PC-DMIS 3.6
BASIC Language Reference Manual
[image: image1.wmf]
By Wilcox Associates, Inc.
Copyright © 1999, 2000, 2001, 2002-2004 Wilcox Associates Incorporated. All rights reserved.

PC-DMIS and Direct CAD are either registered trademarks or trademarks of Brown and Sharpe Manufacturing Corporation and Wilcox Associates, Incorporated.

Contents

1Chapter 1: PC-DMIS BASIC Overview

Introduction
1
What is Cypress Enable?
1
Organization of the Manual
1
Chapter 2: Basic Script Editor
3
Introduction
3
File Menu
3
New
3
Open
3
Save
3
Save As
4
Print
4
Print Preview
4
Exit
4
Edit Menu
4
Undo
4
Cut
4
Copy
4
Paste
4
Delete
4
Select All
5
Find
5
Find Next
5
Replace
5
Dialog Editor
6
Convert OldBasic Script
7
View Menu
8
Run Menu
8
Help Menu
8
Basic Help
8
Basic Script Toolbar
8
New
8
Open
8
Save
8
Print
9
Print Preview
9
Find
9
Cut
9
Copy
9
Paste
9
Undo
9
Compile
10
Run
10
Chapter 3: Cypress Enable Scripting Language Elements
11
Introduction
11
Comments
11
Statements:
11
Line Continuation Character:
12
Numbers
12
Variable and Constant Names
12
Variable Types
12
Variant
12
Variants and Concatenation
13
Other Data Types
13
Data Types
13
Scope of Variables
14
Declaration of Variables
14
Control Structures
14
Loop Structures
15
Subroutines and Functions
17
Function Return Types
17
ByRef and ByVal
17
Calling Procedures in DLLs
19
Passing and Returning Strings
20
File Input/Output
21
File I/O Examples
21
Arrays
22
Ways to Declare a Fixed-Size Array
22
Manipulating Arrays
24
MultiDimensional Arrays
24
User Defined Types
25
Dialog Support
26
Dialog Box controls
26
OK and Cancel Buttons
27
List Boxes, Combo Boxes and Drop-down List Boxes
27
Check Boxes
28
Text Boxes and Text
29
Option Buttons and Group Boxes
30
The Dialog Function
32
The Dialog Box Controls
32
The Dialog Function Syntax
32
Statements and Functions Used in Dialog Functions
34
DlgControlId Function
35
DlgFocus Statement, DlgFocus() Function
35
DlgListBoxArray, DlgListBoxArray()
36
DlgSetPicture
36
DlgValue, DlgValue()
36
OLE Automation
38
Accessing an Object
39
What is an OLE Object?
39
OLE Fundamentals
41
OLE Object
41
OLE Automation
41
Class
41
OLE Automation and Microsoft Word Example:
42
Making Applications Work Together
42
WIN.INI
43
The Registration Database.
43
The Registration database
43
Associations.
43
Shell Operations.
43
OLE Object Servers.
43
DDE/OLE Automation.
43
Chapter 4: Scripting Language Overview
45
Introduction
45
Quick Reference of Functions and Statements Available
45
Type/Functions/Statements
45
Data Types
47
Operators
47
Operator Precedence
48
Functions, Statements, Reserved words - Quick Reference
48
Chapter 5: Language Reference A – Z
51
Introduction
51
Abs Function
51
AppActivate Statement
52
Asc Function
53
Atn Function
53
Beep Statement
54
Call Statement
55
CBool Function
55
CDate Function
56
CDbl Function
57
ChDir Statement
57
ChDrive Statement
58
CheckBox
59
Choose Function
59
Chr Function
60
CInt Function
61
CLng Function
61
Close Statement
62
Const Statement
63
Cos Function
64
CreateObject Function
65
CSng Function
66
CStr Function
67
CurDir Function
68
CVar Function
68
Date Function
69
DateSerial Function
71
DateValue Function
71
Day Function
72
Declare Statement
72
Dialog, Dialog Function
74
Dim Statement
76
Dir Function
77
DlgEnable Statement
78
DlgText Statement
80
DlgVisible Statement
81
Do...Loop Statement
81
End Statement
82
EOF Function
83
Erase Statement
84
Exit Statement
85
Exp
85
FileCopy Function
86
FileLen Function
86
Fix Function
87
For each … Next Statement
87
For...Next Statement
88
Format Function
89
Predefined numeric format names:
90
Characters for Creating User-Defined Number Formats
90
Sample Format Number Expressions
93
FreeFile Function
97
Function Statement
98
Get Statement
100
Get Object Function
100
Global Statement
100
GoTo Statement
101
Hex
102
Hour Function
103
HTMLDialog
105
If...Then...Else Statement
105
Input # Statement
107
Input Function
107
InputBox Function
108
InStr
109
Int Function
109
IsArray Function
110
IsDate
110
IsEmpty
111
IsNull
111
IsNumeric
112
IsObject Function
113
Kill Statement
114
LBound Function
115
LCase, Function
115
Left
116
Len
117
Let Statement
118
Line Input # Statement
118
LOF
119
Log
120
Mid Function
121
Minute Function
122
MkDir
123
Month Function
124
MsgBox Function MsgBox Statement
124
Name Statement
127
Now Function
127
Oct Function
127
OKButton
128
On Error
129
Defined x Value Descriptions
130
Open Statement
132
Option Base Statement
134
Option Explicit Statement
135
Print Method
135
Print # Statement
136
Randomize Statement
138
ReDim Statement
139
Rem Statement
140
Right Function
140
RmDir Statement
141
Rnd Function
142
Second Function
143
Seek Function
145
Seek Statement
145
Select Case Statement
146
SendKeys Function
148
Set Statement
148
Shell Function
149
Sin Function
150
Space Function
151
Sqr Function
151
Static Statement
153
Stop Statement
153
Str Function
154
StrComp Function
155
String Function
156
Sub Statement
156
Tan Function
157
Text Statement
158
TextBox Statement
158
Time Function
159
Timer Event
160
TimeSerial - Function
160
TimeValue - Function
161
Trim, LTrim, RTrim Functions
162
Type Statement
163
UBound Function
165
UCase Function
165
Val
166
VarType
167
Weekday Function
167
While...Wend Statement
168
With Statement
169
Write # - Statement
170
Year Function
171
Chapter 6: Automation
173
Introduction
173
Sample Automation Scripts
174
Accessing an Object's Properties, Methods and Events
175
Accessing Event Subroutines
176
Accessing Methods and Properites
177
Automation Object Heirarchy Charts
178
Using the Object Browser in Other Editors
179
Active Tip Object Overview
181
Properties:
181
Methods:
181
AlignCommand Object Overview
181
roperties:
182
Methods:
186
Application Object Overview
187
aunching PC-DMIS With Startup Options
187
Properties:
189
Methods:
191
Application Object Events Object Overview
193
ents:
193
Application Settings Object Overview
196
Properties:
197
Array Index Object Overview
197
Methods:
197
Attach Object Overview
199
Properties:
199
Autotrigger Object Overview
199
Properties:
200
BasicScanCommand Object Overview
200
Properties
200
Methods:
205
Basic Scan Object Combinations
215
CadModel Object Overview:
217
Methods:
217
CadWindow Object Overview:
219
Properties:
219
Methods:
220
CadWindows Object Overview
220
Properties:
220
Methods:
221
Calibration Object Overview
221
Properties:
221
Command Object Overview
222
Properties:
222
Methods:
234
Commands Object Overview
242
Properties:
242
Methods:
242
Comment Object Overview
245
Properties:
245
Methods:
246
ControlPoint Object Overview
247
Properties
247
DataType Object Overview
248
Properties:
249
DataTypes Object Overview
249
Properties:
249
Methods:
249
DimData Object Overview
250
Properties
251
DimensionCommand Object Overview
251
Properties:
251
Methods:
256
Dimension Format Object Overview
256
Properties:
256
Methods:
257
Dimension Information Object Overview
258
Properties:
258
Methods:
258
Display Metafile Object Overview
262
Properties:
262
DmisDialog Object Overview
263
Properties:
263
DmisMatrix Object Overview
263
Properties:
263
Methods:
264
EditWindow Object Overview
267
Properties:
267
Methods:
268
ExecutedCommands Object Overview
270
Properties
270
Methods
271
ExternalCommand Object Overview
271
Properties:
272
FeatCommand Object Overview
272
Properties:
272
Methods:
283
FeatData Object Overview
295
Properties
295
File IO Object Overview
297
Properties:
297
FlowControlCommand Object Overview
298
Properties:
299
Methods:
301
FPanel Object Overview
306
Properties:
306
Leapfrog Object Overview
306
Properties:
307
Leitz Motion Object Overview
307
Properties:
307
Load Machine Object Overview
308
Properties:
308
Load Probes Object Overview
309
Properties:
309
Machine Object Overview
309
Properties:
309
Events:
309
Machines Object Overview
310
Properties:
310
Methods:
310
MasterSlaveDlg Object Overview
311
Properties:
311
Methods:
312
ModalCommand Object Overview
313
Properties:
313
MoveCommand Object Overview
315
Properties:
315
Opt Motion Object Overview
316
Properties:
317
OptProbe Object Overview
317
Properties:
317
PartProgram Object Overview
318
Properties:
318
Methods:
321
Events:
326
PartProgram Settings Object Overview
328
Properties:
328
PartPrograms Object Overview
329
Properties:
329
Methods:
329
PointData Object Overview
331
Properties
331
Probe Object Overview
332
Properties:
332
Methods:
334
Probes Object Overview
335
Properties:
336
Methods:
336
QualificationSettings Object Overview
337
Properties
337
Methods:
339
ScanCommand Object Overview
340
Properties
340
Methods:
345
Statistics Object Overview
353
Properties:
353
Methods:
354
Temperature Compensation Object Overview
355
Properties:
355
Methods:
355
Tip Object Overview
356
Properties:
356
Tips Object Overview
358
Properties:
358
Methods:
358
Tool Object Overview
359
Properties:
359
Tools Object Overview
360
Properties:
360
Methods:
360
Tracefield Object Overview
361
Properties:
361
Variable Object Overview
361
Properties:
362
Methods:
362
Chapter 7: Old PC-DMIS Basic Functions
365
Introduction
365
Functions A
365
AddBoundaryPoint
365
AddFeature
365
AddLevelFeat
366
AddOriginFeat
366
AddRotateFeat
366
Application
366
ArcSin
366
ArcCos
366
Functions B
366
BestFit2D
366
BestFit3D
367
Functions C
367
Calibrate
367
CatchMotionError
367
Check
367
ClearPlane
367
CloseCommConnection
368
Column132
368
Comment
368
CreateID
368
Functions D
369
DefaultAxes
369
DefaultHits
369
DimFormat
369
Functions E
369
EndAlign
369
EndDim
370
EndFeature
370
EndGetFeatPoint
370
EndScan
370
EquateAlign
370
Functions F
370
Feature
370
Flatness
370
Functions G
371
GapOnly
371
GetDimData
371
GetDimOutTol
372
GetFeatData
372
GetFeatID
373
GetFeatPoint
373
GetFeature
373
GetPH9Status
373
GetProbeOffsets
373
GetProbeRadius
374
GetProgramOption
374
GetProgramValue
374
GetTopMachineSpeed
374
GetType
374
GetUnits
374
Functions H
375
Hit
375
Functions I
375
IgnoreMotionError
375
Iterate
375
Functions L
375
Level
375
LoadProbe
375
Functions M
376
MaxMineAve
376
Mode
376
Move
376
MoveSpeed
376
Functions O
376
OpenCommConnection
376
Functions P
377
Parent
377
Prehit
377
ProbeComp
377
PutFeatData
377
Functions R
378
ReadCommBlock
378
RecallIn
378
RecallEx
378
Retract
378
RetroOnly
378
Rotate
378
RotateCircle
379
RotateOffset
379
Roundness
379
Runout
379
Functions S
380
SaveAlign
380
SetAutoParams
380
SetAutoVector
380
SetNoms
381
SetPrintOptions
381
SetProgramOption
381
SetProgramValue
381
SetReportOptions
382
SetRmeasMode
382
SetSlaveMode
382
SetScanHitParams
382
SetScanHitVectors
382
SetScanParams
383
SetScanVectors
383
SetTheos
383
ShowXYZWindow
384
Sleep
384
StartAlign
384
StartDim
384
StartFeature
385
StartGetFeatPoint
386
StartScan
387
Straitness
387
Stats
387
Functions T
388
Tip
388
Touchspeed
388
Trace
388
Translate
388
TranslateOffset
388
Functions W
388
Wait
388
Workplane
389
WriteCommBlock
389
Index
391

Chapter 1: Seq D2HDocument \h \r2 PC-DMIS BASIC Overview

Introduction

While PC-DMIS for Windows contains a myriad of valuable options and features to aid you in your part measurements, there may be times when you want greater customizability to meet specific needs. Maybe you want the capability to globally change a particular value inside the Edit window, or maybe you want to export statistical data to a specific application. Rather than waiting for an item on your wishlist to be coded into a future version of PC-DMIS, PC-DMIS allows you to create your own BASIC scripts and run them inside PC-DMIS. In fact, using PC-DMIS's comprehensive list of automation commands, properties and methods, you can run PC-DMIS entirely from a custom-built third party application.

What is Cypress Enable?

PC-DMIS uses the Cypress Enable Scripting Language, a powerful subset of the BASIC language. If you have a working knowledge of BASIC, the tools given in this manual will be invaluable to creating your own mini-applications that work in conjunction with PC-DMIS.

Organization of the Manual

This manual contains the following chapters:

· Basic Script Editor
 \Relate "2_pcdbasic_BasicScriptEditor.doc!255", "Basic Script Editor" \D2HTargetDefault – this discusses how to open and use the Basic Script Editor from within PC-DMIS to create and compile your BASIC scripts.

· Cypress Enable Scripting Language Elements
 \Relate "3_pcdbasic_CypressEnableScriptingLanguageElements.doc!256", "Cypress Enable Scripting Language Elements" \D2HTargetDefault – this discusses the language elements used to create BASIC scripts using Cypress Enable.

· Scripting Language Overview
 \Relate "4_pcdbasic_ScriptingLanguageOverview.doc!261", "Scripting Language Overview" \D2HTargetDefault – this contains quick reference charts on functions, statements, data types, operators, reserved words, and precedence.

· Language Reference A-Z
 \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!262", "Language Reference A-Z" \D2HTargetDefault – this contains a full fledged language reference of BASIC code that you can use.

· Automation
 \Relate "6_pcdbasic_automation.doc!263", "Automation" \D2HTargetDefault – this contains all the properties and methods associated with every PC-DMIS object that you can use via your BASIC scripts.

· Old PC-DMIS Basic functions
 \Relate "7_pcdbasic_OldBasicFunctions.doc!147", "OldBasic functions" \D2HTargetDefault – this contains an alphabetical reference of the older BASIC functions used in previous versions of PC-DMIS. They are provided here for backward compatability.

Chapter 2: Seq D2HDocument \h \r3 Basic Script Editor

Introduction

The Utilities | Scripting | Basic Script Editor menu option opens the Basic Script Editor. The Basic Script Editor can be used to create and edit basic scripts that can be used in Basic Script objects during execution or from the xe "Basic Script Toolbar" Basic Script's Standard toolbar \Relate "2_pcdbasic_BasicScriptEditor.doc!82", "toolbar" \D2HTargetDefault
. The Basic Script Editor consists of the following menus:

1) File menu \Relate "2_pcdbasic_BasicScriptEditor.doc!77", "File menu" \D2HTargetDefault

2) Edit menu \Relate "2_pcdbasic_BasicScriptEditor.doc!78", "Edit menu" \D2HTargetDefault

3) View menu \Relate "2_pcdbasic_BasicScriptEditor.doc!79", "View menu" \D2HTargetDefault

4) Run menu \Relate "2_pcdbasic_BasicScriptEditor.doc!80", "Run menu" \D2HTargetDefault

5) Help menu \Relate "2_pcdbasic_BasicScriptEditor.doc!81", "Help menu" \D2HTargetDefault

File Menu

xe "File Menu"The Basic Script Editor's File menu gives you the following commands and options:

New

The File | New menu option opens a new Basic Script Editor in which you can write a new script.

Open

Txe "Open"he File | Open menu option allows you to navigate to and open an existing script. In order for files to appear in the Basic Script Editor, files must be of file type .BAS.

Save

The File | Save menu option allows you to save a script. With a new script, the first time this option is selected, the Save As dialog box will appear.

Save As

The File | Save As menu option allows you to save a new script, or an already existing script by a new file name. The Save As dialog box appears, allowing you to select the file name and the directory to which you will be saving the script.

Printxe "Print"
The File | Print menu option allows you to print the script in the Basic Script Editor from your system's printer.

Print Previewxe "Print Preview"
The File | Print Preview menu option allows you to preview what will be sent to the printer when Print is selected from the Basic Script Editor's File menu.

Exitxe "Exit"
The File | Exit menu option allows you to exit out of the Basic Script Editor without saving any changes you have made to any open scripts. Choosing File | Exit will return you the main user interface. The menu bar will return to normal PC-DMIS functions.

xe "Edit Menu"Edit Menu

The Edit menu of the Basic Script Editor allows you to use basic Edit functions to manipulate the text displayed in the Basic Script Editor.

Undoxe "Undo"
The Edit | Undo menu option allows you to undo the most recent action taken in the Basic Script Editor.

Cutxe "Cut"
The Edit | Cut menu option allows you to cut selected text from the Basic Script Editor. Cut text is stored in the Windows clipboard to later be pasted elsewhere.

Copyxe "Copy"
The Edit | Copy menu option allows you to copy selected text. Copied text is stored in the Windows clipboard to later be pasted elsewhere.

Pastexe "Paste"
The Edit | Paste command allows you to paste text that is stored in the Windows clipboard.

Deletexe "Delete"
The Edit | Delete command allows you to delete highlighted text.

Select Allxe "Select All"
The Edit | Select All menu option automatically selects all the text within the Basic Script Editor. You can then Cut, Copy, or Delete the selected text.

Findxe "Find" \r "D2HBFind80"
The Edit | Find menu option brings up the Find dialog box.

[image: image2.png]Find HE
Find what || ErERE

I~ Metch whole word orly Cancel

T~ Match case.

Find dialog box

This dialog allows you to search for a specific word, or term within the Basic Script Editor.
· If you choose the Match whole word only checkxe "Check" box the dialog will display only those words that match the entire word.

· If you choose the Match Case check box, then the dialog box will display only those terms that match the case (Uppercase or Lowercase) that you used in the Find what box.

Find Nextxe "Find Next" \r "D2HBFind_Next80"
The Edit | Find Next will search in the Basic Script Editor for the next term that meets the qualifications specified in the Find dialog box (See Edit | Find above.)

Replacexe "Replace" \r "D2HBReplace80"
The Edit | Replace menu option brings up the Replace dialog box

[image: image3.png]Replace HE|

Fid

Resaco v e
R

I Mtch sholevord ol —

I Machgase _fereel |

Replace dialog box

This dialog box is an extension of the Edit | Find command. This allows you to search for a specific term and then replace it with the term entered in the Replace with box.
Find Next

The Find Next button searches through the Basic Script Editor and brings up the first instance that meets the qualifications entered in the dialog box.

Replace

The Replace button allows you to replace what has been found (using the Find Next button) with what is in the Replace with box.

Replace All

The Replace All button allows you to replace all instances in the Basic Script Editor that meet the search qualifications with what is in the Replace with box.

Cancel

The Cancel button closes the Replace dialog box.

Dialog Editor

xe "Dialog:create"

xe "Create:dialogs"

xe "Create:forms"

xe "Dialog:editor"

xe "Edit:dialog"

xe "Design:dialog"

xe "Dialog:designer"

xe "Form:designer"

xe "MasQ Enable Dialog Designer"The Dialog Editor menu option launches the MasQ Enable Dialog Designer:

[image: image4.png]=lo/x|

Fle Bt Windon Hep
NrxwmoeRABMIBEIE ¢ “n@ 2 I
Propertes for Dialog

Disog ae [STERERT
DiooTll [TestDies

Test ialog

oK

Cancel

MasQ Enable Dialog Designer

This application allows you to design dialog boxes for use with the Basic Script Editor. While it doesn't have the full power of a Visual Basic form designer, it provides you with a quick way to generate and place dialog box code into the Basic Script Editor.

For additional information on the Cypress Enable dialog box code, see the "Dialog Support
" topic.

To Create a New Dialog Box:

1. Select Edit | Dialog Editor. The MasQ Enable Dialog Designer appears.

2. Use the dialog designer toolbar to select and place controls into the Design Window.

3. Change caption properties as needed by using the Properties option from the Window menu.

4. Align controls on the Design Window by using options in the Edit menu.

5. When you have finished designing your dialog box, select File | Put Dialog on Clipboard. This sends the code for the dialog box to the Windows Clipboard.

