise.

Command.Remove
Syntax

expression.Remove

expression: Required expression that evaluates to a PC-DMIS Command object.

Removes expression from the part Commands list.

Remarks

If there are other objects which depend on expression, they are also removed. For
example, if expression is a measured feature, its hits are removed as well.

Commands Object Overview
The Commands collection object contains all the command objects in a part
program. Use Commands(index) where index is the index number to return a single
Command object.

216 • Automation PC-DMIS Basic Language Reference

Commands Members

Properties:

Commands.Application
Represents the read-only PC-DMIS application. The Application object includes
properties and methods that return top-level objects. For example, the
ActivePartProgram property returns a PartProgram object.

Commands.Count
Represents the number of Command objects in the parent PartProgram object.
Read-only Long.

Commands.Parent
Returns the parent PartProgram object. Read-only.

Methods:

Commands.Add
Syntax

Return Value=expression.Add(Type, AutoPosition)

Return Value: This function returns the Command object added.

expression: Required expression that evaluates to a PC-DMIS Commands object.

Type: Required LONG in the OBTYPE enumeration that denotes what type of
object to create.

AutoPosition: Required Boolean that determines what should happen when the new
Command object is being inserted in an inappropriate place in the part program. If
AutoPosition is FALSE, it will not be inserted at all. If it is TRUE, the new
Command will be inserted at the new appropriate position.

Commands.ClearMarked
Syntax

Return Value=expression.ClearMarked

Return Value: This method returns a boolean value. Boolean returns true if the
function succeeds, false if it fails.

expression: Required expression that evaluates to a PC-DMIS Commands object.

Clears all marked Command objects in this part program. ClearMarked always
returns TRUE.

Commands.InsertionPointAfter
Syntax

Return Value=expression.InsertionPointAfter(Cmd)

PC-DMIS Basic Language Reference Automation • 217

Return Value: This method returns a boolean value. Boolean returns true if the
function succeeds, false if it fails.

expression: Required expression that evaluates to a PC-DMIS Commands object.

Cmd: Required Command object that indicates which command after which to set
the insertion point.

This function returns TRUE if the insertion point was successfully set, FALSE
otherwise.

Commands.Item
Syntax 1

Return Value=expression.Item(NameOrNum)

Syntax 2

expression(NameOrNum)

Return Value: The Item function returns a Command object.

expression: Required expression that evaluates to a Commands object.

Identifier: Required Long that indicates which Command object to return. It is the
index number of the desired Command in the Commands collection denoted by
expression.

Commands.MarkAll
Syntax

Return Value=expression.MarkAll(MarkManual)

Return Value: This method returns a boolean value. Boolean returns true if the
function succeeds, false if it fails.

expression: Required expression that evaluates to a PC-DMIS Commands object.

MarkManual: Required Boolean that indicates whether or not to mark manual
alignment features.

This function always returns TRUE

Comment Object Overview
The Comment Automation object gives access to the properties of the PC-DMIS
Comment command.

Comment Members

Properties:

Comment.Comment
STRING value representing the comment text. Since comments in PC-DMIS can be
multi-line comments, this property represents the full text of all the lines. Each line is
separated by ASCII character 13 and ASCII character 10 in that order. This is a read

218 • Automation PC-DMIS Basic Language Reference

only property. To set individual lines of the comment use the SetLine method. To get
individual lines of the comment use the GetLine method.

Read Only String

Comment.CommentType
ENUM_PCD_COMMENT_TYPES enumeration type value representing the type of
comment. The following enumeration values are available:

PCD_COMMENT_OPER = 0

PCD_COMMENT_REPORT = 1

PCD_COMMENT_INPUT = 2

PCD_COMMENT_DOCUMENTATION = 3

PCD_COMMENT_YESNO = 4

Read/Write ENUM_PCD_COMMENT_TYPES enumeration type

Comment.ID
STRING value representing the ID of the comment. The ID is only used for
comments of type INPUT and type YESNO.

Read/Write String

Comment.Input
STRING value representing the text input by the user for comments of type INPUT
or YESNO.

Read/Write String

Methods:

Comment.AddLine
Syntax:

expression.AddLine (Text)

Return Value: Boolean value indicating success or failure of call to method.

expression: Required expression that evaluates to a PC-DMIS Comment object.

Text: Required String representing the line of text to be added to the comment.

Comment.GetLine
Syntax:

expression.GetLine (Line)

Return Value: String text of the line of the comment specified by the line paramter.
If Line is greater than the number of current lines in the comment, the string will be
empty.

expression: Required expression that evaluates to a PC-DMIS Comment object.

Line: Required Long representing the line of text to be retrieved.

Comment Object Overview

PC-DMIS Basic Language Reference Automation • 219

Comment.RemoveLine
Syntax:

expression.RemoveLine (Line)

Return Value: Boolean value indicating success or failure of call to remove a line of
text from the comment. If Line is greater than the number of current lines in the
comment, the call will fail.

expression: Required expression that evaluates to a PC-DMIS Comment object.

Line: Required Long representing the line of text to be removed.

Comment.SetLine
Syntax:

expression.SetLine (Line, Text)

Return Value: Boolean value indicating success or failure of call to set the line of
text. If Line is greater than the number of current lines in the comment, the call will
fail.

expression: Required expression that evaluates to a PC-DMIS Comment object.

Line: Required Long representing the line of text to be set.

Text: Required String which is the text to be used to set the text for the line of the
comment.

DimData Object Overview
The DimData object is similar to a type define as follows:

Type DimData
Bonus as Double
Dev as Double
DevAngle as Double
Max as Double
Meas as Double
Min as Double
Minus as Double
Out as Double
Nom as Double
Plus as Double

End Type

It is be used to pass dimension information in automation functions that accept this
type

220 • Automation PC-DMIS Basic Language Reference

DimData Members

Properties

DimData.Bonus
Represents the Bonus member of this object. Read/write Double.

DimData.Dev
Represents the Dev member of this object. Read/write Double.

Remarks

The Dev member is the default property.

DimData.DevAngle
Represents the DevAngle member of this object. Read/write Double.

DimData.Max
Represents the Max member of this object. Read/write Double.

DimData.Meas
Represents the Meas member of this object. Read/write Double.

DimData.Min
Represents the Min member of this object. Read/write Double.

DimData.Minus
Represents the Minus member of this object. Read/write Double.

DimData.Out
Represents the Out member of this object. Read/write Double.

DimData.Nom
Represents the Nom member of this object. Read/write Double.

DimData.Plus
Represents the Plus member of this object. Read/write Double.

DimensionCommand Object Overview
Objects of type DimensionCommand are created from more generic Command
objects to pass information specific to the dimension command back and forth.

PC-DMIS Basic Language Reference Automation • 221

DimensionCommand Members

Properties:

DimensionCommand.Angle
Represents the theoretical angle of a DIMENSION_ANGULARITY dimension.
Read/Write Double.

Remarks

This function only works for objects of type DIMENSION_ANGULARITY. If used
on any other object type, setting this variable will do nothing, and getting this
variable will return zero.

DimensionCommand.ArrowMultiplier
Multiplier for display arrows of dimension. Read/Write Double.

DimensionCommand.Axis
Axis used with dimension. Possible values include the following:

DIMAXIS_NONE

DIMAXIS_XAXIS

DIMAXIS_YAXIS

DIMAXIS_ZAXIS

Read/Write Enum_Dim_AxisType Enumeration.

Remarks

This function only works with dimensions that can accept an axis as one of the
inputs.

DimensionCommand.AxisLetter
Axis letter used to describe the axis or type of the dimension. Read only String.

DimensionCommand.Bonus
Returns the bonus tolerance of a true position dimension. Read-only Double.

Remarks

This function only works for single true position objects, i.e.,
DIMENSION_TRUE_Z_LOCATION, but not
DIMENSION_TRUE_START_POSITION or
DIMENSION_TRUE_END_POSITION. If used on any other object type, getting
this variable will return zero.

DimensionCommand.Deviation
Returns the deviation of a dimension. Read/Write Double.

DimensionCommand.DevAngle
Returns the deviation angle of a dimension. Read/Write Double.

222 • Automation PC-DMIS Basic Language Reference

DimensionCommand.GraphicalAnalysis
Flag indicating whether graphical analysis is ON for the dimension. Read/Write
Boolean.

DimensionCommand.ID
Returns the ID of a dimension. Read/Write String.

Remarks

For location and true position dimensions, only the start object has an id. For single
location or true position object, i.e., DIMENSION_TRUE_Z_LOCATION or
DIMENSION_Y_LOCATION, setting the ID property has no afffect and getting it
returns the empty string.

DimensionCommand.Feat1
Returns the ID of the first feature associated with a dimension. Read/Write String.

Remarks

For location and true position dimensions, only the start object has an associated
feature. For single location or true position object, i.e.,
DIMENSION_TRUE_Z_LOCATION or DIMENSION_Y_LOCATION, setting the
Feat1 property has no afffect and getting it returns the empty string. Also, objects of
type DIMENSION_KEYIN have no associated features.

DimensionCommand.Feat2
Returns the ID of the second feature associated with a dimension. Read/Write
String.

Remarks

Not every dimension type has two features associated with it. Trying to set the Feat2
property of one of these types has no effect, and getting it returns the empty string.

DimensionCommand.Feat3
Returns the ID of the second feature associated with a dimension. Read/Write
String.

Remarks

Not every dimension type has three features associated with it. Trying to set the
Feat3 property of one of these types has no effect, and getting it returns the empty
string.

DimensionCommand.Length
Returns the length associated with a dimension. Read/Write Double.

Remarks

Only object of type DIMENSION_ANGULARITY, DIMENSION_ANGULARITY,
DIMENSION_PERPENDICULARITY, and DIMENSION_PROFILE have a useful
length property. For all other types, setting the property has no effect, and getting it
always returns zero.

DimensionCommand.Nominal
Returns the nominal associated with a dimension. Read/Write Double.

PC-DMIS Basic Language Reference Automation • 223

Remarks

Only object of type DIMENSION_START_LOCATION,
DIMENSION_TRUE_START_POSITION do not have a useful nominal property.
For these types, setting the property has no effect, and getting it always returns zero.

DimensionCommand.Max
Returns the maximum value of a dimension. Read-only Double.

DimensionCommand.Measured
Returns the measured value of a dimension. Read-only Double.

DimensionCommand.Min
Returns the minimum value of a dimension. Read-only Double.

DimensionCommand.Minus
Represents the negative tolerance of a dimension. Read/write Double.

DimensionCommand.OutputMode
Output mode of the dimension. Possible values include the following:

DIMOUTPUT_STATS

DIMOUTPUT_REPORT

DIMOUTPUT_BOTH

Read/Write Enum_Dim_OutputType Enumeration.

Remarks

The output mode determines where to send dimension data during execution.

DimensionCommand.OutTol
Returns the out-of-tolerance value of a dimension. Read-only Double.

DimensionCommand.ParallelPerpindicular
Indicates whether calculations are performed parallel or perpindicular to input for 2-
D dimensions. Possible values include the following:

DIM_PERPINDICULAR

DIM_PARALLEL

Read/Write Enum_Dim_Perp_Parallel Enumeration.

DimensionCommand.Profile
Enumeration value indicating what type of profile should be used. Possible values
include the following:

DIM_PROF_FORM_ONLY

DIM_PROF_FORM_AND_LOCATION

Read/Write Enum_Dim_Prof_Type Enumeration.

DimensionCommand.Plus
Returns the positive tolerance of a dimension. Read-only Double.

224 • Automation PC-DMIS Basic Language Reference

DimensionCommand.Parent
Returns the parent Command object. Read-only.

Remarks

The parent of a DimensionCommand object is the same underlying PC-DMIS
object as the DimensionCommand object itself. Getting the parent allows you to
access the generic Command properties and methods of a given object.

DimensionCommand.RadiusType
Radius calculation type used with true position dimensions. Possible values include
the following:

DIM_NO_RADIUS

DIM_ADD_RADIUS

DIM_SUB_RADIUS

Read/Write Enum_Dim_Radius_Type Enumeration.

DimensionCommand.TextualAnalysis
Flag indicating whether textual analysis is ON for the dimension. Read/Write
Boolean.

DimensionCommand.TruePositionModifier
Enumeration value indicating material conditions that should be used to calculate
possible bonus tolerances. Possible values include the following:

DIM_RFS_RFS

DIM_RFS_MMC

DIM_RFS_LMC

DIM_MMC_RFS

DIM_MMC_MMC

DIM_MMC_LMC

DIM_LMC_RFS

DIM_LMC_MMC

DIM_LMC_LMC

Read/Write Enum_Dim_TP_Modifier Enumeration.

DimensionCommand.TruePosUseAxis
Enumeration value indicating axis type to use with true position dimension. Possible
values include the following:

DIM_AXIS_AVERAGE

DIM_AXIS_START_POINT

DIM_AXIS_END_POINT

Read/Write Enum_Dim_TP_Use_Axis Enumeration.

DimensionCommand.UnitType
Unit type in use by dimension. Possible values include the following:

INCH

PC-DMIS Basic Language Reference Automation • 225

MM (for millimeters)

Read/Write UnitType Enumeration.

Dimension Format Object Overview
The Dimension Format Automation object gives access to the properties of the PC-
DMIS Dimension Format command. For additional information on dimensions, see
the topic "Dimension Options" in the PC-DMIS Reference Manual.

Dimension Format Members

Properties:

DimFormat.ShowDevSymbols
BOOLEAN value representing whether deviation symbols should be shown in the
dimension report text.

Read/Write Boolean

DimFormat.ShowDimensionText
BOOLEAN value indicating whether the top two lines of the dimension command
should appear or not.

Read/Write Boolean

DimFormat.ShowDimensionTextOptions
BOOLEAN value indicating whether various dimension such as arrow multiplier,
graphical analysis, and textual analysis should appear in the dimension text or not.

Read/Write Boolean

DimFormat.ShowHeadings
BOOLEAN value indicating whether the dimension headings such as NOM, MAX,
MIN, DEV, OUTTOL, etc. should appear in the dimension text or not.

Read/Write Boolean

Dimension Format Object Overview

DimFormat.ShowStdDev
BOOLEAN value indicating whether the standard deviation value should appear or
not.

Read/Write Boolean

Methods:

DimFormat.GetHeadingType
Syntax:

226 • Automation PC-DMIS Basic Language Reference

expression.GetHeadingType (Index)

Return Value: DimFormatType Enumeration value indicating the dimension
information type of the position indicated by the index parameter.

Possible values include the following:

PCD_NOT_USED = 0

PCD_NOM = 1

PCD_TOL = 2

PCD_MEAS = 3

PCD_MAXMIN = 4

PCD_DEV = 5

PCD_OUTTOL = 6

expression: Required expression that evaluates to a PC-DMIS Dimension Format
object.

Index: Required Long representing which index position to retrieve.

DimFormat.SetHeadingType
Syntax:

expression.SetHeadingType (Index, HeadingType)

Return Value: Boolean indicating success or failure in setting the heading type.

expression: Required expression that evaluates to a PC-DMIS Dim Format object.

Index: Required long indicating the index position that is being set.

HeadingType: Required DimFormatType Enumeration representing the type of
value to be used at the given index position.

Possible values include the following:

PCD_NOT_USED = 0

PCD_NOM = 1

PCD_TOL = 2

PCD_MEAS = 3

PCD_MAXMIN = 4

PCD_DEV = 5

PCD_OUTTOL = 6

Dimension Information Object Overview
The Dimension Information Automation object gives access to the properties and
methods of the PC-DMIS Dimension Information command. See "DIMINFO
Command" in the PC-DMIS Reference Manual for additional information.

PC-DMIS Basic Language Reference Automation • 227

Dimension Information Members

Properties:

DimInfo.DimensionID
STRING value representing the name of the dimension for which the dimension
information object will be showing information.

Read/Write String

DimInfo.ShowDimensionID
BOOLEAN value indicating whether the Dimension ID should be shown in the
dimension information object.

Read/Write Boolean

DimInfo.ShowFeatID
BOOLEAN value indicating whether to display the feature id of the feature
belonging to the dimension used in the dimension information command.

Read/Write Boolean

Methods:

DimInfo.GetFieldFormat
Syntax:

expression.GetFieldFormat (Index)

Return Value: Enum_Dinfo_Field_Types Enumeration value indicating the
dimension information type of the position indicated by the index parameter.

Possible values include the following:

DINFO_NOT_USED = 0

DINFO_MEAS = 1

DINFO_NOM = 2

DINFO_TOL = 3

DINFO_DEV = 4

DINFO_MAXMIN = 5

DINFO_OUTTOL = 6

DINFO_MEAN = 7

DINFO_STDDEV = 8

DINFO_NUMPOINTS = 9

expression: Required expression that evaluates to a PC-DMIS Dimension
Information object.

Index: Required Long representing which index position to retrieve.

DimInfo.GetLocationAxis
Syntax:

228 • Automation PC-DMIS Basic Language Reference

expression.GetLocationAxis (Index)

Return Value: Enum_Dinfo_Loc_Axes Enumeration value indicating the dimension
location axis order used at the position indicated by the index parameter. This
function only works if the dimension being referenced in the command is an axis
location dimension.

Possible values include the following:

DINFO_LOC_USE_DIM_AXES = -2

DINFO_LOC_WORST = -1

DINFO_LOC_NOT_USED = 0

DINFO_LOC_X = 1

DINFO_LOC_Y = 2

DINFO_LOC_Z = 3

DINFO_LOC_D = 4

DINFO_LOC_R = 5

DINFO_LOC_V = 6

DINFO_LOC_A = 7

DINFO_LOC_L = 8

DINFO_LOC_H = 9

DINFO_LOC_PR = 10

DINFO_LOC_PA = 11

DINFO_LOC_T = 12

DINFO_LOC_RT = 13

DINFO_LOC_S = 14

DINFO_LOC_RS = 15

DINFO_LOC_PD = 16

expression: Required expression that evaluates to a PC-DMIS Dimension
Information object.

Index: Required Long representing which index position to retrieve.

DimInfo.GetTruePosAxis
Syntax:

expression.GetTruePosAxis (Index)

Return Value: Enum_Dinfo_TP_Axes Enumeration value indicating the dimension
true position axis order used at the position indicated by the index parameter. This
command only works with dimension information commands that are referencing
true position dimensions.

Possible values include the following:

DINFO_TP_USE_DIM_AXES = -2

DINFO_TP_WORST = -1

DINFO_TP_NOT_USED = 0

DINFO_TP_X = 1

DINFO_TP_Y = 2

DINFO_TP_Z = 3

DINFO_TP_PR = 4

PC-DMIS Basic Language Reference Automation • 229

DINFO_TP_PA = 5

DINFO_TP_DD = 6

DINFO_TP_LD = 7

DINFO_TP_WD = 8

DINFO_TP_DF = 9

DINFO_TP_LF = 10

DINFO_TP_WF = 11

DINFO_TP_TP = 12

expression: Required expression that evaluates to a PC-DMIS Dimension
Information object.

Index: Required Long representing which index position to retrieve.

DimInfo.SetFieldFormat
Syntax:

expression.SetFieldFormat (Index, FieldType)

Return Value: Boolean indicating success or failure in setting the field type.

expression: Required expression that evaluates to a PC-DMIS Dim Information
object.

Index: Required long indicating the index position that is being set.

FieldType: Required Enum_Dinfo_Field_Types Enumeration representing the
type of value used at the given index position.

Possible values include the following:

DINFO_NOT_USED = 0

DINFO_MEAS = 1

DINFO_NOM = 2

DINFO_TOL = 3

DINFO_DEV = 4

DINFO_MAXMIN = 5

DINFO_OUTTOL = 6

DINFO_MEAN = 7

DINFO_STDDEV = 8

DINFO_NUMPOINTS = 9

DimInfo.SetLocationAxis
Syntax:

expression.SetFieldFormat (Index, Axis)

Return Value: Boolean indicating success or failure in setting the field type.
Dimension needs to be a location dimension in order for this command to succeed.

expression: Required expression that evaluates to a PC-DMIS Dim Information
object.

Index: Required long indicating the index position that is being set.

Axis: Required Enum_Dinfo_Loc_Axes Enumeration representing the type the
axis used at the given index position.

230 • Automation PC-DMIS Basic Language Reference

Possible values include the following:

DINFO_LOC_USE_DIM_AXES = -2

DINFO_LOC_WORST = -1

DINFO_LOC_NOT_USED = 0

DINFO_LOC_X = 1

DINFO_LOC_Y = 2

DINFO_LOC_Z = 3

DINFO_LOC_D = 4

DINFO_LOC_R = 5

DINFO_LOC_V = 6

DINFO_LOC_A = 7

DINFO_LOC_L = 8

DINFO_LOC_H = 9

DINFO_LOC_PR = 10

DINFO_LOC_PA = 11

DINFO_LOC_T = 12

DINFO_LOC_RT = 13

DINFO_LOC_S = 14

DINFO_LOC_RS = 15

DINFO_LOC_PD = 16

DimInfo.SetTruePosAxis
Syntax:

expression.SetTruePosAxis (Index, Axis)

Return Value: Boolean indicating success or failure in setting the field type.
Dimension needs to be a true position dimension in order for this command to
succeed.

expression: Required expression that evaluates to a PC-DMIS Dim Information
object.

Index: Required long indicating the index position that is being set.

Axis: Required Enum_Dinfo_TP_Axes Enumeration representing the type the axis
used at the given index position.

Possible values include the following:

DINFO_TP_USE_DIM_AXES = -2

DINFO_TP_WORST = -1

DINFO_TP_NOT_USED = 0

DINFO_TP_X = 1

DINFO_TP_Y = 2

DINFO_TP_Z = 3

DINFO_TP_PR = 4

DINFO_TP_PA = 5

DINFO_TP_DD = 6

DINFO_TP_LD = 7

DINFO_TP_WD = 8

PC-DMIS Basic Language Reference Automation • 231

DINFO_TP_DF = 9

DINFO_TP_LF = 10

DINFO_TP_WF = 11

DINFO_TP_TP = 12

Display Metafile Object Overview
The Display Metafile Automation object gives access to the comment properties of
the PC-DMIS Display Metafile command.

Display Metafile Members

Properties:

DispMetafile.Comment
STRING value representing the comment to be used as a caption for the metafile
object.

Read/Write String

DmisDialog Object Overview
The DmisDialog object represents a PC-DMIS modeless dialog and can be used to
determine if the dialog is still visible. A DmisDialog object can be obtained from the
Dialog2 method of the command automation object. This object has one property:
visible.

If true, the dialog is still visible to the user. If false, the dialog either no longer exists
or is no longer visible to the user.

DmisDialog Members

DmisDialog Members

Properties:

DmisDialog.Visible
Indicates whether the dialog is still visible to the user.

Read Only: Boolean

DmisMatrix Object Overview
The DmisMatrix object is a four by three array of doubles modeled after the
transformation matrices used in PC-DMIS. The first set of three doubles represent
the matrix offset. The second set of three doubles represent the X axis. The third set

232 • Automation PC-DMIS Basic Language Reference

of three doubles represent the Y axis. The fourth set of three doubles represent the Z
axis.

DmisMatrix Members

Properties:

DmisMatrix.Copy
Returns a copy of the matrix.

Read Only: DmisMatrix

DmisMatrix.Inverse
Returns an inverse matrix of the current matrix.

Read Only: DmisMatrix

DmisMatrix.IsIdentity
BOOLEAN property set to true if the matrix is the identity matrix.

Read Only: Boolean

DmisMatrix.OffsetAxis
The first set of three doubles in the matrix representing the translation offset of the
matrix.

Read/Write: PointData

DmisMatrix.XAxis
The second set of three doubles in the matrix representing the XAxis.

Read/Write PointData

DmisMatrix.YAxis
The third set of three doubles in the matrix representing the YAxis.

Read/Write PointData

DmisMatrix.ZAxis
The fourth set of three doubles in the matrix representing the ZAxis.

Read/Write PointData

Methods:

DmisMatrix.Item
Syntax:

expression.Item (Num)

expression: Required expression that evaluates to a PC-DMIS DmisMatrix object.

PC-DMIS Basic Language Reference Automation • 233

Num: Required parameter of type long between 1 and 12 inclusive from which the
matrix data is copied.

Return Value:
Data item of matrix of type double.

DmisMatrix.Multiply
Syntax:

expression.Multiply (SecondMatrix)

expression: Required expression that evaluates to a PC-DMIS DmisMatrix object.

SecondMatrix: Required paramter of type DmisMatrix representing the second
matrix.

Return Value:

Matrix that is the result of multiplying the two matrices of type DmisMatrix.

DmisMatrix.Normalize
Syntax:

expression.Normalize ()

expression: Required expression that evaluates to a PC-DMIS DmisMatrix object.

Remarks

Normalizes the matrix.

DmisMatrix.Reset
Syntax:

expression.Reset ()

expression: Required expression that evaluates to a PC-DMIS DmisMatrix object.

Remarks

Resets the matrix to the identity matrix.

DmisMatrix.RotateByAngle
Syntax:

expression.RotateByAngle (Angle, Workplane)

expression: Required expression that evaluates to a PC-DMIS DmisMatrix object.

Angle: Required Double parameter representing the rotation angle (in degrees).

Workplane: Optional Long parameter used to define which axis to rotate about.
Defaults to PCD_TOP.

Remarks

Rotates the matrix by the specified angle relative to the workplane.

DmisMatrix.RotateToPoint
Syntax:

expression.RotateToPoint (X, Y, Workplane)

expression: Required expression that evaluates to a PC-DMIS DmisMatrix object.

234 • Automation PC-DMIS Basic Language Reference

X: Required Double X component used in calculating rotation angle.

Y: Required Double Y component used in calculation rotation angle.

Workplane: Optional Long parameter used to define which axis to rotate about.
Defaults to PCD_TOP.

Remarks

Rotates the matrix by the calculated angle relative to the workplane.

DmisMatrix.RotateToVector
Syntax:

expression.RotateToVector (Vector, Workplane)

expression: Required expression that evaluates to a PC-DMIS DmisMatrix object.

Vector: Required Pointdata parameter specifying the vector that the primary axis
should be rotated to.

Workplane: Optional Long parameter used to define which axis to rotate about.
Defaults to PCD_TOP.

Remarks

Rotates the primary axis (as determined by the workplane parameter) to the specified
vector.

DmisMatrix.SetMatrix
Syntax:

expression.SetMatrix (Vector, Point, Workplane)

expression: Required expression that evaluates to a PC-DMIS DmisMatrix object.

Vector: Required Pointdata parameter used with the workplane parameter to
establish the orientation of the matrix.

Point: Required Pointdata parameter used to set the matrix offset.

Workplane: Optional Long parameter used to define the direction of the primary
axis.

Remarks

Initializes the matrix using the vector and workplane to set the matrix orientation and
the point to set the matrix offset.

DmisMatrix.TransformDataBack
Syntax:

expression.TransformDataBack (PointData,
TransformationType, Workplane)

expression: Required expression that evaluates to a PC-DMIS DmisMatrix object.

PointData: Required PointData object parameter that is modifed by multiplying the
data in the point by the inverse of the matrix.

TransformationType: Optional Long parameter that identifies the type of
transformation desired. The following options are available:

ROTATE_AND_TRANSLATE = 0

ROTATE_ONLY = 1

PC-DMIS Basic Language Reference Automation • 235

MAJOR_MINOR_THIRD_ROT_AND_TRANS = 2

MAJOR_MINOR_THIRD_ROTATE_ONLY = 3

The default is ROTATE_AND_TRANSLATE.

Workplane: Optional Long parameter used to define which axis to rotate about.
Defaults to PCD_TOP. This parameter is used when the
MAJOR_MINOR_THIRD_ROT_AND_TRANS parameter or the
MAJOR_MINOR_THIRD_ROTATE_ONLY transformation type parameter is used.

DmisMatrix.TransformDataForward
Syntax:

expression.TransformDataForward (PointData,
TransformationType, Workplane)

expression: Required expression that evaluates to a PC-DMIS DmisMatrix object.

PointData: Required PointData object parameter that is modifed by multiplying the
data in the point by the matrix.