6. Select File | Close Dialog Designer.

7. Access the Basic Script Editor inside PC-DMIS.

8. Press CTRL + V to paste the code from the clipboard into the Basic Script Editor. The dialog box code begins with Begin Dialog and ends with End Dialog.

9. Modify the code as needed.

To Modify an Existing Dialog Box:

This procedure assumes you have already pasted some sort of dialog box code from the clipboard into the Basic Script Editor, as described in the "To Create a New Dialog Box:" topic.

1. Access the Basic Script Editor inside PC-DMIS.

2. Select the dialog box code and press CTRL + C to copy it to the Clipboard. The dialog box code begins with Begin Dialog and ends with End Dialog.

3. Select Edit | Dialog Editor. The MasQ Enable Dialog Designer appears.

4. From the dialog designer's menu bar, select File | Load Dialog from Clipboard.

5. Use the dialog designer to further modify your dialog box.

6. When you have finished modifying your dialog box, select File | Put Dialog on Clipboard. This sends the code for the dialog box to the Windows Clipboard.

7. Select File | Close Dialog Designer.

8. Access the Basic Script Editor inside PC-DMIS.

9. Press CTRL + V to paste the code from the clipboard into the Basic Script Editor.

10. Modify the code as needed.
Convert OldBasic Script

xe "Old BASIC Code: Convert "The Convert OldBasic Script menu item, allows you to convert scripts from older versions (versions 2.3 and previous) into the latest format. To use this option, first load the old script into the Basic Script Editor and then select the Edit | Convert OldBasic Script menu item.
xe "View"View Menu

The View menu allows you to choose if the Basic Script Editor's toolbar and / or Status Bar is being displayed. Select View | Toolbar to toggle the toolbar on or off. Select View | Status Bar to toggle the status bar on or off.

xe "Run"Run Menu

The Run menu allows you to Compile a script or Execute a script. Use the compile command to test the script for syntactic errors. The execute command executes the script.

xe "Help" \r "D2HBHelp81"Help Menu

The Help menu allows you to access various options that aid you in using the Basic Script Editor.

Basic Helpxe "Basic Help"
The Help | Basic Help command brings up the on-line help file (Pcdbasic.hlp or Pcdbasic.chm) created for the add on Basic Module.

Basic Script Toolbar

[image: image5.png]E|
O[3|e| SR s8] &[%(@[o| <>

The Standard toolbar for basic scripts supports the following functions:

New

[image: image6.png]

This icon allows you to create a new basic script in the editor.

Open

[image: image7.png]

This icon brings up an Open File dialog box allowing you opens an existing basic script into the editor.

Save

[image: image8.png]

This icon saves the current basic script. If you have not already named the current script, a Save As dialog box asking for the name of the script will appear.

Print

[image: image9.png]

This icon prints the current basic script.

Print Preview

[image: image10.png]

This icon allows you to see the current basic script in the Print Preview window as it will appear when printed.

Find

[image: image11.png]

This icon allows you to search for text in the current basic script.

Cutxe "Cut"
[image: image12.png]

This button cuts currently selected text and put text on the clipboard.

Copy

[image: image13.png]

This icon copies currently selected text and put text on the clipboard.

Paste

[image: image14.png]

This icon pastes text from the clipboard into the editor at the current insertion point.

Undo

[image: image15.png]

This icon allows you to undo the last editing change.

Compile

[image: image16]
This icon compiles (makes the script understandable and ready to run on the computer system) the current BASIC script. You must compile a script before running it.

Run

[image: image17.png]

This icon compiles and runs the current basic script.

Note: Scripts run from the editor using the PC-DMIS basic commands can insert objects into the current part program.

Chapter 3: Seq D2HDocument \h \r4 Cypress Enable Scripting Language Elements

Introduction

xe "Cypress Enable Scripting Language Elements"

xe "Cypress Enable Scripting Language Elements"

xe "Enable Scripting Language"

xe "Scripting"In this chapter, the general elements of the Enable language are described. Enable scripts can include comments,xe "Comments " statements, various representations of numbers,xe "Numbers" \r "D2HBNumbers17" 11 variable data types including user defined types, and multiple flow of control structures.xe "Control Structures" Enable is also extendable by calling external DLL’s or calling functions back in the applications .exe file.

Commentsxe "Comments"

Comments are non-executed lines of code which are included for the benefit of the programmer. Comments can be included virtually anywhere in a script. Any text following an apostrophe or the word Rem is ignored by Enable. Rem and all other keywords and most names in Enable are not case sensitive

'

This whole line is a commentxe "Comment"

rem

This whole line is a comment

REM

This whole line is a comment

Rem

This whole line is a comment

Comments can also be included on the same line as executed code:

MsgBox Msg
' Display message.

Everything after the apostrophe is a comment.

Statements:

In Enable there is no statement terminator. More than one statement can be put on a line if they are separated by a colon ":".

X.AddPoint(25, 100) : X.AddPoint(0, 75)
Which is equivalent to:

X.AddPoint(25, 100)

X.AddPoint(0, 75)

Line Continuation Character:

The underscore is the line continuation character in Enable. There must be a space before and after the line continuation character.

X.AddPoint _ ​

(25, 100)

Numbersxe "Numbers"
Cypress Enable supports three representations of numbers: Decimal, Octal and Hexadecimal. Most of the numbers used in this manual are decimal or base 10 numbers. However, if you need to use Octal (base 8) or hexadecimal (base 16) numbers simply prefix the number with &O or &H respectively.

xe "Variable and Constant Names"

xe "Variable Names"

xe "Constant Names"Variable and Constant Namesxe "Variable and Constant Names"
Variable and Constant names must begin with a letter. They can contain the letters A to Z and a to z, the underscore “_”, and the digits 0 to 9. Variable and constant names must begin with a letter, be no longer than 40 characters. and cannot be reserved words. For a table of reserved words, see the Language Overview section of this manual. One exception to this rule is that object member names and property names may be reserved words.

Variable Typesxe "Variable Types"

xe "Varialbe Types:Variant"

xe "Variable Types:Variants and Concatenation"
Variant

As is the case with Visual Basic, when a variable is introduced in Cypress Enable, it is not necessary to declare it first (see option explicit for an exception to this rule). When a variable is used but not declared then it is implicitly declared as a variant data type. Variants can also be declared explicitly using "As Variant" as in Dim x As Variant. The variant data type is capable of storing numbers, strings, dates, and times. When using a variant you do not have to explicitly convert a variable from one data type to another. This data type conversion is handled automatically.

For example:

Sub Main

Dim x

'variant variable

x = 10

x = x + 8

x = "F" & x

print x 'prints F18

End Sub

[image: image18.png]

A variant variable can readily change its type and its internal representation can be determined by using the function VarType. VarType returns a value that corresponds to the explicit data types. See "VarType \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!48", "VarType" \D2HTargetDefault
" in the "Language Reference A – Z" chapter for return values.

When storing numbers in variant variables the data type used is always the most compact type possible. For example, if you first assign a small number to the variant it will be stored as an integer. If you then assign your variant to a number with a fractional component it will then be stored as a double.

For doing numeric operations on a variant variable it is sometimes necessary to determine if the value stored is a valid numeric, thus avoiding an error. This can be done with the IsNumeric function described in the "IsNumeric \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!47", "IsNumeric" \D2HTargetDefault
" topic in the "Language Reference A – Z" chapter.

Variants and Concatenation
If a string and a number are concatenated the result is a string. To be sure your concatenation works regardless of the data type involved use the & operator. The & will not perform arithmetic on your numeric values it will simply concatenate them as if they were strings.

The IsEmpty function can be used to find out if a variant variable has been previously assigned (see "IsEmpty \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!44", "IsEmpty" \D2HTargetDefault
").

Other Data Typesxe "Other Data Types"

xe "Other Data Types:Scope of Varibles"

xe "Other Data Types:Declaration of Variables"
The twelve data types available in Cypress Enable are shown below:

Data Types
	Variable
	Symbol
	Type Declaration
	Size

	Byte
	
	Dim BVar As Byte
	0 to 255

	Boolean
	
	Dim BoolVar As Boolean
	True or False

	String
	$
	Dim Str_Var As String
	0 to 65,500 char

	Integer
	%
	Dim Int_Var As Integer
	2 bytes

	Long
	&
	Dim Long_Var As Long
	4 bytes

	Single
	!
	Dim Sing_Var As Single
	4 bytes

	Double
	#
	Dim Dbl_Var As Double
	8 bytes

	Variant
	
	Dim X As Any
	

	Currency
	
	Dim Cvar As Currency
	8 bytes

	Object
	
	Dim X As Object
	4 bytes

	Date
	
	Dim D As Date
	8 bytes

	User Defined Types
	
	
	size of each element

Scope of Variables
Cypress Enable scripts can be composed of many files and each file can have many subroutines and functions in it. Variable names can be reused even if they are contained in separate files. Variables can be local or global.

Declaration of Variables
In Cypress Enable variables are declared with the Dim statement. To declare a variable other than a variant the variable must be followed by As or appended by a type declaration character such as a % for Integer type.

For example:

Sub Main

 Dim X As Integer

 Dim Y As Double

 Dim YourName$, YourAge%
' multiple declaration on one line Dim v

End Sub

Notice that the variables YourName and YourAge use a symbol to declare the variable type instead of the term As.

See "Dim Statement \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!30", "Dim Statement" \D2HTargetDefault
" for more information.

Note: While it may be possible in some cases to use variables without declaring them with the Dim statement first, doing so is not supported in Enable BASIC and may cause problems in your code.

Control Structuresxe "Control Structures"
Cypress Enable has complete process control functionality. The control structures available are Do loops, While loops, For loops, Select Case, If Then , and If Then Else. In addition, Cypress Enable has one branching statement: GoTo. The GoTo Statement branches to the label specified in the GoTo Statement.

For example:

Goto label1

.

.

.

label1:

The program execution jumps to the part of the program that begins with the label "label1:".

Loop Structures

Do Loops

The Do...Loop allows you to execute a block of statements an indefinite number of times. The variations of the Do...Loop are Do While, Do Until, Do Loop While, and Do Loop Until.

Do While|Until condition

 Statement(s)...

 [Exit Do]

 Statement(s)...

Loop
Do Until condition

Statement(s)...

Loop

Do
Statements...

Loop While condition
Do
statements...

Loop Until condition

Do While and Do Until checkxe "Check" the condition before entering the loop, thus the block of statements inside the loop are only executed when those conditions are met. Do Loop While and Do Loop Until check the condition after having executed the block of statements thereby guaranteeing that the block of statements is executed at least once.

While Loop

The While...Wend loop is similar to the Do While loop. The condition is checked before executing the block of statements comprising the loop.

While condition

statements...

Wend
For ... Next Loop

The For...Next loop has a counter variable and repeats a block of statements a set number of times. The counter variable increases or decreases with each repetition through the loop. The counter default is one if the Step variation is not used.

For counter = beginning value To ending value [Step increment]

statements...

Next

If and Select Statements

The If...Then block has a single line and multiple line syntax. The condition of an If statement can be a comparison or an expression, but it must evaluate to True or False.

If condition Then Statements...
'single line syntax

If condition Then

'multiple line syntax

statements...

End If

The other variation on the If statement is the If...Then...Else statement.xe "If...Then...Else Statement" This statement should be used when there is different statement blocks to be executed depending on the condition. There is also the If...Then...ElseIf... variation, these can get quite long and cumbersome, at which time you should consider using the Select statement.
If condition Then

statements...

ElseIf condition Then

statements...

Else
End If

The Select Case statement tests the same variable for many different values. This statement tends to be easier to read, understand and follow and should be used in place of a complicated If...Then...ElseIf statement.

Select Case variable to test

Case 1

statements...

Case 2

statements...

Case 3

statements...

Case Else

statements...

End Select
See "Language Reference A – Z
" chaptersection for exact syntax and code examples.

Subroutines and Functionsxe "Subroutines and Functions"

xe "Subroutines and Functions:Naming conventions"
Naming conventions

Subroutine and Function names can contain the letters A to Z and a to z, the underscore “_” and digits 0 to 9. The only limitation is that subroutine and function names must begin with a letter, be no longer than 40 characters, and not be reserved words. For a list of reserved words, see the table of reserved words under "Functions, Statements, Reserved words – Quick Reference \Relate "4_pcdbasic_ScriptingLanguageOverview.doc!238", "Functions, Statements, Reserved words – Quick Reference" \D2HTargetDefault
" topic in the "Scripting Language Overview" chaptersection.

Cypress Enable allows script developers to create their own functions or subroutines or to make DLL calls. Subroutines are created with the syntax "Sub <subname> End Sub". Functions are similar "Function <funcname> As <type> ... <funcname> = <value> ... End Function.” DLL functions are declared via the Declare statement.

Function Return Types

Note: Be aware that type Object is not a valid return type of functions.

ByRef and ByVal

ByRef gives other subroutines and functions the permission to make changes to variables that are passed in as parameters. The keyword ByVal denies this permission and the parameters cannot be reassigned outside their local procedure. ByRef is the Enable default and does not need to be used explicitly. Because ByRef is the default all variables passed to other functions or subroutines can be changed, the only exception to this is if you use the ByVal keyword to protect the variable or use parentheses which indicate the variable is ByVal.

If the arguments or parameters are passed with parentheses around them, you will tell Enable that you are passing them ByVal

SubOne var1, var2, (var3)

The parameter var3 in this case is passed by value and cannot be changed by the subroutine SubOne.

Function R(X As String, ByVal n As Integer)

In this example the function R is receiving two parameters X and n. The second parameter n is passed by value and the contents cannot be changed from within the function R.

In the following code samples, scalar variable and user defined types are passed by reference.

Scalar Variables

Sub Main

 Dim x(5) As Integer

 Dim i As Integer

 for i = 0 to 5

 x(i) = i

 next i

 Print i

 Joe (i), x ‘ The parenthesis around it turn it into an expression which passes by value

 print "should be 6: "; x(2), i

End Sub

Sub Joe(ByRef j As Integer, ByRef y() As Integer)

 print "Joe: "; j, y(2)

 j = 345

 for i = 0 to 5

 print "i: "; i; "y(i): "; y(i)

 next i

 y(2) = 3 * y(2)

End Sub

Passing User Defined Types by Ref to DLL’s and Enable functions

' OpenFile() Structure

Type OFSTRUCT

cBytes As String * 1

fFixedDisk As String * 1

nErrCode As Integer

reserved As String * 4

szPathName As String * 128

End Type

' OpenFile() Flags

Global Const OF_READ = &H0

Global Const OF_WRITE = &H1

Global Const OF_READWRITE = &H2

Global Const OF_SHARE_COMPAT = &H0

Global Const OF_SHARE_EXCLUSIVE = &H10

Global Const OF_SHARE_DENY_WRITE = &H20

Global Const OF_SHARE_DENY_READ = &H30

Global Const OF_SHARE_DENY_NONE = &H40

Global Const OF_PARSE = &H100

Global Const OF_DELETE = &H200

Global Const OF_VERIFY = &H400

Global Const OF_CANCEL = &H800

Global Const OF_CREATE = &H1000

Global Const OF_PROMPT = &H2000

Global Const OF_EXIST = &H4000

Global Const OF_REOPEN = &H8000

Declare Function OpenFile Lib "Kernel" (ByVal lpFileName As String, lpReOpenBuff As OFSTRUCT, ByVal wStyle As Integer) As Integer

Sub Main

 Dim ofs As OFSTRUCT

 ' Print OF_READWRITE

 ofs.szPathName = "c:\enable\openfile.bas"

 print ofs.szPathName

 ofs.nErrCode = 5

 print ofs.nErrCode

 OpenFile "t.bas", ofs

 print ofs.szPathName

 print ofs.nErrCode

End Sub

Calling Procedures in DLLsxe "Calling Procedures in DLLs"
DLLs or Dynamic-link libraries are used extensively by engineers to functions and subroutines located there. There are two main ways that Enable can be extended, one way is to call functions and subroutines in DLLs and the other way is to call functions and subroutines located in the calling application. The mechanisms used for calling procedures in either place are similar. (See the Declare Statement for more deatils)

To declare a DLL procedure or a procedure located in your calling application place a declare statement in your declares file or outside the code area. All declarations in Enable are Global to the run and accesible by all subroutines and functions. If the procedure does not return a value, declare it as a subroutine. If the procedure does have a return value declare it as a function.

Declare Function GetPrivateProfileString Lib "Kernel32" (ByVal lpApplicationName As String, ByVal _ lpKeyName As String, ByVal lpDefault As String, ByVal lpReturnedString As String, ByVal nSize As _ Integer, ByVal lpFileName As String) As Integer

Declare Sub InvertRect Lib “User” (ByVal hDC AS Integer, aRect As Rectangle)

Notice the line extension character “-“ the underscore. If a piece of code is too long to fit on one line a line extension character can be used when needed.

Once a procedure is declared, you can call it just as you would another Enable Function.

It is important to note that Enable cannot verify that you are passing correct values to a DLL procedure. If you pass incorrect values, the procedure may fail.

Passing and Returning Strings

Cypress Enable maintains variable-length strings internally as BSTRs. BSTRs are defined in the OLE header files as OLECHAR FAR *. An OLECHAR is a UNICODE character in 32-bit OLE and an ANSI character in 16-bit OLE. A BSTR can contain NULL values because a length is also maintained with the BSTR. BSTRs are also NULL terminated so they can be treated as an LPSTR. Currently this length is stored immediately prior to the string. This may change in the future, however, so you should use the OLE APIs to access the string length.

You can pass a string from Cypress Enable to a DLL in one of two ways. You can pass it "by value" (ByVal) or "by reference". When you pass a string ByVal, Cypress Enable passes a pointer to the beginning of the string data (i.e. it passes a BSTR). When a string is passed byreference, Enable passes a pointer to a pointer to the string data (i.e. it passes a BSTR *).

OLE API

SysAllocString/SysAllocStringLen

SysAllocString/SysAllocStringLen

SysFreeString

SysStringLen

SysReAllocStringLen

SysReAllocString

Note:: The BSTR is a pointer to the string, so you don't need to dereference it.

File Input/Outputxe "File Input/Output"
Enable supports full sequential and binary file I/O.

Functions and Statements that apply to file access:

Dir, EOF, FileCopy, FileLen, Seek, Open, Close, Input, Line Input, Print and Write
File I/O Examples

Sub Main

 Open "TESTFILE" For Input As #1
' Open file.

 Do While Not EOF(1)

' Loop until end of file.

 Line Input #1, TextLine
' Read line into variable.

Print TextLine

' Print to Debug window.

 Loop

 Close #1
' Close file.

End Sub

Sub test

Open "MYFILE" For Input As #1
' Open file for input.

Do While Not EOF(1)
' Checkxe "Check" for end of file.

Line Input #1, InputData
' Read line of data.

MsgBox InputData

Loop

Close #1
' Close file.

End Sub

Sub FileIO_Example()

Dim Msg
' Declare variable.

Call Make3Files()
' Create data files.

Msg = "Several test files have been created on your disk. "

Msg = Msg & "Choose OK to remove the test files."

MsgBox Msg

For I = 1 To 3

Kill "TEST" & I ' Remove data files from disk.

 Next I

End Sub

Sub Make3Files ()

Dim I, FNum, FName
' Declare variables.

For I = 1 To 3

FNum = FreeFile
' Determine next file number.

FName = "TEST" & FNum

Open FName For Output As FNum
' Open file.

Print #I, "This is test #" & I
' Write string to file.

Print #I, "Here is another "; "line"; I

Next I

Close
' Close all files.
End Sub

[image: image19.png]Several test files have been created on your di
Choose OK to remove the test files.

OK!

xe "Arrays"Arrays

Cypress Enable supports single and multi dimensional arrays. Using arrays you can refer to a series of variables by the same name each with a separate index. Arrays have upper and lower bounds. Enable allocates space for each index number in the array. Arrays should not be declared larger then necessary.

All the elements in an array have the same data type. Enable supports arrays of bytes, Booleans, longs, integers, singles, double, strings, variants and User Defined Types.

Ways to Declare a Fixed-Size Array

· Global array, use the Dim statement outside the procedure section of a code module to declare the array.

· To create a local array, use the Dim statement inside a procedure.

· Cypress Enable supports Dynamic arrays.

Declaring an Array

The array name must be followed by the upper bound in parentheses. The upper bound must be an integer.

Dim ArrayName (10) As Interger

Dim Sum (20) As Double

Creating a Global Array

To create a global array, you simply use Dim outside the procedure:

Dim Counters (12) As Integer

Dim Sums (26) As Double

Sub Main () …

The same declarations within a procedure use Static or Dim:

Static Counters (12) As Integer

Static Sums (22) As Double

The first declaration creates an array with 11 elements, with index numbersxe "Numbers" running from 0 to 10. The second creates an array with 21 elements. To change the default lower bound to 1 place an Option Base statement in the Declarations section of a module:

Option Base 1

Another way to specify the lower bound is to provide it explicitly (as an integer, in the range -32,768 to 32,767) using the To key word:

Dim Counters (1 To 13) As Integer

Dim Sums (100 To 126) As String

In the preceding declarations, the index numbers of Counters run from 1 to 13, and the index numbers of Sums run from 100 to 126.

Note: Many other versions of Basic allow you to use an array without first declaring it. Enable Basic does not allow this; you must declare an array before using it.

Manipulating Arrays

Loops often provide an efficient way to manipulate arrays. For example, the following For loop initializes all elements in the array to 5:

Static Counters (1 To 20) As Integer

Dim I As Integer

For I = 1 To 20

Counter (I) = 5

Next I

…

MultiDimensional Arrays

Cypress Enable supports multidimensional arrays. For example the following example declares a two-dimensional array within a procedure.

Static Mat(20, 20) As Double

Either or both dimensions can be declared with explicit lower bounds.

Static Mat(1 to 10, 1 to 10) As Double

You can efficiently process a multidimensional array with the use of for loops. In the following statements the elemtents in a multidimensional array are set to a value.

Dim L As Integer, J As Integer

 Static TestArray(1 To 10, 1 to 10) As Double

 For L = 1 to 10

For J = 1 to 10

TestArray(L,J) = I * 10 + J

Next J

 Next L

Arrays can be more than two dimensional. Enable does not have an arbitrary upper bound on array dimensions.

Dim ArrTest(5, 3, 2)

This declaration creates an arrray that has three dimensions with sizes 6 by 4, by 3 unless Option Base 1 is set previously in the code. The use of Option Base 1 sets the lower bound of all arrays to 1 instead of 0.

User Defined Typesxe "User Defined Types"
Users can define their own types that are composites of other built-in or user defined types. Variables of these new composite types can be declared and then member variables of the new type can be accessed using dot notation. Only variables of user defined types that contain simple data types can be passed to DLL functions expecting ‘C’ structures.

User Defined types are created using the type statement, which must be placed outside the procedure in your Enable Code. User defined types are global. The variables that are declared as user defined types can be either global or local. User Defined Types in Enable cannot contain arrays at this time

Type type1

 a As Integer
 d As Double
 s As String
End Type
Type type2

 a As Integer
 o As type1

End Type

Dim type2a As type2

Dim type1a As type1

Sub TypeExample ()

 a = 5

 type1a.a = 7472

 type1a.d = 23.1415

 type1a.s = "YES"

 type2a.a = 43

 type2a.o.s = "Hello There"

 MsgBox type1a.a

 MsgBox type1a.d

 MsgBox type1a.s

 MsgBox type2a.a

 MsgBox type2a.o.s

 MsgBox a

End Sub

[image: image20.png]OK!

Hello There

OK!

Dialog Supportxe "Dialog Support"
Cypress Enable has support for custom dialogs. The syntax is similar to the syntax used in Microsoft Word Basic. The dialog syntax is not part of Microsoft Visual Basic or Microsoft Visual Basic For Applications (VBA). Enable has complete support for dialogs. The type of dialogs supported are outlined below.

Dialog Box controls

Enable Basic supports the standard Windows dialog box controls. This section introduces the controls available for custom dialog boxes and provides guidelines for using them.

The Dialog Box syntax begins with the statement “Begin Dialog”. The first two parameters of this statement are optional. If they are left off the dialog will automatically be centered.

Begin Dialog DialogName1 240, 184, "Test Dialog"

Begin Dialog DialogName1 60, 60,240, 184, "Test Dialog"
OK and Cancel Buttonsxe "OK and Cancel Buttons"
[image: image21.png]S OcamdConce]

Sub Main

Begin Dialog ButtonSample 16,32,180,96,"OK and Cancel"

OKButton 132,8,40,14

CancelButton 132,28,40,14

End Dialog

Dim Dlg1 As ButtonSample

Button = Dialog (Dlg1)

End Sub

Every custom dialog box must contain at least one “command” button - a OK button or a Cancel button. Enable includes separate dialog box definition statements for each of these two types of buttons.

List Boxes, Combo Boxes and Drop-down List Boxes

xe "List Boxes, Combo Boxes and Drop-down List Boxes"
[image: image22.png]=] List Box, Combo Box, and Drop-Down List Box

Combo Box: _ Drop-Down List Box
#] [ine 1 fine 1 B =

2
3

Sub Main

Dim MyList$ (5)

MyList (0) = "line Item 1"

MyList (1) = "line Item 2"

MyList (2) = "line Item 3"

MyList (3) = "line Item 4"

MyList (4) = "line Item 5"

MyList (5) = "line Item 6"

Begin Dialog BoxSample 16,35,256,89,"List Box, Combo Box, and Drop-Down List Box"

OKButton 204,24,40,14

CancelButton 204,44,40,14

ListBox 12,24,48,40, MyList$(),.Lstbox

DropListBox 124,24,72,40, MyList$(),.DrpList

ComboBox 68,24,48,40, MyList$(),.CmboBox

Text 12,12,32,8,"List Box:"

Text 124,12,68,8,"Drop-Down List Box:"

Text 68,12,44,8,"Combo Box:"

End Dialog

Dim Dlg1 As BoxSample

Button = Dialog (Dlg1)

End Sub

You can use a list box, drop-down list box, or combo box to present a list of items from which the user can select. A drop-down list box saves space (it can drop down to cover other dialog box controls temporarily). A combo box allows the user either to select an item from the list or type in a new item. The items displayed in a list box, drop-down list box, or combo box are stored in an array that is defined before the instructions that define the dialog box.

xe "Check"Check Boxesxe "Check Boxes"
[image: image23.png]=
[CheckBox

™| CheckBox
™| CheckBox

™| CheckBox

Sub Main

Begin Dialog CheckSample15,32,149,96,"Check Boxes"

OKButton 92,8,40,14

CancelButton 92,32,40,14

CheckBox 12,8,45,8,"CheckBox",.CheckBox1

CheckBox 12,24,45,8,"CheckBox",.CheckBox2

CheckBox 12,40,45,8,"CheckBox",.CheckBox3

CheckBox 12,56,45,8,"CheckBox",.CheckBox4

End Dialog

Dim Dlg1 As CheckSample

Button = Dialog (Dlg1)

End Sub

You use a check box to make a “yes or no” or “on or off” choice. for example, you could use a check box to display or hide a toolbar in your application.

Text Boxes and Textxe "Text Boxes and Text"
[image: image24.png]Text Boxes and Text

Text Box =

Multiine Text Box:

m——

Sub Main

Begin Dialog TextBoxSample 16,30,180,96,"Text Boxes and Text"

OKButton 132,20,40,14

CancelButton 132,44,40,14

Text 8,8,32,8,"Text Box:"

TextBox 8,20,100,12,.TextBox1

Text 8,44,84,8,"Multiline Text Box:"

TextBox 8,56,100,32,.TextBox2

End Dialog

Dim Dlg1 As TextBoxSample

Button = Dialog (Dlg1)

End Sub

A text box control is a box in which the user can enter text while the dialog box is displayed. By default, a text box holds a single line of text. Enable support single and multi-line text boxes. The last parameter of the textbox function contains a variable to set the textbox style.

	'===

' This sample shows how to implement a multiline textbox

'===

Const ES_LEFT = &h0000& 'Try these different styles or-ed together

Const ES_CENTER = &h0001& ' as the last parameter of Textbox the change

Const ES_RIGHT = &h0002& ' the text box style.

Const ES_MULTILINE = &h0004& ' A 1 in the last parameter position defaults to

Const ES_UPPERCASE = &h0008& ' A multiline, Wantreturn, AutoVScroll testbox.

Const ES_LOWERCASE = &h0010&

Const ES_PASSWORD = &h0020&

Const ES_AUTOVSCROLL = &h0040&

Const ES_AUTOHSCROLL = &h0080&

Const ES_NOHIDESEL = &h0100&

Const ES_OEMCONVERT = &h0400&

Const ES_READONLY = &h0800&

Const ES_WANTRETURN = &h1000&

Const ES_NUMBER = &h2000&

Sub Multiline

 Begin Dialog DialogType 60, 60, 140, 185, "Multiline text Dialog", .DlgFunc

 TextBox 10, 10, 120, 150, .joe, ES_MULTILINE Or ES_AUTOVSCROLL Or ES_WANTRETURN ' Indicates multiline TextBox

 'TextBox 10, 10, 120, 150, .joe, 1 ' indicates multi-line textbox

 CancelButton 25, 168, 40, 12

 OKButton 75, 168, 40, 12

 End Dialog

 Dim Dlg1 As DialogType

 Dlg1.joe = "The quick brown fox jumped over the lazy dog"

 ' Dialog returns -1 for OK, 0 for Cancel

 button = Dialog(Dlg1)

 'MsgBox "button: " & button

 If button = 0 Then Exit Sub

 MsgBox "TextBox: "& Dlg1.joe

End Sub

Option Buttons and Group Boxesxe "Option Buttons and Group Boxes"
You can have option buttons to allow the user to choose one option from several. Typically, you would use a group box to surround a group of option buttons, but you can also use a group box to set off a group of checkxe "Check" \r "D2HBCheck35" boxes or any related group of controls.

[image: image25.png]=| Option Button and Check Box

GroupBox R
© OptionButton ™| CheckBox
© OptionButton ™| CheckBox

Begin Dialog GroupSample 31,32,185,96,"Option Button and Check Box"

OKButton 28,68,40,14

CancelButton 120,68,40,14

GroupBox 12,8,72,52,"GroupBox",.GroupBox1

GroupBox 100,12,72,48,"GroupBox",.GroupBox2

OptionGroup .OptionGroup1

OptionButton 16,24,54,8,"OptionButton",.OptionButton1

OptionButton 16,40,54,8,"OptionButton",.OptionButton2

CheckBox 108,24,45,8,"CheckBox",.CheckBox1

CheckBox 108,40,45,8,"CheckBox",.CheckBox2

End Dialog

Dim Dlg1 As GroupSample

Button = Dialog (Dlg1)

End Sub

[image: image26.png]Name:

[CHECKME

Sub Main

 Begin Dialog DialogName1 60, 60, 160, 70

 TEXT 10, 10, 28, 12, "Name:"

 TEXTBOX 42, 10, 108, 12, .nameStr

 TEXTBOX 42, 24, 108, 12, .descStr

 CHECKBOX 42, 38, 48, 12, "&CHECKME", .checkInt

 OKBUTTON 42, 54, 40, 12

 End Dialog

 Dim Dlg1 As DialogName1

 Dialog Dlg1

 MsgBox Dlg1.nameStr

 MsgBox Dlg1.descStr

 MsgBox Dlg1.checkInt

End Sub

The Dialog Functionxe "The Dialog Function"
Cypress Enable supports the dialog function. This function is a user-defined function that can be called while a custom dialog box is displayed. The dialog function makes nested dialog boxes possible and receives messages from the dialog box while it is still active.

When the function dialog() is called in Enable it displays the dialog box, and calls the dialog function for that dialog. Enable calls the dialog function to see if there are any commands to execute. Typical commands that might be used are disabling or hiding a control. By default all dialog box controls are enabled. If you want a control to be hidden you must explicitly make it disabled during initialization. After initialization Enable displays the dialog box. When an action is taken by the user Enable calls the dialog function and passes values to the function that indicate the kind of action to take and the control that was acted upon.

The dialog box and its function are connected in the dialog definition. A “function name” argument is added to the Begin Dialog instruction, and matches the name of the dialog function located in your Enable program.

Begin Dialog UserDialog1 60,60, 260, 188, "3", .Enable

The Dialog Box Controls

A dialog function needs an identifier for each dialog box control that it acts on. The dialog function uses string identifiers. String identifiers are the same as the identifiers used in the dialog record.

CheckBox 8, 56, 203, 16, "Check to display controls",. Chk1

The control’s identifier and label are different. An identifier begins with a period and is the last parameter in a dialog box control instruction. In the sample code above “Check to display controls” is the label and .chk1 is the identifier.

The Dialog Function Syntaxxe "The Dialog Function Syntax"
The syntax for the dialog function is as follows:

Function FunctionName(ControlID$, Action%, SuppValue%)

Statement Block

FunctionName = ReturnValue

End Function

All parameters in the dialog function are required.

A dialog function returns a value when the user chooses a command button. Enable acts on the value returned. The default is to return 0 (zero) and close the dialog box. If a non zero is assigned the dialog box remains open. By keeping the dialog box open, the dialog function allows the user to do more than one command from the same dialog box. Dialog examples ship as part of the sample .bas programs and can be found in your install directory.

ControlID$

ControlID$ Receives the identifier of the dialog box control

Action

Action Identifies the action that calls the dialog function. There are six possibilities, Enable supports the first 4.

Action 1 The value passed before the dialog becomes visible

Action 2 The value passed when an action is taken (i.e. a button is pushed, checkbox is checked etc...) The controlID$ is the same as the identifier for the control that was chosen

Action 3 Corresponds to a change in a text box or combo box. This value is passed when a control loses the focus (for example, when the user presses the TAB key to movexe "Move" to a different control) or after the user clicks an item in the list of a combo box (an Action value of 2 is passed first). Note that if the contentsxe "Contents" of the text box or combo box do not change, an Action value of 3 is not passed. When Action is 3, ControlID$ corresponds to the identifier for the text box or combo box whose contents were changed.

Action 4 Corresponds to a change of focus. When Action is 4, ControlID$ corresponds to the identifier of the control that is gaining the focus. SuppValue corresponds to the numeric identifier for the control that lost the focus. A Dialog function cannot display a message box or dialog box in response to an Action value of 4

Supp Value

SuppValue receives supplemental information about a change in a dialog box control. The information SuppValue receives depends on which control calls the dialog function. The following SuppValue values are passed when Action is 2 or 3.

	Control
	SuppValue passed

	ListBox, DropListBox, or ComboBox
	Number of the item selected where 0 (zero) is the first item in the list box, 1 is the second item, and so on.

	CheckBox
	1 if selected, 0 (zero) if cleared.

	OptionButton
	Number of the option button selected, where 0 (zero) is the first option button within a group, 1 is the second option button, and so on.

	TextBox
	Number of characters in the text box.

	ComboBox
	If Action is 3, number of characters in the combo box.

	CommandButton
	A value identifying the button chosen. This value is not often used, since the same information is available from the ControlID$ value.

Statements and Functions Used in Dialog Functionsxe "Statements and Functions Used in Dialog Functions"
	Statement or Function
	Action or Result

	DlgControlId
	Returns the numeric equivalent of Identifier$, the string identifier for a dialog box control.

	DlgEnable, DlgEnable()
	The DlgEnable statement is used to enable or disable a dialog box control. When a control is disabled, it is visible in the dialog box, but is dimmed and not functional. DlgEnable() is used to determine whether or not the control is enabled.

	DlgFocus, DlgFocus()
	The DlgFocus statement is used to set the focus on a dialog box control. (When a dialog box control has the focus, it is highlighted.) DlgFocus() returns the identifier of the control that has the focus.

	DlgListBoxArray, DlgListBoxArray()
	The DlgListBoxArray statement is used to fill a list box or combo box with the elements of an array. It can be used to change the contentsxe "Contents" \r "D2HBContents41" of a list box or combo box while the dialog box is displayed. DlgListBoxArray() returns an item in an array and the number of items in the array.

	DlgSetPicture
	The DlgSetPicture statement is used in a dialog function to set the graphic displayed by a picture control.

	DlgText, DlgText
	The DlgText statement is used to set the text or text label for a dialog box control. TheDlgText() function returns the label of a control.

	DlgValue, DlgValue()
	The DlgValue statement is used to select or clear a dialog box control. Then DlgValue() function returns the setting of a control.

	DlgVisible, DlgVisible()
	The DlgVisible statement is used to hide or show a dialog box control. The DlgVisible() function is used to determine whether a control is visible or hidden.

DlgControlId Functionxe "DlgControlId Function"
DlgControlId(Identifier)

Used within a dialog function to return the numeric identifier for the dialog box control specified by Identifier, the string identifier of the dialog box control. Numeric identifiers are numbers,xe "Numbers" starting at 0 (zero) , that correspond to the positions of the dialog box control instructions within a dialog box definition. For example, consider the following instruction in a dialog box definition:

CheckBox 90, 50, 30, 12, “&Update”, .MyCheckBox

The instruction DlgControlId(“MyCheckBox”) returns 0 (zero) if the CheckBox instruction is the first instruction in the dialog box definition, 1 if it is the second, and so on.

In most cases, your dialog functions will perform actions based on the string identifier of the control that was selected.

DlgFocus Statement, DlgFocus() Functionxe "DlgFocus Statement, DlgFocus() Function"
DlgFocus Identifier

DlgFocus()

The DlgFocus statement is used within a dialog function to set the focus on the dialog box control identified by Identifier while the dialog box is displayed. When a dialog box control has the focus, it is active and responds to keyboard input. For example, if a text box has the focus, any text you type appears in that text box.

The DlgFocus() function returns the string identifier for the dialog box control that currently has the focus.

Example

This example sets the focus on the control “MyControl1” when the dialog box is initially displayed. (The main subroutine that contains the dialog box definition is not shown.)

Function MyDlgFunction(identifier, action, suppvalue)

Select Case action

 Case 1

‘ The dialog box is displayed

 DlgFocus “MyControl1”

 Case 2

 ‘ Statements that perform actions based on which control is selected

 End Select

End Function

DlgListBoxArray, DlgListBoxArray()xe "DlgListBoxArray, DlgListBoxArray()"
DlgListBoxArray Identifier, ArrayVariable()

DlgListBoxArray(Identifier, ArrayVariable())

The DlgListBoxArray statement is used within a dialog function to fill a ListBox, DropListBox, or ComboBox with the contents of ArrayVariable() while the dialog box is displayed.

The DlgListBoxArray() function fills ArrayVariable() with the contents of the ListBox, DropListBox, or ComboBox specified by Identifier and returns the number of entries in the ListBox, DropListBox, or ComboBox. The ArrayVariable() parameter is optional (and currently not implemented) with the DlgListBoxArray() function; if ArrayVariable() is omitted, DlgListBoxArray() returns the number of entries in the specified control.

DlgSetPicturexe "DlgSetPicture"
DlgSetPicture Identifier, PictureName

The DlgSetPicture function is used to set the graphic displayed by a picture control in a dialog.

The Identifier is a string or numeric representing the dialog box. The PictureName is a string that identifies the picture to be displayed.

DlgValue, DlgValue()xe "DlgValue, DlgValue()"

DlgValue Identifier, Value

DlgValue(Identifier)

The DlgValue statement is used in a dialog function to select or clear a dialog box control by setting the numeric value associated with the control specified by Identifier. For example, DlgValue “MyCheckBox”, 1 selects a checkxe "Check" box, DlgValue “MyCHeckBox”, 0 clears a check box, and DlgValue “MyCheckBox”, -1 fills the check box with gray. An error occurs if Identifier specifies a dialog box control such as a text box or an option button that cannot be set with a numeric value.

The following dialog function uses a Select Case control structure to check the value of Action. The SuppValue is ignored in this function.

'This sample file outlines dialog capabilities, including nesting dialog boxes.

Sub Main

 Begin Dialog UserDialog1 60,60, 260, 188, "3", .Enable

Text 8,10,73,13, "Text Label:"

TextBox 8, 26, 160, 18, .FText

CheckBox 8, 56, 203, 16, "Check to display controls",. Chk1

GroupBox 8, 79, 230, 70, "This is a group box:", .Group

CheckBox 18,100,189,16, "Check to change button text", .Chk2

PushButton 18, 118, 159, 16, "File History", .History

OKButton 177, 8, 58, 21

CancelButton 177, 32, 58, 21

 End Dialog

 Dim Dlg1 As UserDialog1

 x = Dialog(Dlg1)

End Sub

Function Enable(ControlID$, Action%, SuppValue%)

Begin Dialog UserDialog2 160,160, 260, 188, "3", .Enable

Text 8,10,73,13, "New dialog Label:"

TextBox 8, 26, 160, 18, .FText

CheckBox 8, 56, 203, 16, "New CheckBox",. ch1

CheckBox 18,100,189,16, "Additional CheckBox", .ch2

PushButton 18, 118, 159, 16, "Push Button", .but1

OKButton 177, 8, 58, 21

CancelButton 177, 32, 58, 21

 End Dialog

 Dim Dlg2 As UserDialog2

 Dlg2.FText = "Your default string goes here"

Select Case Action%

Case 1

DlgEnable "Group", 0

DlgVisible "Chk2", 0

DlgVisible "History", 0

Case 2

If ControlID$ = "Chk1" Then

 DlgEnable "Group"

 DlgVisible "Chk2"

 DlgVisible "History"

End If

If ControlID$ = "Chk2" Then

 DlgText "History", "Push to display nested dialog"

End If

If ControlID$ = "History" Then

 Enable =1

 x = Dialog(Dlg2)

End If

Case Else

End Select

Enable =1

End Function

OLE Automation

What is OLE Automation?