TransformationType: Optional Long parameter that identifies the type of
transformation desired. The following options are available:

ROTATE_AND_TRANSLATE = 0

ROTATE_ONLY = 1

MAJOR_MINOR_THIRD_ROT_AND_TRANS = 2

MAJOR_MINOR_THIRD_ROTATE_ONLY = 3

The default is ROTATE_AND_TRANSLATE.

Workplane: Optional Long parameter used to define which axis to rotate about.
Defaults to PCD_TOP. This parameter is used when the
MAJOR_MINOR_THIRD_ROT_AND_TRANS parameter or the
MAJOR_MINOR_THIRD_ROTATE_ONLY transformation type parameter is used.

EditWindow Object Overview
The EditWindow object represents the edit window associated with a part program.
It is always present, although sometimes it is invisible. When in command mode, the
edit window lists all the commands in the part program. When in report mode, the
edit window lists the part program’s current report.

EditWindow Class Members

Properties:

EditWindow.Application
Represents the read-only PC-DMIS application. The Application object includes
properties and methods that return top-level objects. For example, the
ActivePartProgram property returns a PartProgram object.

EditWindow.Height
The height of the edit window in screen pixels. Read/Write Long.

236 • Automation PC-DMIS Basic Language Reference

EditWindow.Left
The left edge of the edit window, measured from the left edge of the Windows
Desktop. Read/Write Long.

Remarks

The Left property is measured in screen pixels.

EditWindow.Parent
Returns the parent PartProgram of this object. Read-only PartProgram.

EditWindow.ShowAlignments
This property is TRUE if alignments are being shown in the edit window, FALSE
otherwise. Read/Write Boolean.

EditWindow.ShowComments
This property is TRUE if comments are being shown in the edit window, FALSE
otherwise. Read/Write Boolean.

EditWindow.ShowDimensions
This property is TRUE if dimensions are being shown in the edit window, FALSE
otherwise. Read/Write Boolean.

EditWindow.ShowFeatures
This property is TRUE if features are being shown in the edit window, FALSE
otherwise. Read/Write Boolean.

EditWindow.ShowHeaderFooter
This property is TRUE if headers and footers are being shown in the edit window,
FALSE otherwise. Read/Write Boolean.

EditWindow.ShowHits
This property is TRUE if hits are being shown in the edit window, FALSE
otherwise. Read/Write Boolean.

EditWindow.ShowMoves
This property is TRUE if moves are being shown in the edit window, FALSE
otherwise. Read/Write Boolean.

EditWindow.ShowOutTolOnly
This property is TRUE if only out-of-tolerance dimensions are being shown in the
edit window, FALSE otherwise. If ShowDimensions is FALSE, this property is
ignored. Read/Write Boolean.

EditWindow.ShowTips
This property is TRUE if tips are being shown in the edit window, FALSE
otherwise. Read/Write Boolean.

PC-DMIS Basic Language Reference Automation • 237

EditWindow.StatusBar
This property represents the text in the edit window’s status bar. Read-Write String.

EditWindow.Top
The top edge of the edit window, measured from the top edge of the Windows
Desktop. Read/Write Long.

Remarks

The Top property is measured in screen pixels.

EditWindow.Visible
This property is TRUE if the edit window is visible, FALSE otherwise. Read/write
Boolean.

EditWindow.Width
The width of the edit window in screen pixels. Read/Write Long.

Methods:

EditWindow.CommandMode
Syntax

expression.CommandMode

expression: Required expression that evaluates to a PC-DMIS EditWindow object.

This function puts the Edit window into command mode.

EditWindow.Print
Syntax

expression.Print

expression: Required expression that evaluates to a PC-DMIS EditWindow object.

This function prints the contents of the Edit window.

EditWindow.ReportMode
Syntax

expression.ReportMode

expression: Required expression that evaluates to a PC-DMIS EditWindow object.

This function puts the Edit window into report mode.

EditWindow.SetPrintOptions
Syntax

expression.SetPrintOptions long Location, long Draft, long FileMode, long
ExtNum

expression: Required expression that evaluates to a PC-DMIS EditWindow object.

Location: Destination of printed data. Options include Off, File, or Printer

238 • Automation PC-DMIS Basic Language Reference

Draft: When destination is printer, specifies if printer should print in draft mode or
not. Options include On and Off.

FileMode: When destination is file, specifies file naming and writing parameters.
Options include: Append, New File, Overwrite, and Auto. Auto mode automatically
increments a numeric extension for the output file.

ExtNum: Number to be used for the file extension of the output file.

This function puts the Edit window into report mode.

ExternalCommand Object Overview
The external command object causes PC-DMIS to launch an external program during
part program execution. This object has one property: The command property. This
property consists of a string value used to execute the external command.

ExternalCommand Members

Properties:

ExtCommand.Command
String value which is the command to be executed. This string should be in the same
format as a string entered into Window’s Run Dialog box (i.e. The string should
include full pathname and executable name of the external command to be executed).

Read/Write String

FeatCommand Object Overview
Objects of type FeatCommand are created from more generic Command objects to
pass information specific to the feature command back and forth.

FeatCommand Members

Properties:

FeatCommand.AlignWorkPlane
Workplane value for constructed alignment planes and lines. Possible values include
the following:

ALIGN_ZPLUS = 0

ALIGN_ZMINUS = 1

ALIGN_XPLUS = 2

ALIGN_XMINUS = 3

ALIGN_YPLUS = 4

ALIGN_YMINUS = 5

PC-DMIS Basic Language Reference Automation • 239

ALIGN_CURRENT_WORKPLANE = 6

Enum_Align_WorkPlane Enumeration Read/Write.

Remarks

This property applies only to PC-DMIS constructed features that have a workplane
field.

FeatCommand.AutoCircularMove
Flag indicating whether circular moves should be used between hits. Boolean
Read/Write.

Remarks

This property applies only to PC-DMIS commands that have an auto circular move
field.

FeatCommand.AutoClearPlane
Flag indicating whether clearance planes should automatically be used with the
feature. Boolean Read/Write.

Remarks

This property applies only to PC-DMIS commands that have an auto clearplane field.

FeatCommand.AutoMove
Auto Move Flag. Boolean Read/Write.

Remarks

This property applies only to PC-DMIS commands that have an auto move field.

FeatCommand.AutoMoveDistance
Distance used in calculating auto move. Double Read/Write.

Remarks

This property applies only to PC-DMIS commands that have an auto move distance
field.

FeatCommand.AutoPH9
Flag indicating if selected tip should be automatically adjusted during measurement
of feature. Boolean Read/Write.

Remarks

This property applies only to PC-DMIS commands that have an AutoPH9 field.

FeatCommand.AutoReadPos
Auto Read Position Flag. Boolean Read/Write.

Remarks

This property applies only to PC-DMIS commands that have an auto read pos field.

FeatCommand.BestFitMathType
Value representing the best fit math algorithm to be used in calculating the measured
feature values based on the measured hits. Possible values include the following.

240 • Automation PC-DMIS Basic Language Reference

BF_MATH_LEAST_SQUARES = 0

BF_MATH_MIN_SEPARATION = 1

BF_MATH_MAX_INSCRIBED = 2

BF_MATH_MIN_CIRCUMSCRIBED = 3

BF_MATH_FIXED_RADIUS = 4

ENUM_BEST_FIT_MATH_TYPES Enumeration Read/Write.

Remarks

This property applies only to the circle and cylinder measured features and best fit
constructed features.

FeatCommand.Bound
Flag indicating whether or not feature is bound. Boolean Read/Write.

Remarks

This property applies only to PC-DMIS commands that have a bound/unbound field.

FeatCommand.BoxWidth
Box width value for auto high point. Double Read/Write.

Remarks

This property is only applicable for the PC-DMIS auto high point command.

FeatCommand.BoxLength
Box length value for auto high point. Double Read/Write.

Remarks

This property is only applicable for the PC-DMIS auto high point command.

FeatCommand.CircularRadiusIn
Inside circular radius value for auto high point. Double Read/Write.

Remarks

This property is only applicable for the PC-DMIS auto high point command.

FeatCommand.CircularRadiusOut
Outside circular radius value for auto high point. Double Read/Write.

Remarks

This property is only applicable for the PC-DMIS auto high point command.

FeatCommand.CornerRadius
Corner radius value for auto square slot and auto notch objects. Double Read/Write.

Remarks

This property is only applicable for the PC-DMIS auto square slot and auto notch
commands.

PC-DMIS Basic Language Reference Automation • 241

FeatCommand.DCCFindNomsMode
Boolean read/write value that indicates if the measurement mode for an auto feature
should be done in find nominals mode or not.

Remarks

This property applies only to PC-DMIS auto features with a find nominals
measurement field.

FeatCommand.DCCMeasureInMasterMode
Boolean read/write value that indicates if the measurement mode for an auto feature
should be done in master mode or not.

Remarks

This property applies only to PC-DMIS auto features with a master mode
measurement field.

FeatCommand.Depth
Depth value. Double Read/Write.

Remarks

This property applies only to PC-DMIS commands that have a depth field.

FeatCommand.Deviation
Auto sphere deviation value. Double Read/Write.

Remarks

This property applies only to the PC-DMIS auto sphere command.

FeatCommand.DisplayConeAngle
Flag indicating whether or not to display the angle of the cone. If this value is false,
then the cone length is displayed. Boolean Read/Write.

Remarks

This property applies only to PC-DMIS cone commands that have a display option
on angle vs. length.

FeatCommand.EdgeMeasureOrder
Measure order for edge points. Possible values include the following.

EDGE_SURFACE_FIRST = 0

EDGE_EDGE_FIRST = 1

EDGE_BOTH =2

Edge_Measure_Types Enumeration Read/Write.

Remarks

This property applies only to PC-DMIS edge commands.

FeatCommand.EdgeThickness
Thickness value for edge points. Double Read/Write.

242 • Automation PC-DMIS Basic Language Reference

Remarks

This property is only applicable for PC-DMIS edge commands.

FeatCommand.EndAngle
End Angle value. Double Read/Write.

Remarks

This property applies only to PC-DMIS commands that have an end angle field.

FeatCommand.EndAngle2
Second End Angle value. Double Read/Write.

Remarks

This property applies only to PC-DMIS commands that have a second end angle
field.

FeatCommand.FilterType
Filter object filter type. Possible values include the following:

FILTER_LINEAR = 0

FILTER_POLAR = 1

Enum_Filter_Types Enumeration Read/Write.

Remarks

This property is only applicable for the PC-DMIS filter command.

FeatCommand.GenericAlignMode
Generic alignment mode. Possible values include the following:

GENERIC_ALIGN_DEPENDENT =0

GENERIC_ALIGN_INDEPENDENT =1

Enum_Generic_Align Enumeration Read/Write.

Remarks

This property is only applicable for the PC-DMIS generic feature command.

FeatCommand.GenericDisplayMode
Generic display mode. Possible values include the following:

GENERIC_DISPLAY_RADIUS = 0

GENERIC_DISPLAY_DIAMETER = 1

Enum_Generic_Display Enumeration Read/Write.

Remarks

This property is only applicable for the PC-DMIS generic feature command.

FeatCommand.GenericType
Generic feature type. Possible values include the following:

GENERIC_POINT = 0

GENERIC_PLANE = 1

PC-DMIS Basic Language Reference Automation • 243

GENERIC_LINE = 2

GENERIC_CIRCLE = 3

GENERIC_SPHERE = 4

GENERIC_CYLINDER = 5

GENERIC_ROUND_SLOT = 6

GENERIC_SQUARE_SLOT = 7

GENERIC_CONE = 8

GENERIC_NONE = 9

Enum_Generic_Types Enumeration Read/Write.

Remarks

This property is only applicable for the PC-DMIS generic feature command.

FeatCommand.HighPointSearchMode
Search mode for auto high point. Possible values include the following:

SEARCH_MODE_BOX = 0

SEARCH_MODE_CIRCULAR = 1

High_Point_Search_Modes Enumeration Read/Write.

Remarks

This property is only applicable for the PC-DMIS auto high point command.

FeatCommand.ID
Represents the ID of the feature. Read/Write String.

Remarks

The IDs of the various objects in a part program should be unique.

FeatCommand.Increment
Increment value for auto high point. Double Read/Write.

Remarks

This property is only applicable for the PC-DMIS auto high point command.

FeatCommand.Indent
Indent distance (used with sample hits). Double Read/Write.

Remarks

This property applies only to PC-DMIS commands that have an indent field.

FeatCommand.Indent2
Second indent distance (used with sample hits). Double Read/Write.

Remarks

This property applies only to PC-DMIS commands that have a second indent field.

FeatCommand.Indent3
Third indent distance (used with sample hits). Double Read/Write.

244 • Automation PC-DMIS Basic Language Reference

Remarks

This property applies only to PC-DMIS commands that have a third indent field.

FeatCommand.InitHits
Number of intitial sample hits. Double Read/Write.

Remarks

This property applies only to PC-DMIS commands that have an init hits field.

FeatCommand.Inner
Boolean read/write value that indicates whether the feature is a hole (inner) or a stud
(outer).

Remarks

This property applies only to PC-DMIS commands that can be either inside or
outside features.

FeatCommand.InteriorHit
Flag used to indicate type of hit for objects that can have interior/exterior hits.
Boolean Read/Write.

Remarks

This property applies only to PC-DMIS commands that have an interior/exterior hit
field.

FeatCommand.Line3D
Boolean read/write value that indicates whether the feature is a three dimensional
line or a two dimensional line. A value of false indicates a two dimensional line.

Remarks

This property applies only to PC-DMIS lines features with and 2D/3D field.

FeatCommand.MeasAngle
Measured angle value. Double Read Only.

Remarks

This property applies only to PC-DMIS commands that have an angle field.

FeatCommand.MeasDiam
Measured diameter value. Double Read Only.

Remarks

This property applies only to PC-DMIS commands that have a diameter field.

FeatCommand.MeasHeight
Measured height value. Double Read Only.

Remarks

This property applies only to PC-DMIS commands that have a height field.

PC-DMIS Basic Language Reference Automation • 245

FeatCommand.MeasMajorAxis
Measured major axis length value (ellipse). Double Read only.

Remarks

This property applies only to PC-DMIS commands that have a major axis field.

FeatCommand.MeasMinorAxis
Measured minor axis length value (ellipse). Double Read Only.

Remarks

This property applies only to PC-DMIS commands that have a minor axis field.

FeatCommand.MeasLength
Measured length value. Double Read Only.

Remarks

This property applies only to PC-DMIS commands that have a length field.

FeatCommand.MeasPinDiam
Measured pin diameter value. Double Read Only.

Remarks

This property applies only to PC-DMIS commands that have a pin diameter field.

FeatCommand.MeasSmallLength
Measured shorter length value. Double Read Only.

Remarks

This property applies only to PC-DMIS commands that have a small length field.

FeatCommand.MeasureSlotWidth
Flag indicating whether the slot width should be measured. Boolean Read/Write.

Remarks

This property applies only to PC-DMIS commands that have a measure slot width
flag.

FeatCommand.NumHits
Represents the number of inputs in the feature. Read/Write Long.

Remarks

If this feature is constructed, it reports the number of input features.

FeatCommand.NumHitsPerRow
Represents the number of hits on each row of the feature. Read/Write Long.

Remarks

You can use this variable only with features that have rows (such as spheres and
cylinders).

246 • Automation PC-DMIS Basic Language Reference

FeatCommand.NumRows
Represents the number of rows in the feature. Read/Write Long.

Remarks

You can use this variable only with features that have rows (such as spheres and
cylinders).

FeatCommand.Parent
Returns the parent Command object. Read-only.

Remarks

The parent of a FeatCommand object is the same underlying PC-DMIS object as
the FeatCommand object itself. Getting the parent allows you to access the generic
Command properties and methods of a given object.

FeatCommand.PermHits
Number of permanent sample hits. Double Read/Write.

Remarks

This property applies only to PC-DMIS commands that have a permanent hits field.

FeatCommand.Polar
Flag indicating whether polar coordinates are used on the feature. Usually defaults to
false. Boolean Read/Write.

Remarks

This property applies only to PC-DMIS commands that have support for polar
coordinates.

FeatCommand.ReferenceType
Reference type used with measured circles and measured lines.
ENUM_FEATREF_TYPES Enumeration Read/Write.

Remarks

This property applies only to PC-DMIS measured line and measured circle
commands. Possible value include the following:

FEATREF_FEATURE = -3 (Use ReferenceID Property to specify
feature)

FEATREF_3D = -2, (Feature is a 3D feature, no projections)

FEATREF_CURRENT_WORKPLANE = -1,

FEATREF_ZPLUS = 0,

FEATREF_XPLUS = 1,

FEATREF_YPLUS = 2,

FEATREF_ZMINUS = 3,

FEATREF_XMINUS = 4,

FEATREF_YMINUS = 5

PC-DMIS Basic Language Reference Automation • 247

FeatCommand.ReferenceID
ID of the feature to be used when the "ReferenceType" property is set to
FEATREF_FEATURE. This property is used with measured lines or measured
circles. String Read/Write.

Remarks

This property applies only to measured lines and circles that have the projection
reference type set to feature.

FeatCommand.RMeasFeature
ID of the feature to be used for relative measurement. String Read/Write.

Remarks

This property applies only to PC-DMIS commands that support relative
measurement

FeatCommand.Spacer
Spacer distance (Usually used with sample hits). Double Read/Write.

Remarks

This property applies only to PC-DMIS commands that have a spacer field.

FeatCommand.StartAngle
Start Angle value. Double Read/Write.

Remarks

This property applies only to PC-DMIS commands that have a start angle field.

FeatCommand.StartAngle2
Second Start Angle value. Double Read/Write.

Remarks

This property applies only to PC-DMIS commands that have a second start angle
field.

FeatCommand.TheoAngle
Theoretical angle value. Double Read/Write.

Remarks

This property applies only to PC-DMIS commands that have an angle field.

FeatCommand.TheoDiam
Theoretical diameter value. Double Read/Write.

Remarks

This property applies only to PC-DMIS commands that have a diameter field.

FeatCommand.TheoHeight
Theoretical height value. Double Read/Write.

Remarks

248 • Automation PC-DMIS Basic Language Reference

This property applies only to PC-DMIS commands that have a height field.

FeatCommand.TheoLength
Theoretical length value. Double Read/Write.

Remarks

This property applies only to PC-DMIS commands that have a length field.

FeatCommand.TheoMajorAxis
Theoretical major axis length value (ellipse). Double Read/Write.

Remarks

This property applies only to PC-DMIS commands that have a major axis field.

FeatCommand.TheoMinorAxis
Theoretical minor axis length value (ellipse). Double Read/Write.

Remarks

This property applies only to PC-DMIS commands that have a minor axis field.

FeatCommand.TheoPinDiam
Theoretical pin diameter value. Double Read/Write.

Remarks

This property applies only to PC-DMIS commands that have a pin diameter field.

FeatCommand.TheoSmallLength
Theoretical shorter length value. Double Read/Write.

Remarks

This property applies only to PC-DMIS commands that have a small length field.

FeatCommand.Thickness
Sheet metal (material) thickness. Double Read/Write.

Remarks

This property applies only to PC-DMIS commands that have a thickness field.

FeatCommand.Tolerance
Tolerance value for auto high point. Double Read/Write.

Remarks

This property applies only to the PC-DMIS auto high point command.

FeatCommand.UsePin
Boolean read/write value indicating whether pin information should be used during
measurement.

Remarks

This property applies only to PC-DMIS commands that have a use pin field.

PC-DMIS Basic Language Reference Automation • 249

Methods:

FeatCommand.AddInputFeat
Syntax

Return Value=expression.AddInputFeat(ID)

Return Value: This method returns a boolean value. Boolean returns true if the
function succeeds, false if it fails.

expression: Required expression that evaluates to a PC-DMIS FeatCommand object
that represents a constructed feature.

ID: Required String that is the ID of the feature to add to the set of input features.

This function returns TRUE if the feature was successfully added to set of input
features of expression, FALSE otherwise.

Remarks

This function only tries to add ID to expression if the two features exist and ID
precedes expression in the command list. If expression is not a constructed feature,
this function will fail.

FeatCommand.GenerateHits
Syntax

Return Value=expression.GenerateHits

Return Value: This method returns a boolean value. Boolean returns true if the
function succeeds, false if it fails.

expression: Required expression that evaluates to a PC-DMIS FeatCommand object
that represents a measured feature.

This function returns TRUE if the hits were successfully added to expression,
FALSE otherwise.

Remarks

This function tries to add evenly spaced hits to expression. If expression is not a
measured feature, this function will fail.

FeatCommand.GetData
Syntax

Return Value=expression.GetData(PointData, DataType, TheoMeas,
CoordSystem, AlignID, Workplane)

Return Value: This method returns a boolean value. Boolean returns true if the
function succeeds, false if it fails.

expression: Required expression that evaluates to a PC-DMIS FeatCommand
object.

PointData: Required PointData object into which the data is stored.

DataType: Optional Long that is one of the following values: FDATA_CENTROID,
FDATA_VECTOR, FDATA_DIAMETER, FDATA_STARTPOINT, FDATA_MIDPOINT,
FDATA_ENDPOINT, FDATA_LENGTH, FDATA_MINOR_AXIS, FDATA_ANGLE,
FDATA_SURFACE_VECTOR, FDATA_THICKNESS, FDATA_SPACER, FDATA_INDENT,
FDATA_AUTO_MOVE_DISTANCE, FDATA_DEPTH, FDATA_ANGLE_VECTOR,
FDATA_PUNCH_VECTOR, FDATA_PIN_VECTOR, FDATA_PIN_DIAMETER,
FDATA_REPORT_VECTOR, FDATA_REPORT_SURF_VECTOR, FDATA_HEIGHT,

250 • Automation PC-DMIS Basic Language Reference

FDATA_MEASURE_VECTOR, FDATA_UPDATE_VECTOR, FDATA_SNAP_CENTROID,
FDATA_ANALOG_DEVIATIONS, FDATA_CORNER_RADIUS, FDATA_AB_ANGLES,
FDATA_ORG_HIT_VECTOR, FDATA_ANGLE2, FDATA_WIDTH, FDATA_MAJOR_AXIS, or
FDATA_SLOT_VECTOR

If no value is supplied, the default value is FDATA_CENTROID.

TheoMeas: Optional Long that is one of FDATA_THEO, FDATA_MEAS, or
FDATA_TARG.

If no value is supplied, the default value is FDATA_MEAS.

CoordSystem: Optional Long that denotes the coordinate system in which to report.
Values include FDATA_POLAR, FDATA_CAD, FDATA_PARTMM3, FDATA_MACHINE, and
FDATA_PART.If no value is supplied, the default value is FDATA_PART.

AlignID: Optional String that denotes what alignment to use. You can pass the
empty string to denote the current alignment.

If no value is supplied, the default value is an empty string which causes the current
alignment to be used.

Workplane: Optional Long. Used for the PARTMM3 and POLAR coordinate
system to denote the workplane to be used. Possible values include PCD_TOP,
PCD_BOTTOM, PCD_LEFT, PCD_RIGHT, PCD_FRONT, PCD_BACK.

If no value is supplied, the default value is PCD_TOP.

 This function returns TRUE if the data was successfully retrieved from expression,
FALSE otherwise.

Remarks

Not every data type can be used with every feature type. Some data types return a
single value, some data types return multiple values. Some data types return both
depending on the feature. For example, a cone will return two diameters in the first
and second data fields of the point object while only returning one diameter for a
circle object.Use the FDATA_THEO flag if you want theoretical data,
FDATA_MEAS if you want measured data.

FeatCommand.GetInputFeat
Syntax

Return Value=expression.GetInputFeat(Index)

expression: Required expression that evaluates to a PC-DMIS FeatCommand
object.

Index: Required Long between one and expression.NumHits

Return Value: If successful, this function returns the String ID of the input feature at
the specified index.

Remarks

When successful, this returns the ID of the input feature, otherwise it returns an
empty string.

FeatCommand.GetInputOffset
Syntax

Return Value=expression.GetInputOffset(Index)

expression: Required expression that evaluates to a PC-DMIS FeatCommand
object.

PC-DMIS Basic Language Reference Automation • 251

Index: Required Long between one and expression.NumHits

Return Value: If successful, this function returns the Double offset value.

Remarks

Use this function with constructed features that have offset values from input
features.

FeatCommand.GetHit
Syntax

Return Value=expression.GetHit(Index, DataType, TheoMeas,
CoordSystem, AlignID, Workplane)

Return Value: This method returns a Point Data object with the values of the hit.

expression: Required expression that evaluates to a PC-DMIS FeatCommand
object.

Index: The index number of the desired hit object to retrieve.

DataType: Optional Long that is one of the following values: FHITDATA_CENTROID,
FHITDATA_VECTOR, FHITDATA_BALLCENTER

If no value is supplied, the default value is FHITDATA_CENTROID.

TheoMeas: Optional Long that is one of FDATA_THEO, FDATA_MEAS, or
FDATA_TARG.

If no value is supplied, the default value is FDATA_MEAS.

CoordSystem: Optional Long that denotes the coordinate system in which to report.
Values include FDATA_POLAR, FDATA_CAD, FDATA_PARTMM3, FDATA_MACHINE, and
FDATA_PART.

If no value is supplied, the default value is FDATA_PART.

AlignID: Optional String that denotes what alignment to use. You can pass the
empty string to denote the current alignment.

If no value is supplied, the default value is an empty string which causes the current
alignment to be used.

Workplane: Optional Long. Used for the PARTMM3 and POLAR coordinate
system to denote the workplane to be used. Possible values include PCD_TOP,
PCD_BOTTOM, PCD_LEFT, PCD_RIGHT, PCD_FRONT, PCD_BACK.

If no value is supplied, the default value is PCD_TOP.

Remarks

Use this function to obtain hit information from individual objects. This command
works with objects that the hits are supplied by the user and with objects in which
the hits are generated by the object itself.

FeatCommand.GetPoint
Syntax

Return Value=expression.GetPoint(PointType, TheoMeas, X, Y, Z)

Return Value: This method returns a boolean value indicating success or failure of
the call.

expression: Required expression that evaluates to a PC-DMIS FeatCommand
object.

252 • Automation PC-DMIS Basic Language Reference

VectorType: FPOINT_TYPES enumeration. Possible values include the following:

FPOINT_CENTROID

FPOINT_STARTPOINT

FPOINT_MIDPOINT

FPOINT_ENDPOINT

FPOINT_BALLCENTER

FPOINT_SNAP_CENTROID

TheoMeas: Long that is one of FDATA_THEO, FDATA_MEAS, or
FDATA_TARG.

X: Variable of type double that will hold the X data for the point.

Y: Variable of type double that will hold the Y data for the point.

Z: Variable of type double that will hold the Z data for the point.

Remarks

Use this function to retrieve point information of individual
objects.FeatCommand.GetSurfaceVectors
Syntax

Return Value=expression.GetSurfaceVectors(TheoMeas, I1, J1, K1,
I2, J2, K2)

Return Value: This method returns a boolean value indicating success or failure of
the call.

expression: Required expression that evaluates to a PC-DMIS FeatCommand
object.

TheoMeas: Long that is one of FDATA_THEO or FDATA_MEAS

I1: Variable of type double that will hold the I component of the first vector.

J1: Variable of type double that will hold the J component of the first vector.

K1: Variable of type double that will hold the K component of the first vector.

I2: Variable of type double that will hold the I component of the second vector.

J2: Variable of type double that will hold the J component of the second vector.

K2: Variable of type double that will hold the K component of the second vector.

Remarks

Use this function to get the surface vectors of an angle hit
function.FeatCommand.GetVector
Syntax

Return Value=expression.GetVector(VectorType, TheoMeas, I, J,
K)

Return Value: This method returns a boolean value indicating success or failure of
the call.

expression: Required expression that evaluates to a PC-DMIS FeatCommand
object.

VectorType: FVECTOR_TYPES enumeration. Possible values include the
following:

FVECTOR_VECTOR,

PC-DMIS Basic Language Reference Automation • 253

FVECTOR_SURFACE_VECTOR

FVECTOR_ANGLE_VECTOR

FVECTOR_PUNCH_VECTOR

FVECTOR_PIN_VECTOR

FVECTOR_REPORT_VECTOR

FVECTOR_REPORT_SURF_VECTOR

FVECTOR_MEASURE_VECTOR

FVECTOR_UPDATE_VECTOR

FVECTOR_ORG_HIT_VECTOR

FVECTOR_CORNER_VECTOR2

FVECTOR_CORNER_VECTOR3

FVECTOR_SLOT_VECTOR

TheoMeas: Long that is one of FDATA_THEO, FDATA_MEAS, or
FDATA_TARG.