OLE Automation is a standard, promoted by Microsoft, that applications use to expose their OLE objects to development tools, Enable Basic, and containers that support OLE Automation. A spreadsheet application may expose a worksheet, chart, cell, or range of cells all as different types of objects. A word processor might expose objects such as application, paragraph, sentence, bookmark, or selection.

When an application supports OLE Automation, the objects it exposes can be accessed by Enable Basic. You can use Enable Basic to manipulate these objects by invoking methods on the object, or by getting and setting the object’s properties, just as you would with the objects in Enable Basic. For example, if you created an OLE Automation object named MyObj, you might write code such as this to manipulate the object:

Sub Main

Dim MyObj As Object

Set MyObj = CreateObject ("Word.Basic")

MyObj.FileNewDefault

MyObj.Insert "Hello, world."

MyObj.Bold 1

End Sub

[image: image27.png]Documentl 4 ~1-

Hatlo, wold.

The following syntax is supported for the GetObject function:

Set MyObj = GetObject ("", class)

Where class is the parameter representing the class of the object to retrieve. The first parameter at this time must be an empty string.

The properties and methods an object supports are defined by the application that created the object. See the application's documentation for details on the properties and methods it supports.

Accessing an Objectxe "Accessing an object"

xe "Accessing an object:CreateObject Function"

xe "Accessing an object:GetObject Function"
The following functions and properties allow you to access an OLE Automation object:

	Name.
	Description

	CreateObject Function
	Creates a new object of a specified type

	GetObject Function
	Retrieves an object pointer to a running application

What is an OLE Object?xe "What is an OLE Object?"

xe "Methods"

xe "Properties"

xe "Activate"

xe "Application"
An OLE Automation Object is an instance of a class within your application that you wish to manipulate programmatically, such as with Cypress Enable. These may be new classes whose sole purpose is to collect and expose data and functions in a way that makes sense to your customers.

The object becomes programmable when you expose those member functions. OLE Automation defines two types of members that you may expose for an object:

Methods are member functions that perform an action on an object. For example, a Document object might provide a Save method.

Properties are member function pairs that set or return information about the state of an object. For example, a Drawing object might have a style property.

For example, Microsoft suggests the following objects could be exposed by implementing the listed methods and properties for each object:

	

	OLE Automation object
	Methods
	Properties

	
	Application
	Help
	ActiveDocument

	
	
	Quit
	Application

	
	
	Add Data
	Caption

	
	
	Repeat
	DefaultFilePath

	
	
	Undo
	Documents

	
	
	
	Height

	
	
	
	Name

	
	
	
	Parent

	
	
	
	Path

	
	
	
	Printers

	
	
	
	StatusBar

	
	
	
	Top

	
	
	
	Value

	
	
	
	Visible

	
	
	
	Width

	
	
	
	

	Document
	Activate
	Application
	

	
	Close
	Author
	

	
	NewWindow
	Commentsxe "Comments "
	

	
	Print
	FullName
	

	
	PrintPreview
	Keywords
	

	
	RevertToSaved
	Name
	

	
	Save
	Parent
	

	
	SaveAs
	Path
	

	
	
	ReadOnly
	

	
	
	Saved
	

	
	
	Subject
	

	
	
	Title
	

	
	
	Value
	

	
	
	
	

To provide access to more than one instance of an object, expose a collection object. A collection object manages other objects. All collection objects support iteration over the objects they manage. For example, Microsoft suggests an application with a multiple document interface (MDI) might expose a Documents collection object with the following methods and properties:

	Collection object
	Methods
	Properties
	

	Documents
	Add
	Application
	

	
	Close
	Count
	

	
	Item
	Parent
	

	
	Open
	
	

	
	
	
	

OLE Fundamentalsxe "OLE Fundamentals"

xe "OLE Object"

xe "OLE Automation"

xe "Class"
Object linking and embedding (OLE) is a technology that allows a programmer of Windows-based applications to create an application that can display data from many different applications, and allows the user to edit that data from within the application in which it was created. In some cases, the user can even edit the data from within their application.

The following terms and concepts are fundamental to understanding OLE.

OLE Object

An OLE object refers to a discrete unit of data supplied by an OLE application. An application can expose many types of objects. For example a spreadsheet application can expose a worksheet, macro sheet, chart, cell, or range of cells all as different types of objects. You use the OLE control to create linked and embedded objects. When a linked or embedded object is created, it contains the name of the application that supplied the object, its data (or, in the case of a linked object, a reference to the data), and an image of the data.

OLE Automation

Some applications provide objects that support OLE Automation. You can use Enable Basic to programmatically manipulate the data in these objects. Some objects that support OLE Automation also support linking and embedding. You can create an OLE Automation object by using the CreateObject function.

Class

An objects class determines the application that provides the objects data and the type of data the object contains. The class names of some commonly used Microsoft applications include MSGraph, MSDraw, WordDocument, and ExcelWorksheet.

OLE Automationxe "OLE Automation"

xe "OLE Automation:What is OLE Automation?" and Microsoft Word Example:

Sub OLEexample()

 Dim word As Object
 Dim myData As String

 myData = 4 * Atn(1)
' Demonstrates Automatic type conversion

 Set word = CreateObject("Word.Basic")

 Word.AppShow

 word.FileNewDefault

 word.Insert "The following was computed in Cypress Enable: "

 word.Bold 1

' Show value in boldface

 word.Insert myData

 word.Bold 0

 MsgBox "Done"

End Sub

[image: image28.png]e

[T S

Making Applications Work Togetherxe "Making Applications Work Together"
Operations like linking and object embedding need applications to work together in a coordinated fashion. However, there is no way that Windows can be set up, in advance, to accommodate all the applications and dynamic link libraries that can be installed. Even within an application, the user has the ability to select various components to install.

As part of the installationxe "Installation" process, Windows requires that applications supporting DDE/OLE features register their support by storing information in several different locations. The most important of these to cypress enable is the registration database.

WIN.INI

The win.ini file contains a special section called [embedding] that contains information about each of three applications that operate as object servers.

The Registration Database.

Starting with Windows 3.1, Each Windows system maintains a registration database file that records details about the DDE and OLE functions supported by the installed applications. The database is stored in file called REG.DAT in the \ WINDOWS directory.

The Registration database

The registration database is a file called REG.DAT. The file is a database that contains information that controls a variety of activities relating to data integration using DDE and OLE. The information contained in the REG.DAT database can be divided into four basic categories.

Associations.

The table contains information that associates files with specific extensions to particular applications. This is essentially the same function performed by the [extensions] section of the WIN.INI.

Shellxe "Shell" Operations.

Windows contains two programs that are refered to as Shell programs. The term Shell refers to a program that organizes basic operating system tasks, like running applications, opening files, and sending files to the printer. Shell programs use list, windows, menus, and dialog boxes to perform these operations. In contrast, command systems like DOS require the entry of explicit command lines to accomplish these tasks

OLE Object Servers.

The registration database maintains a highly structured database of the details needed by programs that operate as object servers. This is by far the most complex task performed by the database. There is no WIN.INI equivalent for this function.

DDE/OLE Automation.xe "OLE Automation"

xe "OLE Automation:What is OLE Automation?"

The registration database contains the details and the applications that support various types of DDE/OLE Automation operations.

It is useful to appreciate the difference in structure between the WIN.INI file and the REG.DAT database. WIN.INI is simply a text document. There are no special structures other than headings (simply titles enclosed in brackets) that organize the information. If you want to locate an item in the WIN.INI file, you must search through the file for the specific item you want to locate. The registration database is a tree-like, structured database used for storing information relating to program and file operations, in particular, those that involve the use of DDE or OLE. The tree structure makes it easier to keep the complex set of instructions, needed to implement DDE and OLE operations, organized and accessible by the applications that need to use them. This is not possible when you are working with a text document like WIN.INI. The WIN.INI file records all sorts or information about the Windows system in a simple sequential listing.

Chapter 4: Seq D2HDocument \h \r5 Scripting Language Overview

Introduction

This chapter contains quick reference charts and tables on the following:

· Type/Functions/Statements

·
Data Types

· Operators

·
Operator Precedence

· Functions, Statements, Reserved Words – Quick Reference

Quick Reference of Functions and Statements Available

Type/Functions/Statements

xe "Type/Functions/Statements"
	Flow of Control

	Goto, End, OnError, Stop, Do...Loop, Exit Loop, For...Next, Exit For, If..Then..Else...End If, Return, Stop, While...Wend, Select Case

	Converting

	Chr, Hex, Oct, Str, CDbl, CInt, Clng, CSng, CStr, CVar, CVDate, Asc, Val, Date, DateSerial, DateValue, Format, Fix, Int, Day, Weekday, Month, Year, Hour, Minute, Second, TimeSerial, TimeValue

	Dialog

	Text, TextBox, ListBox, DropList, ComboBox, CheckBox, OKButton, BeginDialog, EndDialog, OptionGroup, OKButton, CancelButton, PushButton, Picture, GroupBox, Multi-line TextBox,

	File I/O

	FileCopy,xe "FileCopy" ChDir,xe "ChDir" ChDrive,xe "ChDrive" CurDir, CurDir, MkDir,RmDir, Open, Close, Print #, Kill, FreeFile, LOF, FileLen, Seek, EOF, Write #, Input, Line Input, Dir, Name, GetAttr, SetAttr, Dir, Get, Put

	Math

	Exp,xe "Exp" Log, Sqr, Rnd, Abs, Sgn, Atn, Cos, Sin, Tan, Int, Fix

	Procedures

	Call, Declare, Function, End Function, Sub, End Sub, Exit, Global

	Strings

	Let, Len, InStr, Left, Mid, Asc, Chr, Right, LCase, Ucase, InStr, LTrim, RTrim, Trim, Option Compare, Len, Space, String, StrComp Format,

	Variables and Constants

	Dim, IsNull, IsNumeric,VarType, Const, IsDate, IsEmpty, IsNull, Option Explicit, Global, Static,

	Error Trapping

	On Error, Resume

	Date/Time

	Date, Now, Time, Timer

	DDE

	DDEInitiate, DDEExecute, DDETerminate

	Arrays

	Option Base, Option Explicit, Static, Dim, Global, Lbound, Ubound, Erase, ReDim

	Miscellaneous

	SendKeys, AppActivate, Shell, Beep, Rem, CreateObject, GetObject

Randomize

Data Types

xe "Data Types"
	Variable
	Type Specifier
	Usage

	String
	$
	Dim Str_Var As String

	Integer
	%
	Dim Int_Var As Integer

	Long
	&
	Dim Long_Var As Long

	Single
	!
	Dim Sing_Var As Single

	Double
	#
	Dim Dbl_Var As Double

	Variant
	
	Dim X As Any

	Boolean
	
	Dim X As Boolean

	Byte
	
	Dim X As Byte

	Object
	
	Dim X As Object

	Currency
	
	(Not currently supported)

Operatorsxe "Operators"
Arithmetic Operators

	Operator
	Function
	Usage

	^
	Exponentiation
	x = y^2

	-
	Negation
	x = -2

	*
	Multiplication
	x% = 2 * 3

	/
	division
	x = 10/2

	Mod
	Modulo
	x = y Mod z

	+
	Addition
	x = 2 + 3

	-
	Subtraction
	x = 6 - 4

*Arithmetic operators follow mathematical rules of precedence

* '+' or '&' can be used for string concatenation.

Relational Operators

	Operator
	Function
	Usage

	<
	Less than
	x < Y

	<=
	Less than or equal to
	x <= Y

	=
	Equals
	x = Y

	>=
	Greater than or equal to
	x >= Y

	>
	Greater than
	x > Y

	<>
	Not equal to
	x <> Y

Logical Operators

	Operator
	Function
	Usage

	Not
	Logical Negation
	If Not (x)

	And
	Logical And
	If (x> y) And (x < Z)

	Or
	Logical Or
	if (x = y) Or (x = z)

Operator Precedence
	Operator
	Description
	Order

	()
	Parenthesis
	Highest

	^
	Exponentiation
	

	-
	Unary minus
	

	/,*
	Division / Multplication
	

	mod
	Modulo
	

	+, -, &
	Addition, subtraction, concatenation
	

	=, <>, <, >,<=,>=
	Relational
	

	not
	Logical negation
	

	and
	Logical conjunction
	

	or
	Logical disjunction
	

	Xor
	Logical exclusion
	

	Eqv
	Logical Equivalence
	

	Imp
	Logical Implication
	Lowest

Functions, Statements, Reserved words - Quick Reference
Abs, Access, Alias, And Any

App, AppActivate, Asc, Atn, As

Base, Beep, Begin, Binary, ByVal

Call, Case, ChDir,xe "ChDir" ChDrive, Choose, Chr, Const, Cos, CurDir, CDbl, CInt, CLng, CSng, CStr, CVar, CVDate,Close, CreateObject

Date, Day, Declare, Dim, Dir, Do...Loop,Dialog, DDEInitiate

DDEExecute, DateSerial, DateValue, Double

Else, ElseIf, End, EndIf, EOF, Eqv, Erase, Err, Error

Exit, Exp, Explicit

False, FileCopy, FileLen, Fix, For,

For...Next, Format, Function

Get, GetAttr, GoTo, Global, Get Object

Hex, Hour

If...Then...Else...[End If], Imp, Input, InputBox, InStr, Int, Integer, Is, IsEmpty, IsNull, IsNumeric, IsDate

Kill

LBound, LCase, Left, Len, Let, LOF,Log, Long, Loop, LTrim Line Input

Mid,Minute, MkDir, Mod, Month, MsgBox

Name, Next, Not, Now

Oct,On, Open, OKButton,Object, Option, Optional, Or, On Error

Print, Print #, Private, Put

Randomize, Rem, ReDim, RmDir, Rnd, Return, Rtrim

Seek, SendKeys, Set, SetAttr, Second, Select, Shell, Sin, Sqr, Stop,Str, Sng, Single, Space, Static, Step, Stop, Str, String, Sub, StringComp

Tan,Text, TextBox, Time, Timer, TimeSerial, TimeVale, Then, Type, Trim, True, To, Type

UBound, UCase, Ucase, Until

Val, Variant, VarType

Write #, While, Weekday, Wend, With

Xor

Year

Chapter 5: Seq D2HDocument \h \r6 Language Reference A – Z

Introduction

This chapter contains a language reference in alphabetic order of all the BASIC code you can use in your scripts.

Abs Functionxe "Abs Function"

xe "Abs Function"
Abs (number)

Returns the absolute value of a number.

The data type of the return value is the same as that of the number argument. However, if the number argument is a Variant of VarType (String) and can be converted to a number, the return value will be a Variant of VarType (Double). If the numeric expression results in a Null, _Abs returns a Null.

Example:

Sub Main

Dim Msg, X, Y

X = InputBox("Enter a Number:")

Y = Abs(X)

Msg = "The number you entered is " & X

Msg = Msg + ". The Absolute value of " & X & " is " & Y

MsgBox Msg 'Display Message.

End Sub

[image: image29.png]InputBox Dialog

Enter a Number

AppActivate Statementxe "AppActivate Statement"
AppActivate “app”
Activates an application.

The parameter app is a string expression and is the name that appears in the title bar of the application window to activate.

Related Topics: Shell \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!1", "Shell" \D2HTargetDefault
, SendKeys \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!2", "SendKeys" \D2HTargetDefault

Example:

Sub Main ()

AppActivate "Microsoft Word"

SendKeys “%F,%N,Cypress Enable”,True

Msg = “Click OK to close Word”

MsgBox Msg

AppActivate “Microsoft Word”

SendKeys “%F,%C,N”, True

End Sub

[image: image30.png]OK to close Word

OK!

Asc Functionxe "Asc Function"
Asc (str)

Returns a numeric value that is the ASCII code for the first character in a string.

Example:

Sub Main ()

 Dim I, Msg ' Declare variables.

 For I = Asc("A") To Asc("Z") ' From A through Z.

 Msg = Msg & Chr(I) ' Create a string.

 Next I

 MsgBox Msg ' Display results.

End Sub

Atn Functionxe "Atn Function"
Atn (rad)

Returns the arc tangent of a number

The argument rad can be any numeric expression. The result is expressed in radians

Related Topics: Cos \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!3", "Cos" \D2HTargetDefault
, Tan \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!5", "Tan" \D2HTargetDefault
, Sin \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!6", "Sin" \D2HTargetDefault

Example:

Sub AtnExample ()

 Dim Msg, Pi ' Declare variables.

 Pi = 4 * Atn(1) ' Calculate Pi.

 Msg = "Pi is equal to " & Str(Pi)

 MsgBox Msg ' Display results.

End Sub

[image: image31.png]equalto 314159

OK!

Beep Statementxe "Beep Statement"
Beep

Sounds a tone through the computer's speaker. The frequency and duration of the beep depends on hardware, which may vary among computers.

Example:

Sub BeepExample ()

 Dim Answer, Msg ' Declare variables.

 Do

Answer = InputBox("Enter a value from 1 to 3.")

If Answer >= 1 And Answer <= 3 Then
' Checkxe "Check" \r "D2HBCheck59" range.

 Exit Do ' Exit Do...Loop.

Else

 Beep ' Beep if not in range.

End If

 Loop

 MsgBox "You entered a value in the proper range."

End Sub

[image: image32.png]InputBox Dialog

Enter a value from 1 to 3.

Call Statementxe "Call Statement"
Call funcname [(parameter(s)]

or

[parameter(s)]

Activates an Enable Subroutine called name or a DLL function with the name name. The first parameter is the name of the function or subroutine to call, and the second is the list of arguments to pass to the called function or subroutine.

You are never required to use the Call statement when calling an Enable subroutine or a DLL function. Parentheses must be used in the argument list if the Call statement is being used.

Example:

Sub Main ()

Call Beep

MsgBox "Returns a Beep"

End Sub

[image: image33.png]Returns a Beep

OK!

CBool Functionxe "CBool Function"
CBool (expression)

Converts expressions from one data type to a boolean. The parameter expression must be a valid string or numeric expression.

Example:

Sub Main

 Dim A, B, Check

 A = 5: B = 5

 Check = CBool(A = B)

 Print Check

 A = 0

 Check = CBool(A)

 Print Check

End Sub

CDate Functionxe "CDate Function"
CVDate (expression)

Converts any valid expression to a Date variable with a vartype of 7.

The parameter expression must be a valid string or numeric date expression and can represent a date from January 1, 30 through December 31, 9999.

Example:

Sub Main

Dim MyDate, MDate, MTime, MSTime

MybDate = "May 29, 1959"
' Define date.

MDate = CDate(MybDate)
' Convert to Date data type.

MTime = "10:32:27 PM"
' Define time.

MSTime = CDate(MTime)
' Convert to Date data type.

Print MDate

Print MSTime

End Sub

CDbl Functionxe "CDbl Function"
CDbl (expression)

Converts expressions from one data type to a double. The parameter expression must be a valid string or numeric expression.

Example:

Sub Main ()

 Dim y As Integer

 y = 25555
'the integer expression only allows for 5 digits

 If VarType(y) = 2 Then

Print y

 x = CDbl(y) 'Converts the integer value of y to a double value in x

 x = x * 100000 'y is now 10 digits in the form of x
'

 Print x

 End If

End Sub

ChDirxe "ChDir" Statement

ChDir pathname
Changes the default directory

Pathname: [drive:] [\] dir[\dir]...

The parameter pathname is a string limited to fewer then 128 characters. The drive parameter is optional. The dir parameter is a directory name. ChDir changes the default directory on the current drive, if the drive is omitted.

Related Topics: CurDir \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!7", "CurDir" \D2HTargetDefault
, CurDir$, ChDrive \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!8", "ChDrive" \D2HTargetDefault
, Dir
 \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!9", "Dir" \D2HTargetDefault , Dir$, MkDir \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!10", "MkDir" \D2HTargetDefault
, RmDir \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!11", "RmDir" \D2HTargetDefault

Example:

Sub Main ()

Dim Answer, Msg, NL
' Declare variables.

NL = Chr(10)
' Define newline.

CurPath = CurDir()
' Get current path.

ChDir "\"

Msg = "The current directory has been changed to "

Msg = Msg & CurDir() & NL & NL & "Press OK to change back "

Msg = Msg & "to your previous default directory."

Answer = MsgBox(Msg)
' Get user response.

ChDir CurPath
' Change back to user default.

Msg = "Directory changed back to " & CurPath & "."

MsgBox Msg
' Display results.

End Sub

ChDrive Statementxe "ChDrive Statement"
ChDrive drivename
Changes the default drive

The parameter drivename is a string and must correspond to a an existing drive. If drivename contains more than one letter, only the first character is used.

Example:

Sub Main ()

Dim Msg, NL
' Declare variables.

NL = Chr(10)
' Define newline.

CurPath = CurDir()
' Get current path.