I: Variable of type double that will hold the I component of the vector.

J: Variable of type double that will hold the J component of the vector.

K: Variable of type double that will hold the K component of the vector.

Remarks

Use this function to retrieve vector components of individual
objects.FeatCommand.PutData
Syntax

Return Value=expression.PutData(Data, DataType, TheoMeas,
CoordSystem, AlignID, Workplane)

Return Value: This method returns a boolean value. Boolean returns true if the
function succeeds, false if it fails.

expression: Required expression that evaluates to a PC-DMIS FeatCommand
object.

Data: Required PointData object into from which the data is taken to set values in
the corresponding object.

DataType: Optional Long that is one of the following values:

FDATA_CENTROID, FDATA_VECTOR, FDATA_DIAMETER,
FDATA_STARTPOINT, FDATA_MIDPOINT, FDATA_ENDPOINT,
FDATA_LENGTH, FDATA_MINOR_AXIS, FDATA_ANGLE,
FDATA_SURFACE_VECTOR, FDATA_THICKNESS, FDATA_SPACER,
FDATA_INDENT, FDATA_AUTO_MOVE_DISTANCE, FDATA_DEPTH,
FDATA_ANGLE_VECTOR, FDATA_PUNCH_VECTOR, FDATA_PIN_VECTOR,
FDATA_PIN_DIAMETER, FDATA_REPORT_VECTOR,
FDATA_REPORT_SURF_VECTOR, FDATA_HEIGHT,
FDATA_MEASURE_VECTOR, FDATA_UPDATE_VECTOR,
FDATA_SNAP_CENTROID, FDATA_ANALOG_DEVIATIONS,
FDATA_CORNER_RADIUS, FDATA_AB_ANGLES, FDATA_ORG_HIT_VECTOR,
FDATA_ANGLE2, FDATA_WIDTH, FDATA_MAJOR_AXIS, or
FDATA_SLOT_VECTOR

If no value is supplied, the default value is FDATA_CENTROID.

TheoMeas: Optional Long that is one of FDATA_THEO, FDATA_MEAS, or
FDATA_TARG.

If no value is supplied, the default value is FDATA_MEAS.

254 • Automation PC-DMIS Basic Language Reference

CoordSystem: Optional Long that denotes the coordinate system in which to report.
Values include FDATA_POLAR, FDATA_CAD, FDATA_PARTMM3,
FDATA_MACHINE, and FDATA_PART.If no value is supplied, the default value
is FDATA_PART.

AlignID: Optional String that denotes what alignment to use. You can pass the
empty string to denote the current alignment.

If no value is supplied, the default value is an empty string which causes the current
alignment to be used.

Workplane: Optional Long. Used for the PARTMM3 and POLAR coordinate
system to denote the workplane to be used. Possible values include PCD_TOP,
PCD_BOTTOM, PCD_LEFT, PCD_RIGHT, PCD_FRONT, PCD_BACK.

If no value is supplied, the default value is PCD_TOP.

This function returns TRUE if the data was successfully retrieved from expression,
FALSE otherwise.

Remarks

Not every data type can be used with every feature type. Some data types take a
single value, some data types take multiple values. Some data types take one or more
depending on the feature. For example, a cone can take two diameters in the first and
second data fields of the point object while the circle object only takes one diamter.

Use the FDATA_THEO flag if you want theoretical data, FDATA_MEAS if you
want measured data.

FeatCommand.PutPoint
Syntax

Return Value=expression.PutPoint(PointType, TheoMeas, X, Y, Z)

Return Value: This method returns a boolean value indicating success or failure of
the call.

expression: Required expression that evaluates to a PC-DMIS FeatCommand
object.

VectorType: FPOINT_TYPES enumeration. Possible values include the following:

FPOINT_CENTROID

FPOINT_STARTPOINT

FPOINT_MIDPOINT

FPOINT_ENDPOINT

FPOINT_BALLCENTER

FPOINT_SNAP_CENTROID

TheoMeas: Long that is one of FDATA_THEO, FDATA_MEAS, or
FDATA_TARG.

X: Double representing X value of the point.

Y: Double representing Y value of the point.

Z: Double representing Z value of the point.

Remarks

Use this function to set point information for individual
objects.FeatCommand.PutSurfaceVectors

PC-DMIS Basic Language Reference Automation • 255

Syntax

Return Value=expression.PutSurfaceVectors(TheoMeas, I1, J1, K1,
I2, J2, K2)

Return Value: This method returns a boolean value indicating success or failure of
the call.

expression: Required expression that evaluates to a PC-DMIS FeatCommand
object.

TheoMeas: Long that is one of FDATA_THEO or FDATA_MEAS

I1: Double representing the I component of the first vector.

J1: Double representing the J component of the first vector.

K1: Double representing the K component of the first vector.

I2: Double representing the I component of the second vector.

J2: Double representing the J component of the second vector.

K2: Double representing the K component of the second vector.

Remarks

Use this function to set the surface vectors for an angle hit
object.FeatCommand.PutVector
Syntax

Return Value=expression.PutVector(VectorType, TheoMeas, I, J,
K)

Return Value: This method returns a boolean value indicating success or failure of
the call.

expression: Required expression that evaluates to a PC-DMIS FeatCommand
object.

VectorType: FVECTOR_TYPES enumeration. Possible values include the
following:

FVECTOR_VECTOR

FVECTOR_SURFACE_VECTOR

FVECTOR_ANGLE_VECTOR

FVECTOR_PUNCH_VECTOR

FVECTOR_PIN_VECTOR

FVECTOR_REPORT_VECTOR

FVECTOR_REPORT_SURF_VECTOR

FVECTOR_MEASURE_VECTOR

FVECTOR_UPDATE_VECTOR

FVECTOR_ORG_HIT_VECTOR

FVECTOR_CORNER_VECTOR2

FVECTOR_CORNER_VECTOR3

FVECTOR_SLOT_VECTOR

TheoMeas: Long that is one of FDATA_THEO, FDATA_MEAS, or
FDATA_TARG.

I: Double indicating the I component of the vector.

J: Double indicating the J component of the vector.

256 • Automation PC-DMIS Basic Language Reference

K: Double indicating the K component of the vector.

Remarks

Use this function to set vector components of individual
objects.FeatCommand.RemoveInputFeat
Syntax

Return Value=expression.RemoveInputFeat(Index)

expression: Required expression that evaluates to a PC-DMIS FeatCommand
object.

Index: Required Long between one and expression.NumHits

Return Value: This function returns TRUE if expression is a constructed feature and
Index is the index of a input feature, FALSE otherwise.

Remarks

When successful, this function removes the feature at the specified index position.

FeatCommand.SetInputFeat
Syntax

Return Value=expression.SetInputFeat(ID, Index)

expression: Required expression that evaluates to a PC-DMIS FeatCommand
object.

ID: Required String that is the ID of a feature.

Index: Required Long between one and expression.NumHits

Return Value: This function returns TRUE if expression is a constructed feature and
ID is the ID of a valid input feature, and Index is the index of a input feature, FALSE
otherwise.

Remarks

When successful, this function replaces the input feature at position Index in
expression’s list of input features with ID.

FeatCommand.SetInputOffset
Syntax

Return Value=expression.SetInputOffset(Index, Offset)

expression: Required expression that evaluates to a PC-DMIS FeatCommand
object.

Index: Required Long between one and expression.NumHits

Offset: Required Double which specifies the offset value

Return Value: If successful, this function returns the Boolean set to true.

Remarks

Use this function with constructed features to set the offset values for input features.

PC-DMIS Basic Language Reference Automation • 257

FeatData Object Overview
The FeatData object is similar to a type define as follows:

Type FeatData

X as Double
Y as Double
Z as Double
I as Double
J as Double
K as Double
DIAM as Double
LENGTH as Double
ANGLE as Double
SmallDiam as Double
StartAngle as Double
EndAngle as Double
StartAngle2 as Double
EndAngle2 as Double
F as Double
TP as Double
P1 as Double
P2 as Double
ID as String

End Type

It is be used to pass feature data in automation functions that accept this type

FeatData Members

Properties

FeatData.X
Represents the X member of this object. Read/write Double.

FeatData.Y
Represents the Y member of this object. Read/write Double.

FeatData.Z
Represents the Z member of this object. Read/write Double.

FeatData.I
Represents the I member of this object. Read/write Double.

FeatData.J
Represents the J member of this object. Read/write Double.

258 • Automation PC-DMIS Basic Language Reference

FeatData.K
Represents the K member of this object. Read/write Double.

FeatData.DIAM
Represents the DIAM member of this object. Read/write Double.

FeatData.LENGTH
Represents the LENGTH member of this object. Read/write Double.

FeatData.ANGLE
Represents the ANGLE member of this object. Read/write Double.

FeatData.SmallDiam
Represents the SmallDiam member of this object. Read/write Double.

FeatData.StartAngle

FeatData.EndAngle
Represents the EndAngle member of this object. Read/write Double.

FeatData.StartAngle2
Represents the StartAngle2 member of this object. Read/write Double.

FeatData.EndAngle2
Represents the EndAngle2 member of this object. Read/write Double.

FeatData.F
Represents the F member of this object. Read/write Double.

FeatData.TP
Represents the TP member of this object. Read/write Double.

FeatData.P1
Represents the P1 member of this object. Read/write Double.

Remarks

The P1 member is never set or used by PC-DMIS. It is available for the programmer
to use as he wishes.

FeatData.P2
Represents the P2 member of this object. Read/write Double.

Remarks

The P2 member is never set or used by PC-DMIS. It is available for the programmer
to use as he wishes.

PC-DMIS Basic Language Reference Automation • 259

FeatData.ID
Represents the ID member of this object. Read/write String.

Remarks

The ID member is the default property.

The ID member is the default

File IO Object Overview
The File IO object is used to access the PC-DMIS File I/O object. Properties provide
access to the file mode: open, close, readline, etc.; the expression to write or read, the
filename, etc. For additional information, see "File I/O" in, Chapter 4, "Utilities" of
the PC-DMIS Reference Manual.

File IO Members

Properties:

FileIO.BufferSize
LONG value representing the buffer size used with the Read Block File I/O
command.

Read/Write Long

FileIO.Expression
STRING value representing the text to be used in reading from or writing to the
opened file.

Read/Write String

FileIO.FailIfExists
BOOLEAN value indicating whether a file copy operation should fail or not if the
destination file already exists.

Read/Write Boolean

FileIO.FileIOType
Value of ENUM_FILE_IO_TYPES enumeration type which specifies the type of
File I/O operation the object will perform. Possible values include the following:

PCD_FILE_OPEN = 0

PCD_FILE_CLOSE = 1

PCD_FILE_WRITELINE = 2

PCD_FILE_READLINE = 3

PCD_FILE_WRITECHARACTER = 4

PCD_FILE_READCHARACTER = 5

PCD_FILE_WRITEBLOCK = 6

PCD_FILE_READBLOCK = 7

260 • Automation PC-DMIS Basic Language Reference

PCD_FILE_REWIND = 8

PCD_FILE_SAVEPOSITION = 9

PCD_FILE_RECALLPOSITION = 10

PCD_FILE_COPY = 11

PCD_FILE_MOVE = 12

PCD_FILE_DELETE = 13

PCD_FILE_EXISTS = 14

PCD_FILE_DIALOG = 15

Read/Write Enum_File_IO_Types enumeration

FileIO.FileName1
STRING value representing the file name to be used in the File I/O operation. This
parameter is used with the File Open, File Copy, File Move, File Delete, and File
Exists File I/O types.

Read/Write String

FileIO.FileName2
STRING value representing the second filename to be used in the File I/O operation.
This parameter is used as the destination file in the File Copy and File Move File I/O
commands.

Read/Write String

FileIO.FileOpenType
Value of ENUM_FILE_OPEN_TYPES enumeration type which specifies the file
open mode used in opening a file. Possible values include the following:

PCD_FILE_WRITE = 1

PCD_FILE_READ = 2

PCD_FILE_APPEND = 3

Read/Write Enum_File_Open_Types enumeration

FileIO.FilePointerID
STRING value representing the file pointer Id to be used in the File I/O operation.
The file pointer ID is established and linked to a specific file in the File Open
command.

Read/Write String

FileIO.VariableID
STRING value representing the name of the variable to be used to hold the results of
the File I/O operation of the File I/O command.

Read/Write String

FlowControlCommand Object Overview
Objects of type FlowControlCommand are created from more generic Command
objects to pass information specific to the flow control command back and forth.

PC-DMIS Basic Language Reference Automation • 261

FlowControlCommand Members

Properties:

FlowControlCommand.AngleOffset
Represents the angular offset of a LOOP_START object. Read/write Double.

Remarks

This property only affects objects of type LOOP_START. For other objects, setting
the property has no effect, and getting it always returns zero.

FlowControlCommand.GetEndNum
Represents the end value of a LOOP_START object. Read/write Long.

Remarks

This property only affects objects of type LOOP_START. For other objects, setting
the property has no effect, and getting it always returns zero.

FlowControlCommand.ErrorMode
Represents the error mode of a ONERROR object. Read/write Long.

Remarks

This property only affects objects of type ONERROR. For other objects, setting the
property has no effect, and getting it always returns zero.

The valid values for ErrorMode: 0 for off, 1 for jump to label, and 2 for set a
variable.

FlowControlCommand.ErrorType
Represents the error mode of a ONERROR object. Read/write Long.

Remarks

This property only affects objects of type ONERROR. For other objects, setting the
property has no effect, and getting it always returns zero.

The valid values for ErrorMode: 0 for off, 1 for jump to label, and 2 for set a
variable.

FlowControlCommand.Expression
Represents the test expression of an IF_COMMAND object. Read/write String.

Remarks

This property only affects objects of type IF_COMMAND. For other objects, setting
the property has no effect, and getting it always returns the empty string.

FlowControlCommand.FileName
Represents the file name of an external subroutine in a CALL_SUBROUTINE
object. Read/write String.

Remarks

262 • Automation PC-DMIS Basic Language Reference

This property only affects objects of type CALL_SUBROUTINE. For other objects,
setting the property has no effect, and getting it always returns the empty string.

This property only returns the name of the file, not its full path. The path is
determined by the settings in PCDMIS’s Search Directory dialog.

FlowControlCommand.ID
Represents the id of a CALL_SUBROUTINE object. Read/write String.

Remarks

This property only affects objects of type CALL_SUBROUTINE. For other objects,
setting the property has no effect, and getting it always returns the empty string.

FlowControlCommand.Label
Represents the label associated with an object. Read/write String.

Remarks

This property only affects objects of type GOTO, IF_COMMAND, ONERROR, and
LABEL. For other objects, setting the property has no effect, and getting it always
returns the empty string.

For objects of type LABEL, this property is the id of the object. For the other valid
types, this property is the label to which execution is redirected when the appropriate
conditions are met. For GOTO, redirection always occurs. For IF_COMMAND, the
redirection occurs only when the expression is TRUE. For ONERROR, the
redirection happens when the error condition is met.

FlowControlCommand.NumArguments
Returns the number of arguments in a START_SUBROUTINE or
CALL_SUBROUTINE object. Read-only Long.

Remarks

This property only affects objects of type START_SUBROUTINE and
CALL_SUBROUTINE. For other objects it always returns zero.

FlowControlCommand.SkipCount
Returns the number of skipped numbers in a LOOP_START object. Read-only
Long.

Remarks

This property only affects objects of type LOOP_START. For other objects it always
returns zero.

FlowControlCommand.StartNum
Represents the start number of a LOOP_START object. Read/write Long.

Remarks

This property only affects objects of type LOOP_START. For other objects, setting
the property has no effect, and getting it always returns zero.

FlowControlCommand.SubName
Represents the subroutine name of a START_SUBROUTINE and
CALL_SUBROUTINE object. Read/write String.

PC-DMIS Basic Language Reference Automation • 263

Remarks

This property only affects objects of type START_SUBROUTINE and
CALL_SUBROUTINE. For other objects, setting the property has no effect, and
getting it always returns the empty string.

For the START_SUBROUTINE object, it is the name of the subroutine. For the
CALL_SUBROUTINE, it is the name of the called subroutine.

FlowControlCommand.XAxisOffset
Represents the X-axis offset of a LOOP_START object. Read/write Long.

Remarks

This property only affects objects of type LOOP_START. For other objects, setting
the property has no effect, and getting it always returns zero.

FlowControlCommand.YAxisOffset
Represents the Y-axis offset of a LOOP_START object. Read/write Long.

Remarks

This property only affects objects of type LOOP_START. For other objects, setting
the property has no effect, and getting it always returns zero.

FlowControlCommand.ZAxisOffset
Represents the Z-axis offset of a LOOP_START object. Read/write Long.

Remarks

This property only affects objects of type LOOP_START. For other objects, setting
the property has no effect, and getting it always returns zero.

Methods:

FlowControlCommand.AddArgument
Syntax

Return Value=expression.AddArgument(Position, Name, Description,
DefaultValue)

Return Value: This method returns a boolean value. Boolean returns true if the
function succeeds, false if it fails.

expression: Required expression that evaluates to FlowControlCommand object.

Position: Required Long that indicates the index of the argument to add in the list of
arguments.

Name: Required String that indicates the name of the argument to be added.

Description: Required String that is the description of the argument to be added.

DefaultValue: Required String that indicates the default value of the argument to be
added.

The AddArgument adds or replaces an argument in objects of type
CALL_SUBROUTINE and START_SUBROUTINE. When used with objects of
other types, it has no effect.

264 • Automation PC-DMIS Basic Language Reference

This function returns TRUE if the argument was added successfully, FALSE
otherwise.

When used with objects of type CALL_SUBROUTINE, the Name and Description
fields are ignored, and the DefaultValue field is used to set the value.

If Position is equal to 1 + expression.NumArguments, an argument is added to the
tail of the list of arguments . If Position is between 1 and
expression.NumArguments, the current argument is replaced. To completely remove
an argument, use DimensionCommand.RemoveArgument.

FlowControlCommand.AddSkipNum
Syntax

Return Value=expression.AddSkipNum(Number)

Return Value: This method returns a boolean value. Boolean returns true if the
function succeeds, false if it fails.

expression: Required expression that evaluates to FlowControlCommand object.

Number: Required Long that indicates the number to skip.

The AddSkipNum function adds a number to be skipped to an object of type
LOOP_START. For objects of other types, it does nothing.

This function returns TRUE if Number was successfully added to the LOOP_START
object’s skip list, FALSE otherwise.

FlowControlCommand.GetArgumentDescription
Syntax

Return Value=expression.GetArgumentDescription(Position)

Return Value: This function returns a string value.

expression: Required expression that evaluates to FlowControlCommand object.

Position: Required Long that indicates the number of the argument from which to
obtain the description..

The GetArgumentDescription function returns the description of an argument to an
object of type START_SUBROUTINE. For objects of other types, it returns the
empty string.

FlowControlCommand.GetArgumentExpression
Syntax

Return Value=expr.GetArgumentExpression(Expression)

Return Value: This function returns a string value.

expr: Required expression that evaluates to FlowControlCommand object.

Expression: Required Long that indicates the number of the argument from which to
obtain the value.

The GetArgumentDescription function returns the value or default value of an
argument to an object of type CALL_SUBROUTINE or START_SUBROUTINE,
respectively. For objects of other types, it returns the empty string.

PC-DMIS Basic Language Reference Automation • 265

FlowControlCommand.GetArgumentName
Syntax

Return Value=expression.GetArgumentName(Position)

Return Value: This function returns a string value.

expression: Required expression that evaluates to FlowControlCommand object.

Number: Required Long that indicates the number of the argument from which to
obtain the name..

The GetArgumentName function returns the Name of an argument to an object of
type START_SUBROUTINE. For objects of other types, it returns the empty string.

FlowControlCommand.GetSkipNum
Syntax

Return Value=expression.GetSkipNum(Index)

Return Value: This function returns an integer. The integer is the nth skip number
where n is indicated by the value of index.

expression: Required expression that evaluates to FlowControlCommand object.

Index: Required Long that indicates which skip number of the set of skip numbers to
retrieve.

FlowControlCommand.IsExpressionValid
Syntax

Return Value=expr.IsExpressionValid(Expression)

Return Value: This method returns a boolean value. Boolean returns true if the
function succeeds, false if it fails.

expr: Required expression that evaluates to FlowControlCommand object.

Expression: Required String that is the expression to evaluate for validity.

This function returns TRUE if the expression is valid, and FALSE otherwise.

FlowControlCommand.IsValidLeftHandValue
Syntax

Return Value=expr.IsValidLeftHandValue(Expression)

Return Value: This method returns a boolean value. Boolean returns true if the
function succeeds, false if it fails.

expr: Required expression that evaluates to FlowControlCommand object.

Expression: Required String that is the expression to evaluate for validity.

This function returns TRUE if the expression can be used as a valid left hand value
(i.e. can be used on the left-hand side of an assigment statement), and FALSE
otherwise.

FlowControlCommand.IsValidSubroutineArgumentName
Syntax

Return Value=expr.IsValidSuborutineArgumentName(Expression)

266 • Automation PC-DMIS Basic Language Reference

Return Value: This method returns a boolean value. Boolean returns true if the
function succeeds, false if it fails.

expr: Required expression that evaluates to FlowControlCommand object.

Expression: Required String that is the argument name to evaluate for validity.

This function returns TRUE if the expression can be used as a valid suroutine
argument name, and FALSE otherwise.

FlowControlCommand.RemoveArgument
Syntax

Return Value=expression.RemoveArgument(Position)

Return Value: This method returns a boolean value. Boolean returns true if the
function succeeds, false if it fails.

expression: Required expression that evaluates to FlowControlCommand object.

Position: Required Long that indicates which argument to remove.

This function removes an argument from an object of type CALL_SUBROUTINE or
START_SUBROUTINE. It returns TRUE if an argument is removed successfully,
FALSE otherwise.

This function has an effect only on objects of type CALL_SUBROUTINE and
START_SUBROUTINE. It has no effect on objects of other types. If used on other
types it returns FALSE even if nothing is being done.

The Position argument should be between one and expression.NumArguments.

FlowControlCommand.RemoveSkipNum
Syntax

expression.RemoveSkipNum(Index)

expression: Required expression that evaluates to FlowControlCommand object.

Index: Required Long that indicates which argument to remove.

This function removes one of the skip numbers for the Loop Start object from the list
of skip numbers. The number removed is determined by the index parameter.

The Index argument should be between one and expression.SkipCount.

FlowControlCommand.SetArgumentDescription
Syntax

Return Value=expression.SetArgumentDescription(Position, Description)

Return Value: This method returns a boolean value. Boolean returns true if the
function succeeds, false if it fails.

expression: Required expression that evaluates to FlowControlCommand object.

Number: Required Long that indicates the number of the argument description to set.

Description: Required String that is the text of the description to set.

This function sets the description of an argument of an object of type
START_SUBROUTINE. It does nothing and returns FALSE if the object is not of
this type.

PC-DMIS Basic Language Reference Automation • 267

The function returns TRUE if the description was set successfully, FALSE
otherwise.

FlowControlCommand.SetArgumentExpression
Syntax

Return Value=expr.GetArgumentExpression(Position, Expression)

Return Value: This method returns a boolean value. Boolean returns true if the
function succeeds, false if it fails.

expr: Required expression that evaluates to FlowControlCommand object.

Position: Required Long that indicates the number of the argument value to set.

Expression: Required String that indicates the argument value to set.

This function sets the value or default value of an argument of an object of type
CALL_SUBROUTINE or START_SUBROUTINE, respectively. It does nothing
and returns FALSE if the object is not one of these types.

The function returns TRUE if the value was set successfully, FALSE otherwise.

FlowControlCommand.SetArgumentName
Syntax

Return Value=expr.GetArgumentExpression(Position, Expression)

Return Value: This method returns a boolean value. Boolean returns true if the
function succeeds, false if it fails.

expr: Required expression that evaluates to FlowControlCommand object.

Position: Required Long that indicates the number of the argument value to set.

Name: Required String that indicates the argument name to set.

This function sets the name of an argument of an object of type
START_SUBROUTINE. It does nothing and returns FALSE if the object is not of
this type.

The function returns TRUE if the value was set successfully, FALSE otherwise.

FlowControlCommand.SetLeftSideOfAssignment
Syntax

expr.SetLeftSideOfAssignmentExpression

expr: Required expression that evaluates to FlowControlCommand object.

Expression: Required String that indicates the expression to be used for the left side
of the assigment.

The function sets the left-hand side of the Assign statement to the expression passed
in. Use the function IsValidLeftHandValue to determine validity of expression for a
left-hand side before using this function.

FlowControlCommand.SetRightSideOfAssignment
Syntax

expr.SetRightSideOfAssignmentExpression

expr: Required expression that evaluates to FlowControlCommand object.

268 • Automation PC-DMIS Basic Language Reference

Expression: Required String that indicates the expression to be used for the right
side of the assigment.

The function sets the right-hand side of the Assign statement to the expression
passed in. Use the function IsExpressionValid to determine validity of expression
before using this function.

Leitz Motion Object Overview
The leitz motion automation command object changes motion settings for the PC-
DMIS leitz motion command object. This section does not define the meaning of the
different properties. More information on the properties can be found under
"Optional Probe" in Chapter 9 "System Options" of the PC-DMIS Reference Manual.

Leitz Motion Members

Properties:

LeitzMot.LowForce
Double value used to set or get the low force setting for the probe.

Read/Write Double

LeitzMot.MaxForce
Double value used to set or get the max force setting for the probe.

Read/Write Double

LeitzMot.PositionalAccuracy
Double value used to set or get the positional accuracy setting.

Read/Write Double

LeitzMot.ProbeAccuracy
Double value used to set or get the probe accuracy setting.

Read/Write Double

LeitzMot.ReturnData
Double value used to set or get the return data setting.

Read/Write Double

LeitzMot.ReturnSpeed
Double value used to set or get the return speed.

Read/Write Double

LeitzMot.ScanPointDensity
Double value used to set or get the scan point density.

PC-DMIS Basic Language Reference Automation • 269

Read/Write Double

LeitzMot.TriggerForce
Double value used to set or get the trigger force setting for the probe.

Read/Write Double

LeitzMot.UpperForce
Double value used to set or get the upper force setting for the probe.

Read/Write Double

 Load Machine Object Overview
The Load Machine object gives access to the machine name property of the PC-
DMIS Load Machine command.

 Load Machine Members

Properties:

 LoadProbes.MachineName
STRING value representing the name of the machine to be loaded.

Read/Write String

 Load Probes Object Overview
The Load Probes object gives access to the filename property of the PC-DMIS Load
Probes command.

 Load Probes Members

Properties:

 LoadProbes.Filename
STRING value representing the name of the probes file to be loaded.

Read/Write String

Machine Object Overview
The Machine object represent a CMM, or a virtual off-line “machine”. The
Machine objects are contained in the Machines collection.

The Machine object is primarily an event source.

270 • Automation PC-DMIS Basic Language Reference

Events differ from methods and properties in that PC-DMIS is the source of the
action, instead of the destination. To take advantage of events, the automation
controller application must support events. Visual Basic supports events. Handling
events involves declaring an object of type Machine and then adding handling
functions for the different events.

Machine Object Members

Properties:

Machine.Application
Represents the read-only PC-DMIS application. The Application object includes
properties and methods that return top-level objects. For example, the
ActivePartProgram property returns a PartProgram object.

Machine.Name
Returns the name of the Machine object. Read-only String.

Machine.Parent
Returns the read-only Machines collection object to which the machine belongs.

Events:
• LearnHit (Double X, Double Y, Double Z, Double I, Double J,

Double K)

This function will be called in your application when a hit is
taken in PC-DMIS in learn mode. The values of X, Y, Z and I, J,
K are the location of the hit and the vector of the hit in
machine coordinates.

• ExecuteHit (Double X, Double Y, Double Z, Double I, Double J,
Double K)

This function will be called in your application when a hit is
taken in PC-DMIS in execute mode. The values of X, Y, Z and I,
J, K are the location of the hit and the vector of the hit in
machine coordinates.

• ErrorMsg(String ErrorText, Long ErrorType)

This function is called when an error occurs on the CMM. The
ErrorText variabel contains the error message, and the
ErrorType variable contains the type of error. (missed hit,
unexpected hit)

• Command(Long code)

This function is called when a command button is pressed on the
CMM controller. The code can be used to determine which button
was pressed.

Machines Object Overview
The Machines object is the collection of all Machine objects currently available in
PC-DMIS. Each Machine object is bound to exactly one PartProgram object, and

PC-DMIS Basic Language Reference Automation • 271

vice versa. Use Machines(index) where index is the index number or on-line
machine’s name to return a single Machine object.

Remarks

There may be multiple machines named “OFFLINE”, one for each open off-line part
program. To distinguish between them, use the index number, or use the machine’s
Parent member.

Machines Object Members

Properties:

Machines.Application
Represents the read-only PC-DMIS application. The Application object includes
properties and methods that return top-level objects. For example, the
ActivePartProgram property returns a PartProgram object.

Machines.Count
Represents the number of Machine objects currently active in PC-DMIS. Read-only
Integer.

Machines.Parent
Represents the read-only PC-DMIS application. The Application object includes
properties and methods that return top-level objects. For example, the
ActivePartProgram property returns a PartProgram object.

Methods:

Machines.Item
Syntax 1

Return Value=expression.Item(NameOrNum)

Syntax 2

expression(NameOrNum)

Return Value=The Item function returns a Machine object.

expression: Required expression that evaluates to a Machines object identified by
the NameOrNum parameter.

NameOrNum: Required Variant that indicates which Machine object to return. It
can be either a Long or a String. If it is a Long, it is the index number of the
Machine object in the Machines collection. If it is a String, it is the ID of the
Machine object.

Remarks

There may be several machines named “OFFLINE”. To avoid possible confusion
with off-line machines, use the index number with these machines.

Since the Item method is the default, the function name can be omitted as in Syntax
2.

272 • Automation PC-DMIS Basic Language Reference

ModalCommand Object Overview
Objects of type AlignCommand are created from more generic Command objects
to pass information specific to the modal command back and forth.

ModalCommand Members

Properties:

ModalCommand.ClearPlane
Represents the clearance plane of a CLEARANCE_PLANES type object.
Read/Write Long.

Remarks

This property is only useful for objects of type CLEARANCE_PLANES. For objects
of other types, setting this property does nothing and getting it always returns
PCD_ZPLUS.

Allowable values for this property are PCD_XPLUS, PCD_XMINUS,
PCD_YPLUS, PCD_YMINUS, PCD_ZPLUS, and PCD_ZMINUS.

ModalCommand.Digits
Represents the number of digits of a DISPLAYPRECISION type object. Read/write
Long.

Remarks

This property is only useful for objects of type DISPLAYPRECISION. For objects
of other types, setting this property does nothing and getting it always returns zero.

ModalCommand.Distance
Represents the distance to move for this object. Read/write Double.

Remarks

This property is only useful for objects of type PREHIT, CLAMP, RETRACT,
CHECK, and CLEARANCE_PLANES. For objects of other types, setting this
property does nothing and getting it always returns zero.

For objects of type PREHIT, CLAMP, RETRACT, and CHECK, the Distance
property is the distance to move during that operation. For CLEARANCE_PLANES
objects, it is the distance from the axes plane to move. For example, if the clearance
plane is LEFT, and the Distance is 2.0, the clearance plane will move to the X=2.0
plane.

ModalCommand.Distance2
Represents the pass-through distance to move for this CLEARANCE_PLANES
object. Read/write Double.

Remarks

This property is only useful for objects of type CLEARANCE_PLANES. For objects
of other types, setting this property does nothing and getting it always returns zero.

PC-DMIS Basic Language Reference Automation • 273

ModalCommand.Mode
Represents the mode of this object. Read/write Long.

Remarks

This property is only useful for objects of type MAN_DCC_MODE and
RMEAS_MODE. For objects of other types, setting this property does nothing and
getting it always returns zero.

For objects of type MAN_DCC_MODE, the mode can take values 0 for DCC mode
and 1 for manual mode. For objects of type RMEAS_MODE, the mode can take
values 0 for NORMAL, and 1 for ABSOLUTE.

ModalCommand.Name
Returns the name of this GET_PROBE_DATA object. Read-only String.

Remarks

This property is only useful for objects of type GET_PROBE_DATA (LoadProbe).
For objects of other types, it always returns the empty string.

ModalCommand.On
Represents the on/off state of this object. Read/write Boolean.

Remarks

This property is only useful for objects of types PROBE_COMPENSATION,
POLARVECTORCOMP, GAP_ONLY, RETROLINEAR_ONLY, FLY_MODE,
and COLUMN132. For objects of other types, setting this property does nothing and
getting it always returns FALSE.

ModalCommand.Parent
Returns the parent Command object. Read-only.

Remarks

The parent of a ModalCommand object is the same underlying PC-DMIS object as
the ModalCommand object itself. Getting the parent allows you to access the
generic Command properties and methods of a given object.

ModalCommand.PassPlane
Represents the pass-through plane to move for this CLEARANCE_PLANES object.
Read/write Long.

Remarks

This property is only useful for objects of type CLEARANCE_PLANES. For objects
of other types, setting this property does nothing and getting it always returns
PCD_ZPLUS.

Allowable values for this property are PCD_XPLUS, PCD_XMINUS,
PCD_YPLUS, PCD_YMINUS, PCD_ZPLUS, and PCD_ZMINUS.

ModalCommand.Speed
Represents the speed for this object. Read/write Double.

Remarks

274 • Automation PC-DMIS Basic Language Reference

This property is only useful for objects of type MOVE_SPEED, TOUCH_SPEED,
and SCAN_SPEED. For objects of other types, setting this property does nothing
and getting it always returns zero.

ModalCommand.WorkPlane
Represents the workplane to move for this SET_WORKPLANE object. Read/write
Long.

Remarks

This property is only useful for objects of type SET_WORKPLANE. For objects of
other types, setting this property does nothing and getting it always returns
PCD_ZPLUS.

Allowable values for this property are PCD_XPLUS, PCD_XMINUS,
PCD_YPLUS, PCD_YMINUS, PCD_ZPLUS, and PCD_ZMINUS.

MoveCommand Object Overview
Objects of type MoveCommand are created from more generic Command objects
to pass information specific to the move command back and forth

MoveCommand Members

Properties:

MoveCommand.Angle
Represents the rotation angle of this MOVE_ROTAB object. Read/Write Double.

Remarks

This property is only useful for objects of type MOVE_ROTAB. For objects of other
types, setting this property does nothing and getting it always returns zero.

MoveCommand.Direction
Represents the rotation direction of this MOVE_ROTAB object. Read/Write
Double.

Remarks

This property is only useful for objects of type MOVE_ROTAB. For objects of other
types, setting this property does nothing and getting it always returns zero.

For objects of type MOVE_ROTAB, the allowable values of this property are
PCD_CLOCKWISE, PCD_COUNTERCLOCKWISE, and PCD_SHORTEST.

MoveCommand.NewTip
Represents the new tip position of this MOVE_PH9_OFFSET object. Read/Write
String.

Remarks

PC-DMIS Basic Language Reference Automation • 275

This property is only useful for objects of type MOVE_PH9_OFFSET. For objects
of other types, setting this property does nothing and getting it always returns the
empty string.

For objects of type MOVE_PH9_OFFSET, this property should have the value of the
ID of any tip in this part program.

MoveCommand.OldTip
Represents the new tip position of this MOVE_PH9_OFFSET object. Read/Write
String.

Remarks

This property is only useful for objects of type MOVE_PH9_OFFSET. For objects
of other types, setting this property does nothing and getting it always returns the
empty string.

For objects of type MOVE_PH9_OFFSET, this property should have the value of the
ID of any tip in this part program.

MoveCommand.Parent
Returns the parent Command object. Read-only.

Remarks

The parent of a MoveCommand object is the same underlying PC-DMIS object as
the MoveCommand object itself. Getting the parent allows you to access the generic
Command properties and methods of a given object.

MoveCommand.XYZ
A PointData object that represents the location to which to move, or in the case of
MOVE_INCREMENT, the location offset. Read/Write.

Remarks

This property is only useful for objects of type MOVE_POINT,
MOVE_INCREMENT, and MOVE_CIRCULAR. For objects of other types, setting
this property does nothing and getting it always returns Nothing.

Opt Motion Object Overview
The opt motion automation command object is used to change motion settings for the
PC-DMIS probe motion command object. This section does not define the meaning
of the different properties. Additional information on the properties can be found in
Chapter 9 "System Options" of the PC-DMIS Reference Manual, under the title
"Optional Motion".

276 • Automation PC-DMIS Basic Language Reference

Opt Motion Members

Properties:

OptMotion.MaxTAcceleration
Double value used to set or get the maximum acceleration in T setting.

Read/Write Double

OptMotion.MaxTSpeed
Double value used to set or get the maximum speed in T setting.

Read/Write Double

OptMotion.MaxXAcceleration
Double value used to set or get the maximum acceleration in X setting.

Read/Write Double

OptMotion.MaxYAcceleration
Double value used to set or get the maximum acceleration in Y setting.

Read/Write Double

OptMotion.MaxZAcceleration
Double value used to set or get the maximum acceleration in Z setting.

Read/Write Double

OptMotion.MovePositionalAccuracy
Double value used to set or get the move positional accuracy setting.

Read/Write Double

PartProgram Object Overview
The PartProgram object represents a part program currently available in PC-DMIS.
The PartProgram object is the main object used to manipulate part programs.

PartProgram Members

Properties:

PartProgram.ActiveMachine
Returns the Machine object associated with this part program. Read-only.

PC-DMIS Basic Language Reference Automation • 277

PartProgram.Application
Represents the read-only PC-DMIS application. The Application object includes
properties and methods that return top-level objects. For example, the
ActivePartProgram property returns a PartProgram object.

PartProgram.Commands
Returns the Commands collection object of this part program. Read-only.

PartProgram.EditWindow
Returns the Editwindow object associated with this part program. Read-only.

PartProgram.FullName
Returns the part program’s full file path and name. Read-only String. If the file
name of the part program is C:\PCDMISW\PARTS\1.PRG, the FullName returns
“C:\PCDMISW\PARTS\1.PRG”.

PartProgram.Name
Returns the part program’s file name. Read/Write String. If the file name of the part
program is C:\PCDMISW\PARTS\1.PRG, the FullName returns “1.PRG”.

PartProgram.OldBasic
Returns this part program’s OldBasic object. Read-only.

The OldBasic object contains all of the methods from the old basic command set
used in previous versions of PC-DMIS.

PartProgram.Parent
Returns the PartPrograms collection object to which this part program belongs.
Read-only.

PartProgram.PartName
Represents the part name of the part program. Read/Write String.

Remarks

The part name is not the same as the file name. You can view and set the part name
in the Properties of the file containing the part program, as well as at the top of the
edit window within PC-DMIS.

PartProgram.Path
Returns the part program’s file path. Read/Write String. If the file name of the part
program is C:\PCDMISW\PARTS\1.PRG, the FullName returns
“C:\PCDMISW\PARTS\”.

PartProgram.Probes
The Probes property returns this part program’s Probes collection object. Read-
only.

PartProgram.RevisionNumber
Represents the part program’s revision number. Read/Write String.

278 • Automation PC-DMIS Basic Language Reference

Remarks

You can view and set the revision number in the Properties of the file containing the
part program, as well as at the top of the edit window within PC-DMIS.

PartProgram.SerialNumber
Represents the part program’s serial number. Read/Write String.

Remarks

You can view and set the serial number in the Properties of the file containing the
part program, as well as at the top of the edit window within PC-DMIS.

PartProgram.Tools
The Tools property returns this part program’s Tools collection object. Read-only.

PartProgram.Visible
Represents the part program’s visibility status. Read/Write Boolean.

Methods:

PartProgram.Close
Syntax

expression.Close

expression: Required expression that evaluates to a PartProgram object.

This subroutine saves, closes, and deactivates the part program.

PartProgram.Export
Syntax

Return Value=expression.Export(FileName)

Return Value: This method returns a boolean value. Boolean returns true if the
function succeeds, false if it fails.

expression: Required expression that evaluates to a PartProgram object.

FileName: Required String that denotes the file name to which to export.

Remarks

This function exports CAD or part data from the part program to the indicated file.
The export format is determined by the file name extension of FileName.

PartProgram.Import
Syntax

Return Value=expression.Import(FileName)

Return Value: This method returns a boolean value. Boolean returns true if the
function succeeds, false if it fails.

expression: Required expression that evaluates to a PartProgram object.

FileName: Required String that denotes the file name from which to import.

PC-DMIS Basic Language Reference Automation • 279

Remarks

This function imports CAD or part data from the indicated file to the part program.
The file format is determined by the file name extension of FileName.

PartProgram.MessageBox
Syntax

Return Value=expression.MessageBox(Message,Title,Type)

Return Value: Integer value of the button chosen by the user.

expression: Required expression that evaluates to a PartProgram object.

Message: Required String that is the message of the message box

Title: Optional String that is the title of the message box. If ommitted, the title will
be the name and version of PC-DMIS.

Type: Optional Long used to indicate the button types to be used in the message
box. Examples include, “OK”, “Cancel”, “Retry”, “Yes”, “No” etc. If ommitted, the
default is “OK”.

Remarks

This function uses the PC-DMIS message box function. It includes all functionality
including cancelling of execution tied to the Cancel button.

PartProgram.Quit
Syntax

Return Value=expression.Quit

Return Value: This method returns a boolean value. Boolean returns true if the
function succeeds, false if it fails. TRUE if the part was quit successfully, FALSE
otherwise.

expression: Required expression that evaluates to a PartProgram object.

This subroutine closes, and deactivates the part program without saving

Return Value

PartProgram.Save
Syntax

Return Value=expression.Save

Return Value: This method returns a boolean value. Boolean returns true if the
function succeeds, false if it fails. TRUE if the part was saved successfully, FALSE
otherwise.

expression: Required expression that evaluates to a PartProgram object.

This subroutine saves the part program. If the part program has not been saved
before, it opens a Save As Dialog box which requires that you name the file.

PartProgram.SaveAs
Syntax

280 • Automation PC-DMIS Basic Language Reference

Return Value=expression.SaveAs(name)

Return Value: This method returns a boolean value. Boolean returns true if the
function succeeds, false if it fails. TRUE if the part was saved successfully, FALSE
otherwise.

expression: Required expression that evaluates to a PartProgram object.

name: Optional expression that evaluates to a String. The file name to which to save.

This subroutine saves the part program. If the name parameter is missing or empty,
PC-DMIS asks for a file name using a Save As dialog.

PartPrograms Object Overview
The PartPrograms object contains all the open part programs in PC-DMIS.

Using the PartPrograms Collection

Use Add to create a fresh new part program and add it to the PartPrograms
collection.

Use PartPrograms(index) where index is the part name or index number to access an
individual part program.

PartPrograms Object Members

Properties:

PartPrograms.Application
Represents the read-only PC-DMIS application. The Application object includes
properties and methods that return top-level objects. For example, the
ActivePartProgram property returns a PartProgram object.

PartPrograms.Count
Returns the number of part programs active in PC-DMIS. Read-only Long.

PartPrograms.Parent
Represents the read-only PC-DMIS application. The Application object includes
properties and methods that return top-level objects. For example, the
ActivePartProgram property returns a PartProgram object.

Methods:

PartPrograms.Add
Syntax

Return Value=expression.Add(FileName, Units)

Return Value: This function returns the added PartProgram object

expression: Required. An expression that returns a PartPrograms object.

PC-DMIS Basic Language Reference Automation • 281

FileName: Required String. The file name in which to store the new PartProgram.

Units: Required Long. Set units to 1 for inches, anythings else for millimeters.

Remarks

The Add function creates a new part program and activates it in PC-DMIS. If a part
program named FileName exists, it is loaded and the Units parameter is ignored.

PartPrograms.CloseAll
Syntax

expression.CloseAll

expression: Required. An expression that returns a PartPrograms object.

Remarks

Closes and deactivates all active part programs in PC-DMIS.

PartPrograms.Item
Syntax 1

Return Value=expression.Item(NameOrNum)

Syntax 2

expression(NameOrNum)

Return Value=The Item function returns a PartProgram object.

expression: Required expression that evaluates to a PartPrograms object.

NameOrNum: Required Variant that indicates which PartProgram object to return.
It can be either a Long or a String. If it is a Long, it is the index number of the
PartProgram object in the PartPrograms collection. If it is a String, it is the ID of
the PartProgram object.

Remarks

Since the Item method is the default, the function name can be omitted as in Syntax
2.

Return Value

The PartProgram Object identified by the NameOrNum parameter.

PartPrograms.Open
Syntax

Return Value=expression.Open(FileName)

Return Value: This function returns the opened PartProgram object. If the file does
not exist, the function returns Nothing.

expression: Required. An expression that returns a PartPrograms object.

FileName: Required String. The file name of the PartProgram to open.

Remarks

The Open Function activates the part program stored in the file FileName. If the file
does not exist, nothing happens.

282 • Automation PC-DMIS Basic Language Reference

PartPrograms.Remove
Syntax

Return Value=expression.Remove(NameOrNum)

Return Value: This method returns a boolean value. Boolean returns true if the
function succeeds, false if it fails. If the function was able to close a part program, it
returns TRUE, otherwise FALSE.

expression: Required expression that evaluates to a PartPrograms object.

NameOrNum: Required Variant that indicates which PartProgram object to return.
It can be either a Long or a String. If it is a Long, it is the index number of the
PartProgram object in the PartPrograms collection. If it is a String, it is the ID of
the PartProgram object.

Remarks

The Remove function saves, closes, and deactivates the indicated part program. That
part program is no longer active in PC-DMIS.

PointData Object Overview
The PointData object is similar to a type define as follows

Type PointData

X as Double
Y as Double
Z as Double

End Type

It is be used to pass points and vectors in automation functions that accept this type

PointData Members

Properties

PointData.X
Represents the X member of this object. Read/write Double.

PointData.Y
Represents the Y member of this object. Read/write Double.

PointData.Z
Represents the Z member of this object. Read/write Double.

PointData.I
Represents the X member of this object. Read/write Double.

Remarks

PC-DMIS Basic Language Reference Automation • 283

This property is exactly the same as the X property, but was included for semantic
reasons when working with vectors.

PointData.J
Represents the X member of this object. Read/write Double.

Remarks

This property is exactly the same as the Y property, but was included for semantic
reasons when working with vectors.

PointData.K
Represents the Z member of this object. Read/write Double.

Remarks

This property is exactly the same as the Z property, but was included for semantic
reasons when working with vectors.

Probe Object Overview
The Probe object provides information about a given probe description file. It also
allows you to manipulate the Probe dialog in PC-DMIS.

Probe Members

Properties:

Probe.ActiveComponent
Represents the highlighted probe component in PC-DMIS’s Probe dialog. Read/write
Long.

Example:
The following VB code illustrates how to create a probe containing a PH9, a TP2,
and a 5 mm tip, from scratch in the active part program

set app = GetObject(“Pcdlrn.Application”)
set part = app.GetActiveProgram
set probe = part.Probes.Add(“NewProbe”)
probe.ActiveComponent=0
for I = 0 to probe.ConnectionCount – 1
 if (probe.ConnectionDescription(I) = “PROBEPH9”)
 probe.ActiveConnection = I
 end if
next I
probe.ActiveComponent = ComponentCount – 1
for I = 0 to probe.ConnectionCount – 1
 if (probe.ConnectionDescription(I) = “PROBETP2”)
 probe.ActiveConnection = I
 end if
next I
probe.ActiveComponent = ComponentCount – 1

284 • Automation PC-DMIS Basic Language Reference

for I = 0 to probe.ConnectionCount – 1
 if (probe.ConnectionDescription(I) = “TIP5BY50MM”)
 probe.ActiveConnection = I
 end if
next I

Probe.ActiveConnection
Represents the highlighted probe connection in PC-DMIS’s Probe dialog’s
connection drop-down list. Read/write Long.

Probe.Application
Represents the read-only PC-DMIS application. The Application object includes
properties and methods that return top-level objects. For example, the
ActivePartProgram property returns a PartProgram object.

Probe.ComponentCount
Returns the number of components in the component list box. There is always at
least one, even when it appears that there are no entries. In that case, the one entry is
invisible, but it can still be made active.

Probe.ConnectionCount
Returns the number of connections in the connection drop-down list. The contents of
this list depend on which component is active.

Probe.FullName
Returns the full name of the file containing this probe’s information. Read-only
String. If the fully qualified path name is C:\PCDMISW\PROBE\SP600.PRB,
FullName returns “C:\PCDMISW\PROBE\SP600.PRB”.

Probe.Name
Returns the name of the file containing this probe’s information. Read-only String.
If the fully qualified path name is C:\PCDMISW\PROBE\SP600.PRB, FullName
returns “SP600.PRB”.

Probe.Parent
Returns the Probes collection object to which this object belongs.

Probe.Path
Returns the path to the file containing this probe’s information. Read-only String. If
the fully qualified path name is C:\PCDMISW\PROBE\SP600.PRB, Path returns
“C:\PCDMISW\PROBE\”.

Probe.Tips
Returns the Tips object associated with this Probe object.

PC-DMIS Basic Language Reference Automation • 285

Methods:

Probe.ClearAllTips
Syntax

expression.ClearAllTips

expression: Required expression that evaluates to a PC-DMIS Probe object.

Clears all tips selected for qualification. Use the "Probe.SelectAllTips" funtion on
page 286 to select all tips. Use the "Tip.Selected" property of the tip object on page
303 to select or deselect individual tips for probe qualification.

Probe.ComponentDescription
Syntax

Return Value=expression.ComponentDescription(Item)

Return Value: This function returns a string which is the nth component description
of the component list box as determined by the item parameter.

expression: Required expression that evaluates to a PC-DMIS Probe object.

Item: Required Long. The zero-based index of the string from the list box to return.
This must be between 0 and expression.ComponentCount – 1.

Probe.ConnectionDescription
Syntax

Return Value=expression.ComponentDescription(Item)

Return Value: This function returns the Item number string in the connection drop
down list..

expression: Required expression that evaluates to a PC-DMIS Probe object.

Item: Required Long. The zero-based index of the string from the drop down list to
return. This must be between 0 and expression.ConnectionCount – 1.

Probe.Dialog
Syntax

Return Value=expression.Dialog

Return Value: This method returns a boolean value. Boolean returns true if the
function succeeds, false if it fails.

expression: Required expression that evaluates to a PC-DMIS Probe object.

Opens the PC-DMIS Probe Utilities dialog for expression.

Probe.Qualify
Syntax

expression.Qualify

expression: Required expression that evaluates to a PC-DMIS Probe object.

Qualifies all of expression’s tips.

286 • Automation PC-DMIS Basic Language Reference

Probe.SelectAllTips
Syntax

expression.SelectAllTips

expression: Required expression that evaluates to a PC-DMIS Probe object.

Selects all tips in tip list for qualification. Use the "Probe.ClearAllTips" function on
page 285 to clear all selected tips. Use the "Tip.Selected" property of the tip object
on page 303 to select or deselect individual tips for probe qualification.

Probes Object Overview
The Probes object is the collection of all Probe objects currently available to a part
program. Use Probes (index) where index is the index number or name of the
requested probe file.

Probes Object Members

Properties:

Probes.Application
Represents the read-only PC-DMIS application. The Application object includes
properties and methods that return top-level objects. For example, the
ActivePartProgram property returns a PartProgram object.

Probes.Count
Represents the number of Machine objects currently active in PC-DMIS. Read-only
Integer.

Probes.Parent
Returns the parent PartProgram of this object. Read-only PartProgram.

Methods:

Probes.Add
Syntax 1

Return Value=expression.Add(FileName)

The Add function sets the probe name to FileName. This allows the user to start
creating a new probe.

Return Value: This method returns a boolean value. Boolean returns true if the
function succeeds, false if it fails.

expression: Required expression that evaluates to a Probes object.

FileName: Required String that indicates the name of the new probe.

PC-DMIS Basic Language Reference Automation • 287

Probes.Item
Syntax 1

Return Value=expression.Item(NameOrNum)

Syntax 2

expression(NameOrNum)

Return Value=The Item function returns a Probe object.

expression: Required expression that evaluates to a Probes object.

NameOrNum: Required Variant that indicates which Probe object to return. It can
be either a Long or a String. If it is a Long, it is the index number of the Probe
object in the Probes collection. If it is a String, it is the name of the Probe object.

Remarks

Since the Item method is the default, the function name can be omitted as in Syntax
2.

ScanCommand Object Overview
Objects of type ScanCommand are created from more generic Command objects to
pass information specific to the scan command back and forth. At present only DCC
and Manual scans are user accessible.

ScanCommand Members

Properties

Scan.BoundaryCondition
Represents the boundary condition type. Read/write of enumeration
BSBOUNDCOND_ENUM. All Properties and Methods related to the Boundary
Conditions apply only to DCC scans.

The following are the allowable values:

BSBOUNDCOND_SPHENTRY: Represents a Spherical Boundary Condition. This
Boundary condition requires the following parameters to be set by you using
Automation Properties and/or Automation Methods:

BoundaryConditionCenter

BoundaryConditionEndApproach

Diameter

Number of Crossings

BSBOUNDCOND_PLANECROSS: Represents a Planar Boundary Condition. This
Boundary condition requires the following parameters to be set by you using
Automation Properties and/or Automation Methods:

BoundaryConditionCenter

BoundaryConditionEndApproach

288 • Automation PC-DMIS Basic Language Reference

BoundaryConditionPlaneV

Number of Crossings

BSBOUNDCOND_CYLINDER: Represents a Cylindrical Boundary Condition.
This Boundary condition requires the following parameters to be set by you using
Automation Properties and/or Automation Methods:

BoundaryConditionCenter

BoundaryConditionEndApproach

BoundaryConditionAxisV

Diameter

Number of Crossings

BSBOUNDCOND_CONE: Represents a Conical Boundary Condition. This
Boundary condition requires the following parameters to be set you user using
Automation Properties and/or Automation Methods:

BoundaryConditionCenter

BoundaryConditionEndApproach

BoundaryConditionAxisV

HalfAngle

Number of Crossings

The SetBoundaryConditionParams Method should be used to set the HalfAngle,
number of Crossings and Diameter values.

Scan.BoundaryConditionAxisV
This property represents the boundary condition axis vector. Read/write PointData
object. This vector is used as the axis of the Cylindrical and Conical
BoundaryConditions.

Scan.BoundaryConditionCenter
This property represents the boundary condition center. Read/write PointData
object.

This point is used by all Boundary Conditions and is the location of the Boundary
Condition.

Scan.BoundaryConditionEndApproach
This property represents the boundary condition end approach vector. Read/write
PointData object.

This vector is used by all Boundary Conditions and is the Approach Vector of the
Probe as it crosses the Boundary condition.

Scan.BoundaryConditionPlaneV
This property represents the boundary condition plane vector. Read/write PointData
object.

This vector is the normal vector of the plane used by the Plane and OldStyle
Boundary Conditions.

PC-DMIS Basic Language Reference Automation • 289

Boundary
Condition

Properties Required

Plane BoundaryConditionCenter
BoundaryConditionEndApproach
BoundaryConditionPlaneV

Cone BoundaryConditionCenter
BoundaryConditionEndApproach
BoundaryConditionAxisV

Cylinder BoundaryConditionCenter
BoundaryConditionEndApproach
BoundaryConditionAxisV

Sphere BoundaryConditionCenter
BoundaryConditionEndApproach

Scan.Filter
This property represents the filter type. Read/write of enumeration BSF_ENUM.

The following are the allowable values:

BSF_DISTANCE: PC-DMIS determines each hit based on the set increment and the
last two measured hits. The approach of the probe is perpendicular to the line
between the last two measured hits. The probe will stay on the cut plane. PC-DMIS
will start at the first boundary point and continue taking hits at the set increment,
stopping when it satisfies the Boundary Condition. In the case of a continous scan,
PC-DMIS would filter the data from the CMM and keep only the hits that are apart
by at least the increment. Both DCC and Manual scans can use this filter.