ChDir "\"

ChDrive "C:"

Msg = "The current directory has been changed to "

Msg = Msg & CurDir() & NL & NL & "Press OK to change back "

Msg = Msg & "to your previous default directory."

MsgBox Msg
' Get user response.

ChDir CurPath
' Change back to user default.

Msg = "Directory changed back to " & CurPath & "."

MsgBox Msg
' Display results.

End Sub

Related Topics: ChDir \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!12", "ChDir" \D2HTargetDefault
, CurDir \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!7", "CurDir" \D2HTargetDefault
, CurDir$, MkDir \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!10", "MkDir" \D2HTargetDefault
, RmDir \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!11", "RmDir" \D2HTargetDefault

CheckBoxxe "CheckBox"
CheckBox starting x position, starting y position, width, height
For selecting one or more in a series of choices

Example:

Sub Main ()

 Begin Dialog DialogName1 60, 70, 160, 50, "ASC - Hello"

 CHECKBOX 42, 10, 48, 12, "&CHECKME", .checkInt

 OKBUTTON 42, 24, 40, 12

 End Dialog

 Dim Dlg1 As DialogName1

 Dialog Dlg1

 If Dlg1.checkInt = 0 Then

 Q = "didn't checkxe "Check" the box."

 Else

 Q = "checked the box."

 End If

 MsgBox "You " & Q

End Sub

Choose Functionxe "Choose Function"
Choose(number, choice1, [choice2,] [choice3,]…)

Returns a value from a list of arguments

Choose will return a null value if number is less than one or greater than the number of choices in the list. If number is not an integer it will be rounded to the nearest integer.

Example:

Sub Main

 number = 2

 GetChoice = Choose(number, "Choice1", "Choice2", "Choice3")

 Print GetChoice

End Sub

Chr Functionxe "Chr, Function"
Chr(int)

Returns a one-character string whose ASCII number is the argument

Chr returns a String

Example:

Sub ChrExample ()

Dim X, Y, Msg, NL

NL = Chr(10)

For X = 1 to 2

For Y = Asc("A") To Asc("Z")

Msg = Msg & Chr(Y)

Next Y

Msg = Msg & NL

Next X

MsgBox Msg

End Sub

[image: image34.png]ABCDEFGHIJKLMNOPQRSTUVWXYZ
ABCDEFGHIJKLMNOPQRSTUVWXYZ

CInt Functionxe "Cint Function"
CInt (expression)

Converts any valid expression to an integer.

Example:

Sub Main ()

 Dim y As Long

 y = 25

 If VarType(y) = 2 Then

Print y

x = CInt(y) 'Converts the long value of y to an integer value in x

 Print x

 End If

End Sub

CLng Functionxe "CLng Function"
CLng (expression)

Converts any valid expression into a long.

Example:

Sub Main ()

 Dim y As Integer

 y = 25000
'the integer expression can only hold five digits

 If VarType(y) = 2 Then

Print y

 x = CLng(y) 'Converts the integer value of x to a long value in x

 x = x * 10000 'y is now ten digits in the form of x

 Print x

 End If

End Sub

Close Statementxe "Close Statement"
Close [[#filenumber] [, [#]filenumber],,,
The Close Statement takes one argument filenumber. Filenumber is the number used with the Open Statement to open the file. If the Close Statement is used without any arguments it closes all open files.

Example:

Sub Main

Open "c:\test.txt" For Input As #1

Do While Not EOF(1)

MyStr = Input(10, #1)

MsgBox MyStr

Loop

Close #1

End Sub

Sub Make3Files ()

Dim I, FNum, FName
' Declare variables.

For I = 1 To 3

FNum = FreeFile
' Determine next file number.

FName = "TEST" & FNum

Open FName For Output As FNum
' Open file.

Print #I, "This is test #" & I
' Write string to file.

Print #I, "Here is another "; "line"; I

Next I

Close
' Close all files.

End Sub

[image: image35.png]File Name: Directories:
fest testZ 3 | c\onable

ekbtion
ekiatton bas

Eeecre 1 dialog Find Fie
|phone.bas £ dialogde

Phone T bas =1

i bes =t

e o2, .

icsigets-bas —

List Files of Type:

[an Fites) #| ™ ReadOnly

Const Statementxe "Const Statement"

Const name = expression

Assigns a symbolic name to a constant value.
A constant must be defined before it is used.

The definition of a Const in Cypress Enable outside the procedure or at the module levelxe "Level" is a global. The syntax Global Const and Const are used below outside the module level are identical.

A type declaration character may be used however if none is used Enable will automatically assign one of the following data types to the constant, long (if it is a long or integer), Double (if a decimal place is present), or a String (if it is a string).

Example:

Global Const Height = 14.4357 '

Const PI = 3.14159 'Global to all procedures in a module

Sub Main ()

Begin Dialog DialogName1 60, 60, 160,70, "ASC - Hello"

TEXT 10, 10, 100, 20, "Please fill in the radius of circle x"

TEXT 10, 40, 28, 12, "Radius"

TEXTBOX 42, 40, 28, 12, .Radius

OKBUTTON 42, 54,40, 12

End Dialog

Dim Dlg1 As DialogName1

Dialog Dlg1

CylArea = Height * (Dlg1.Radius * Dlg1.Radius) * PI

MsgBox "The volume of Cylinder x is " & CylArea

End Sub

Cosxe "Cos" Function

Cos (rad)

Returns the cosine of an angle

The argument rad must be expressed in radians and must be a valid numeric expression.Cos will by default return a double unless a single or integer is specified as the return value.
Example:

Sub Main()

 Dim J As Double

 Dim I As Single ' Declare variables.

 Dim K As Integer

 For I =1 To 10 '

 Msg = Msg & Cos(I) & ", " 'Cos function call

 J=Cos(I)

 Print J

 K=Cos(I)

 Print K

 Next I

 MsgBox Msg ' Display results.

 MsgBox Msg1

End Sub

CreateObjectxe "CreateObject" Function

CreateObject (class)

Creates an OLE automation object.

Sub Command1_Click ()

 Dim word6 As object

 Set word6 = CreateObject("Word.Basic")

 word6.FileNewDefault

 word6.InsertPara

 word6.Insert "Attn:"

 word6.InsertPara

 word6.InsertPara

 word6.InsertPara

 word6.Insert " Vender Name: "

 word6.Bold 1

 name = "Some Body"

 word6.Insert name

 word6.Bold 0

 word6.InsertPara

 word6.Insert " Vender Address:"

 word6.InsertPara

 word6.Insert " Vender Product:"

 word6.InsertPara

 word6.InsertPara

 word6.Insert "Dear Vender:"

 word6.InsertPara

 word6.InsertPara

 word6.Insert "The letter you are reading was created with Cypress Enable."

 word6.Insert " Using OLE Automation Cypress Enable can call any other OLE _ enabled "

 word6.Insert "application. Enable is a Basic Scripting Language for _ applications"

 word6.InsertPara

 word6.InsertPara

 word6.Insert " Product Name: Cypress Enable"

 word6.InsertPara

 word6.Insert " Company Name: Cypress Software Inc."

 word6.InsertPara

 word6.InsertPara

 MsgBox "You have just called Word 6.0 using OLE"

End Sub

Vender Name: Client Name
Vender Address:

Vender Product:

Dear Vender:

The letter you are reading was created with Cypress Enable.Using OLE Automation Cypress Enable can call any other OLE enabled application. Enable is a Basic Scripting Language for applications

 Product Name: Cypress Enable

 Company Name: Cypress Software Inc.

[image: image36.wmf]
CSng Functionxe "CSng Function"
CSng (expression)

Converts any valid expression to a Single.

Example:

Sub Main ()

 Dim y As Integer

 y = 25

 If VarType(y) = 2 Then

Print y

x = CSng(y) 'Converts the integer value of y to a single value in x

 Print x

 End If

CStr Functionxe "CStr Function"
CStr(expression)

Converts any valid expression to a String.

Example:

Sub Main

 Dim Y As Integer

 Y = 25

 Print Y

 If VarType(Y) = 2 Then

 X = CStr(Y) 'converts Y To a Str

 X = X + "hello" 'It is now possible to combine Y with strings

 Print X

 End If

End Sub

CurDir Functionxe "CurDir Function"
CurDir (drive)

Returns the current path for the specified drive

CurDir returns a Variant; CurDir$ returns a String.

Example:

'Declare Function CurDir Lib "NewFuns.dll" () As String

Sub Form_Click ()

Dim Msg, NL
' Declare variables.

NL = Chr(10)
' Define newline.

Msg = "The current directory is: "

Msg = Msg & NL & CurDir()

MsgBox Msg
' Display message.

End Sub

[image: image37.png]The current directory is:
CAENABLE

OK!

CVar Functionxe "CVar Function"
CVar (expression)

Converts any valid expression to a Variant.

Example:

Sub Main

Dim MyInt As Integer

MyInt = 4534

Print MyInt

MyVar = CVar(MyInt & "0.23") 'makes MyInt a Variant + 0.32

Print MyVar

End Sub

Date Functionxe "Date Function"
Date, Date()

Returns the current system date

Date returns a Variant of VarType 8 (String) containing a date.

Example:

' Format Function Example

' This example shows various uses of the Format function to format values

' using both named and user-defined formats. For the date separator (/),

' time separator (:), and AM/ PM literal, the actual formatted output

' displayed by your system depends on the locale settings on which the code

' is running. When times and dates are displayed in the development

' environment, the short time and short date formats of the code locale

' are used. When displayed by running code, the short time and short date

' formats of the system locale are used, which may differ from the code

' locale. For this example, English/United States is assumed.

' MyTime and MyDate are displayed in the development environment using

' current system short time and short date settings.

Sub Main

x = Date()
Print Date

Print x

Print “VarType: “ & VarType(Date)

MyTime = "08:04:23 PM"

MyDate = "03/03/95"

MyDate = "January 27, 1993"

SysDate = Date

MsgBox Sysdate,0,"System Date"

MsgBox Now,0,"Now"

MsgBox MyTime,0,"MyTime"

MsgBox Second(MyTime) & " Seconds"

MsgBox Minute(MyTime) & " Minutes"

MsgBox Hour(MyTime) & " Hours"

MsgBox Day(MyDate) & " Days"

MsgBox Month(MyDate) & " Months"

MsgBox Year(MyDate) & " Years"

' Returns current system time in the system-defined long time format.

MsgBox Format(Time, "Short Time") & " Short Time"

MsgBox Format(Time, "Long Time") & "Long Time"

' Returns current system date in the system-defined long date format.

MsgBox Format(Date, "Short Date") & " Short Date"

MsgBox Format(Date, "Long Date") & " Long Date"

MyDate = "30 December 91" ' use of European date

print Mydate

MsgBox MyDate,0,"MyDate International..."

MsgBox Day(MyDate),0,"day"

MsgBox Month(MyDate),0,"month"

MsgBox Year(MyDate),0,"year"

MyDate = "30-Dec-91" ' another of European date usage

print Mydate

MsgBox MyDate,0,"MyDate International..."

MsgBox Day(MyDate),0,"day"

MsgBox Month(MyDate),0," month"

MsgBox Year(MyDate),0,"year"

MsgBox Format("This is it", ">") ' Returns "THIS IS IT".

End Sub

DateSerial Functionxe "DateSerial"
DateSerial (year, month,day)

Returns a variant (Date) corresponding to the year, month and day that were passed in. All three parameters for the DateSerial Function are required and must be valid.

Related Topics: DateValue \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!13", "DateValue" \D2HTargetDefault
, TimeSerial \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!14", "TimeSerial" \D2HTargetDefault
, TimeValue \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!15", "TimeValue" \D2HTargetDefault

Example:

Sub Main

Dim MDate

MDate = DateSerial(1959, 5, 29)

Print MDate

End Sub

DateValue Functionxe "DateValue"
DateValue(dateexpression)

Returns a variant (Date) corresponding to the string date expression that was passed in. dateexpression can be a string or any expression that can represent a date, time or both a date and a time.

Related Topics: DateSerial \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!16", "DateSerial" \D2HTargetDefault
, TimeSerial \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!14", "TimeSerial" \D2HTargetDefault
, TimeValue \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!15", "TimeValue" \D2HTargetDefault

Example:

Sub Main()

Dim v As Variant

Dim d As Double

 d = Now

 Print d

 v = DateValue("1959/05/29")

 MsgBox (VarType(v))

 MsgBox (v)

End Sub

Day Functionxe "Day Function"
Day(dateexpression)

Returns a variant date corresponding to the string date expression that was passed in. dateexpression can be a string or any expression that can represent a date.

Related Topics: Month \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!17", "Month" \D2HTargetDefault
, Weekday \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!18", "Weekday" \D2HTargetDefault
, Hour \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!19", "Hour" \D2HTargetDefault
, Second \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!20", "Second" \D2HTargetDefault

Example:

Sub Main

Dim MDate, MDay

MDate = #May 29, 1959#

MDay = Day(MDate)

Print "The Day listed is the " & MDay

End Sub

Declare Statementxe "Declare Statement"
Declare Sub procedurename Lib Libname$ [Alias aliasname$][(argument list)]

Declare Function procedurename Lib Libname$ [Alias aliasname$] [(argument list)][As Type]

The Declare statement makes a reference to an external procedure in a Dynamic Link Library (DLL).

The procedurename parameter is the name of the function or subroutine being called.

The Libname parameter is the name of the DLL that contains the procedure.

The optional Alias aliasname clause is used to supply the procedure name in the DLL if different from the name specified on the procedure parameter. When the optional argument list needs to be passed the format is as follows:

([ByVal] variable [As type] [,ByVal] variable [As type]]…])

The optional ByVal parameter specifies that the variable is [passed by value instead of by reference (see “ByRef and ByVal” in this manual). The optional As type parameter is used to specify the data type. Valid types are String, Integer, Double, Long, and Varaint (see “Variable Types” in this manual).

If a procedure has no arguments, use double parentheses () only to assure that no arguments are passed. For example:

Declare Sub OntTime Lib “Checkxe "Check"” ()

Cypress Enable extentions to the declare statement. The following syntax is not supported by Microsoft Visual Basic.

Declare Function procedurename App [Alias aliasname$] [(argument list)][As Type]

This form of the Declare statement makes a reference to a function located in the executable file located in the application where Enable is embedded.

Related Topics: Call \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!21", "Call" \D2HTargetDefault

Example:

Declare Function GetFocus Lib "User" () As Integer

Declare Function GetWindowText Lib "User" (ByVal hWnd%, ByVal Mess$, ByVal cbMax%) As _ Integer

Sub Main

 Dim hWindow%

 Dim str1 As String *51

 Dim str2 As String * 25

 hWindow% = GetFocus()

 print "GetWindowText returned: ", GetWindowText(hWindow%, str1,51)

 print "GetWindowText2 returned: ", GetWindowText(hWindow%, str2, 25)

 print str1

 print str2

End Sub

[image: image38.png]Enable Scripting Language Editor

GetWindowText returned: 50

Dialog, Dialog Functionxe "Dialog Dialog Function"

Dialog(DialogRecord)

Returns a value corresponding to the button the user chooses.

The Dialog() function is used to display the dialog box specified by DialogRecord . DialogRecord is the name of the dialog and must be defined in a preceeding Dim statement.

The return value or button:

 -1 = OK button

 0 = Cancel button

> 0 A command button where 1 is the first PushButton in the definition of the dialog and 2 is the second and so on.

Example:

' This sample shows all of the dialog controls on one dialog and how to

' vary the response based on which PushButton was pressed.

Sub Main ()

 Dim MyList$(2)

 MyList(0) = "Banana"

 MyList(1) = "Orange"

 MyList(2) = "Apple"

 Begin Dialog DialogName1 60, 60, 240, 184, "Test Dialog"

 Text 10, 10, 28, 12, "Name:"

 TextBox 40, 10,50, 12, .joe

 ListBox 102, 10, 108, 16, MyList$(), .MyList1

 ComboBox 42, 30, 108, 42, MyList$(), .Combo1

 DropListBox 42, 76, 108, 36, MyList$(), .DropList1$

 OptionGroup .grp1

 OptionButton 42, 100, 48, 12, "Option&1"

 OptionButton 42, 110, 48, 12, "Option&2"

 OptionGroup .grp2

 OptionButton 42, 136, 48, 12, "Option&3"

 OptionButton 42, 146, 48, 12, "Option&4"

 GroupBox 132, 125, 70, 36, "Group"

 CheckBox 142, 100, 48, 12, "Check&Axe "Check"", .Check1

 CheckBox 142, 110, 48, 12, "Check&B", .Check2

 CheckBox 142, 136, 48, 12, "Check&C", .Check3

 CheckBox 142, 146, 48, 12, "Check&D", .Check4

 CancelButton 42, 168, 40, 12

 OKButton 90, 168, 40, 12

 PushButton 140, 168, 40, 12, "&Push Me 1"

 PushButton 190, 168, 40, 12, "Push &Me 2"

 End Dialog

 Dim Dlg1 As DialogName1

 Dlg1.joe = "Def String"

 Dlg1.MyList1 = 1

 Dlg1.Combo1 = "Kiwi"

 Dlg1.DropList1 = 2

 Dlg1.grp2 = 1

 ' Dialog returns -1 for OK, 0 for Cancel, button # for PushButtons

 button = Dialog(Dlg1)

 'MsgBox "button: " & button 'uncomment for button return vale

 If button = 0 Then Return

 MsgBox "TextBox: "& Dlg1.joe

 MsgBox "ListBox: " & Dlg1.MyList1

 MsgBox Dlg1.Combo1

 MsgBox Dlg1.DropList1

 MsgBox "grp1: " & Dlg1.grp1

 MsgBox "grp2: " & Dlg1.grp2

 Begin Dialog DialogName2 60, 60, 160, 60, "Test Dialog 2"

 Text 10, 10, 28, 12, "Name:"

 TextBox 42, 10, 108, 12, .fred

 OkButton 42, 44, 40, 12

 End Dialog

 If button = 2 Then

 Dim Dlg2 As DialogName2

 Dialog Dlg2

 MsgBox Dlg2.fred

 ElseIf button = 1 Then

 Dialog Dlg1

 MsgBox Dlg1.Combo1

 End If

End Sub

Dim Statementxe "Dim Statement"
Dim variablename[(subscripts)][As Type][,name][As Type]]

Allocates storage for and declares the data type of variables and arrays in a module.

The types currently supported are integer, long, single, double and string and variant.

Note: While it may be possible in some cases to use variables without declaring them with the Dim statement first, doing so is not supported in Enable BASIC and may cause problems in your code.

Example:

Sub Main

 Dim x As Long

 Dim y As Integer

 Dim z As single

 Dim a As double

 Dim s As String

 Dim v As Variant ' This is the same as Dim x or Dim x as any

End Sub

Dir Functionxe "Dir$ Function"

Dir[(path,attributes)]

Returns a file/directory name that matches the given path and attributes.

Example:

'===

' Bitmap sample using the Dir Function

'===

Sub DrawBitmapSample

 Dim MyList()

 Begin Dialog BitmapDlg 60, 60, 290, 220, "Enable bitmap sample", .DlgFunc

 ListBox 10, 10, 80, 180, MyList(), .List1, 2

 Picture 100, 10, 180, 180, "Forest.bmp", 0, .Picture1

 CancelButton 42, 198, 40, 12

 OKButton 90, 198, 40, 12

 End Dialog

 Dim frame As BitmapDlg

 ' Show the bitmap dialog

 Dialog frame

End Sub

Function DlgFunc(controlID As String, action As Integer, suppValue As Integer)

 DlgFunc = 1
' Keep dialog active

 Select Case action

 Case 1 ' Initialize

 temp = Dir("c:\Windows*.bmp")

 count = 0

 While temp <> ""

 count = count + 1

 temp = Dir

 Wend

 Dim x() As String

 ReDim x(count)

 x(0) = Dir("c:\Windows*.bmp")

 For i = 1 To count

 x(i) = dir

 Next i

 DlgListBoxArray "List1", x()

 Case 2 ' Click

 fileName = "c:\windows\" & DlgText("List1")

 DlgSetPicture "Picture1", fileName

 End Select

End Function

DlgEnable Statementxe "DlgEnable Statement"
DlgEnable “ControlName”, Value

This statement is used to enable or disable a particular control on a dialog box.

The parameter ControlName is the name of the control on the dialog box. The parameter Value is the value to set it to. 1 = Enable, 0 = Disable. On is equal to 1 in the example below. If the second parameter is omitted the status of the control toggles. The entire example below can be found in the dialog section of this manual and in the example .bas files that ship with Cypress Enable.