BSF_BODYAXISDISTANCE: PC-DMIS will take hits at the set increment along
the current part’s coordinate system. The approach of the probe is perpendicular to
the indicated axis. The probe will stay on the cut plane. The approach vector will be
normal to the selected axis and on the cut plane. This technique uses the same
approach for taking each hit (unlike the previous technique which adjusts the
approach to be perpendicular to the line between the previous two hits). The above
behaviour applies to DCC scans.

When this filter is applied to Manual scans, the following behaviour happens:

This Filter property allows you to scan a part by specifying a cut plane on a certain
part axis and dragging the probe across the cut plane. As you scan the part, you
should scan so that the probe crisscrosses the defined Cut Plane as many times as
desired. PC-DMIS then follows this procedure:

1) PC-DMIS gets data from the controller and finds the two
data hits that are closest to the Cut Plane on either side
as you crisscross.

2) PC-DMIS then forms a line between the two hits which will
pierce the Cut Plane.

3) The pierced point then becomes a hit on the Cut Plane.

This operation happens every time you cross the Cut Plane and you will finally have
many hits that are on the Cut Plane.

BSF_VARIABLEDISTANCE: This technique allows you to set specific maximum
and minimum angle and increment values that will be used in determining where PC-
DMIS will take a hit. The probe’s approach is perpendicular to the line between the
last two measured hits. You should provide the maximum and minimum values that

290 • Automation PC-DMIS Basic Language Reference

will be used to determine the increments between hits. You also must enter the
desired values for the maximum and minimum angles. PC-DMIS will take three hits
using the minimum increment. It will then measure the angle between hit’s 1-2 and 2-
3.

• If the measured angle is between the maximum and minimum
values defined, PC-DMIS will continue to take hits at the
current increment.

• If the angle is greater than the maximum value, PC-DMIS
will erase the last hit and measure it again using one
quarter of the current increment value.

• If the angle is less than the minimum increment, PC-DMIS
will take the hit at the minimum increment value.

PC-DMIS will again measure the angle between the newest hit and the two previous
hits. It will continue to erase the last hit and drop the increment value to one quarter
of the increment until the measured angle is within the range defined, or the
minimum value of the increment is reached.

If the measured angle is less than the minimum angle, PC-DMIS will double the
increment for the next hit. (If this is greater than the maximum increment value it
will take the hit at the maximum increment.) PC-DMIS will again measure the angle
between the newest hit and the two previous hits. It will continue to double the
increment value until the measured angle is within the range defined, or the
maximum increment is reached. The above behaviour applies to DCC scans.

When this filter is applied to Manual scans, the following behaviour occurs:

The filter defines the distance between hits based on the part. PC-DMIS allows you
to specify the speed at which it will read hits and the drop point distance. After the
scanning process is complete, PC-DMIS will calculate the total number of hits that
were measured and the total number that were kept after completing the drop point
distance calculations. The reduced data is then converted to hits.

The Time Delta method of scanning allows you to reduce the scan data by setting a
time increment. PC-DMIS will start from the first hit and reduce the scan by deleting
hits that are read in faster than the time delta specified.Scan.HitType
Represents the type of hit to use. Read/write of enumeration BSCANHIT_ENUM.

The following are the allowable values:

BSCANHIT_VECTOR – use vector hits for this scan

BSCANHIT_SURFACE – use surface hits for this scan

BSCANHIT_EDGE – use edge hits for this scan.

BSCANHIT_BASIC – use basic hits for this scan. Only Manual scans use this hit
type. Currently there are no Manual Scans.

Remarks

Not every hit type can be used with every method and filter combination.
Method Vector

Hit
Surface
Hit

Basic Hit Edge
Hit

Open Y Y - Y

Close Y Y - Y

Patch Y Y - Y

HardProb - - - Y

TTP - - - Y

PC-DMIS Basic Language Reference Automation • 291

Scan.Method
This property represents the method type for this scan. Read/write of enumeration
BSMETHOD_ENUM.

The following are the allowable values:

BSCANMETH_OPEN: This method will scan the surface along a line. This
procedure uses the starting and ending point for the line and also includes a direction
point. The probe will always remain within the cut plane while doing the scan. This
is valid oly for DCC scans.

BSCANMETH_CLOSE: This method will scan the surface along a line. This
procedure uses the starting and ending point for the line and also includes a direction
point. The probe will always remain within the cut plane while doing the scan.The
scan will start and finish at the same Point. This is valid oly for DCC scans.

BSCANMETH_PATCH: This method will scan the surface in multiple rows
depending on the Boundary Points. This is valid oly for DCC scans.

BSCANMETH_MANUAL_TTP: This is valid only for Manual scans and will allow
you to use a Touch Trigger Probe to take Manual hits.

BSCANMETH_MANUAL_FIXED_PROBE: This is valid only for Manual scans
and will allow you to use a Hard Probe to take Manual
hits.Scan.MethodCutPlane
This property represents the method’s cut plane vector. Read/write PointData
object.

Scan.MethodEnd
This property represents the scan’s end point. Read/write PointData object.

Scan.MethodEndTouch
This property represents the method’s end touch vector. Read/write PointData
object.

Scan.MethodInitDir
This property represents the method’s initial direction vector. Read/write PointData
object.

Scan.MethodInitTopSurf
This property represents the initial Surface Vector for the Edge method. Read/write
PointData object.

Scan.MethodInitTouch
This represents the method’s initial touch vector. Read/write PointData object.

Scan.MethodStart
This property represents the scan’s start point. Read/write PointData object.

Method Method
Start

Method
End

Method
Cutpla
ne

Method
InitDir

Method
InitTou
ch

Method
InitTop
Surf

Method
EndTo
uch

292 • Automation PC-DMIS Basic Language Reference

Open Y Y Y Y Y - Y

Close Y Y Y Y Y - -

Patch - - Y Y Y - Y

TTP - - Y Y Y - -

HardProbe Y Y Y Y Y - -

Scan.NominalMode
This property represents how to determine the nominals for this scan. Read/write of
enumeration BSCANNMODE_ENUM.

The following are the allowable values:

BSCANNMODE_FINDCADNOMINAL: This mode would find the Nominal data
from CAD after scanning. This mode is useful only when CAD surface data is
available.

SCANNMODE_MASTERDATA: This mode keeps the data scanned the first time
as Master data.

Scan.OperationMode
This property represents mode of operation of the scan. Read/write of enumeration
BSOPMODE_ENUM.

The following are the allowable values:

BSCANOPMODE_REGULARLEARN: When this mode is used, PC-DMIS will
execute the scan as though it is learning it. All learned measured data will replace the
new measured data. The nominal will be re-calculated depending on the Nominals
mode.

BSCANOPMODE_DEFINEPATHFROMHITS: This mode is available only when
using analog probe heads that can do continuous contact scanning. When this option
is selected, PC-DMIS allows the controller to ‘define’ a scan. PC-DMIS gathers all
hit locations from the editor and passes them onto the controller for scanning. The
controller will then adjust the path allowing the probe to pass through all the points.
The data is then reduced according to the increment provided and the new data will
replace any old measured data This value cannot be used currently through
Automation because there is no Method provided to define a path.

BSCANOPMODE_NORMALEXECUTION: If a DCC scan is executed, PC-DMIS
will take hits at each of the learned locations in Stitch scanning mode, storing the
newly measured data.

Method Regular
Learn

Defined
Path

Normal

Open Y - Y

Close Y - Y

Patch Y - Y

TTP Y - Y

HardProbe Y - Y

PC-DMIS Basic Language Reference Automation • 293

Methods:

Scan.GetBoundaryConditionParams
Syntax

Return Value=expression. GetBoundaryConditionParams (nCrossings,
dRadius, dHalfAngle)

expression: Required expression that evaluates to a PC-DMIS ScanCommand
object.

nCrossing: Required Long variable that gets the number of crossings for this
boundary condition. The scan would stop after the probe crosses (breaks) the
Boundary Condition like a Sphere, Cylinder, Cone, or a Plane the given number of
times.

dRadius: Required Double variable that gets the radius of the boundary condition.
This is used by the Spherical and Cylindrical Boundary Conditions.

dHalfAngle: Required Double variable that gets the half-angle of the cone-type
boundary condition, or gets zero if the boundary condition is not of cone type.

Return Value: This method returns a boolean value. Boolean returns true if the
function succeeds, false if it fails.

Remarks

Scan.GetFilterParams
Syntax

Return Value=expression. GetFilterParams (dCutAxisLocation, nAxis,
dMaxIncrement, dMinIncrement, dMaxAngle, dMinAngle)

Return Value: This method returns a boolean value. Boolean returns true if the
function succeeds, false if it fails.

expression: Required expression that evaluates to a PC-DMIS ScanCommand
object.

dCutAxisLocation: Used for Manual scans with Filter property set to
BSF_BODYAXISDISTANCE.

nAxis: Required Long variable that gets the cut axis. Returns non-zero only for axis
filters. For axis filters, 0 means the X axis, 1 means the Y-axis, and 2 means the Z-
axis.

dMaxIncrement: Required Double variable that gets the maximum increment. For
fixed-length filters, this is simply the fixed increment. This is the Time delta valus in
case the filter is BSF_TIME_DELTA or BSF_VARIABLEDISTANCE for Manual
scans.

dMinIncrement: Required Double variable that gets the minimum increment for
Variable Distance Filters. This is the Drop Point distance when a Manul scan is
being used with the filter set to BSF_VARIABLEDISTANCE.

dMaxAngle: Required Double variable that gets the maximum angle used in
Variable Distance Filters.

dMinAngle: Required Double variable that gets the minimum angle used in Variable
Distance Filters.

294 • Automation PC-DMIS Basic Language Reference

Remarks

Filter GetFilterParams
(dCutAxisLocation, nAxis,
dMaxIncrement, dMinIncrement,
dMaxAngle, dMinAngle)

Distance ,,dMaxIncrement
BodyAxisDistance (DCC) ,nAxis, dMaxIncrement
BodyAxisDistance
(Manual)

NCutLocation,nAxis

Time ,,dMaxIncrement
VariableDistance ,,dMaxIncrement, dMinIncrement,

dMaxAngle, dMinAngle

Scan.GetHitParams
Syntax

Return Value=expression. GetHitParams (nInitSamples, nPermSamples,
dSpacer, dIndent, dDepth)

Return Value: This method returns a boolean value. Boolean returns true if the
function succeeds, false if it fails.

expression: Required expression that evaluates to a PC-DMIS ScanCommand
object.

nInitSamples: Required Long variable that gets the number of initial sample hits for
the hits in this scan. It always returns zero for basic hits and vector hits.

nPermSamples: Required Long variable that gets the number of permanent sample
hits for the hits in this scan. It always returns zero for basic hits and vector hits.

dSpacer: Required Double variable that gets the spacing of the sample hits from the
hit center. It always returns zero for basic hits and vector hits.

dIndent: Required Double variable that gets the indent of the sample hits from the hit
center. It always returns zero for basic hits, vector hits, and surface.

dDepth: Required Double variable that gets the depth of the sample hits from the hit
center. It always returns zero for basic hits, vector hits, and surface.

Scan.GetMethodPointData
Syntax

Return Value=expression. GetMethodPointData (MethodStart, MethodEnd,
MethodInitTouch, MethodEndTouch, MethodInitDir, MethodCutPlane)

Return Value: This method returns a boolean value. Boolean returns true if the
function succeeds, false if it fails.

expression: Required expression that evaluates to a PC-DMIS ScanCommand
object.

MethodStart: Required PointData object that gets the MethodStart property.

MethodEnd: Required PointData object that gets the MethodEnd property.

MethodInitTouch: Required PointData object that gets the MethodInitTouch
property.

PC-DMIS Basic Language Reference Automation • 295

MethodEndTouch: Required PointData object that gets the MethodEndTouch
property.

MethodInitDir: Required PointData object that gets the MethodInitDir property.

MethodCutPlane: Required PointData object that gets the MethodCutPlane
property.

Remarks

If scan is a ScanCommand object, and MS, ME, MIT, MET, MID,and MCP are all
Dimensioned as Object, the following are equivalent:

scan.GetMethodParams MS,ME,MIT,MET,MID,MCP

set MS = scan.MethodStart
set ME = scan.MethodEnd
set MIT = scan.MethodInitTouch
set MET = scan.MethodEndTouch
set MID = scan.MethodInitDir
set MCP = scan.MethodCutPlane

This method is provided as a shortcut to getting these commonly used properties all
at once.

Scan.GetNomsParams
Syntax

Return Value=expression. GetNomsParams (dFindNomsTolerance,
dSurfaceThickness, dEdgeThickness)

Return Value: This method returns a boolean value. Boolean returns true if the
function succeeds, false if it fails.

expression: Required expression that evaluates to a PC-DMIS ScanCommand
object.

dFindNomsTolerance: Required Double variable that gets the Find Noms tolerance
and is used only when the NominalMode property is
BSCANNMODE_FINDCADNOMINAL.

dSurfaceThickness: Required Double variable that gets the surface thickness and is
used only when the NominalMode property is
BSCANNMODE_FINDCADNOMINAL.

dEdgeThickness: Required Double variable that gets the edge thickness and is used
only when the NominalMode property is BSCANNMODE_FINDCADNOMINAL
and when the Method property is BSCANMETH_EDGE.

Scan.GetParams
Syntax

Return Value=expression. GetParams (Method, Filter, OperationMode,
HitType, NominalMode, BoundaryCondition)

Return Value: This method returns a boolean value. Boolean returns true if the
function succeeds, false if it fails.

expression: Required expression that evaluates to a PC-DMIS ScanCommand
object.

Method: Required Long variable that gets the Method property.

Filter: Required Long variable that gets the Filter property.

296 • Automation PC-DMIS Basic Language Reference

OperationMode: Required Long variable that gets the OperationMode property.

HitType: Required Long variable that gets the HitType property.

NominalMode: Required Long variable that gets the NominalMode property.

BoundaryCondition: Required Long variable that gets the BoundaryCondition
property.

Remarks

If scan is a ScanCommand object, and M, F, O, H, N,and B are all dimensioned as
Object, the following are equivalent:

scan.GetParams M, F, O, H, N, B

M = scan.Method
F = scan.Filter
O = scan.OperationMode
H = scan.HitType
N = scan.NominalMode
B = scan.BoundaryCondition

This method is provided as a shortcut to getting these commonly used properties all
at once.

Scan.SetBoundaryConditionParams
Syntax

Return Value=expression.SetBoundaryConditionParams (nCrossings,
dRadius, dHalfAngle)

Return Value: This method returns a boolean value. Boolean returns true if the
function succeeds, false if it fails.

expression: Required expression that evaluates to a PC-DMIS ScanCommand
object.

nCrossing: Required Long that sets the number of crossings for this boundary
condition.

dRadius: Required Double that sets the radius of the boundary condition.

dHalfAngle: Required Double that sets the half-angle of the cone-type boundary
condition, or is ignored if the boundary condition is not of cone type.

Remarks

Scan.SetFilterParams
Syntax

Return Value=expression.SetFilterParams (dCutAxisLocation, nAxis,
dMaxIncrement, dMinIncrement, dMaxAngle, dMinAngle)

Return Value: This method returns a boolean value. Boolean returns true if the
function succeeds, false if it fails.

expression: Required expression that evaluates to a PC-DMIS ScanCommand
object.

dCutAxisLocation: Used for Manual scans with Filter property set to
BSF_BODYAXISDISTANCE.

PC-DMIS Basic Language Reference Automation • 297

nAxis: Long variable that gets the cut axis. Returns non-zero only for axis filters. For
axis filters, 0 means the X axis, 1 means the Y-axis, and 2 means the Z-axis.

dMaxIncrement: Double variable that gets the maximum increment. For fixed-length
filters, this is simply the fixed increment. This is the Time delta valus in case the
filter is BSF_TIME_DELTA or BSF_VARIABLEDISTANCE for Manual scans.

dMinIncrement: Double variable that gets the minimum increment for Variable
Distance Filters. This is the Drop Point distance when a Manul scan is being used
with the filter set to BSF_VARIABLEDISTANCE.

dMaxAngle: Double variable that gets the maximum angle used in Variable Distance
Filters.

dMinAngle: Double variable that gets the minimum angle used in Variable Distance
Filters.

Remarks

Filter SetFilterParams (dCutAxisLocation,
nAxis, dMaxIncrement, dMinIncrement,
dMaxAngle, dMinAngle)

Distance ,,dMaxIncrement
BodyAxisDistance ,nAxis, dMaxIncrement
VariableDistance ,,dMaxIncrement, dMinIncrement,

dMaxAngle, dMinAngle

Scan.SetHitParams
Syntax

Return Value=expression.SetHitParams (nInitSamples, nPermSamples,
dSpacer, dIndent, dDepth)

Return Value: This method returns a boolean value. Boolean returns true if the
function succeeds, false if it fails.

expression: Required expression that evaluates to a PC-DMIS ScanCommand
object.

nInitSamples: Required Long that sets the number of initial sample hits for the hits
in this scan. It is ignored for basic hits and vector hits.

nPermSamples: Required Long that sets the number of permanent sample hits for the
hits in this scan. It is ignored for basic hits and vector hits.

dSpacer: Required Double that sets the spacing of the sample hits from the hit
center. It is ignored for basic hits and vector hits.

dIndent: Required Double that sets the indent of the sample hits from the hit center.
It is ignored for basic hits, vector hits, and surface.

dDepth: Required Double that sets the depth of the sample hits from the hit center. It
is ignored for basic hits, vector hits, and surface.

Scan.SetMethodPointData
Syntax

Return Value=expression.SetMethodPointData (MethodStart, MethodEnd,
MethodInitTouch, MethodEndTouch, MethodInitDir, MethodCutPlane)

298 • Automation PC-DMIS Basic Language Reference

Return Value: This method returns a boolean value. Boolean returns true if the
function succeeds, false if it fails.

expression: Required expression that evaluates to a PC-DMIS ScanCommand
object.

MethodStart: Required PointData object that sets the MethodStart property.

MethodEnd: Required PointData object that sets the MethodEnd property.

MethodInitTouch: Required PointData object that sets the MethodInitTouch
property.

MethodEndTouch: Required PointData object that sets the MethodEndTouch
property.

MethodInitDir: Required PointData object that sets the MethodInitDir property.

MethodCutPlane: Required PointData object that sets the MethodCutPlane property.

Remarks

If scan is a ScanCommand object, and MS, ME, MIT, MET, MID,and MCP are all
dimensioned as Object, the following are equivalent:

scan.SetMethodParams MS,ME,MIT,MET,MID,MCP

set scan.MethodStart = MS
set scan.MethodEnd = ME
set scan.MethodInitTouch = MIT
set scan.MethodEndTouch = MET
set scan.MethodInitDir = MID
set scan.MethodCutPlane = MCP

This method is provided as a shortcut to setting these commonly used properties all
at once.

Scan.SetNomsParams
Syntax

Return Value=expression.SetNomsParams (dFindNomsTolerance,
dSurfaceThickness, dEdgeThickness)

Return Value: This method returns a boolean value. Boolean returns true if the
function succeeds, false if it fails.

expression: Required expression that evaluates to a PC-DMIS ScanCommand
object.

dFindNomsTolerance: Required Double that sets the Find Noms tolerance.

dSurfaceThickness: Required Double that sets the surface thickness.

dEdgeThickness: Required Double that sets the edge thickness.

Remarks

Scan.SetParams
Syntax

Return Value=expression.SetParams (Method, Filter, OperationMode,
HitType, NominalMode, BoundaryCondition)

Return Value: This method returns a boolean value. Boolean returns true if the
function succeeds, false if it fails.

PC-DMIS Basic Language Reference Automation • 299

expression: Required expression that evaluates to a PC-DMIS ScanCommand
object.

Method: Required Long that sets the Method property.

Filter: Required Long that sets the Filter property.

OperationMode: Required Long that sets the OperationMode property.

HitType: Required Long that sets the HitType property.

NominalMode: Required Long that sets the NominalMode property.

BoundaryCondition: Required Long that sets the BoundaryCondition property.

Remarks

If scan is a ScanCommand object, and M, F, O, H, N,and B are all dimensioned as
Object, the following are equivalent:

scan.SetParams M, F, O, H, N, B

scan.Method = M
scan.Filter = F
scan.OperationMode = O
scan.HitType = H
scan.NominalMode = N
scan.BoundaryCondition = B

This method is provided as a shortcut to setting these commonly used properties all
at once.

Scan.CreateBasicScan
Syntax

Return Value=expression. CreateBasicScan()

Return Value: This method returns a boolean value. Boolean returns true if the
function succeeds, false if it fails.

expression: Required expression that evaluates to a PC-DMIS ScanCommand
object.

This method has to be called after calling other Properties/Methods. This method
creates the necessary BasicScans needed by DCC and Manual scans and inserts them
into the Part Program.

Statistics Object Overview
The Statistics Automation object gives access to the properties and data members of
the PC-DMIS Statistics command.

Statistics Members

Properties:

Statistics.CalcMode
LONG value representing whether calculation mode inside of DataPage is turned off
or on.

300 • Automation PC-DMIS Basic Language Reference

Read/Write Long

Statistics.MemoryPages
LONG value representing number of memory pages to be used by DataPage.

Read/Write Long

Statistics.NameType
ENUM_STAT_NAME_TYPES enumeration value indicating whether the feature
name or the dimension name should be sent to DataPage. If set to
PCD_STAT_FEAT_NAME (1), the feature name is used. If set to
PCD_STAT_DIM_NAME (0), the dimension name is used.

Read/Write ENUM_STAT_NAME_TYPES enumeration

Statistics.ReadLock
LONG value representing the number of seconds in timeout period that DataPage
uses when trying to read the port lock.

Read/Write Long

Statistics.StatMode
ENUM_PCD_STAT_TYPES enumeration value representing the mode or function
of the statistics command. Possible values include the following:

PCD_STATS_OFF = 0

PCD_STATS_ON = 1

PCD_STATS_TRANSFER = 2

PCD_STATS_UPDATE = 3

Read/Write ENUM_PCD_STAT_TYPES enumeration

Statistics.WriteLock
LONG value representing number of seconds in timeout period that DataPage uses
when trying to write to the port lock.

Read/Write Long

Methods:

Statistics.AddStatsDir
Syntax:

expression.AddStatsDir (Dir)

Return Value: Boolean value indicating success or failure of call to method.

expression: Required expression that evaluates to a PC-DMIS Statistics object.

Dir: Required String representing the name of the directory to be added to the list of
statistics directories.

Statistics.GetStatsDir
Syntax:

PC-DMIS Basic Language Reference Automation • 301

expression.GetStatsDir (Index)

Return Value: String representing the name of the directory at the specified index
value. If index value is greater than the number of directories in the list, the string
will be empty.

expression: Required expression that evaluates to a PC-DMIS Statistics object.

Index: Required Long representing the index of the directory name to be retrieved.

Statistics.RemoveStatsDir
Syntax:

expression.RemoveStatsDir (Index)

Return Value: Boolean value indicating success or failure of call to remove
directory from the list of directories. If index is greater than the number of directories
in the list, the call will fail.

expression: Required expression that evaluates to a PC-DMIS Statistics object.

Index: Required Long representing the line of text to be removed.

Statistics.SetStatsDir
Syntax:

expression.SetStatsDir (Index, Dir)

Return Value: Boolean value indicating success or failure of call to set name of the
directory specified by Index. If the index value is greater than the number of
directories, the call will fail.

expression: Required expression that evaluates to a PC-DMIS Statistics object.

Index: Required Long representing the directory name to change.

Dir: Required String which is the new name of the directory.

Temperature Compensation Object Overview
The Temperature Compensation Automation object gives access to the properties of
the PC-DMIS Temperature Compensation command. For additional information
about Temperature Compensation, see "Temperature Compensation Setup" in the
"System Options" section of the PC-DMIS Reference Manual.

Temperature Compensation Members

Properties:

TempComp.HighThreshold
DOUBLE value representing the high temperature threshold.

Read/Write Double

TempComp.LowThreshold
DOUBLE value representing the low temperature threshold.

302 • Automation PC-DMIS Basic Language Reference

Read/Write Double

TempComp.MaterialCoefficient
DOUBLE value indicating the material coefficient.

Read/Write Double

TempComp.RefTemp
DOUBLE value representing the reference temperature.

Read/Write Double

TempComp.Sensors
STRING value representing the list of sensors—by number—to be used for
temperature compensation. The format of the list is a series of consecutive sensor
numbers. The series are specified using the hyphen between the first number and the
last number of the series. Each non-consecutive sensor or group of sensors is
separated by the comma (or the typical separator for the given locale).

Read/Write String

Example: The sensors 2, 4, 5, 6, 8, 10, 11, 12, 13 would be represented as “2,4-
6,8,10-13”.

Methods:

TempComp.GetOrigin
Syntax:

expression.GetOrigin (X, Y, Z)

expression: Required expression that evaluates to a PC-DMIS TempComp object.

X: Required Long variable that receives the X value of the temperature
compensation origin.

Y: Required Long variable that receives the Y value of the temperature
compensation origin.

Z: Required Long variable that receives the Z value of the temperature compensation
origin.

TempComp.SetOrigin
Syntax:

expression.SetOrigin (X, Y, Z)

expression: Required expression that evaluates to a PC-DMIS TempComp object.

X: Required Long that sets the X value of the temperature compensation origin.

Y: Required Long that sets the Y value of the temperature compensation origin.

Z: Required Long that sets the Z value of the temperature compensation origin.

PC-DMIS Basic Language Reference Automation • 303

Tip Object Overview
The Tip object describes a single tip of a probe. All of its properties are read-only.

Tip Members

Properties:

Tip.A
Returns the A angle of the tip. Read-only Double.

Tip.B
Returns the B angle of the tip. Read-only Double.

Tip.Date
Returns the PC-DMIS representation of the most recent calibration date of the tip.
Read-only String.

Tip.Diam
Returns the diameter of the tip. Read-only Double.

Tip.ID
Returns the ID string of the tip. Read-only String.

Tip.IJK
A PointData object that returns the vector along which the tip lies. Read-only.

Remarks

If there is a rotary table, the table rotation is taken into account.

Tip.MeasDiam
Returns the measured diameter of the tip. Read-only Double.

Tip.MeasThickness
Returns the measured thickness of the tip. Read-only Double.

Tip.MeasXYZ
Returns the measured location of the tip as a PointData. Read-only.

Tip.Parent
Returns the Tips collection object that contains this tip. Read-only.

Tip.Selected
Determines whether tip is selected for qualification. Read/Write Boolean

304 • Automation PC-DMIS Basic Language Reference

Remarks:

Use the "Probe.SelectAllTips" method of the probe object on page 286 to select all
tips at once and the "Probe.ClearAllTips" method of the probe object on page 285 to
clear all tips at once.

Tip.Thickness
Returns the nominal thickness of the tip. Read-only Double.

Tip.Time
Returns the PC-DMIS representation of the most recent calibration time of the tip.
Read-only String.

Tip.TipNum
Returns the tip number in the list of tips. Read-only Long.

Remarks

This is PC-DMIS’s internal representation of tip number. It may be different from
the number passed to Tips.Item to retrieve the tip.

Tip.Type
Returns the type of the tip. Read-only Long.

Remarks

The following tip types are defined. They can be combined via bitwise operations.

TIPBALL // Default
TIPDISK
TIPSHANK
TIPOPTIC
TIPANALOG
TIPANALOGBALL = TIPANALOG + BALL
TIPANALOGDISK = TIPANALOG + DISK
TIPANALOGSHANK = TIPANALOG + SHANK
TIPANALOGOPTIC = TIPANALOG + OPTIC
TIPFIXED
TIPFIXEDBALL = TIPFIXED + BALL
TIPFIXEDDISK = TIPFIXED + DISK
TIPFIXEDSHANK = TIPFIXED + SHANK
TIPFIXEDOPTIC = TIPFIXED + OPTIC
TIPSP600 // renishaw sp600 analog probe
TIPWBOPTIC // wolf and beck laser probe
TIPINFINITARM // renishaw infinite index arm
TIPSLAVE // tip belongs to slave arm

Tip.WristOffset
Returns the wrist offset of the tip. Read-only PointData.