Related Topics: DlgVisible \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!22", "DlgVisible" \D2HTargetDefault
, DlgText \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!23", "DlgText" \D2HTargetDefault

Example:

Function Enable(ControlID$, Action%, SuppValue%)

Begin Dialog UserDialog2 160,160, 260, 188, "3", .Enable

Text 8,10,73,13, "New dialog Label:"

TextBox 8, 26, 160, 18, .FText

CheckBox 8, 56, 203, 16, "New CheckBox",. ch1

CheckBox 18,100,189,16, "Additional CheckBox", .ch2

PushButton 18, 118, 159, 16, "Push Button", .but1

OKButton 177, 8, 58, 21

CancelButton 177, 32, 58, 21

 End Dialog

 Dim Dlg2 As UserDialog2

 Dlg2.FText = "Your default string goes here"

Select Case Action%

Case 1

DlgEnable "Group", 0

DlgVisible "Chk2", 0

DlgVisible "History", 0

Case 2

If ControlID$ = "Chk1" Then

 DlgEnable "Group", On

 DlgVisible "Chk2"

 DlgVisible "History"

End If

If ControlID$ = "Chk2" Then

 DlgText "History", "Push to display nested dialog"

End If

If ControlID$ = "History" Then

 Enable =1

 Number = 4

 MsgBox SQR(Number) & " The sqr of 4 is 2"

 x = Dialog(Dlg2)

End If

If ControlID$ = "but1" Then

End If

Case Else

End Select

Enable =1

End Function

DlgText Statementxe "DlgText Statement"

DlgText “ControlName”, String

This statement is used to set or change the text of a dialog control.

The parameter ControlName is the name of the control on the dialog box. The parameter String is the value to set it to.

Related Topics: DlgEnable \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!24", "DlgEnable" \D2HTargetDefault
, DlgVisible \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!22", "DlgVisible" \D2HTargetDefault

Example:

If ControlID$ = "Chk2" Then

 DlgText "History", "Push to display nested dialog"

End If

DlgVisible Statementxe "DlgVisible Statement"

DlgVisible “ControlName”, Value

This statement is used to hide or make visible a particular control on a dialog box.

The parameter ControlName is the name of the control on the dialog box. The parameter Value is the value to set it to. 1 = Visible, 0 = Hidden. On is equal to 1. If the second parameter is omitted the status of the control toggles. The entire example below can be found in the dialog section of this manual and in the example .bas files that ship with Cypress Enable.

Related Topics: DlgEnable \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!24", "DlgEnable" \D2HTargetDefault
, DlgText \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!23", "DlgText" \D2HTargetDefault

Example:

If ControlID$ = "Chk1" Then

 DlgEnable "Group", On

 DlgVisible "Chk2"

 DlgVisible "History"

End If

Do...Loop Statementxe "Do...Loop Statement"
Do [{While|Until} condition]

 [statements]

 [Exit Do]

 [statements]

Loop

Do

[statements]

[Exit Do]

[statements]

Loop [{While|Until} condition]

Repeats a group of statements while a condition is true or until a condition is met.

Related Topics: While, Wend \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!25", "While, Wend" \D2HTargetDefault

Example:

Sub Main ()

 Dim Value, Msg ' Declare variables.

 Do

Value = InputBox("Enter a value from 5 to 10.")

If Value >= 5 And Value <= 10 Then

 Exit Do ' Exit Do...Loop.

Else

 Beep ' Beep if not in range.

End If

 Loop
End Sub

[image: image39.png]InputBox Dialog

Enter a value from 5 to 10.

End Statementxe "End Statement"
End[{Function | If | Sub}]

Ends a program or a block of statements such as a Sub procedure or a function.

Related Topics: Exit \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!26", "Exit" \D2HTargetDefault
, Function \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!27", "Function" \D2HTargetDefault
, If...Then...Else \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!28", "If...Then...Else" \D2HTargetDefault
, Select Case \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!29", "Select Case" \D2HTargetDefault
, Stop \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!30", "Stop" \D2HTargetDefault

Example:

Sub Main()

Dim Var1 as String

Var1 = "hello"

MsgBox " Calling Test"

Test Var1

MsgBox Var1

End Sub

Sub Test(wvar1 as string)

wvar1 = "goodbye"

MsgBox "Use of End Statement"

End

End Sub

EOF Function

xe "Eof"
EOF(Filenumber)

Returns a value during file input that indicates whether the end of a file has been reached.

Related Topics: Open Statement \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!31", "Open Statement" \D2HTargetDefault

Example:

' Input Function Example

' This example uses the Input function to read 10 characters at a time from a ' file and display them in a MsgBox. This example assumes that TESTFILE is a 'text file with a few lines of 'sample data.

Sub Main

 Open "TESTFILE" For Input As #1
' Open file.

 Do While Not EOF(1)

' Loop until end of file.

MyStr = Input(10, #1)
' Get ten characters.

MsgBox MyStr

 Loop

 Close #1

' Close file.

End Sub

Erasexe "Erase" Statement

Erase arrayname[,arrayname]

Reinitializes the elements of a fixed array.

Related Topics: Dim \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!32", "Dim" \D2HTargetDefault

Example:

' This example demonstrates some of the features of arrays. The lower bound

' for an array is 0 unless it is specified or option base has set it as is

' done in this example.

Option Base 1

Sub Main

' Declare array variables.

Dim Num(10) As Integer ' Integer array.

Dim StrVarArray(10) As String ' Variable-string array.

Dim StrFixArray(10) As String * 10 ' Fixed-string array.

Dim VarArray(10) As Variant ' Variant array.

Dim DynamicArray() As Integer ' Dynamic array.

ReDim DynamicArray(10) ' Allocate storage space.

Erase Num ' Each element set to 0.

Erase StrVarArray ' Each element set to zero-length

 ' string ("").

Erase StrFixArray ' Each element set to 0.

Erase VarArray ' Each element set to Empty.

Erase DynamicArray ' Free memory used by array.

End Sub

Exit Statementxe "Exit Statement"
xe "Exp"
Exit {Do | For | Function | Sub }

Exits a loop or procedure

Related Topics: End Statement \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!33", "End Statement" \D2HTargetDefault
, Stop Statement \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!30", "Stop Statement" \D2HTargetDefault

Example:

' This sample shows Do ... Loop with Exit Do to get out.

Sub Main ()

 Dim Value, Msg ' Declare variables.

 Do

Value = InputBox("Enter a value from 5 to 10.")

If Value >= 5 And Value <= 10 Then
 ' Checkxe "Check" range.

 Exit Do ' Exit Do...Loop.

Else

 Beep ' Beep if not in range.

End If

 Loop

End Sub

Expxe "Exp"
Exp(num)

Returns the base of the natural log raised to a power (e ^ num).

The value of the constant e is approximately 2.71828.

Related Topics: Log \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!34", "Log" \D2HTargetDefault

Example:

Sub ExpExample ()

' Exp(x) is e ^x so Exp(1) is e ^1 or e.

Dim Msg, ValueOfE
' Declare variables.

ValueOfE = Exp(1)
' Calculate value of e.

Msg = "The value of e is " & ValueOfE

MsgBox Msg
' Display message.

End Sub

[image: image40.png]The value of e is 2.71828

OK!

FileCopyxe "FileCopy" Function

FileCopy(sourcefile, destinationfile)

Copies a file from source to destination.

The sourcefile and destinationfile parameters must be valid string expressions. sourcefile is the file name of the file to copy, destinationfile is the file name to be copied to.

Example:

Dim SourceFile, DestinationFile

SourceFile = "SRCFILE" ' Define source file name.

DestinationFile = "DESTFILE" ' Define target file name.

FileCopy SourceFile, DestinationFile ' Copy source to target.

FileLen Functionxe "FileLen Function"
FileLen(filename)

Returns a Long integer that is the length of the file in bytes

Related Topics: LOF Function \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!35", "LOF Function" \D2HTargetDefault

Example:

Sub Main

 Dim MySize

 MySize = FileLen("C:\TESTFILE")
' Returns file length (bytes).

 Print MySize

End Sub

Fix Functionxe "Fix Function"
Fix(number)

Returns the integer portion of a number

Related Topics: Int \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!36", "Int" \D2HTargetDefault

Example:

Sub Main

 Dim MySize

 MySize = Fix(4.345)

 Print MySize

End Sub
For each … Next Statementxe "For...Next Statement"
For Each element in group

[statements]

[Exit For]

[statements]

Next [element]

Repeats the group of statments for each element in an array of a collection. For each … Next statements can be nested if each loop element is unique. The For Each…Next statement cannot be used with and array of user defined types.

Example:

Sub Main

 dim z(1 to 4) as double

 z(1) = 1.11

 z(2) = 2.22

 z(3) = 3.33

 For Each v In z

 Print v

 Next v

End Sub

For...Next Statementxe "For...Next Statement"
For counter = expression1 to expression2 [Step increment]

[statements]

Next [counter]

Repeats the execution of a block of statements for a specified number of times.

Example:

Sub main ()

Dim x,y,z

For x = 1 to 5

For y = 1 to 5

For z = 1 to 5

Print "Looping" ,z,y,x

Next z

Next y

Next x

End Sub

[image: image41.png]Looping 333

Format Functionxe "Format Statement"
Format (expression [,fmt])

Formats a string, number or variant datatype to a format expression.

Format returns returns a string

	Part
	Description

	Expression
	Expression to be formatted.

	Fmt
	A string of characters that specify how the expression is to displayed. or the name of a commonly-used format that has been predefined in Enable Basic. Do not mix different type format expressions in a single fmt parameter.

If the fmt parameter is omitted or is zero-length and the expression parameter is a numeric, Format[$] provides the same functionality as the Str[$] function by converting the numeric value to the appropriate return data type, Positive numbersxe "Numbers" convert to strings using Format[$] lack the leading space reserved for displaying the sign of the value, whereas those converted using Str[$] retain the leading space.

To format numbers, you can use the commonly-used formats that have been predefined in Enable Basic or you can create user-defined formats with standard characters that have special meaning when used in a format expression.

Predefined numeric format names:

Format

	Name
	Description

	General
	Display the number as is, with no thousand Separators Number.

	Fixed
	Display at least one digit to the left and two digits to the right of the decimal separator.

	Standard
	Display number with thousand separator, if appropriate; display two digits to the right of the decimal separator.

Format

	Name
	Description

	Scientific
	Use standard scientific notation.

	True/False
	Display False if number is 0, otherwise display True.

Characters for Creating User-Defined Number Formats

The following shows the characters you can use to create user-defined number formats.

	Character
	Meaning

	Null string
	Display the number with no formatting.

	0
	Digit placeholder. Display a digit or a zero.

If the number being formatted has fewer digits than there are zeros (on either side of the decimal) in the format expression, leading or trailing zeros are displayed.

If the number has more digits to the right of the decimal separator than there are zeros to the right of the decimal separator in the format expression, the number is rounded to as many decimal places as there are zeros.

If the number has more digits to left of the decimal separator than there are zeros to the left of the decimal separator in the format expression, the extra digits are displayed without modification.

	#
	Digit placeholder. Displays a digit or nothing. If there is a digit in the expression being formatted in the position where the # appears in the format string, displays it; otherwise, nothing is displayed.

	.
	Decimal placeholder.The decimal placeholder determines how many digits are displayed to the left and right of the decimal separator.

	Character
	Meaning
	Description

	%
	Percentage placeholder.
	The percent character (%) is inserted in the position where it appears in the format string. The expression is multiplied by 100.

	,
	Thousand separator.
	The thousand separator separates thousands from hundreds within a number that has four or more places to the left of the decimal separator.

Use of this separator as specified in the format statement contains a comma surrounded by digit placeholders(0 or #). Two adjacent commas or a comma immediately to the left of the decimal separator (whether or not a decimal is specified) means “scale the number by dividing it by 1000, rounding as needed.”

	E-E+e-e+
	Scientific format.
	If the format expression contains at least one digit placeholder (0 or #) to the right of E-,E+,e- or e+, the number is displayed in scientific formatted E or e inserted between the number and its exponent. The number of digit placeholders to the right determines the number of digits in the exponent. Use E- or e- to place a minus sign next to negative exponents. Use E+ or e+ to place a plus sign next to positive exponents.

	:
	Time separator.

	The actual character used as the time separator depends on the Time Format specified in the International section of the Control Panel.

	/
	Date separator.

	The actual character used as the date separator in the formatted out depends on Date Format specified in the International section of the Control Panel.

	Character
	Meaning

	- + $ ()

space
	Display a literal character.

To display a character other than one of those listed, precede it with a backslash (\).

	\
	Display the next character in the format string.

The backslash itself isn’t displayed. To display a backslash, use two backslashes (\\).
Examples of characters that can’t be displayed as literal characters are the date- and time- formatting characters (a,c,d,h,m,n,p,q,s,t,w,y, and /:), the numeric -formatting characters(#,0,%,E,e,comma, and period), and the string- formatting characters (@,&,<,>, and !).

	“String”
	Display the string inside the double quotation marks.

To include a string in fmt from within Enable, you must use the ANSI code for a double quotation mark Chr(34) to enclose the text.

	*
	Display the next character as the fill character.

Any empty space in a field is filled with the character following the asterisk.

Unless the fmt argument contains one of the predefined formats, a format expression for numbersxe "Numbers" \r "D2HBNumbers88" can have from one to four sections separated by semicolons.
	If you use
	The result is

	One section only
	The format expression applies to all values.

	Two
	The first section applies to positive values, the second to negative sections values.

	Three
	The first section applies to positive values, the second to negative sections values, and the third to zeros.

	Four
	The first section applies to positive values, the second to negative section values, the third to zeros, and the fourth to Null values.

The following example has two sections: the first defines the format for positive values and zeros; the second section defines the format for negative values.

“$#,##0; ($#,##0)”

If you include semicolons with nothing between them. the missing section is printed using the format of the positive value. For example, the following format displays positive and negative values using the format in the first section and displays “Zero” if the value is zero.

“$#,##0;;\Z\e\r\o”

Sample Format Number Expressions

Some sample format expressions for numbers are shown below. (These examples all assume the Country is set to United States in the International section of the Control Panel.) The first column contains the format strings. The other columns contain the output the results if the formatted data has the value given in the column headings

	Format (fmt)
	Positive 3
	Negative 3
	Decimal .3
	Null

	Null string
	3
	-3
	0.3
	

	0
	3
	-3
	1
	

	0.00
	3.00
	-3.00
	0.30
	

	#,##0
	3
	-3
	1
	

	#,##0.00;;;Nil
	3.00
	-3.00
	0.30
	Nil

	$#,##0;($#,##
0)
	$3
	($3)
	$1
	

	$#,##0.00;($
#,##0.00)
$3.00
	($3.00)
	$0.30
	
	

	0%
	300%
	-300%
	30%
	

	0.00%
	300.00%
	-300.00%
	30.00%
	

	0.00E+00
	3.00E+00
	-3.00E+00
	3.00E-01
	

	0.00E-00
	3.00E00
	-3.00E00
	3.00E-01
	

Numbers can also be used to represent date and time information. You can format date and time serial numbers using date and time formats or number formats because date/time serial numbers are stored as floating-point values.

To format dates and times, you can use either the commonly used format that have been predefined or create user-defined time formats using standard meaning of each:

The following table shows the predefined data format names you can use and the meaning of each.

Format

	Name
	Description

	General
	Display a date and/or time. for real numbers, display a date and time.(e.g. 4/3/93 03:34 PM); If there is no fractional part, display only a date (e.g. 4/3/93); if there is no integer part, display time only (e.g. 03:34 PM).

	Long Date
	Display a Long Date, as defined in the International section of the Control Panel.

	Medium
	Display a date in the same form as the Short Date, as defined in the international section of the Control Panel, except spell out the month abbreviation.

	Short Date
	Display a Short Date, as defined in the International section of the Control Panel.

	Long Time
	Display a Long Time, as defined in the International section of the Control panel. Long Time includes hours, minutes, seconds.

	Medium Time
	Display time in 12-hour format using hours and minutes and the Time AM/PM designator.

	Short Time
	Display a time using the 24-hour format (e.g. 17:45)

This table shows the characters you can use to create user-defined date/time formats.

	Character
	Meaning

	c
	Display the date as dddd and display the time as ttttt. in the order.

	d
	Display the day as a number without a leading zero (1-31).

	dd
	Display the day as a number with a leading zero (01-31).

	ddd
	Display the day as an abbreviation (Sun-Sat).

	ddddd
	Display a date serial number as a complete date (including day , month, and year).

	Character
	Meaning

	w
	Display the day of the week as a number (1- 7).

	ww
	Display the week of the year as a number (1-53).

	m
	Display the month as a number without a leading zero (1-12). If m immediately follows h or hh, the minute rather than the month is displayed.

	mm
	Display the month as a number with a leading zero (01-12). If mm immediately follows h or hh, the minute rather than the month is displayed.

	mmm
	Display the month as an abbreviation (Jan-Dec).

	mmmm
	Display the month as a full month name (January-December).

	q
	display the quarter of the year as a number (1-4).

	y
	Display the day of the year as a number (1-366).

	yy
	Display the day of the year as a two-digit number (00-99)

	yyyy
	Display the day of the year as a four-digit number (100-9999).

	h
	Display the hour as a number without leading zeros (0-23).

	hh
	Display the hour as a number with leading zeros (00-23).

	n
	Display the minute as a number without leading zeros (0-59).

	nn
	Display the minute as a number with leading zeros (00-59).

	s
	Display the second as a number without leading zeros (0-59).

	ss
	Display the second as a number with leading zeros (00-59).

	ttttt
	Display a time serial number as a complete time (including hour, minute, and second) formatted using the time separator defined by the Time Format in the International section of the Control Panel. A leading zero is displayed if the Leading Zero option is selected and the time is before 10:00 A.M. or P.M. The default time format is h:mm:ss.

	AM/PM
	Use the 12-hour clock and display an uppercase AM/PM

	am/pm
	Use the 12-hour clock display a lowercase am/pm

	Character
	Meaning

	A/P
	Use the 12-hour clock display a uppercase A/P

	a/p
	Use the 12-hour clock display a lowercase a/p

	AMPM
	Use the 12-hour clock and display the contentsxe "Contents" of the 11:59 string (s1159) in the WIN.INI file with any hour before noon; display the contents of the 2359 string (s2359) with any hour between noon and 11:59 PM. AMPM can be either uppercase or lowercase, but the case of the string displayed matches the string as it exists in the WIN.INI file. The default format is AM/PM.

The Following are examples of user-defined date and time formats:

	Format
	Display

	m/d/yy
	2/26/65

	d-mmmm-yy
	26-February-65

	d-mmmm
	26 February

	mmmm-yy
	February 65

	hh:nn AM/PM
	06:45 PM

	h:nn:ss a/p
	6:45:15 p

	h:nn:ss
	18:45:15

	m/d/yy/h:nn
	2/26/65 18:45

Strings can also be formatted with Format[$]. A format expression for strings can have one section or two sections separated by a semicolon.

	If you use
	The result is

	One section only
	The format applies to all string data.

	Two sections
	The first section applies to string data, the second to Null values and zero-length strings.

The following characters can be used to create a format expression for strings:

	Character
	Meaning

	@
	Character placeholder. Displays a character or a space. Placeholders are filled from right to left unless there is an ! character in the format string.

	&
	Character placeholder. Display a character or nothing.

	<
	Force lowercase.

	>
	Force uppercase.

	!
	Force placeholders to fill from left to right instead of right to left.

Related Topics: Str \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!76", "Str" \D2HTargetDefault
, Str$ Function.

Example:

' Format Function Example

' This example shows various uses of the Format function to format values

' using both named and user-defined formats. For the date separator (/),

' time separator (:), and AM/ PM literal, the actual formatted output

' displayed by your system depends on the locale settings on which the code

' is running. When times and dates are displayed in the development

' environment, the short time and short date formats of the code locale

' are used. When displayed by running code, the short time and short date

' formats of the system locale are used, which may differ from the code

' locale. For this example, English/United States is assumed.

' MyTime and MyDate are displayed in the development environment using

' current system short time and short date settings.

Sub Main

MyTime = "08:04:23 PM"

MyDate = "03/03/95"

MyDate = "January 27, 1993"

MsgBox Now

MsgBox MyTime

MsgBox Second(MyTime) & " Seconds"

MsgBox Minute(MyTime) & " Minutes"

MsgBox Hour(MyTime) & " Hours"

MsgBox Day(MyDate) & " Days"

MsgBox Month(MyDate) & " Months"

MsgBox Year(MyDate) & " Years"

' Returns current system time in the system-defined long time format.

MsgBox Format(Time, "Short Time")

MyStr = Format(Time, "Long Time")

' Returns current system date in the system-defined long date format.

MsgBox Format(Date, "Short Date")

MsgBox Format(Date, "Long Date")

MyStr Format(MyTime, "h:n:s") ' Returns "17:4:23".

MyStr Format(MyTime, "hh:nn:ss")' Returns "20:04:22 ".

MyStr Format(MyDate, "dddd, mmm d yyyy")' Returns "Wednesday, Jan 27 1993".

' If format is not supplied, a string is returned.

MsgBox Format(23) ' Returns "23".

' User-defined formats.

MsgBox Format(5459.4, "##,##0.00") ' Returns "5,459.40".

MsgBox Format(334.9, "###0.00") ' Returns "334.90".

MsgBox Format(5, "0.00%") ' Returns "500.00%".

MsgBox Format("HELLO", "<") ' Returns "hello".

MsgBox Format("This is it", ">") ' Returns "THIS IS IT".

End Sub

FreeFile Functionxe "FreeFile Function"
FreeFile

Returns an integer that is the next available file handle to be used by the Open Statement.

Related Topics: Open \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!31", "Open" \D2HTargetDefault
, Close \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!37", "Close" \D2HTargetDefault
, Write \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!38", "Write" \D2HTargetDefault

Example:

Sub Main

Dim Mx, FileNumber

For Mx = 1 To 3

FileNumber = FreeFile

Open "c:\e1\TEST" & Mx For Output As #FileNumber

Write #FileNumber, "This is a sample."

Close #FileNumber

Next Mx

Open "c:\e1\test1" For Input As #1

Do While Not EOF(1)

MyStr = Input(10, #1)

MsgBox MyStr

Loop

Close #1

End Sub

Function Statementxe "Function Statement"
Function Fname [(Arguments)] [As type]

[statements]

Functionname = expression

 [statements]

 Functionname = expression

End Function

Declares and defines a procedure that can receive arguments and return a value of a specified data type.

When the optional argument list needs to be passed the format is as follows:

([ByVal] variable [As type] [,ByVal] variable [As type]]…])

The optional ByVal parameter specifies that the variable is [passed by value instead of by reference (see “ByRef and ByVal” in this manual). The optional As type parameter is used to specify the data type. Valid types are String, Integer, Double, Long, and Varaint (see “Variable Types” in this manual).

Related Topics: Dim \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!32", "Dim" \D2HTargetDefault
, End \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!33", "End" \D2HTargetDefault
, Exit \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!26", "Exit" \D2HTargetDefault
, Sub \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!39", "Sub" \D2HTargetDefault

Example:

Sub Main

Dim I as integer

For I = 1 to 10

Print GetColor2(I)

Next I

End Sub

Function GetColor2(c%) As Long

 GetColor2 = c% * 25

 If c% > 2 Then

 GetColor2 = 255

' 0x0000FF - Red

 End If

 If c% > 5 Then

 GetColor2 = 65280

' 0x00FF00 - Green

 End If

 If c% > 8 Then

 GetColor2 = 16711680
' 0xFF0000 - Blue

 End If

End Function

[image: image42.png]16711680

Get Statementxe "Get Object Function"
GetStatement [#] filenmber,[recordnumber], variablename

Reads from a disk file into a varable

The Get Statement has these parts:

Filenumber The number used to Open the file with.

xe "Mode"Recordnumber For files opened in Binary mode recordnumber is the byte position where reading starts.

VariableName The name of the variable used to receive the data from the file.

Related Topics: Open \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!31", "Open" \D2HTargetDefault
, Put

Get Object Functionxe "Get Object Function"
GetObject(filename[,class])
 The GetObject Function has two parameters a filename and a class. The filename is the name of the file containing the object to retrieve. If filename is an empty string then class is required. Class is a string containing the class of the object to retrieve.

Related Topics: CreateObject \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!40", "CreateObject" \D2HTargetDefault

Global Statementxe "Global Statement"
Global Const constant

The Global Statement must be outside the procedure section of the script. Global variables are available to all functions and subroutines in your program

Related Topics: Dim \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!32", "Dim" \D2HTargetDefault
, Const \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!41", "Const" \D2HTargetDefault
 and Type \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!42", "Type" \D2HTargetDefault
 Statements

Example:

Global Const Height = 14.4357 '

Const PI = 3.14159 'Global to all procedures in a module

Sub Main ()

Begin Dialog DialogName1 60, 60, 160,70, "ASC - Hello"

TEXT 10, 10, 100, 20, "Please fill in the radius of circle x"

TEXT 10, 40, 28, 12, "Radius"

TEXTBOX 42, 40, 28, 12, .Radius

OKBUTTON 42, 54,40, 12

End Dialog

Dim Dlg1 As DialogName1

Dialog Dlg1

CylArea = Height * (Dlg1.Radius * Dlg1.Radius) * PI

MsgBox "The volume of Cylinder x is " & CylArea

End Sub

GoTo Statementxe "GoTo Statement"
GoTo label
Branches unconditionally and without return to a specified label in a procedure.

Example:

Sub main ()

Dim x,y,z

For x = 1 to 5

For y = 1 to 5

For z = 1 to 5

Print "Looping" ,z,y,x

If y > 3 Then

GoTo Label1

End If

Next z

Next y

Next x

Label1:

End Sub

[image: image43.png]Looping 521

Hexxe "Hex, "
Hex (num)

Returns the hexadecimal value of a decimal parameter.

Hex returns a string

The parameter num can be any valid number. It is rounded to nearest whole number before evaluation.

Related Topics: Oct \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!43", "Oct" \D2HTargetDefault
, Oct$

Example:

Sub Main ()

Dim Msg As String, x%

x% = 10

Msg =Str(x%) & " decimal is "

Msg = Msg & Hex(x%) & " in hex "

MsgBox Msg

End Sub

[image: image44.png]

Hour Functionxe "Hour Function"
Hour(string)

The Hour Function returns an integer between 0 and 23 that is the hour of the day indicated in the parameter number.

The parameter string is any number expressed as a string that can represent a date and time from January 1, 1980 through December 31, 9999.

Example:

' This example shows various uses of the Format function to format values

' using both named and user-defined formats. For the date separator (/),

' time separator (:), and AM/ PM literal, the actual formatted output

' displayed by your system depends on the locale settings on which the code

' is running. When times and dates are displayed in the development

' environment, the short time and short date formats of the code locale

' are used. When displayed by running code, the short time and short date

' formats of the system locale are used, which may differ from the code

' locale. For this example, English/United States is assumed.

' MyTime and MyDate are displayed in the development environment using

' current system short time and short date settings.

Sub Main

MyTime = "08:04:23 PM"

MyDate = "03/03/95"

MyDate = "January 27, 1993"

MsgBox Now

MsgBox MyTime

MsgBox Second(MyTime) & " Seconds"

MsgBox Minute(MyTime) & " Minutes"

MsgBox Hour(MyTime) & " Hours"

MsgBox Day(MyDate) & " Days"

MsgBox Month(MyDate) & " Months"

MsgBox Year(MyDate) & " Years"

' Returns current system time in the system-defined long time format.

MsgBox Format(Time, "Short Time")

MyStr = Format(Time, "Long Time")

' Returns current system date in the system-defined long date format.

MsgBox Format(Date, "Short Date")

MsgBox Format(Date, "Long Date")

' This section not yet supported

'MyStr = Format(MyTime, "h:n:s") ' Returns "17:4:23".

'MyStr = Format(MyTime, "hh:nn:ss AMPM")' Returns "05:04:23 PM".

'MyStr = Format(MyDate, "dddd, nnn d yyyy")' Returns "Wednesday, Jan 27 1993".

' If format is not supplied, a string is returned.

MsgBox Format(23) ' Returns "23".

' User-defined formats.

MsgBox Format(5459.4, "##,##0.00") ' Returns "5,459.40".

MsgBox Format(334.9, "###0.00") ' Returns "334.90".

MsgBox Format(5, "0.00%") ' Returns "500.00%".

MsgBox Format("HELLO", "<") ' Returns "hello".

MsgBox Format("This is it", ">") ' Returns "THIS IS IT".

End Sub

HTMLDialogxe "Hex, "

xe "HTMLDialog"
HTMLDialog (path, number)

Runs a DHTML dialog that is specified in the path.

Example:

x =HtmlDialog("c:\enable40\htmlt.htm", 57)

‘See sample code on the samples disk htmldlg.bas

If...Then...Else Statementxe "If...Then...Else Statement"
Syntax 1

If condition Then thenpart [Else elsepart]

Syntax 2

If condition Then

 [statement(s)]

ElseIf condition Then

 [statement(s)]

Else

 [statements(s)].

End If

Syntax 2

If conditional Then statement

Allows conditional statements to be executed in the code.

Related Topics: Select Case \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!29", "Select Case" \D2HTargetDefault

Example:

Sub IfTest

' demo If...Then...Else

Dim msg as String

Dim nl as String

Dim someInt as Integer

nl = Chr(10)

msg = "Less"

someInt = 4

If 5 > someInt Then msg = "Greater" : Beep

MsgBox “” & msg

If 3 > someInt Then

msg = "Greater"

Beep

Else

msg = "Less"

End If

MsgBox “” & msg

If someInt = 1 Then

msg = "Spring"

ElseIf someInt = 2 Then

msg = "Summer"

ElseIf someInt = 3 Then

msg = "Fall"

ElseIf someInt = 4 Then

msg = "Winter"

Else

msg = "Salt"

End If

MsgBox “” & msg

End Sub

Input # Statementxe "Input # Statement"
Input # filenumber, variablelist

Input # Statement reads data from a sequential file and assigns that data to variables.

The Input # Statement has two parameters filenumber and variablelist. filenumber is the number used in the open statement when the file was opened and variablelist is a Comma-delimited list of the variables that are assigned when read from the file..

Example:

Dim MyString, MyNumber

Open "c:\TESTFILE" For Input As #1 ' Open file for input.

Do While Not EOF(1) ' Loop until end of file.

 Input #1, MyString, MyNumber ' Read data into two variables.

Loop

Close #1 ' Close file.

Input Functionxe "Input, Function"
Input(n , [#] filenumber)

Input returns characters from a sequential file.

The input function has two parameters n and filenumber. n is the number of bytes to be read from a file and filenumber is the number used in the open statement when the file was opened.

Example:

Sub Main

 Open "TESTFILE" For Input As #1
' Open file.

 Do While Not EOF(1)

' Loop until end of file.

MyStr = Input(10, #1)
' Get ten characters.

MsgBox MyStr

 Loop

 Close #1

' Close file.

End Sub

InputBox Functionxe "InputBox Function"
InputBox(prompt[,[title][,[default][,xpos,ypos]]])

InputBox returns a String.

Prompt is string that is displayed usually to ask for input type or information.

Title is a string that is displayed at the top of the input dialog box.

Default is a string that is displayed in the text box as the default entry.

Xpos and Ypos and the x and y coodinates of the relative location of the input dialog box.

Example:

Sub Main ()

Title$ = "Greetings"

Prompt$ = "What is your name?"

Default$ = ""

X% = 200

Y% = 200

N$ = InputBox$(Prompt$, Title$, Default$, X%, Y%)

End Sub

[image: image45.png]InputBox Dialog

‘What is your name?

InStrxe "InStr"
InStr(numbegin, string1, string2)

Returns the character position of the first occurrence of string2 within string1.

The numbegin parameter is not optional and sets the starting point of the search. numbegin must be a valid positive integer no greater than 65,535.

string1 is the string being searched and string2 is the string we are looking for.

Related Topics: Mid Function \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!44", "Mid Function" \D2HTargetDefault

Example:

Sub Main ()

B$ = "Good Bye"

A% = InStr(2, B$, "Bye")

C% = Instr(3, B$, "Bye")

End Sub

[image: image46.png]Bye starts at character index:1

OK!

Int Functionxe "Int Function"
Int(number)

Returns the integer portion of a number

Related Topics: Fix \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!45", "Fix" \D2HTargetDefault

IsArray Functionxe "IsArray Function"
IsArray(variablename)

Returns a boolean value True or False indicating whether the parameter vaiablename is an array.

Related Topics: IsEmpty \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!46", "IsEmpty" \D2HTargetDefault
, IsNumeric \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!47", "IsNumeric" \D2HTargetDefault
, VarType \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!48", "VarType" \D2HTargetDefault
, IsObject \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!49", "IsObject" \D2HTargetDefault

Example:

Sub Main

Dim MArray(1 To 5) As Integer, MCheck

MCheck = IsArray(MArray)

Print MCheck

End Sub

IsDatexe "IsDate"
IsDate(variant)

Returns a value that indicates if a variant parameter can be converted to a date.

Related Topics: IsEmpty \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!46", "IsEmpty" \D2HTargetDefault
, IsNumeric \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!47", "IsNumeric" \D2HTargetDefault
, VarType \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!48", "VarType" \D2HTargetDefault

Example:

Sub Main

Dim x As String

Dim MArray As Integer, MCheck

MArray = 345

x = "January 1, 1987"

MCheck = IsDate(MArray)

MChekk = IsDate(x)

MArray1 = CStr(MArray)

MCheck1 = CStr(MCheck)

Print MArray1 & " is a date " & Chr(10) & MCheck

Print x & " is a date" & Chr(10) & MChekk

End Sub

IsEmptyxe "IsEmpty"
IsEmpty(variant)

Returns a value that indicates if a variant parameter has been initialized.

Related Topics: IsDate \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!50", "IsDate" \D2HTargetDefault
, IsNull \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!51", "IsNull" \D2HTargetDefault
, IsNumeric \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!47", "IsNumeric" \D2HTargetDefault
, VarType \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!48", "VarType" \D2HTargetDefault

Example:

' This sample explores the concept of an empty variant

Sub Main

 Dim x ' Empty

 x = 5 ' Not Empty - Long

 x = Empty ' Empty

 y = x ' Both Empty

 MsgBox “x” & " IsEmpty: " & IsEmpty(x)

End Sub

IsNullxe "IsNull"
IsNull(v)

Returns a value that indicates if a variant contains the NULL value.

The parameter v can be any variant. IsNull returns a TRUE if v contains NULL. If isNull returns a FALSE the variant expression is not NULL.

The NULL value is special because it indicates that the v parameter contains no data. This is different from a null-string, which is a zero length string and an empty string which has not yet been initialized.

Related Topics: IsDate \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!50", "IsDate" \D2HTargetDefault
, IsEmpty \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!46", "IsEmpty" \D2HTargetDefault
, IsNumeric \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!47", "IsNumeric" \D2HTargetDefault
, VarType \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!48", "VarType" \D2HTargetDefault

IsNumericxe "IsNumeric"
IsNumeric(v)

Returns a TRUE or FALSE indicating if the v parameter can be converted to a numeric data type.

The parameter v can be any variant, numeric value, Date or string (if the string can be interpreted as a numeric).

Related topics: : IsDate \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!50", "IsDate" \D2HTargetDefault
, IsEmpty \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!46", "IsEmpty" \D2HTargetDefault
, IsNull \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!51", "IsNull" \D2HTargetDefault
, VarType \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!48", "VarType" \D2HTargetDefault

Example:

Sub Form_Click ()

Dim TestVar
' Declare variable.

TestVar = InputBox("Please enter a number, letter, or symbol.")

If IsNumeric(TestVar) Then
' Evaluate variable.

MsgBox "Entered data is numeric." ‘ Message if number.

Else

MsgBox "Entered data is not numeric."
' Message if not.

End If

End Sub

[image: image47.png]InputBox Dialog

Please enter a number, letter. or
symbol

IsObject Functionxe "IsObject Function"
IsObject(objectname)

Returns a boolean value True or False indicating whether the parameter objectname is an object.

Related Topics: IsEmpty \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!46", "IsEmpty" \D2HTargetDefault
, IsNumeric \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!47", "IsNumeric" \D2HTargetDefault
, VarType \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!48", "VarType" \D2HTargetDefault
, IsObject \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!49", "IsObject" \D2HTargetDefault

Example:

Sub Main

Dim MyInt As Integer, MyCheck

Dim MyObject As Object

Dim YourObject As Object

 Set MyObject = CreateObject("Word.Basic")

Set YourObject = MyObject

MyCheck = IsObject(YourObject)

 Print MyCheck

End Sub

Kill Statementxe "Kill Statement"
Kill filename
Kill will only delete files. To remove a directory use the RmDir Statement

Related Topics: RmDir \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!11", "RmDir" \D2HTargetDefault

Example:

Const NumberOfFiles = 3

Sub Main ()

 Dim Msg

' Declare variable.

 Call MakeFiles()

' Create data files.

 Msg = "Several test files have been created on your disk. You may see "

 Msg = Msg & "them by switching tasks. Choose OK to remove the test files."

 MsgBox Msg

 For I = 1 To NumberOfFiles

 Kill "TEST" & I

' Remove data files from disk.

 Next I

End Sub

Sub MakeFiles ()

 Dim I, FNum, FName

' Declare variables.

 For I = 1 To NumberOfFiles

 FNum = FreeFile

' Determine next file number.

 FName = "TEST" & I

 Open FName For Output As FNum
' Open file.

 Print #FNum, "This is test #" & I
' Write string to file.

 Print #FNum, "Here is another "; "line"; I

 Next I

 Close

' Close all files.

 Kill FName

End Sub

LBound Functionxe "LBound Function"
LBound(array [,dimension])

Returns the smallest available subscript for the dimension of the indicated array.

Related Topics: UBound Function \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!52", "UBound Function" \D2HTargetDefault

Example:

' This example demonstrates some of the features of arrays. The lower bound

' for an array is 0 unless it is specified or option base has set as is

' done in this example.

Option Base 1

Sub Main

 Dim a(10) As Double

 MsgBox "LBound: " & LBound(a) & " UBound: " & UBound(a)

 Dim i As Integer

 For i = 0 to 3

 a(i) = 2 + i * 3.1

 Next i

 Print a(0),a(1),a(2), a(3)

End Sub

LCase, Functionxe "LCase, Function"
Lcase[$](string)

Returns a string in which all letters of the string parameter have been converted to upper case.

Related Topics: Ucase Function \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!53", "Ucase Function" \D2HTargetDefault

Example:

' This example uses the LTrim and RTrim functions to strip leading and

' trailing spaces, respectively, from a string variable. It

' uses the Trim function alone to strip both types of spaces.

' LCase and UCase are also shown in this example as well as the use

' of nested function calls

Sub Main

 MyString = " <-Trim-> "
' Initialize string.

 TrimString = LTrim(MyString)
' TrimString = "<-Trim-> ".

 MsgBox "|" & TrimString & "|"

 TrimString = LCase(RTrim(MyString))
' TrimString = " <-trim->".

 MsgBox "|" & TrimString & "|"

 TrimString = LTrim(RTrim(MyString))
' TrimString = "<-Trim->".

 MsgBox "|" & TrimString & "|"

 ' Using the Trim function alone achieves the same result.

 TrimString = UCase(Trim(MyString))
' TrimString = "<-TRIM->".

 MsgBox "|" & TrimString & "|"

End Sub

Left xe "Left"
Left(string, num)

Returns the left most num characters of a string parameter.

Left returns a Variant, Left$ returns a String

Example:

Sub Main ()

Dim LWord, Msg, RWord, SpcPos, UsrInp
' Declare variables.

Msg = "Enter two words separated by a space."

UsrInp = InputBox(Msg)
' Get user input.

print UsrInp

SpcPos = InStr(1, UsrInp, " ")
' Find space.

If SpcPos Then

LWord = Left(UsrInp, SpcPos - 1)
' Get left word.

print "LWord: "; LWord

RWord = Right(UsrInp, Len(UsrInp) - SpcPos)
' Get right word.

Msg = "The first word you entered is " & LWord

Msg = Msg & "." & " The second word is "

Msg = "The first word you entered is <" & LWord & ">"

Msg = Msg & RWord & "."

Else

Msg = "You didn't enter two words."

End If

MsgBox Msg
' Display message.

MidTest = Mid("Mid Word Test", 4, 5)

Print MidTest

End Sub

Lenxe "Len"
Len(string)

Returns the number of characters in a string.

Related Topics: InStr \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!54", "InStr" \D2HTargetDefault

Example:

Sub Main ()

A$ = "Cypress Enable"

StrLen% = Len(A$)
'the value of StrLen is 14

MsgBox StrLen%

End Sub

[image: image48.png]OK!

Let Statementxe "Let Statement"
[Let] variablename = expression

Let assigns a value to a variable.

Let is an optional keyword that is rarely used. The Let statement is required in older versions of BASIC.

Example:

Sub Form_Click ()

 Dim Msg, Pi ' Declare variables.

 Let Pi = 4 * Atn(1) ' Calculate Pi.

 Msg = "Pi is equal to " & Str(Pi)

 MsgBox Msg ' Display results.

End Sub

[image: image49.png]equalto 314159

OK!

Line Input # Statementxe "Line Input # Statement"
Line Input # filenumber and name
Reads a line from a sequential file into a String or Variant variable.

The parameter filenumber is used in the open statement to open the file. The parameter name is the name of a variable used to hold the line of text from the file.

Related Topics: Open \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!31", "Open" \D2HTargetDefault

Example:

' Line Input # Statement Example:

' This example uses the Line Input # statement to read a line from a

' sequential file and assign it to a variable. This example assumes that

' TESTFILE is a text file with a few lines of sample data.

Sub Main

 Open "TESTFILE" For Input As #1
' Open file.

 Do While Not EOF(1)

' Loop until end of file.

Line Input #1, TextLine
' Read line into variable.