Tip.WristTipIJK
Returns the wrist tip vector of the tip. Read-only PointData.

Tip.XYZ
Returns the location of the tip. Read-only PointData.

PC-DMIS Basic Language Reference Automation • 305

Tips Object Overview
The Tips object is the collection of all Tip objects for a Probe object. The Probe
object that the Tips stores Tip objects for is contained in the Parent property.

Tips Members

Properties:

Tips.Application
Represents the read-only PC-DMIS application. The Application object includes
properties and methods that return top-level objects. For example, the
ActivePartProgram property returns a PartProgram object.

Tips.Count
Represents the number of Tip objects in the parent Probe object. Read-only Integer.

Tips.Parent
Returns the parent Probe object. Read-only.

Methods:

Tips.Add
Syntax

expression.Add a, b

expression: Required expression that evaluates to a PC-DMIS Tips object.

a: Required Double that is the A parameter of the new tip.

b: Required Double that is the B parameter of the new tip.

This function adds a new tip position to this collection. The new tip is unqualified.

Tips.Item
Syntax 1

Return Value=expression.Item(NameOrNum)

Syntax 2

expression(NameOrNum)

Return Value: The Item function returns a Tip object.

expression: Required expression that evaluates to a Tips object.

NameOrNum: Required Variant that indicates which Tip object to return. It can be
either a Long or a String. If it is a Long, it is the index number of the Tip object in
the Tips collection. If it is a String, it is the ID of the Tip object.

Remarks

306 • Automation PC-DMIS Basic Language Reference

Since the Item method is the default, the function name can be omitted as in Syntax
2.

Tips.Remove
Syntax

expression.RemoveNum

expression: Required expression that evaluates to a Tips object.

Num: Required Long that indicates which Tip object to remove.

This function removes the indicated Tip object from this collection.

Tool Object Overview
The Tool object represents a single probe calibration tool. Use Tools(index) where
index is the index number or tool name to return a single Tool object.

Tool Members

Properties:

Tool.Application
Represents the read-only PC-DMIS application. The Application object includes
properties and methods that return top-level objects. For example, the
ActivePartProgram property returns a PartProgram object.

Tool.Diam
Returns the diameter of the tool. Read-only Double.

Tool.ID
Returns the ID of the tool. Read-only String.

Tool.Parent
Returns the parent Tools object. Read-only.

Tool.ShankIJK
Returns the shank vector of the tool as a PointData. Read-only.

Tool.ToolType
Returns the type of the tool. Read-only Long.

Remarks

There is only one type of tool currently available, TOOLSPHERE.

Tool.Width
Returns the width of the tool. Read-only Double.

PC-DMIS Basic Language Reference Automation • 307

Tool.XYZ
Returns the location of the tool. Read-only PointData.

Tools Object Overview
The Tools collection object contains the tools available to the parent PartProgram
object. Use Tools(index) where index is the index number or tool name to return a
single Tool object.

Tools Members

Properties:

Tools.Application
Represents the read-only PC-DMIS application. The Application object includes
properties and methods that return top-level objects. For example, the
ActivePartProgram property returns a PartProgram object.

Tools.Count
Represents the number of Tool objects in the parent PartProgram object. Read-only
Integer.

Tools.Parent
Returns the parent PartProgram object. Read-only.

Methods:

Tools.Add
Syntax

Return Value=expression.Add(ID)

Return Value: Returns a Tool object.

expression: Required expression that evaluates to a PC-DMIS Tips object.

ID: Required String that is the name of the new tool.

This function adds a new tool to this collection. The new tool is unqualified.

Tools.Item
Syntax 1

Return Value=expression.Item(NameOrNum)

Syntax 2

expression(NameOrNum)

Return Value: The Item function returns a Tool object.

expression: Required expression that evaluates to a Tools object.

308 • Automation PC-DMIS Basic Language Reference

NameOrNum: Required Variant that indicates which Tool object to return. It can be
either a Long or a String. If it is a Long, it is the index number of the Tool object in
the Tools collection. If it is a String, it is the ID of the Tool object.

Remarks

Since the Item method is the default, the function name can be omitted as in Syntax
2.

Tools.Remove
Syntax

Return Value=expression.Remove(ID)

Return Value: This method returns a boolean value. Boolean returns true if the
function succeeds, false if it fails.

expression: Required expression that evaluates to a Tools object.

ID: Required String that indicates which Tool object to remove.

This function removes the indicated Tool object from this collection.

Tracefield Object Overview
The Tracefield Automation object gives access to the name and value properties of
the PC-DMIS Tracefield command. For additional information on this command see
"Trace Field" in the "Utilities" section of the PC-DMIS Reference Manual.

Tracefield Members

Properties:

Tracefield.Name
STRING value representing the name of the tracefield.

Read/Write String

Tracefield.Value
STRING value representing the value for the tracefield.

Read/Write String

PC-DMIS Basic Language Reference Old PC-DMIS Basic Functions • 309

Old PC-DMIS Basic Functions

Introduction
These PC-DMIS OldBasic functions were made available in previous version of PC-
DMIS basic and are provided here, listed in alphabetical order, for backwards
compatibility.

Fuctions A

AddBoundaryPoint
AddBoundaryPoint x:=(Double), y:=(Double), z:=(Double)

This function is used to add the initial point, end point, and other boundary points in
the case of patch scans. It should be called for each boundary point to be added. It
should not be called more than num_bnd_pnts times (as specified in the call to
StartScan).

x,y,z: Coordinates of the boundary point.

AddFeature
AddFeature ID:=(String), off1:=(Double), off2:=(Double), off3:=(Double)

ID: ID string of the feature to add.

off1: X offset for an offset point. Single offset for this feature for an offset plane or
line.

off2: Y offset for an offset point.

off3: Z offset for an offset point.

Note: This function is used for constructed features only. The parameters off1, off2,
and off3 are only used in the case of offset points, planes or lines.

AddLevelFeat
AddLevelFeat ID:=(String)

310 • Old PC-DMIS Basic Functions PC-DMIS Basic Language Reference

ID: Name of level feature to be added

This function is used in conjunction with the iterate alignment command

AddOriginFeat
AddOriginFeat ID:=(String)

ID: Name of origin feature to be added

This function is used in conjunction with the iterate alignment command

AddRotateFeat
AddRotateFeat ID:=(String)

ID: Name of rotation feature to be added

This function is used in conjunction with the iterate alignment command

ArcSin
ArcSin x:=(Double)

Returns the arc sine of x in degrees.

ArcCos
ArcCos x:=(Double)

Return the arc cosine of x in degrees.

Functions B

BestFit2D
BestFit2D num_inputs:= (Integer), workplane:= (Integer)

num_inputs: The number of features to use to create the best fit alignment. There
must be a corresponding number of calls to Feature before the call to EndAlign.

workplane:The workplane of the 2D alignment. Must be PCD_TOP,
PCD_BOTTOM, PCD_FRONT, PCD_BACK, PCD_LEFT, or PCD_RIGHT.

BestFit3D
BestFit3D num_inputs:= (Integer)

num_inputs: The number of features to use to create the best fit alignment. There
must be a corresponding number of calls to Feature before the call to EndAlign.

PC-DMIS Basic Language Reference Old PC-DMIS Basic Functions • 311

Functions C

Calibrate
Calibrate sphere:=(String), tool:=(String)[, moved:=(Integer)]

sphere: Id of measured sphere used in calibration.

tool: Id of tool object used in calibration.

moved: Toggle indicating whether first hit should be taken manually or not. Can be
either PCD_NO or PCD_YES.

CatchMotionError
CatchMotionError tog:=(Integer), catch_error:=(Integer)

tog: PCD_CATCH_IN_INTEGER: All subsequent motion errors will cause the
integer passed by reference as the catch_error parameter to be set to a non-zero
value.

PCD_TRIGGER_ERROR: All subsequent motion errors will generate runtime error
1001. These error may be caught using the On Error statement.

PCD_OFF: Turns off error catching. The basic script will no longer be notified when
motion errors occur.

catch_error: A reference to the integer that will be set to a non-zero value if a CMM
error occurs. When error catching is turned on, this integer is automatically
initialized to zero. Only used when tog is set to PCD_CATCH_IN_INTEGER.

Check
Check distance:= (Double)

distance: The new check distance.

ClearPlane
ClearPlane plane1:= (Integer), val1:= (Double), plane2:= (Integer), val2:=
(Double)

plane1: Clearance plane. Must be one of the following values:

PCD_TOP, PCD_BOTTOM, PCD_LEFT, PCD_RIGHT, PCD_FRONT,
PCD_BACK

val1: The height of the workplane.

plane2: Pass through plane. Must be one of the values listed in the description of
plane1.

val2: The height of the pass through plane.

Column132
Column132 tog:=(Integer)

Turns on or off 132 column mode.

312 • Old PC-DMIS Basic Functions PC-DMIS Basic Language Reference

tog: PCD_ON or PCD_OFF

Comment
Comment ctype:=(Integer), comment:=(String)

ctype: PCD_REPORT, PCD_OPERATOR, or PCD_INPUT.

comment: The comment string.

CreatID
CreateID ID:=(String), ftype:=(Integer)

ID: Reference to a string to hold the newly created ID.

ftype: MEAS_POINT, MEAS_CIRCLE, MEAS_SPHERE, MEAS_LINE,
MEAS_CONE, MEAS_CYLINDER, MEAS_PLANE, MEAS_SET,
READ_POINT, CONST_ORIG_POINT, CONST_OFF_POINT,
CONST_PROJ_POINT, CONST_MID_POINT, CONST_DROP_POINT,
CONST_PIERCE_POINT, CONST_INT_POINT, CONST_CAST_POINT,
CONST_CORNER_POINT, CONST_BFRE_CIRCLE, CONST_BF_CIRCLE,
CONST_PROJ_CIRCLE, CONST_REV_CIRCLE, CONST_CONE_CIRCLE,
CONST_CAST_CIRCLE, CONST_INT_CIRCLE, CONST_BFRE_SPHERE,
CONST_BF_SPHERE, CONST_PROJ_SPHERE, CONST_REV_SPHERE,
CONST_CAST_SPHERE,CONST_BFRE_LINE, CONST_BF_LINE,
CONST_PROJ_LINE, CONST_REV_LINE, CONST_MID_LINE,
CONST_CAST_LINE, CONST_INT_LINE, CONST_OFF_LINE,
CONST_ALN_LINE, CONST_PRTO_LINE, CONST_PLTO_LINE,
CONST_BFRE_CONE, CONST_BF_CONE,CONST_PROJ_CONE,
CONST_REV_CONE,CONST_CAST_CONE,CONST_BFRE_CYLINDER,
CONST_BF_CYLINDER,
CONST_PROJ_CYLINDER,CONST_REV_CYLINDER,
CONST_CAST_CYLINDER, CONST_BFRE_PLANE, CONST_BF_PLANE,
CONST_REV_PLANE, CONST_MID_PLANE, CONST_CAST_PLANE,
CONST_OFF_PLANE, CONST_ALN_PLANE, CONST_PRTO_PLANE,
CONST_PLTO_PLANE,CONST_HIPNT_PLANE, CONST_SET,
AUTO_VECTOR_HIT, AUTO_SURFACE_HIT, AUTO_EDGE_HIT,
AUTO_ANGLE_HIT, AUTO_CORNER_HIT, AUTO_CIRCLE, AUTO_SPHERE,
AUTO_CYLINDER, AUTO_ROUND_SLOT, AUTO_SQUARE_SLOT,
AUTO_ELLIPSE, PCD_CURVE, DIM_LOCATION, DIM_STRAIGHTNESS,
DIM_ROUNDNESS, DIM_FLATNESS, DIM_PERPENDICULARITY,
DIM_PARALLELISM, DIM_PROFILE, DIM_3D_DISTANCE,
DIM_2D_DISTANCE, DIM_3D_ANGLE, DIM_2D_ANGLE, DIM_RUNOUT,
DIM_CONCENTRICITY, DIM_ANGULARITY, DIM_KEYIN,
DIM_TRUE_POSITION, PCD_ALIGNMENT

Functions D

DefaultAxes
DefaultAxes

This command is used only for location and true position dimensions. If present, the
default dimension axes are created. Calls to SetNoms with other axes passed as the
dtype parameter will have no effect if this command is used.

PC-DMIS Basic Language Reference Old PC-DMIS Basic Functions • 313

DefaultHits
DefaultHits

This command is used within a Startfeature…EndFeature block and is used to cause
the hits specified in the hits parameter of the StartFeature command to be
automatically generated.

DimFormat
DimFormat flags:=(Integer), heading1:=(Integer), heading2:=(Integer),
heading3:=(Integer), heading4:=(Integer), heading5:=(Integer),
heading6:=(Integer)

flags: PCD_HEADINGS, PCD_SYMBOLS. (Optional)

heading1: PCD_DEV, PCD_MAXMIN, PCD_MEAS, PCD_NOM,
PCD_OUTTOL, PCD_TOL. (Optional)

heading2: PCD_DEV, PCD_MAXMIN, PCD_MEAS, PCD_NOM,
PCD_OUTTOL, PCD_TOL. (Optional)

heading3: PCD_DEV, PCD_MAXMIN, PCD_MEAS, PCD_NOM,
PCD_OUTTOL, PCD_TOL. (Optional)

heading4: PCD_DEV, PCD_MAXMIN, PCD_MEAS, PCD_NOM,
PCD_OUTTOL, PCD_TOL. (Optional)

heading5: PCD_DEV, PCD_MAXMIN, PCD_MEAS, PCD_NOM,
PCD_OUTTOL, PCD_TOL. (Optional)

heading6: PCD_DEV, PCD_MAXMIN, PCD_MEAS, PCD_NOM,
PCD_OUTTOL, PCD_TOL. (Optional)

Functions E

EndAlign
EndAlign

This function must be called to end an alignment block.

EndDim
EndDim

EndDim takes no parameters, but must be called to finish off the dimension block.

EndFeature
EndFeature

This function ends a measured, constructed, or auto feature block. It must always be
present as the last function call in a feature block.

EndGetFeatPoint
EndGetFeatPoint

314 • Old PC-DMIS Basic Functions PC-DMIS Basic Language Reference

Use this command to release the memory allocated for use by the StartGetFeatPoint
and GetFeatPoint commands.

EndScan
EndScan

Call this when all of the other scan functions needed have been called.

The scan object is inserted in the command list with a call to this function.

EquateAlign
EquateAlign align1:=(String), align2:=(String)

Creates Equate alignment object

Align1: Name of alignment 1

Align2: Name of alignment 2

Functions F

Feature
Feature ID:=(String), pnt_tol:=(Double)

ID: ID string of the feature to add as an input for a best fit or iterative alignment.

pnt_tol: The point tolerance of the feature. Only used with best fit alignments.

This function must only be called after a call to BestFit2D, BestFit3D, or Iterate

Flatness
SHORT Flatness ID:=(String), out_zone:=(Double)

Return value: Non-zero if successfull. Zero if the object with the given ID string
cannot be found.

ID: The string ID of the object to query.

out_zone: A reference to a double to hold the output zone.

Note: This function was added for the tutor translator, and should be used with
caution.

Functions G

GapOnly
GapOnly tog:=(Integer)

tog: PCD_ON, PCD_OFF

PC-DMIS Basic Language Reference Old PC-DMIS Basic Functions • 315

GetDimData
GetDimData ID:= (String), buffer:= (DimData), dtype:= (Integer)

ID: The ID string of the dimension to access.

buffer: A record variable of type DimData in which to put the retrieved values. See
below for a description of the DimData structure.

dtype: The type of data to retrieve for location or true position dimensions. Not
needed for any other dimension type.

For location: PCD_X, PCD_Y, PCD_Z, PCD_D, PCD_R, PCD_A, PCD_T,
PCD_PA, PCD_PR, PCD_V, PCD_L

For true position: PCD_X, PCD_Y, PCD_Z, PCD_DD, PCD_DF, PCD_PA,
PCD_PR, PCD_TP

The definition of the DimData record type is as follows:

Type DimData

Nom As Double
Plus As Double
Minus As Double
Meas As Double
Max As Double
Min As Double
Dev As Double
Out As Double
Dev_Angle As Double
Bonus As Double

End Type

Note: The GetDimData function may not be called mid block.

Note: The GetDimData function should only be called on dimensions. It is up to the
user to make sure that the ID string passed in does not belong to a feature or an
alignment. For retrieving data from features, use GetFeatData.

GetDimOutTol
GetDimOutTol

Returns the number of features that are out of tolerance at the time that this
command is executed

GetFeatData
GetFeatData ID:= (String), buffer:= (FeatData), dtype:= (Integer),
xyz:=(Integer), ijk:= (Integer)

ID: The ID string of the feature to access.

buffer: A record variable of type FeatData in which to put the retrieved values. See
below for a description of the FeatData structure.

316 • Old PC-DMIS Basic Functions PC-DMIS Basic Language Reference

dtype: The type of data to retrieve. Must be either PCD_MEAS or PCD_THEO.

xyz: Type of data to put in xyz. Allowed values are: PCD_CENTROID,
PCD_BALLCENTER, PCD_STARTPOINT, PCD_ENDPOINT, PCD_MIDPOINT

ijk: Type of data to put in ijk. Allowed values are: PCD_VECTOR,
PCD_SLOTVECTOR, PCD_SURFACEVECTOR, PCD_STARTPOINT,
PCD_ENDPOINT, PCD_MIDPOINT

The definition of the FeatData record type is as follows:

Type FeatData

X As Double
Y As Double
Z As Double
I As Double
J As Double
K As Double
Diam As Double
Length As Double
Angle As Double
Small_Diam As Double
Start_Angle As Double
End_Angle As Double
Start_Angle2 As Double
End_Angle2 As Double
F As Double
TP As Double
P1 As Double
P2 As Double
ID As String

End Type

Note: The GetFeatData function may not be called mid block.

Note: The GetFeatData function should only be called on measured, constructed,
and auto features. It is up to the user to make sure that the ID string passed in does
not belong to a dimension or an alignment. For retrieving data from dimensions, use
GetDimData.

GetFeatID
Integer GetFeatID index:=(Integer), ID:=(String), type:=(Integer)

Index: The count backwards that should be used to find the next item with an id.

ID: This string is filled in with the id of the nth object back from the current point
when n is specified by index

Type: type of object to be considered. PCD_FEATURE, PCD_ALIGNMENT,
PCD_DIMENSION

PC-DMIS Basic Language Reference Old PC-DMIS Basic Functions • 317

GetFeatPoint
Integer GetFeatPoint buffer:= (PointData), index:= (Integer)

This function is called after a call to StartGetFeatPoint to retrieve the actual points.

Return value: The number of points available from the object.

buffer: A record variable of type PointData in which to put the retrieved point.

index: The 1 based index of the point to retrieve.

The definition of the PointData record type is as follows:

Type PointData

X As Double
Y As Double
Z As Double

End Type

GetFeature
Integer GetFeature ID:=(String)

Return value: The feature type of the object, or 0 if unsuccessful. Possible feature
types are the following: PCD_F_POINT, PCD_F_CIRCLE, PCD_F_SPHERE,
PCD_F_LINE, PCD_F_CONE, PCD_F_CYLINDER, PCD_F_PLANE,
PCD_F_CURVE, PCD_F_SLOT, PCD_F_SET, PCD_F_ELLIPSE,
PCD_F_SURFACE

ID: The string ID of the object to query.

Note: This function was added for the tutor translator, and should be used with
caution.

GetPH9Status
SHORT GetPH9Status

Return value: Returns 1 if the probe has a PH9 and 0 if no PH9 is available.

GetProbeOffsets
GetProbeOffsets buffer:= (PointData)

buffer: A record of type pointdata that receives the values of the current xyz offset
from the probe base.

GetProbeRadius
Double GetProbeRadius

Returns the current probe radius

GetProgramOption
Integer GetProgramOption opt:=(Integer)

318 • Old PC-DMIS Basic Functions PC-DMIS Basic Language Reference

Return value: returns 1 if the option is on and 0 if the option is off

Opt: The option’s status that is being checked. PCD_AUTOTIPSELECT,
PCD_AUTOPREHIT, PCD_ISONLINE, PCD_AUTOPROJREFPLANE,
PCD_ISARMTYPECMM, PCD_HASINDEXPH9, PCD_HASINDEXROTTABLE,
PCD_DISPSPEEDS, PCD_HASMANPH9, PCD_HASPHS,
PCD_HASMANROTTABLE, PCD_HASROTTABLE, PCD_HASPH9,
PCD_ENDKEY, PCD_EXTSHEETMETAL, PCD_FLYMODE,
PCD_TABLEAVOIDANCE, PCD_USEDIMCOLORS

GetProgramValue
Double GetProgramValue opt:=(Integer)

Return value: returns the current value of the given option

Opt: The option’s value that is being retrieved. PCD_ROTTABLEANGLE,
PCD_PROBERADIUS, PCD_DIMPLACES, PCD_FLYRADIUS,
PCD_AUTOTRIGDISTANCE, PCD_TABLETOL, PCD_MANRETRACT,
PCD_MEASSCALE, PCD_PH9WARNDELTA, PCD_VALISYSERRTIMEOUT

GetTopMachineSpeed
DOUBLE GetTopMachineSpeed

Return value: Returns the top machine speed of the CMM.

GetType
SHORT GetType ID:=(String)

Return value: The type of the object, or 0 if unsuccessful. Possible types are any of
the types passed to StartFeature or StartDim.

ID: The string ID of the object to query.

Note: This function was added for the tutor translator, and should be used with
caution.

GetUnits
SHORT GetUnits

Return value: The units of the current part program. A value of 1 is returned when
units are in inches and 0 when units are in millimeters.

Functions H

Hit
Hit x:=(Double), y:=(Double), z:=(Double), i:=(Double), j:=(Double),
k:=(Double)

x,y,z, i,j,k: Theoretical x,y,z and approach vector of hit.

PC-DMIS Basic Language Reference Old PC-DMIS Basic Functions • 319

Note: This function is used for measured features only. It may be omitted on
measured circles, cones, cylinders, spheres and points as these features generate
default hits. However, if circular moves are required between each hit, the hit
function should be provided as a place holder. The parameters may be eliminated, in
which case the default hit x, y, z and i, j, k are used.

Functions I

IgnoreMotionError
IgnoreMotionError tog:=(Integer)

tog: TRUE or FALSE. TRUE indicates that we wish to begin ignoring CMM
motion errors. FALSE means we wish to stop ignoring CMM motion errors.

Iterate
Iterate num_inputs:= (Integer), pnt_tol:= (Double), flags:= (Integer)

num_inputs: The number of features to use to create the iterative alignment. Must be
no more than six. There must be a corresponding number of calls to Feature before
the call to EndAlign.

pnt_tol: The point tolerance.

flags: Any Ored combination of the following: PCD_BODY_AX,
PCD_AV_ERROR, PCD_MEAS_ALL, PCD MEAS ALL ALWAYS.

Functions L

Level
Level axis:= (Integer), feat:= (String)

axis: Axis to level. PCD_ZPLUS, PCD_ZMINUS, PCD_XPLUS, PCD_XMINUS,
PCD_YPLUS, PCD_YMINUS

feat: ID string of the feature to level to.

LoadProbe
LoadProbe probe:= (String)

probe: The probe to load.

Functions M

MaxMineAve
SHORT MaxMinAve ID:=(String), in_vector:=(PointData),
out_max:=(Double), out_min:=(Double), out_ave:=(Double)

320 • Old PC-DMIS Basic Functions PC-DMIS Basic Language Reference

Return value: Non-zero if successfull. Zero if the object with the given ID string
cannot be found.

ID: The string ID of the object to query.

in_vector: Input vector.

out_max: A reference to a double to hold the output maximum.

out_min: A reference to a double to hold the output minimum.

out_ave: A reference to a double to hold the output average.

Note: This function was added for the tutor translator, and should be used with
caution.

Mode
Mode mode:= (Integer)

mode: PCD_DCC, PCD_MANUAL

Move
Move tog:= (Integer), x:= (Double), y:= (Double), z:= (Double),
direction:=(Integer)

tog: PCD_CLEARPLANE, PCD_INCREMENT, PCD_CIRCULAR, PCD_POINT,
PCD_ROTAB

x,y,z: Point or increment x,y,z if tog is PCD_INCREMENT or PCD_POINT.

x is angle if tog is PCD_ROTAB.

direction: PCD_CLOCKWISE, PCD_COUNTERCLOCKWISE,
PCD_SHORTEST. Used only for PCD_ROTAB.

MoveSpeed
Movespeed percent:= (Double)

percent: Move speed of the probe as a percentage of the maximum probe speed.

Functions O

OpenCommConnection
Integer OpenCommConnection port:=(Integer), baud:=(Integer),
parity:=(Integer), data:=(Integer), stop:=(Integer), flow:=(Integer)

Opens a connection to the specified comm port.

RETURN VALUE: 0 if successfull, -1 on error.

port: The comm port to open. Required.

baud: The baud rate at which to communicate with the port. Must be one of the
following values: PCD_BAUD_110, PCD_BAUD_300, PCD_BAUD_600,
PCD_BAUD_1200, PCD_BAUD_2400, PCD_BAUD_4800, PCD_BAUD_9600,

PC-DMIS Basic Language Reference Old PC-DMIS Basic Functions • 321

PCD_BAUD_14400, PCD_BAUD_19200, PCD_BAUD_38400,
PCD_BAUD_56000, PCD_BAUD_128000, PCD_BAUD_256000. Optional.
Default is PCD_BAUD_9600.

parity: PCD_NOPARITY, PCD_EVENPARITY, PCD_ODDPARITY,
PCD_MARKPARITY, PCD_SPACEPARITY. Optional. Default is
PCD_NOPARITY.

data: Data bits. PCD_DATA8 or PCD_DATA7. Optional. Default is PCD_DATA8.

stop: Stop bits. PCD_ONESTOPBIT, PCD_ONE5STOPBITS,
PCD_TWOSTOPBITS. Optional. Default is PCD_ONESTOPBIT.

flow: Flow control. PCD_DTRDSR, PCD_RTSCTS, PCD_XONXOFF. Optional.
Default is PCD_RTSCTS.

Functions P

Prehit
Prehit distance:= (Double)

distance: New prehit distance.

ProbeComp
ProbeComp tog:= (Integer)

tog: PCD_ON, PCD_OFF. Turns probe compensation on or off.

PutFeatData
PutFeatData ID:= (String), buffer:= (FeatData), dtype:= (Integer),

xyz:= (Integer), ijk:= (Integer)

Parameters, allowed values, and limitations are identical to those of GetFeatData.
The data currently in buffer is stored in the feature identified by the ID string.

Functions R

ReadCommBlock
Integer ReadCommBlock port:=(Integer), buffer:=(String), count:=(Integer)

Reads characters from the comm port specified.

RETURN VALUE: 0 if successfull, -1 on error.

port: The comm port from which to read. Required.

buffer: The string in which to put the read characters. Required.

count: The maximum number of characters to read from the port. Required.

322 • Old PC-DMIS Basic Functions PC-DMIS Basic Language Reference

RecallIn
RecallIn recallID:= (String)

recallIn: String ID of internal alignment to recall.

Note: This function does not need to be called within an alignment block.

RecallEx
RecallEx recallID:= (String)

recallID: String ID of external alignment to recall.

Note: This function does not need to be called within an alignment block.

Retract
Retract distance:= (Double)

distance: New retract distance.

RetroOnly
RetroOnly tog:=(Integer)

tog: PCD_ON, PCD_OFF

Rotate
Rotate axis1:= (Integer), feat:= (String), axis2:= (Integer)

axis1: Axis to rotate. PCD_ZPLUS, PCD_ZMINUS, PCD_XPLUS, PCD_XMINUS,
PCD_YPLUS, PCD_YMINUS

feat: ID string of the feature to rotate to.

axis2: Axis to rotate about. PCD_ZPLUS, PCD_ZMINUS, PCD_XPLUS,
PCD_XMINUS, PCD_YPLUS, PCD_YMINUS

RotateCircle
RotateCircle feat1:= (String), feat2:= (String), axis1:= (Integer), axis2:=
(Integer)

feat1: ID string of circle.

feat2: ID string of second circle.

axis1: Axis to rotate. PCD_ZPLUS, PCD_ZMINUS, PCD_XPLUS, PCD_XMINUS,
PCD_YPLUS, PCD_YMINUS

axis2: Axis to rotate about. PCD_ZPLUS, PCD_ZMINUS, PCD_XPLUS,
PCD_XMINUS, PCD_YPLUS, PCD_YMINUS

PC-DMIS Basic Language Reference Old PC-DMIS Basic Functions • 323

RotateOffset
RotateOffset offset:= (Double), axis:= (Integer)

offset: Offset value.

axis: Axis to rotate about. PCD_ZPLUS, PCD_ZMINUS, PCD_XPLUS,
PCD_XMINUS, PCD_YPLUS, PCD_YMINUS

Roundness
SHORT Roundness ID:=(String), out_zone:=(Double)

Return value: Non-zero if successfull. Zero if the object with the given ID string
cannot be found.

ID: The string ID of the object to query.

out_zone: A reference to a double to hold the output zone.

Note: This function was added for the tutor translator, and should be used with
caution.

Runout
SHORT Runout ID:=(String), in_datumxyz:=(PointData),
in_datumijk:=(PointData), out_zone:=(Double)

Return value: Non-zero if successfull. Zero if the object with the given ID string
cannot be found.

ID: The string ID of the object to query.

in_datumxyz: Input xyz.

in_datumijk: input ijk.

out_zone: A reference to a double to hold the output zone.

Note: This function was added for the tutor translator, and should be used with
caution.

Functions S

SaveAlign
SaveAlign alignID:=(String), fname:=(String)

alignID: ID string of the alignment to save.

fname: File in which to save the alignment.

SetAutoParams
SetAutoParams init_hits:=(Integer), perm_hits:=(Integer), depth:=(Double),
height:=(Double), wdth:=(Double), radius:=(Double), spacer:=(Double),
indent:=(Double), thickness:=(Double), major:=(Double), minor:=(Double)

324 • Old PC-DMIS Basic Functions PC-DMIS Basic Language Reference

init_hits: sample hits for initial execution

perm_hits: sample hits for subsequent executions

depth: sheet metal measuring depth

height: height of stud for a sheet metal circle, sheet metal cylinder or sheet metal
ellipse; or the long length of a slot

width: short width of a slot

radius: corner radius of a square slot

spacer: distance from the nominal feature or nominal feature edge where sample
hits are taken.

indent: like spacer but in a different direction. Used in edge points, corner points,
and angle points

thickness: thickness of the sheetmetal

major: major axis of ellipse

minor: minor axis of ellipse

Note: This function is used for auto features only.

SetAutoVector
SetAutoVector index:=(Integer), i:=(Double), j:=(Double), k:=(Double)

index: Which vector to set. Can be any of the following: PCD_VECTOR1,
PCD_VECTOR2, PCD_VECTOR3, PCD_PUNCH_VECTOR,
PCD_PIN_VECTOR, PCD_ANGLE_VECTOR, PCD_REPORT_VECTOR,
PCD_EDGE_REPORT_VECTOR, PCD_SURF_REPORT_VECTOR,
PCD_MEASURE_VECTOR, PCD_UPDATE_VECTOR, PCD_VECTOR1 is
normally not needed as the first ijk values are set with a call to SetTheos.

i,j,k: The parameters of the vector.

Note: This function is used for auto features only.

SetNoms
SetNoms nom:=(Double), plus_tol:=(Double), minus_tol:=(Double),
dtype:=(Integer), multiplier:=(Double)

nom: Double value indicating nominal. May be omitted when no nominal is needed.

plus_tol: Double value indicating plus tolerance.

minus_tol: Double value indicating minus tolerance. May be omitted when no minus
tolerance is needed.

dtype: For Location only: PCD_X, PCD_Y, PCD_Z, PCD_D, PCD_R, PCD_A,
PCD_T, PCD_PA, PCD_PR, PCD_V, PCD_L, PCD_PX, PCD_PY, PCD_PZ,
PCD_PD, PCD_PT

For True Position only: PCD_X, PCD_Y, PCD_Z, PCD_DD, PCD_DF, PCD_PA,
PCD_PR, PCD_TP

IMPORTANT: This parameter should be omitted for all other dimension types.

PC-DMIS Basic Language Reference Old PC-DMIS Basic Functions • 325

multiplier: Arrow multiplier for dimension. Optional. Defaults to 1.0.

When the DefaultAxes command is not used for dimensions of type location and true
position, an axis corresponding to the dtype parameter is added for every call to
SetNoms.

SetPrintOptions
SetPrintOptions location:=(Integer), draft:=(Integer), filemode:=(Integer),
nextnum:=(Integer)

Location: location of output. Can be PCD_OFF, PCD_PRINTER, or PCD_FILE

Draft: mode of output to printer. PCD_ON or PCD_OFF

Filemode: naming mode for output file. PCD_APPEND, PCD_NEWFILE,
PCD_OVERWRITE, PCD_AUTO

NextNum: used with PCD_AUTO mode naming scheme for output file

SetProgramOption
SetProgramOption opt:=(Integer), tog:=(Integer)

Opt: Program option to set: PCD_AUTOTIPSELECT, PCD_AUTOPREHIT,
PCD_AUTOPROJREFPLANE, PCD_DISPSPEEDS, PCD_ENDKEY,
PCD_EXTSHEETMETAL, PCD_FLYMODE, PCD_TABLEAVOIDANCE,
PCD_USEDIMCOLORS

Tog: Specifies whether option should be turned on or off. PCD_ON or PCD_OFF

SetProgramValue
SetProgramValue opt:=(Integer), val:=(Double)

Opt: Program value to set: PCD_PROBERADIUS, PCD_DIMPLACES,
PCD_FLYRADIUS, PCD_AUTOTRIGDISTANCE, PCD_TABLETOL,
PCD_MANRETRACT, PCD_MEASSCALE, PCD_PH9WARNDELTA,
PCD_VALISYSERRTIMEOUT

Val: New value for program value being set.

SetReportOptions
SetReportOptions opt:=(Integer)

Opt: Any of the combined flags can be used to turn on or off the reporting object
types: PCD_FEATURES, PCD_ALIGNMENTS, PCD_MOVES,
PCD_COMMENTS, PCD_DIMENSIONS, PCD_HITS, PCD_OUTTOL_ONLY

SetRmeasMode
SetRmeasMode mode:=(Integer)

Mode: The mode to be used for auto features using the RMEAS functionality.
PCD_RELATIVE or PCD_ABSOLUTE

326 • Old PC-DMIS Basic Functions PC-DMIS Basic Language Reference

SetSlaveMode
SetSlaveMode tog:=(Integer)

Tog: Turns slave mode off or on for all subsequent created commands. PCD_ON or
PCD_OFF

SetScanHitParams
SetScanHitParams htype:=(Integer), init_hits:=(Integer), perm_hits:=(Integer),
spacer:=(Double), depth:=(Double), indent:=(Double), flags:=(Integer)

Note: This function is only used for DCC scans and should not be called for manual
scans.

htype: Type of hits to use. PCD_VECTORHIT, PCD_SURFACEHIT,
PCD_EDGEHIT, PCD_ANGLEHIT.

init_hits: Number of init sample hits to use. Optional.

perm_hits: Number of permanent hits. Optional.

spacer: Spacer value. Optional.

depth: Depth value. Optional.

indent: Indent value. Optional.

flags: For now, just PCD_EXTERIOR or PCD_INTERIOR. Default is
PCD_EXTERIOR. Optional.

SetScanHitVectors
SetScanHitVectors vector:=(Integer), i:=(Double), j:=(Double), k:=(Double)

Note: This function is only used for DCC scans.

vector: Hit vector to set. PCD_TOP_SURFACE, PCD_SIDE_SURFACE,
PCD_BOUNDARY_PLANE.

i,j,k: Values to set.

SetScanParams
SetScanParams incr:=(Double), axis:=(Integer), max_incr:=(Double),
min_incr:=(Double), max_angle:=(Double), in_angle:=(Double),
delta:=(Double), distance:=(Double), incr2:=(Double), axis2:=(Integer),
surf_thickness:=(Double)

incr: Increment value for LINE, BODY, and CUTAXIS scan techniques. Optional.

axis: Axis for BODY and CUTAXIS scan techniques. PCD_XAXIS, PCD_YAXIS,
PCD_ZAXIS. Optional.

max_incr, min_incr, max_angle, min_angle: For VARIABLE scan techniques.
Optional.

delta: Distance delta for FIXED_DELTA scans, time delta for VARIABLE_DELTA
and TIME_DELTA scans. Optional.

PC-DMIS Basic Language Reference Old PC-DMIS Basic Functions • 327

distance: Drop point distance for VARIABLE_DELTA scan, distance for
CUTAXIS scan. Optional.

incr2: Increment value in second direction for a patch scan. Optional.

axis2: Second axis value for a patch scan (BODY scan technique only). Optional.

surf_thickness: Surface thickness used to offset centroid calculation if necessary.
Optional.

SetScanVectors
SetScanVectors vector:=(Integer), i:=(Double), j:=(Double), k:=(Double)

vector: Vector to set. PCD_CUTVECTOR, PCD_INITTOUCH, PCD_INITDIR,
PCD_ROWEND_APPROACH.

i,j,k: Values to set.

SetTheos
SetTheos x:=(Double), y:=(Double), z:=(Double), i:=(Double), j:=(Double),
k:=(Double), diam:=(Double), length:=(Double), angle:=(Double),
small_diam:=(Double), start_angle:=(Double), end_angle:=(Double),
start_angle2:=(Double), end_angle2:=(Double)

Note: A call to SetTheos is mandatory for all measured features.

x,y,z, i,j,k: On a bound line, (i,j,k) is the ending point.

diam: Diameter of a circle, cylinder, or sphere. Big diameter of a cone.

length: Length of a cylinder.

angle: Angle of a cone.

small_diam: Small diameter of a cone.

start_angle, end_angle: Starting and ending angles for circles, cylinders, and
spheres.

start_angle2, end_angle2: Second starting and ending angles for spheres.

ShowXYZWindow
ShowXYZWindow show:=(Integer)

Show: Show or hides the probe position window. PCD_ON or PCD_OFF

Sleep
Sleep seconds:=(Single)

Pauses execution for the specified number of seconds after the previous feature has
finished executing.

Note: Sleep calls the Wait function to ensure that the sleeping does not begin before
all previous features have been executed.

328 • Old PC-DMIS Basic Functions PC-DMIS Basic Language Reference

seconds: The number of seconds to pause. Any precision beyond milliseconds is
ignored.

StartAlign
StartAlign ID:= (String), recallID:= (String)

ID: ID string of the alignment to create.

recallID: ID string of the alignment to recall.

StartDim
StartDim dtype:=(Integer), ID:=(String), feat1:=(String), feat2:=(String),
feat3:=(String), axis:=(Integer), length:=(Double), angle:=(Double),
flags:=(Integer)

dtype: DIM_LOCATION, DIM_STRAIGHTNESS, DIM_ROUNDNESS,
DIM_FLATNESS, DIM_PERPENDICULARITY, DIM_PARALLELISM,
DIM_PROFILE, DIM_3D_DISTANCE, DIM_2D_DISTANCE, DIM_3D_ANGLE,
DIM_2D_ANGLE, DIM_RUNOUT, DIM_CONCENTRICITY,
DIM_ANGULARITY, DIM_KEYIN, DIM_TRUE_POSITION

ID: ID string of the dimension to create

feat1: ID string of the Of Feature or From Feature

feat2: ID string of the To Feature

feat3: ID string of the third feature, if any

axis: PCD_XAXIS, PCD_YAXIS, PCD_ZAXIS. Only needed for dimensions using
an axis or workplane.

length: Extended length for angularity, profile, perpendicularity, or parallelism.

angle: Angle for angularity.

flags: PCD_ADD_RADIUS, PCD_SUB_RADIUS, PCD_NO_RADIUS,
PCD_PAR_TO, PCD_PERP_TO. Some of these values may be Ored together.

Example: PCD_ADD_RADIUS Or PCD_PAR_TO) True Position dimensions can
take one of the following flags as well:

PCD_RFS_RFS, PCD_RFS_MMC, PCD_RFS_LMC, PCD_MMC_RFS,
PCD_MMC_MMC, PCD_MMC_LMC, PCD_LMC_RFS, PCD_LMC_MMC,
PCD_LMC_LMC.

The datum computation type comes first. For example, PCD_RFS_LMC specifies
RFS for the datum and LMC for the feature.

StartFeature
StartFeature ftype:=(Integer), ID:=(string), hits:=(Integer), inputs:=(Integer),
flags:=(Long)

ftype: MEAS_POINT, MEAS_CIRCLE, MEAS_SPHERE, MEAS_LINE,
MEAS_CONE, MEAS_CYLINDER, MEAS_PLANE, MEAS_SET,
READ_POINT,CONST_ORIG_POINT, CONST_OFF_POINT,
CONST_PROJ_POINT, CONST_MID_POINT, CONST_DROP_POINT,
CONST_PIERCE_POINT, CONST_INT_POINT, CONST_CAST_POINT,

PC-DMIS Basic Language Reference Old PC-DMIS Basic Functions • 329

CONST_CORNER_POINT, CONST_BFRE_CIRCLE, CONST_BF_CIRCLE,
CONST_PROJ_CIRCLE, CONST_REV_CIRCLE, CONST_CONE_CIRCLE,
CONST_CAST_CIRCLE, CONST_INT_CIRCLE, CONST_BFRE_SPHERE,
CONST_BF_SPHERE, CONST_PROJ_SPHERE, CONST_REV_SPHERE,
CONST_CAST_SPHERE, CONST_BFRE_LINE, CONST_BF_LINE,
CONST_PROJ_LINE, CONST_REV_LINE, CONST_MID_LINE,
CONST_CAST_LINE, CONST_INT_LINE, CONST_OFF_LINE,
CONST_ALN_LINE, CONST_PRTO_LINE, CONST_PLTO_LINE,
CONST_BFRE_CONE, CONST_BF_CONE, CONST_PROJ_CONE,
CONST_REV_CONE, CONST_CAST_CONE, CONST_BFRE_CYLINDER,
CONST_BF_CYLINDER, CONST_PROJ_CYLINDER,
CONST_REV_CYLINDER, CONST_CAST_CYLINDER,
CONST_BFRE_PLANE, CONST_BF_PLANE, CONST_REV_PLANE,
CONST_MID_PLANE, CONST_CAST_PLANE, CONST_OFF_PLANE,
CONST_ALN_PLANE, CONST_PRTO_PLANE,
CONST_PLTO_PLANE,CONST_HIPNT_PLANE, CONST_SET,
AUTO_VECTOR_HIT, AUTO_SURFACE_HIT, AUTO_EDGE_HIT,
AUTO_ANGLE_HIT, AUTO_CORNER_HIT, AUTO_CIRCLE, AUTO_SPHERE,
AUTO_CYLINDER, AUTO_ROUND_SLOT, AUTO_SQUARE_SLOT,
AUTO_ELLIPSE, PCD_CURVE

ID: ID string of the feature

hits: Measured and auto features only. The number of hits to take to measure the
feature.

inputs: Constructed features only. The number of features that will be used in the
construction. There must be a corresponding number of calls to AddFeature before
the EndFeature statement.

flags: Any of the following flags Ored together:

PCD_POLR: Values are reported in cylindrical coordinates. Should not be ored with
PCD_RECT.

PCD_RECT: Values are in rectangular coordinates. Should not be ored with
PCD_POLR. Default.

PCD_BND: Bound line. Should not be ored with PCD_UNBND.

PCD_UNBND: Unbound line. Should not be ored with PCD_BND. Default.

PCD_IN: Inside circle, sphere, cone, or cylinder. Should not be ored with
PCD_OUT.

PCD_OUT: Outside circle, sphere, cone, or cylinder. Should not be ored with
PCD_IN. Default.

PCD_LENGTH: Cone reports its length as opposed to angle. Do not or with
PCD_ANGLE. Default.

PCD_ANGLE: Cone reports its angle as opposed to length. Do not or with
PCD_LENGTH.

PCD_EXTERIOR: Exterior angle hit. Only used for auto angle hits. Do not or with
PCD_INTERIOR. Default.

PCD_INTERIOR: Interior angle hit. Only used for auto angle hits. Do not or with
PCD_EXTERIOR.

PCD_LINE_3D: 3D line. Used only for best fit lines. Default is a 2D line.

PCD_RECALC_NOMS: Indicates that the theoretical values should be recalculated
based on the theoretical hit values.

330 • Old PC-DMIS Basic Functions PC-DMIS Basic Language Reference

workplane axis: A workplane/axis flag is only used with alignment lines and planes.
Possible flag values are the following: PCD_FRONT, PCD_BACK, PCD_LEFT,
PCD_RIGHT, PCD_TOP, PCD_BOTTOM, PCD_ZPLUS, PCD_ZMINUS,
PCD_XPLUS, PCD_XMINUS, PCD_YPLUS, PCD_YMINUS, PCD_ZAXIS,
PCD_XAXIS, PCD_YAXIS.

PCD_MEASURE_SURFACE: Sets measure order. For auto edge points only.
Default.

PCD_MEASURE_EDGE: Sets measure order. For auto edge points only.

PCD_MEASURE_BOTH: Sets measure order. For auto edge points only.

PCD_HEM: For auto edge points only. Should not be ored with PCD_TRIM.

PCD_TRIM: For auto edge points only. Should not be ored with PCD_HEM.
Default.

PCD_PIN: For auto circles, cylinders, ellipses, and slots. Do not or with
PCD_NORM.

PCD_NORM: For auto circles, cylinders, ellipses, and slots. Do not or with
PCD_PIN. Default.

PCD_READPOS: Turn read position on. For auto circles, cylinders, ellipses, and
slots. Defaults to off.

PCD_AUTOMOVE: Causes move points to be automatically generated for auto
features.

PCD_FINDHOLE: For Auto Circles. Automatic finding of holes.

PCD_MEASURE_WIDTH: Flag for Auto Square Slots

StartGetFeatPoint
Integer StartGetFeatPoint ID:= (String), dtype:= (Integer), xyz:= (Integer)

This function is used to retrieve the hit or input data from constructed, measured, and
auto features, as well as the hit data for scans. To retrieve the actual points,
subsequent calls to GetFeatPoint must be made. When all of the needed point values
have been retrieved, a call to EndGetFeatPoint must be made to free the memory
allocated for the points.

Return value: The number of points retrieved from the object.

ID: The ID string of the feature to access.

dtype: The type of data to retrieve. Must be either PCD_MEAS or PCD_THEO.

xyz: Type of data to put in xyz. Allowed values are: PCD_BALLCENTER,
PCD_CENTROID, PCD_VECTOR

Note: The StartGetFeatPoint function may not be called mid block.

StartScan
StartScan ID:=(String), mode:=(Integer), stype:=(Integer), dir1:=(Integer),
dir2:=(Integer), technique:=(Integer), num_bnd_pnts:=(Integer),
flags:=(Integer)

ID: ID string of the scan.

PC-DMIS Basic Language Reference Old PC-DMIS Basic Functions • 331

mode: Mode of the scan. Must be PCD_DCC or PCD_MANUAL.

stype: Type of scan. For DCC scans, stype must be PCD_LINEAR_OPEN,
PCD_LINEAR_CLOSED, PCD_SECTION, PCD_PERIMETER, or PCD_PATCH.
For manual scans, stype must be PCD_MANUALTTP or PCD_HPROBE.

dir1: Only used for DCC scans. PCD_LINE, PCD_BODY, PCD_VARIABLE.
Optional.

dir2: Only used for DCC patch scans. PCD_LINE, PCD_BODY. Optional.

technique: Only used for manual scans. PCD_FIXED_DELTA,
PCD_VARIABLE_DELTA, PCD_TIME_DELTA, PCD_CUTAXIS. Optional.

num_bnd_pnts: Number of points defining the boundary for the scan. Only used for
DCC patch scans. Optional.

flags: Special scan flags. PCD_SINGLEPOINT, PCD_MASTERMODE,
PCD_RELEARNMODE, PCD_AUTOCLEARPLANE,
PCD_HITNOTDISPLAYED. Any of these values may be Ored together. Optional.

Straitness
SHORT Straitness ID:=(String), Put_zone:=(Double)

Return value: Non-zero if successfull. Zero if the object with the given ID string
cannot be found.

ID: The string ID of the object to query.

out_zone: A reference to a double to hold the output zone.

Note: This function was added for the tutor translator, and should be used with
caution.

Stats
Stats tog:=(Integer), dbase_dir:=(String), read_lock:=(Integer),
write_lock:=(Integer), mem_page:=(Integer), flags:=(Integer)

tog: Indicates whether stats is on or off. PCD_ON or PCD_OFF.

dbase_dir: Database directory. Optional.

read_lock: Optional.

write_lock: Optional.

mem_page: Optional.

flags: PCD_USE_FEAT_NAME, PCD_USE_DIM_NAME,
PCD_DO_CONTROL_CALCS. Optional.

Functions T

Tip
Tip tip:= (String)

tip: The tip to load.

332 • Old PC-DMIS Basic Functions PC-DMIS Basic Language Reference

Touchspeed
Touchspeed percent:= (Double)

percent: Touchspeed of the probe as a percentage of the maximum probe speed.

Trace
Trace field:=(String)

field: Name of the field to trace.

Translate
Translate axis:= (Integer), feat:= (String)

axis: Axis to translate. PCD_ZAXIS, PCD_XAXIS, PCD_YAXIS

feat: ID string of feature to translate to.

TranslateOffset
TranslateOffset offset:= (Double), axis:= (Integer)

offset: Value of offset.

axis: PCD_ZAXIS, PCD_XAXIS, PCD_YAXIS

Functions W

Wait
Wait

Waits until all preceding commands have been executed. The basic script creates
commands and places them on the execute list more rapidly than the commands are
executed. In a script it is often useful to pop up a dialog box for input after a certain
series of commands has been executed. The script commands may complete long
before the actual commands have been executed. The Wait command is useful to
prevent the dialog box from popping up prematurely.

Workplane
Integer Workplane plane:= (Integer)

Return value: The previous workplane.

plane: PCD_TOP, PCD_BOTTOM, PCD_FRONT, PCD_BACK, PCD_LEFT,
PCD_RIGHT.

Optional. If not provided, the current workplane is returned but no new workplane is
set.

WriteCommBlock
Integer WriteCommBlock port:=(Integer), buffer:=(String), count:=(Integer)

PC-DMIS Basic Language Reference Old PC-DMIS Basic Functions • 333

Writes characters to the specified comm port.

RETURN VALUE: 0 if successfull, -1 on error.

port: The comm port to write to. Required.

buffer: The string to write to the port. Required.

count: The number of characters to write to the port. Optional. Defaults to the length
of the buffer string.

Integer CloseCommConnection port:=(Integer)

Closes the connection to the specified comm port.

RETURN VALUE: 0 if successfull, -1 on error.

port: The comm port to close. Required.

PC-DMIS Basic Language Reference Glossary of Terms • 335

Glossary of Terms

PC-DMIS Basic Language Reference Index • 337

Index

A

Abs Function 57
Accessing an object 45

CreateObject Function 45
GetObject Function 45

Activate 46
Active Tip Members 171

ActiveTip.Angle 171
ActiveTip.GetShankVector 171
ActiveTip.SetShankVector 172
ActiveTip.TipID 171

Active Tip Object Overview 171
AddBoundaryPoint 309
AddFeature 309, 329
AddLevelFeat 309
AddOriginFeat 310
AddRotateFeat 310
AlignCommand Members Error! Not a valid

bookmark in entry on page 172
AlignCommand.AboutAxis 172
AlignCommand.AddBestFitFeat 176
AlignCommand.AddLevelFeat 176
AlignCommand.AddOriginFeat 177
AlignCommand.AddRotateFeat 177
AlignCommand.Angle 172
AlignCommand.AverageError 173
AlignCommand.Axis 173
AlignCommand.BFOffset 173
AlignCommand.CadToPartMatrix 173
AlignCommand.ExternalID 173
AlignCommand.FeatID 173
AlignCommand.FeatID2 174
AlignCommand.FindCad 174
AlignCommand.ID 174
AlignCommand.InitID 174
AlignCommand.MachineToPartMatrix 174
AlignCommand.MeasAllFeat 174
AlignCommand.NumInputs 175
AlignCommand.Offset 175

AlignCommand.Parent 175
AlignCommand.PointTolerance 175
AlignCommand.RepierceCad 175
AlignCommand.UseBodyAxis 175
AlignCommand.Workplane 176

AlignCommand Object Overview 172
AppActivate Statement 58
Application 46
Application Members

Application.ActivePartProgram 177
Application.Caption 178
Application.DefaultFilePath 178
Application.DefaultProbeFile 178
Application.FullName 178
Application.Height 178
Application.Help 179
Application.Left 178
Application.Machines 178
Application.Maximize 180
Application.Minimize 180
Application.Name 178
Application.OperatorMode 178
Application.PartPrograms 179
Application.Path 179
Application.Post 180
Application.Quit 180
Application.Restore 180
Application.SetActive 181
Application.StatusBar 179
Application.Top 179
Application.UserExit 179
Application.Visible 179
Application.Width 179

Application Object Overview 177
ArcCos 310
ArcSin 310
Array Index Members 181

ArrayIndex.AddIndexSet 181
ArrayIndex.GetLowerBound 181
ArrayIndex.GetUpperBound 182
ArrayIndex.RemoveIndexSet 182
ArrayIndex.SetLowerBound 182
ArrayIndex.SetUpperBound 182

Array Index Object Overview 181
Arrays 29
Asc Function 58
Atn Function 59
Attach Members 183

Attach.AttachedAlign 183
Attach.Execute 183
Attach.ID 183
Attach.LocalAlign 183
Attach.PartName 183

Attach Object Overview 183
Automation Object

ScanCommand Object 287

338 • Index PC-DMIS Basic Language Reference

Automation Objects 171
Active Tip Object 171
AlignCommand Object 172
Application Object 177
Array Index Object 181
Attach Object 183
BasicScanCommand Object 183
CadWindow Object 200
CadWindows Object 201
Calibration Object 202
Command Object 203
Commands Object 215
Comment Object 217
DimData Object 219
Dimension Format Object 225
Dimension Information Object 226
DimensionCommand Object 220
Display Metafile Object 231
DmisDialog Object 231
DmisMatrix Object 231
EditWindow Object 235
ExternalCommand Object 238
FeatCommand Object 238
FeatData Object 257
File IO Object 259
FlowControlCommand Object 260
Leitz Motion Object 268
Load Machine Object 269
Load Probes Object 269
Machine Object 269
Machines Object 270
ModalCommand Object 272
MoveCommand Object 274
Opt Motion Object 275
PartProgram Object 276
PartPrograms Object 280
PointData Object 282
Probe Object 283
Probes Object 286
Statistics Object 299
Temperature Compensation Object 301
Tip Object 303
Tips Object 305
Tool Object 306
Tools Object 307
Tracefield Object 308

B

Basic Help 14
Basic Scan Object Combinations 198
Basic Script Editor 11–14
Basic Script Toolbar 11
BasicScanCommand Members 184

BasicScan.AutoClearPlane 184
BasicScan.BoundaryCondition 184

BasicScan.BoundaryConditionAxisV 184
BasicScan.BoundaryConditionCenter 184
BasicScan.BoundaryConditionEndApproach 185
BasicScan.BoundaryConditionPlaneV 185
BasicScan.BoundaryPointCount 185
BasicScan.DisplayHits 185
BasicScan.Filter 185
BasicScan.GetBoundaryConditionParams 189
BasicScan.GetBoundaryPoint 189
BasicScan.GetFilterParams 190
BasicScan.GetHitParams 190
BasicScan.GetMethodParams 191
BasicScan.GetMethodPointData 192
BasicScan.GetNomsParams 192
BasicScan.GetParams 193
BasicScan.HitType 186
BasicScan.Method 187
BasicScan.MethodCutPlane 187
BasicScan.MethodEnd 187
BasicScan.MethodEndTouch 187
BasicScan.MethodInitDir 187
BasicScan.MethodInitTopSurf 187
BasicScan.MethodInitTouch 187
BasicScan.MethodStart 188
BasicScan.NominalMode 188
BasicScan.OperationMode 188
BasicScan.SetBoundaryConditionParams 193
BasicScan.SetBoundaryPoint 194
BasicScan.SetFilterParams 194
BasicScan.SetHitParams 195
BasicScan.SetMethodParams 195
BasicScan.SetMethodPointData 196
BasicScan.SetNomsParams 197
BasicScan.SetParams 197
BasicScan.SinglePoint 189

BasicScanCommand Object Overview 183
Beep Statement 60
Best Fit Alignment 174
BestFit2D 310, 314
BestFit3D 310, 314

C

CadWindow Members 200
CadWindow.Application 200
CadWindow.Height 200
CadWindow.Left 200
CadWindow.Parent 201
CadWindow.Print 201
CadWindow.Top 201
CadWindow.Visible 201
CadWindow.Width 201

CadWindow Object Overview 200
CadWindows Members 202

CadWindows.Application 202
CadWindows.Count 202

PC-DMIS Basic Language Reference Index • 339

CadWindows.Item 202
CadWindows.Parent 202

CadWindows Object Overview 201
Calibrate 311
Calibration Members 202

Calibration.Moved 202
Calibration.SphereID 203
Calibration.ToolID 203

Calibration Object Overview 202
Call Statement 60
Calling Procedures in DLLs 27
CatchMotionError 311
CBool Function 61
CDate Function 62
CDbl Function 62
ChDir 51, 54, 63
ChDrive 51
ChDrive Statement 64
Check 13, 23, 28, 35, 37–39, 43, 60–61, 65, 77, 79, 88,

140, 311
Check Boxes 35
CheckBox 64
Choose Function 65
Chr, Function 65
Cint Function 66
Class 47
ClearPlane 311, 320
CLng Function 67
Close Statement 67
Column132 311
Command List 249
Command Members 203

Command.ActiveTipCommand 203
Command.AlignmentCommand 203
Command.Application 204
Command.ArrayIndex 204
Command.AttachCommand 204
Command.BasicScanCommand 204
Command.CalibrationCommand 204
Command.Count 204
Command.Dialog 213
Command.Dialog2 213
Command.DimensionCommand 204
Command.DimFormat 205
Command.DimInfoCommand 205
Command.DisplayMetaFileCommand 205
Command.Execute 213
Command.ExternalCommand 205
Command.Feature 205
Command.FeatureCommand 206
Command.FileIOCommand 207
Command.FlowControlCommand 207
Command.GetExpression 214
Command.ID 208
Command.IsActiveTip 208
Command.IsAlignment 208

Command.IsArrayIndex 208
Command.IsAttach 208
Command.IsBasicScan 208
Command.IsCalibration 208
Command.IsComment 209
Command.IsConstructedFeature 209
Command.IsDCCFeature 209
Command.IsDimension 209
Command.IsDimFormat 209
Command.IsDimInfo 209
Command.IsDisplayMetaFile 209
Command.IsExternalCommand 209
Command.IsFeature 210
Command.IsFileIOCommand 210
Command.IsFlowControl 210
Command.IsHit 210
Command.IsLeitzMotion 210
Command.IsLoadMachine 210
Command.IsLoadProbe 210
Command.IsMeasuredFeature 211
Command.IsModal 210
Command.IsMove 211
Command.IsOptMotion 211
Command.IsScan 211
Command.IsStatistic 211
Command.IsTempComp 211
Command.IsTraceField 211
Command.Item 214
Command.LeitzMotion 211
Command.LoadMachineCommand 212
Command.LoadProbeCommand 212
Command.Mark 214
Command.ModalCommand 212
Command.MoveCommand 212
Command.Next 215
Command.OptMotion 212
Command.Parent 212
Command.Prev 215
Command.Remove 215
Command.ScanCommand 212
Command.ShowIDOnCad 213
Command.SlaveArm 213
Command.StatisticCommand 213
Command.TempCompCommand 213
Command.TraceFieldCommand 213
Command.Type 213

Command Object Overview 203
Commands Members 216

Commands.Add 213, 216
Commands.Application 216
Commands.ClearMarked 216
Commands.Count 216
Commands.InsertionPointAfter 216
Commands.Item 217
Commands.MarkAll 217
Commands.Parent 216

340 • Index PC-DMIS Basic Language Reference

Commands Object Overview 215
Comment 19, 140, 312
Comment Members 217

Comment.AddLine 218
Comment.Comment 217
Comment.CommentType 218
Comment.GetLine 218
Comment.ID 218
Comment.Input 218
Comment.RemoveLine 219
Comment.SetLine 219

Comment Object Overview 217
Comments 19
Comments 19, 46, 325
Const Statement 68
Constant Names 20
Contents 25, 40, 41–42, 98
Control Structures 19, 22
Copy 12
Cos 69
CreateObject 70
CreatID 312
CSng Function 71
CStr Function 72
CurDir Function 72
Cut 12, Error! Not a valid bookmark in entry on

page 185, 190, 194
CVar Function 73
Cypress Enable Scripting Language Elements 19

D

Data Types 53
Date Function 74
DateSerial 75
DateValue 76
Day Function 76
Declare Statement 77
DefaultAxes 312, 325
DefaultHits 313
Delete 12
Dialog Dialog Function 78
Dialog Support 33
Dim Statement 80
DimData Members 220

DimData.Bonus 220
DimData.Dev 220
DimData.DevAngle 220
DimData.Max 220
DimData.Meas 220
DimData.Min 220
DimData.Minus 220
DimData.Nom 220
DimData.Out 220
DimData.Plus 220

DimData Object Overview 219

Dimension Format Members 225
DimFormat.GetHeading Type 225
DimFormat.SetHeadingType 226
DimFormat.ShowDevSymbols 225
DimFormat.ShowDimensionText 225
DimFormat.ShowDimensionTextOptions 225
DimFormat.ShowHeadings 225
DimFormat.ShowStdDev 225

Dimension Format Object Overview 225
Dimension Information Members 227

DimInfo.DimensionID 227
DimInfo.GetFieldFormat 227
DimInfo.GetLocationAxis 227
DimInfo.GetTruePosAxis 228
DimInfo.SetFieldFormat 229
DimInfo.SetLocationAxis 229
DimInfo.SetTruePosAxis 230
DimInfo.ShowDimensionID 227
DimInfo.ShowFeatID 227

Dimension Information Object Overview 226
DimensionCommand Members 221

DimensionCommand.Angle 221
DimensionCommand.ArrowMultiplier 221
DimensionCommand.Axis 221
DimensionCommand.AxisLetter 221
DimensionCommand.Bonus 221
DimensionCommand.DevAngle 221
DimensionCommand.Deviation 221
DimensionCommand.Feat1 222
DimensionCommand.Feat2 222
DimensionCommand.Feat3 222
DimensionCommand.GraphicalAnalysis 222
DimensionCommand.ID 222
DimensionCommand.Length 222
DimensionCommand.Max 223
DimensionCommand.Measured 223
DimensionCommand.Min 223
DimensionCommand.Minus 223
DimensionCommand.Nominal 222
DimensionCommand.OutputMode 223
DimensionCommand.OutTol 223
DimensionCommand.ParallelPerpindicular 223
DimensionCommand.Parent 224
DimensionCommand.Plus 223
DimensionCommand.Profile 223
DimensionCommand.RadiusType 224
DimensionCommand.TextualAnalysis 224
DimensionCommand.TruePositionModifier 224
DimensionCommand.TruePosUseAxis 224
DimensionCommand.UnitType 224

DimensionCommand Object Overview 220
DimFormat 313
Dir$ Function 81
Display Metafile Members 231

DispMetafile.Comment 231
Display Metafile Object Overview 231

PC-DMIS Basic Language Reference Index • 341

DlgControlId Function 41
DlgEnable Statement 82
DlgFocus Statement, DlgFocus() Function 42
DlgListBoxArray, DlgListBoxArray() 42
DlgSetPicture 42
DlgText Statement 84
DlgValue, DlgValue() 43
DlgVisible Statement 84
Dmis Matrix Object Overview 231
DmisDialog Members 231

DmisDialog.Visible 231
DmisDialog Object Overview 231
DmisMatrix Members 232

DmisMatrix.Copy 232
DmisMatrix.Inverse 232
DmisMatrix.IsIdentity 232
DmisMatrix.Item 232
DmisMatrix.Multiply 233
DmisMatrix.Normalize 233
DmisMatrix.OffsetAxis 232
DmisMatrix.Reset 233
DmisMatrix.RotateByAngle 233
DmisMatrix.RotateToPoint 233
DmisMatrix.RotateToVector 234
DmisMatrix.SetMatrix 234
DmisMatrix.TransformDataBack 234
DmisMatrix.TransformDataForward 235
DmisMatrix.XAxis 232
DmisMatrix.YAxis 232
DmisMatrix.ZAxis 232

Do...Loop Statement 85

E

Edit Menu 12
EditWindow Members

EditWindow.Application 235
EditWindow.CommandMode 237
EditWindow.Height 235
EditWindow.Left 236
EditWindow.Parent 236
EditWindow.Print 237
EditWindow.ReportMode 237
EditWindow.SetPrintOptions 237
EditWindow.ShowAlignments 236
EditWindow.ShowComments 236
EditWindow.ShowDimensions 236
EditWindow.ShowFeatures 236
EditWindow.ShowHeaderFooter 236
EditWindow.ShowHits 236
EditWindow.ShowMoves 236
EditWindow.ShowOutTolOnly 236
EditWindow.ShowTips 236
EditWindow.StatusBar 237
EditWindow.Top 237
EditWindow.Visible 237

EditWindow.Width 237
EditWindow Object Overview 235
Enable Scripting Language 19
End Statement 86
EndAlign 310, 313, 319
EndDim 313
EndFeature 313, 329
EndGetFeatPoint 313, 330
EndScan 314
Eof 86
EquateAlign 314
Erase 87
Execute Error! Not a valid bookmark in entry on

page 188, 198, 270
Exit 12
Exit Statement 88
Exp 52, 88, 89
Export 180, Error! Not a valid bookmark in entry on

page 278
ExternalCommand Members 238

ExtCommand.Command 238
ExternalCommand Object Overview 238

F

FeatCommand Members 238
FeatCommand.AddInputFeat 249
FeatCommand.AlignWorkPlane 238
FeatCommand.AutoCircularMove 239
FeatCommand.AutoClearPlane 239
FeatCommand.AutoMove 239
FeatCommand.AutoMoveDistance 239
FeatCommand.AutoPH9 239
FeatCommand.AutoReadPos 239
FeatCommand.BestFitMathType 239
FeatCommand.BoxLength 240
FeatCommand.BoxWidth 240
FeatCommand.CirclularRadiusIn 240
FeatCommand.CirclularRadiusOut 240
FeatCommand.CornerRadius 240
FeatCommand.DCCFindNomsMode 241
FeatCommand.DCCMeasureInMasterMode 241
FeatCommand.Depth 241
FeatCommand.Deviation 241
FeatCommand.DisplayConeAngle 241
FeatCommand.EdgeMeasureOrder 241
FeatCommand.EdgeThickness 241
FeatCommand.EndAngle 242
FeatCommand.EndAngle2 242
FeatCommand.FilterType 242
FeatCommand.GenerateHits 249
FeatCommand.GenericAlignMode 242
FeatCommand.GenericDisplayMode 242
FeatCommand.GenericType 242
FeatCommand.GetData 249
FeatCommand.GetHit 251

342 • Index PC-DMIS Basic Language Reference

FeatCommand.GetInputFeat 250
FeatCommand.GetInputOffset 250
FeatCommand.GetPoint 251
FeatCommand.GetSurfaceVectors 252
FeatCommand.GetVector 252
FeatCommand.HighPointSearchMode 243
FeatCommand.ID 243
FeatCommand.Increment 243
FeatCommand.Indent 243
FeatCommand.Indent2 243
FeatCommand.Indent3 243
FeatCommand.InitHits 244
FeatCommand.Inner 244
FeatCommand.InteriorHit 244
FeatCommand.Line3D 244
FeatCommand.MeasAngle 244
FeatCommand.MeasDiam 244
FeatCommand.MeasHeight 244
FeatCommand.MeasLength 245
FeatCommand.MeasMajorAxis 245
FeatCommand.MeasMinorAxis 245
FeatCommand.MeasPinDiam 245
FeatCommand.MeasSmallLength 245
FeatCommand.MeasureSlotWidth 245
FeatCommand.NumHits 245
FeatCommand.NumHitsPerRow 245
FeatCommand.NumRows 246
FeatCommand.Parent 246
FeatCommand.PermHits 246
FeatCommand.Polar 246
FeatCommand.PutData 253
FeatCommand.PutPoint 254
FeatCommand.PutSurfaceVectors 254
FeatCommand.PutVector 255
FeatCommand.ReferenceID 247
FeatCommand.ReferenceType 246
FeatCommand.RMeasFeature 247
FeatCommand.SetInputOffset 256
FeatCommand.Spacer 247
FeatCommand.StartAngle 247
FeatCommand.StartAngle2 247
FeatCommand.TheoAngle 247
FeatCommand.TheoDiam 247
FeatCommand.TheoHeight 247
FeatCommand.TheoLength 248
FeatCommand.TheoMajorAxis 248
FeatCommand.TheoMinorAxis 248
FeatCommand.TheoPinDiam 248
FeatCommand.Thickness 248
FeatCommand.Tolerance 248
FeatCommand.UsePin 248

FeatCommand Object Overview 238
FeatData Members 257

FeatData.ANGLE 258
FeatData.DIAM 258
FeatData.EndAngle 258

FeatData.EndAngle2 258
FeatData.F 258
FeatData.I 257
FeatData.ID 259
FeatData.J 257
FeatData.K 258
FeatData.LENGTH 258
FeatData.P1 258
FeatData.P2 258
FeatData.SmallDiam 258
FeatData.StartAngle 258
FeatData.StartAngle2 258
FeatData.TP 258
FeatData.X 257
FeatData.Y 257
FeatData.Z 257

FeatData Object Overview 257
Feature 133, 309–10, 313–17, 319, 321–22, 324, 327–

30, 332
File Input/Output 28
File IO Members 259

FileIO.BufferSize 259
FileIO.Expression 259
FileIO.FailIfExists 259
FileIO.FileIOType 259
FileIO.FileName1 260
FileIO.FileName2 260
FileIO.FileOpenType 260
FileIO.FilePointerID 260
FileIO.VariableID 260

File IO Object Overview 259
File Menu 11
FileCopy 51, 89
FileLen Function 90
Find 13, 174, 188, 193, 197
Find Next 13–14
Fix Function 90
Flatness 312, 314, 328
FlowControlCommand Members 261

FlowControlCommand.AddArgument 263
FlowControlCommand.AddSkipNum 264
FlowControlCommand.AngleOffset 261
FlowControlCommand.ErrorMode 261
FlowControlCommand.ErrorType 261
FlowControlCommand.Expression 261
FlowControlCommand.FileName 261
FlowControlCommand.GetArgumentDescription 264
FlowControlCommand.GetArgumentExpression 264
FlowControlCommand.GetArgumentName 265
FlowControlCommand.GetEndNum 261
FlowControlCommand.GetSkipNum 265
FlowControlCommand.ID 262
FlowControlCommand.IsExpressionValid 265
FlowControlCommand.IsValidLeftHandValue 265
FlowControlCommand.IsValidSubroutineArgumentN

ame 265

PC-DMIS Basic Language Reference Index • 343

FlowControlCommand.Label 262
FlowControlCommand.NumArguments 262
FlowControlCommand.RemoveArgument 266
FlowControlCommand.RemoveSkipNum 266
FlowControlCommand.SetArgumentDescription 266
FlowControlCommand.SetArgumentExpression 267
FlowControlCommand.SetArgumentName 267
FlowControlCommand.SetLeftSideOfAssignment

267
FlowControlCommand.SetRightSideOfAssignment

267
FlowControlCommand.SkipCount 262
FlowControlCommand.StartNum 262
FlowControlCommand.SubName 262
FlowControlCommand.XAxisOffset 263
FlowControlCommand.YAxisOffset 263
FlowControlCommand.ZAxisOffset 263

FlowControlCommand Object Overview 260
For...Next Statement 91
Format Statement 92
FreeFile Function 100
Function Statement 101

G

GapOnly 314
Get Object Function 102, 103
GetDimData 315–16
GetDimOutTol 315
GetFeatData 315–16, 321
GetFeatID 316
GetFeatPoint 314, 317, 330
GetFeature 317
GetPH9Status 317
GetProbeOffsets 317
GetProbeRadius 317
GetProgramOption 317
GetProgramValue 318
GetTopMachineSpeed 318
GetType 318
GetUnits 318
Global Statement 103
GoTo Statement 104

H

Help 14–15, 179
Hex, 104, 107
Hit Function 14, 311–12, 318, 326, 329–30
Hour Function 105
HTMLDialog 107

I

If...Then...Else Statement 24, 107
IgnoreMotionError 319

Input # Statement 109
Input, Function 109
InputBox Function 110
Installation Error! Not a valid bookmark in entry on

page 49
InStr 111
Int Function 111
IsArray Function 112
IsDate 112
IsEmpty 113
IsNull 113
IsNumeric 114
IsObject Function 115
Iterate 310, 314, 319

K

Kill Statement 115

L

LBound Function 116
LCase, Function 117
Left 118
Leitz Motion Members

LeitzMot.LowForce 268
LeitzMot.MaxForce 268
LeitzMot.PositionalAccuracy 268
LeitzMot.ProbeAccuracy 268
LeitzMot.ReturnData 268
LeitzMot.ReturnSpeed 268
LeitzMot.ScanPointDensity 268
LeitzMot.TriggerForce 269
LeitzMot.UpperForce 269

Leitz Motion Members 268
Leitz Motion Object Overview 268
Len 118
Let Statement 119
Level 69, 135, 310, 319
Line Input # Statement 120
List Boxes, Combo Boxes and Drop-down List Boxes

34
Load Machine Members 269

LoadProbes.MachineName 269
Load Machine Object Overview 269
Load Probes Members 269

LoadProbes.Filename 269
Load Probes Object Overview 269
LoadProbe 319
LOF 120
Log 121

M

Machine Members
Machine.Application 270

344 • Index PC-DMIS Basic Language Reference

Machine.Name 270
Machine.Parent 270

Machine Object Members 270
Machine Object Overview 269
Machines Members

Machines.Application 271
Machines.Count 271
Machines.Item 271
Machines.Parent 271

Machines Object Members 271
Machines Object Overview 270
Making Applications Work Together 49
MaxMineAve 319
Methods 46
Mid Function 122
Minute Function 123
MkDir 124
ModalCommand Members

ModalCommand.ClearPlane 272
ModalCommand.Digits 272
ModalCommand.Distance 272
ModalCommand.Distance2 272
ModalCommand.Mode 273
ModalCommand.Name 273
ModalCommand.On 273
ModalCommand.Parent 273
ModalCommand.PassPlane 273
ModalCommand.Speed 273
ModalCommand.WorkPlane 274

ModalCommand Object Overview 272
Mode 102, 131–33, 168, 311, 320, 325, 330
Month Function 125
Move 40, 320, 330
MoveCommand Members

MoveCommand.Angle 274
MoveCommand.Direction 274
MoveCommand.NewTip 274
MoveCommand.OldTip 275
MoveCommand.Parent 275
MoveCommand.XYZ 275

MoveCommand Object 274
MoveCommand Object Overview 274
MoveSpeed 320
MsgBox 125

N

Name Statement 128
Now Function 128
Numbers 19–21, 20, 30, 41, 92, 95–96, 126, 128, 150,

158, 162

O

Oct Function 128
OK and Cancel Buttons 34

OKButton 129
Old PC-DMIS Basic Functions 309
OLE Automation 47, 48, 50

What is OLE Automation? 48, 50
OLE Fundamentals 47
OLE Object 47
On Error 130
Open 11, Error! Not a valid bookmark in entry on

page 15, 178, 179, 180, 271, Error! Not a valid
bookmark in entry on page 280, 281

Open Statement 133
OpenCommConnection 320
Operations 304
Operators 53
Opt Motion Members 276

OptMotion.MaxTAcceleration 276
OptMotion.MaxTSpeed 276
OptMotion.MaxXAcceleration 276
OptMotion.MaxYAcceleration 276
OptMotion.MaxZAcceleration 276
OptMotion.MovePositionalAccuracy 276

Opt Motion Object Overview 275
Option Base Statement 134
Option Buttons and Group Boxes 37
Option Explicit 135
Other Data Types 21

Declaration of Variables 21
Scope of Varibles 21

P

PartProgram Members
PartProgram.ActiveMachine 276
PartProgram.Application 277
PartProgram.Close 278
PartProgram.Commands 277
PartProgram.EditWindow 277
PartProgram.Export 278
PartProgram.FullName 277
PartProgram.Import 278
PartProgram.MessageBox 279
PartProgram.Name 277
PartProgram.OldBasic 277
PartProgram.Parent 277
PartProgram.PartName 277
PartProgram.Path 277
PartProgram.Probes 277
PartProgram.Quit 279
PartProgram.RevisionNumber 277
PartProgram.Save 279
PartProgram.SaveAs 279
PartProgram.SerialNumber 278
PartProgram.Tools 278
PartProgram.Visible 278

PartProgram Object Overview 276
PartPrograms Object Members 280

PC-DMIS Basic Language Reference Index • 345

PartPrograms.Add 280
PartPrograms.Application 280
PartPrograms.CloseAll 281
PartPrograms.Count 280
PartPrograms.Item 281
PartPrograms.Open 281
PartPrograms.Parent 280
PartPrograms.Remove 282

PartPrograms Object Overview 280
Paste 12
PointData Members 282

PointData.I 282
PointData.J 283
PointData.K 283
PointData.X 282
PointData.Y 282
PointData.Z 282

PointData Object Overview 282
Prehit 321
Print 12, 201, Error! Not a valid bookmark in entry

on page 237
Print # Statement 136
Print Method 136
Print Preview 12
Probe Members 283

Probe.ActiveComponent 283
Probe.ActiveConnection 283, 284
Probe.Application 284
Probe.ClearAllTips 285
Probe.ComponentCount 284
Probe.ComponentDescription 285
Probe.ConnectionCount Error! Not a valid

bookmark in entry on page 283, 284
Probe.ConnectionDescription 283, 285
Probe.Dialog 285
Probe.FullName 284
Probe.Name 284
Probe.Parent 284
Probe.Path 284
Probe.Qualify 285
Probe.SelectAllTips 286
Probe.Tips 284

Probe Object Overview 283
ProbeComp 321
Probes Members

Probes.Add 283, 286
Probes.Application 286
Probes.Count 286
Probes.Item 287
Probes.Parent 286

Probes Object Members 286
Probes Object Overview 286
Properties 46
PutFeatData 321

R

Randomize Statement 139
ReadCommBlock 321
RecallEx 322
RecallIn 322
ReDim Statement 139
Rem Statement 140
Replace 13, 188
Retract 322
RetroOnly 322
Right, Function 140
RmDir Statement 141
Rnd 142
Rotate 322
RotateCircle 322
RotateOffset 323
Roundness 312, 323, 328
Run 14
Runout 312, 323, 328

S

SaveAlign 323
ScanCommand Members 287

Scan.BoundaryCondition 287
Scan.BoundaryConditionAxisV 288
Scan.BoundaryConditionCenter 288
Scan.BoundaryConditionEndApproach 288
Scan.BoundaryConditionPlaneV 288
Scan.Filter 289
Scan.GetBoundaryConditionParams 293
Scan.GetFilterParams 293
Scan.GetHitParams 294
Scan.GetMethodPointData 294
Scan.GetNomsParams 295
Scan.GetParams 295
Scan.HitType 290
Scan.Method 291
Scan.MethodCutPlane 291
Scan.MethodEnd 291
Scan.MethodEndTouch 291
Scan.MethodInitDir 291
Scan.MethodInitTopSurf 291
Scan.MethodInitTouch 291
Scan.MethodStart 291
Scan.NominalMode 292
Scan.OperationMode 292
Scan.SetBoundaryConditionParams 296
Scan.SetFilterParams 296
Scan.SetHitParams 297
Scan.SetMethodPointData 297
Scan.SetNomsParams 298
Scan.SetParams 298, 299

ScanCommand Object Overview 287
Scripting 19

346 • Index PC-DMIS Basic Language Reference

Second Function 143
Seek Function 145
Select All 13
SendKeys 147
Set Statement 148
SetAutoParams 323
SetAutoVector 324
SetNoms 312, 324
SetPrintOptions 325
SetProgramOption 325
SetProgramValue 325
SetReportOptions 325
SetRmeasMode 325
SetScanHitParams 326
SetScanHitVectors 326
SetScanParams 326
SetScanVectors 327
SetSlaveMode 326
SetTheos 324, 327
Shell 49, 149
ShowXYZWindow 327
Sin 150
Sleep 327
Space 150
Sqr 151
StartAlign 328
StartDim 318, 328
StartFeature 313, 318, 328
StartGetFeatPoint 314, 317, 330
StartScan 309, 330
Statements and Functions Used in Dialog Functions 40
Static 152
Statistics Members 299

Statistics.AddStatsDir 300
Statistics.CalcMode 299
Statistics.GetStatsDir 300
Statistics.MemoryPages 300
Statistics.ReadLock 300
Statistics.RemoveStatsDir 301
Statistics.SetStatsDir 301
Statistics.Statistics.NameType 300
Statistics.StatMode 300
Statistics.WriteLock 300

Statistics Object Overview 299
Stats 331
Stop 153
Str Function 154
Straitness 331
StrComp Function 154
String, Function 155
Sub Statement 155
Subroutines and Functions 24

Naming conventions 24
Syntax Help 14–15
Syntax Help File 15

T

Temperature Compensation Members 301
TempComp.GetOrigin 302
TempComp.HighThreshold 301
TempComp.LowThreshold 301
TempComp.Material Coefficient 302
TempComp.RefTemp 302
TempComp.Sensors 302
TempComp.SetOrigin 302

Temperature Compensation Object Overview 301
Text 157
Text Boxes and Text 36
TextBox 158
The Dialog Function 38
The Dialog Function Syntax 39
Time, Function 158
Timer Event 159
TimeSerial - Function 159
TimeValue - Function 160
Tip 331
Tip Members 303

Tip.A 303
Tip.B 303
Tip.Date 303
Tip.Diam 303
Tip.ID 303
Tip.IJK 303
Tip.MeasDiam 303
Tip.MeasThickness 303
Tip.MeasXYZ 303
Tip.Parent 303
Tip.Selected 303
Tip.Thickness 304
Tip.Time 304
Tip.TipNum 304
Tip.Type 304
Tip.WristOffset 304
Tip.WristTipIJK 304
Tip.XYZ 304

Tip Object Overview 303
Tips Members 305

Tips.Add 305
Tips.Application 305
Tips.Count 305
Tips.Item 304, 305
Tips.Parent 305
Tips.Remove 306

Tips Object Overview 305
Tool Members 306

Tool.Application 306
Tool.Diam 306
Tool.ID 306
Tool.Parent 306
Tool.ShankIJK 306
Tool.ToolType 306

PC-DMIS Basic Language Reference Index • 347

Tool.Width 306
Tool.XYZ 307

Tool Object Overview 306
Tools Members 307

Tools.Add 307
Tools.Application 307
Tools.Count 307
Tools.Item 307
Tools.Parent 307
Tools.Remove 308

Tools Object Overview 307
Touchspeed 332
Trace 332
Tracefield 308
Tracefield Members

Tracefield.Name 308
Tracefield.Value 308

Tracefield Object Overview 308
Translate 332
TranslateOffset 332
Trim, LTrim Rtrim Functions 160
Type Statement 161
Type/Functions/Statements 51

U

UBound Function 163
UCase, Function 164
Undo 12
User Defined Types 32, 162

V

Val 165
Variable and Constant Names 20
Variable Names 20
Variable Types 20

Variants and Concatenation 20
Varialbe Types

Variant 20
VarType 165
View 14, 201

W

Wait 147, 327, 332
Weekday Function 166
What is an OLE Object? 46
While...Wend Statement 166
With Statement 167
Workplane 310–11, 328, 330, 332
Write # - Statement 168
WriteCommBlock 332

Y

Year 169