Print TextLine

' Print to Debug window.

 Loop

 Close #1
' Close file.

End Sub

LOFxe "LOF"
LOF(filenumber)

Returns a long number for the number of bytes in the open file.

The parameter filenumber is required and must be an integer.

Related Topics: FileLen \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!55", "FileLen" \D2HTargetDefault

Example:

Sub Main

Dim FileLength

Open "TESTFILE" For Input As #1

FileLength = LOF(1)

 Print FileLength

Close #1

End Sub

Logxe "Log"
Log(num)

Returns the natural log of a number

The parameter num must be greater than zero and be a valid number.

Related Topics: Exp \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!56", "Exp" \D2HTargetDefault
, Sin \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!6", "Sin" \D2HTargetDefault
, Cos \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!3", "Cos" \D2HTargetDefault

Example:

Sub Form_Click ()

Dim I, Msg, NL

NL = Chr(13) & Chr(10)

Msg = Exp(1) & NL

For I = 1 to 3

Msg = Msg & Log(Exp(1) ^ I) & NL

Next I

MsgBox Msg

End Sub

[image: image50.png]271828

Mid Functionxe "Mid Function"
string = Mid(strgvar,begin,length)
Returns a substring within a string.

Example:

Sub Main ()

Dim LWord, Msg, RWord, SpcPos, UsrInp
' Declare variables.

Msg = "Enter two words separated by a space."

UsrInp = InputBox(Msg)
' Get user input.

print UsrInp

SpcPos = InStr(1, UsrInp, " ")
' Find space.

If SpcPos Then

LWord = Left(UsrInp, SpcPos - 1)
' Get left word.

print "LWord: "; LWord

RWord = Right(UsrInp, Len(UsrInp) - SpcPos)
' Get right word.

Msg = "The first word you entered is " & LWord

Msg = Msg & "." & " The second word is "

Msg = "The first word you entered is <" & LWord & ">"

Msg = Msg & RWord & "."

Else

Msg = "You didn't enter two words."

End If

MsgBox Msg
' Display message.

MidTest = Mid("Mid Word Test", 4, 5)

Print MidTest

End Sub

Minute Functionxe "Minute Function"
Minute(string)

Returns an integer between 0 and 59 representing the minute of the hour.

Example:

' Format Function Example

' This example shows various uses of the Format function to format values

' using both named and user-defined formats. For the date separator (/),

' time separator (:), and AM/ PM literal, the actual formatted output

' displayed by your system depends on the locale settings on which the code

' is running. When times and dates are displayed in the development

' environment, the short time and short date formats of the code locale

' are used. When displayed by running code, the short time and short date

' formats of the system locale are used, which may differ from the code

' locale. For this example, English/United States is assumed.

' MyTime and MyDate are displayed in the development environment using

' current system short time and short date settings.

Sub Main

MyTime = "08:04:23 PM"

MyDate = "03/03/95"

MyDate = "January 27, 1993"

MsgBox Now

MsgBox MyTime

MsgBox Second(MyTime) & " Seconds"

MsgBox Minute(MyTime) & " Minutes"

MsgBox Hour(MyTime) & " Hours"

MsgBox Day(MyDate) & " Days"

MsgBox Month(MyDate) & " Months"

MsgBox Year(MyDate) & " Years"

End Sub

MkDirxe "MkDir"
MkDir path

Creates a new directory.

The parameter path is a string expression that must contain fewer than 128 characters.

Example:

Sub Main

 Dim DST As String

 DST = "t1"

 mkdir DST

 mkdir "t2"

End Sub

[image: image51.png]= open |
File Name: Directories:
=
= e
e

5 dialogde

I" Confitm
Conversions

List Files of Type:

[an Fites) #| ™ ReadOnly

Month Functionxe "Month Function"
Month(number)
Returns an integer between 1 and 12, inclusive, that represents the month of the year.

Related Topics: Day \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!57", "Day" \D2HTargetDefault
, Hour \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!19", "Hour" \D2HTargetDefault
, Weekday \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!18", "Weekday" \D2HTargetDefault
, Year \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!58", "Year" \D2HTargetDefault

Example:

Sub Main

MyDate = "03/03/96"

print MyDate

x = Month(MyDate)

print x

End Sub

MsgBoxxe "MsgBox" Function MsgBox Statement

MsgBox (msg, [type] [, title])

Displays a message in a dialog box and waits for the user to choose a button.

The first parameter msg is the string displayed in the dialog box as the message. The second and third parameters are optional and respectively designate the type of buttons and the title displayed in the dialog box.

MsgBox Function returns a value indicating which button the user has chosen; the MsgBox statement does not.

	Value
	Meaning

	Group 1

	0
	Display OK button only

	1
	Display OK and Cancel buttons

	2
	Display Abort, Retry, and Ignore buttons

	3
	Display Yes, No, and Cancel buttons

	4
	Display Yes and No buttons

	5
	Display Retry and Cancel buttons

	Group 2

	16
	Stop Icon

	32
	Question Icon

	48
	Exclamation Icon

	64
	Information Icon

	Group 3

	0
	First button is default

	256
	Second button is default

	512
	Third button is default

	Group 4

	768
	Fourth button is default

	0
	Application modal

	4096
	System modal

The first group of values (1-5) describes the number and type of buttons displayed in the dialog box; the second group (16, 32, 48, 64) describes the icon style; the third group (0, 256, 512) determines which button is the default; and the fourth group (0, 4096) determines the modality of the message box. When adding numbersxe "Numbers" to create a final value for the argument type, use only one number from each group. If omitted, the default value for type is 0.

title:

String expression displayed in the title bar of the dialog box. If you omit the argument title, MsgBox has no default title.

The value returned by the MsgBox function indicates which button has been selected, as shown below:

	Value
	Meaning

	1
	OK button selected.

	2
	Cancel button selected.

	3
	Abort button selected.

	4
	Retry button selected.

	5
	Ignore button selected.

	6
	Yes button selected.

	7
	No button selected.

If the dialog box displays a Cancel button, pressing the Esc key has the same effect as choosing Cancel.

MsgBox Function, MsgBox Statement Example

The example uses MsgBox to display a close without saving message in a dialog box with a Yes button a No button and a Cancel button. The Cancel button is the default response. The MsgBox function returns a value based on the button chosen by the user. The MsgBox statement uses that value to display a message that indicates which button was chosen.

Related Topics: InputBox \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!59", "InputBox" \D2HTargetDefault
, InputBox$ Function

Example:

Dim Msg, Style, Title, Help, Ctxt, Response, MyString

Msg = "Do you want to continue ?" ' Define message.

'Style = vbYesNo + vbCritical + vbDefaultButton2 ' Define buttons.

Style = 4 + 16 + 256 ' Define buttons.

Title = "MsgBox Demonstration" ' Define title.

Help = "DEMO.HLP" ' Define Help file.

Ctxt = 1000 ' Define topic

 ' context.

 ' Display message.

Response = MsgBox(Msg, Style, Title, Help, Ctxt)

If Response = vbYes Then ' User chose Yes.

 MyString = "Yes" ' Perform some action.

Else ' User chose No.

 MyString = "No" ' Perform some action.

End If

Name Statementxe "Name Statement"
Name oldname As newname

Changes the name of a directory or a file.

The parameters oldname and newname are strings that can optionally contain a path.

Related Topics: Kill \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!60", "Kill" \D2HTargetDefault
, ChDir \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!12", "ChDir" \D2HTargetDefault

Now Functionxe "Now Function"
Now

Returns a date that represents the current date and time according to the setting of the computer’s system date and time

The Now function returns a Variant data type containing a date and time that are stored internally as a double. The number is a date and time from January 1, 100 through December 31, 9999, where January 1, 1900 is 2. Numbersxe "Numbers" to the left of the decimal point represent the date and numbers to the right represent the time.

Example:

Sub Main ()

Dim Today

Today = Now

End Sub

Oct Functionxe "Oct Function"
Oct (num)

Returns the octal value of the decimal parameter

Oct returns a string

Related Topics: Hex \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!61", "Hex" \D2HTargetDefault

Example:

Sub Main ()

Dim Msg, Num
' Declare variables.

Num = InputBox("Enter a number.")
' Get user input.

Msg = Num & " decimal is &O"

Msg = Msg & Oct(Num) & " in octal notation."

MsgBox Msg
' Display results.

End Sub

[image: image52.png]InputBox Dialog

Enter a number.

OKButtonxe "OKButton"
OKBUTTON starting x position, starting y position, width, Height

For selecting options and closing dialog boxes

Example:

Sub Main ()

 Begin Dialog DialogName1 60, 60, 160, 70, "ASC - Hello"

 TEXT 10, 10, 28, 12, "Name:"

 TEXTBOX 42, 10, 108, 12, .nameStr

 TEXTBOX 42, 24, 108, 12, .descStr

 CHECKBOX 42, 38, 48, 12, "&CHECKME", .checkInt

 OKBUTTON 42, 54, 40, 12

 End Dialog
 Dim Dlg1 As DialogName1

 Dialog Dlg1

 MsgBox Dlg1.nameStr

 MsgBox Dlg1.descStr

 MsgBox Dlg1.checkInt

End Sub

[image: image53.png]ASC - Hello

Name:

[CHECKME

On Errorxe "On Error"
On Error { GoTo line | Resume Next | GoTo 0 }

Enables error-handling routine and specifies the line label of the error-handling routine.

Related Topics: Resume

The line parameter refers to a label. That label must be present in the code or an error is generated.

Example:

Sub Main

 On Error GoTo dude

 Dim x as object

 x.draw ' Object not set

 jpe ' Undefined function call

 print 1/0 ' Division by zero

 Err.Raise 6
' Generate an "Overflow" error

 MsgBox "Back"

 MsgBox "Jack"

 Exit Sub

dude:

 MsgBox "HELLO"

 Print Err.Number, Err.Description

 Resume Next

 MsgBox "Should not get here!"

 MsgBox "What?"

End Sub

Errors can be raised with the syntax:

Err.Raise x

Defined x Value Descriptions

The list below shows the corresponding descriptions for the defined values

of x:

3: "Return without GoSub";

5: "Invalid procedure call";

6: "Overflow";

7: "Out of memory";

9: "Subscript out of range";

10: "Array is fixed or temporarily locked";

11: "Division by zero";

13: "Type mismatch";

14: "Out of string space";

16: "Expression too complex";

17: "Can't perform requested operation";

18: "User intrrupt occurred";

20: "Resume without error";

28: "Out of stack space";

35: "Sub, Function, or Property not defined";

47: "Too many DLL application clients";

48: "Error in loading DLL";

49: "Bad DLL calling convention";

51: "Internal error";

52: "Bad file name or number";

53: "File not found";

54: "Bad file modexe "Mode" \r "D2HBMode120"";

55: "File already open";

57: "Device I/O error";

58: "File already exists";

59: "Bad record length";

60: "Disk full";

62: "Input past end of file";

63: "Bad record number";

67: "Too many files";

68: "Device unavailable";

70: "Permission denied";

71: "Disk not ready";

74: "Can't rename with different drive";

75: "Path/File access error";

76: "Path not found";

91: "Object variable or With block variable not set";

92: "For loop not initialized";

93: "Invalid pattern string";

94: "Invalid use of Null";

// OLE Automation Messages

429: "OLE Automation server cannot create object";

430: "Class doesn't support OLE Automation";

432: "File name or class name not found during OLE Automation operation";

438: "Object doesn't support this property or method";

440: "OLE Automation error";

443: "OLE Automation object does not have a default value";

445: "Object doesn't support this action";

446: "Object doesn't support named arguments";

447: "Object doesn't support current local setting";

448: "Named argument not found";

449: "Argument not optional";

450: "Wrong number of arguments";

451: "Object not a collection";

// Miscellaneous Messages

444: "Method not applicable in this context";

452: "Invalid ordinal";

453: "Specified DLL function not found";

457: "Duplicate Key";

460: "Invalid Clipboard format";

461: "Specified format doesn't match format of data";

480: "Can't create AutoRedraw image";

481: "Invalid picture";

482: "Printer error";

483: "Printer driver does not supported specified property";

484: "Problem getting printer information from from the system.";

 // Make sure the printer is setp up correctly.

485: "invalid picture type";

520: "Can't empty Clipboard";

521: "Can't open Clipboard";

Open Statementxe "Open Statement"
Open filename$ [For mode] [Access access] As [#]filenumber
Opens a file for input and output operations.

You must open a file before any I/O operation can be performed on it.

The Open statement has these parts:

	Part
	Description

	file
	File name or path.

	mode
	Reserved word that specifies the file mode: Append, Binary Input, Output

	Access
	Reserved word that specifies which operations are permitted on the open file: Read, Write.

	filenumber
	Integer expression with a value between 1 and 255, inclusive. When an Open statement is executed, filenumber is associated with the file as long as it is open. Other I/O statements can use the number to refer to the file.

If file doesn't exist, it is created when a file is opened for Append, Binary or Output modes.

The argument mode is a reserved word that specifies one of the following file modes.

	Mode
	Description

	Input
	Sequential input mode.

	Output.
	Sequential output mode

Append Sequential output mode. Append sets the file pointer to the end of the file. A Print # or Write # statement then extends (appends to) the file.

The argument access is a reserved word that specifies the operations that can be performed on the opened file. If the file is already opened by another process and the specified type of access is not allowed, the Open operation fails and a Permission denied error occurs. The Access clause works only if you are using a version of MS-DOS that supports networking (MS-DOS version 3.1 or later). If you use the Access clause with a version of MS-DOS that doesn't support networking, a featurexe "Feature" unavailable error occurs. The argument access can be one of the following reserved words.

	Access type
	Description

	Read
	Opens the file for reading only.

	Write
	Opens the file for writing only.

	Read Write
	Opens the file for both reading and riting. This mode is valid only for Random and Binary files and files opened for Append mode.

The following example writes data to a test file and reads it back.

Example:

Sub Main ()

Open "TESTFILE" For Output As #1
' Open to write file.

userData1$ = InputBox("Enter your own text here")

userData2$ = InputBox("Enter more of your own text here")

Write #1, "This is a test of the Write # statement."

Write #1,userData1$, userData2

Close #1

Open "TESTFILE" for Input As #2
' Open to read file.

Do While Not EOF(2)

Line Input #2, FileData
' Read a line of data.

PRint FileData

' Construct message.

Loop

Close #2

' Close all open files.

MsgBox "Testing Print Statement"
' Display message.

Kill "TESTFILE"
' Remove file from disk.

End Sub

Option Base Statementxe "Option Base Statement"
Option Base number

Declares the default lower bound for array subscripts.

The Option Base statement is never required. If used, it can appear only once in a module, it can occur only in the Declarations section, and must be used before you declare the dimensions of any arrays.

The value of number must be either 0 or 1. The default base is 0.

The To clause in the Dim, Global, and Static statements provides a more flexible way to control the range of an array's subscripts. However, if you don't explicitly set the lower bound with a To clause, you can use Option Base to change the default lower bound to 1.

The example uses the Option Base statement to override the default base array subscript value of 0.

Related Topics: Dim \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!32", "Dim" \D2HTargetDefault
, Global \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!62", "Global" \D2HTargetDefault
 and Lbound \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!63", "Lbound" \D2HTargetDefault
 Statements

Example:

Option Base 1
' Module levelxe "Level" statement.

Sub Main

Dim A(), Msg, NL
' Declare variables.

NL = Chr(10)
' Define newline.

ReDim A(20)
' Create an array.

Msg = "The lower bound of the A array is " & LBound(A) & "."

Msg = Msg & NL & "The upper bound is " & UBound(A) & "."

MsgBox Msg
' Display message.

End Sub

Option Explicitxe "Option Explicit" Statement

Option Explicit
Forces explicit declaration of all variables.

The Option explicit statement is used outside of the script in the declarations section. This statement can be contained in a declare file or outside of any script in a file or buffer. If this statement is contained in the middle of a file the rest of the compile buffer will be affected.

Related Topics: Const \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!41", "Const" \D2HTargetDefault
 and Global \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!62", "Global" \D2HTargetDefault
 Statements

Example:

Option Explicit

Sub Main

Print y ‘because y is not explicitly dimmed an error will occur.

End Sub

Print Methodxe "Print Method"
Print [expr, expr...] Print a string to an object.

Example:

Sub PrintExample ()

 Dim Msg, Pi

' Declare variables.

 Let Pi = 4 * _Atn(1)

' Calculate Pi.

 Msg = "Pi is equal to " & Str(Pi)

 MsgBox Msg

' Display results.

 Print Pi

‘Pints the results in the

' compiler messages window

End Sub

[image: image54.png]314159

Print # Statementxe "Print # Statement"
Print # filenumber, [[{Spc(n) | Tab(n)}][expressionlist] [{; | ,}]]

Writes data to a sequential file.

Print statement Description:

filenumber:

Number used in an Open statement to open a sequential file. It can be any

number of an open file. Note that the

number sign (#) preceding filenumber is not optional.

Spc(n):

Name of the Basic function optionally used to insert n spaces into the printed

output. Multiple use is permitted.

Tab(n):

Name of the Basic function optionally used to tab to the nth column before printing

expressionlist. Multiple use is permitted.

expressionlist :
Numeric and/or string expressions to be written to the file.

{;|,}

Character that determines the position of the next character printed. A semicolon means the next character is printed immediately after the last character; a comma means the next character is printed at the start of the next print zone. Print zones begin every 14 columns. If neither character is specified, the next character is printed on the next line.

If you omit expressionlist, the Print # statement prints a blank line in the file, but you must include the comma. Because Print # writes an image of the data to the file, you must delimit the data so it is printed correctly. If you use commas as delimiters, Print # also writes the blanks between print fields to the file.

The Print # statement usually writes Variant data to a file the same way it writes any other data type. However, there are some exceptions:

If the data being written is a Variant of VarType 0 (Empty), Print # writes nothing to the file for that data item.

If the data being written is a Variant of VarType 1 (Null), Print # writes the literal #NULL# to the file.

If the data being written is a Variant of VarType 7 (Date), Print # writes the date to the file using the Short Date format defined in the WIN.INI file. When either the date or the time component is missing or zero, Print # writes only the part provided to the file.

The following example writes data to a test file.

Example:

Sub Main

Dim I, FNum, FName
' Declare variables.

For I = 1 To 3

FNum = FreeFile
' Determine next file number.

FName = "TEST" & FNum

Open FName For Output As FNum
' Open file.

Print #I, "This is test #" & I
' Write string to file.

Print #I, "Here is another "; "line"; I

Next I

Close
' Close all files.

End Sub

The following example writes data to a test file and reads it back.

Sub Main ()

Dim FileData, Msg, NL
' Declare variables.

NL = Chr(10)
' Define newline.

Open "TESTFILE" For Output As #1
' Open to write file.

Print #2, "This is a test of the Print # statement."

Print #2

' Print blank line to file.

Print #2, "Zone 1", "Zone 2"
' Print in two print zones.

Print #2, "With no space between" ; "." ' Print two strings together.

Close

Open "TESTFILE" for Input As #2
' Open to read file.

Do While Not EOF(2)

Line Input #2, FileData
' Read a line of data.

Msg = Msg & FileData & NL
' Construct message.

MsgBox Msg

Loop

Close

' Close all open files.

MsgBox "Testing Print Statement"
' Display message.

Kill "TESTFILE"
' Remove file from disk.

End Sub

Randomize Statementxe "Randomize Statement"
Randomize[number]

Used to Initialize the random number generator.

The Randomize statement has one optional parameter number. This parameter can be any valid number and is used to initialize the random number generator. If you omit the parameter then the value returned by the Timer function is used as the default parameter to seed the rando number generator.

Example:

Sub Main

Dim MValue

Randomize ' Initialize random-number generator.

MValue = Int((6 * Rnd) + 1)

Print MValue

End Sub

ReDim Statementxe "ReDim Statement"
ReDim varname(subscripts)[As Type][,varname(subscripts)]

Used to declare dynamic arrays and reallocate storage space.

The ReDim statement is used to size or resize a dynamic array that has already been declared using the Dim statement with empty parentheses. You can use the ReDim statement to repeatedly change the number of elements in and array but not to change the number of dimensions in an array or the type of the elements in the array.

ReDim will only work with single dimensional arrays. Multi-dimensional arrays, like ReDim MyArray (3,5), are invalid.

Example:

Sub Main

Dim TestArray() As Integer

Dim I

ReDim TestArray(10)

For I = 1 To 10

 TestArray(I) = I + 10

 Print TestArray(I)

Next I

End Sub

Rem Statementxe "Rem Statement"
Rem remark ‘remark

Used to include explanatory remarks in a program.

The parameter remark is the text of any commentxe "Comment" you wish to include in the code.

Example:

Rem This is a remark

Sub Main()

 Dim Answer, Msg ' Declare variables.

 Do

Answer = InputBox("Enter a value from 1 to 3.")

Answer = 2

If Answer >= 1 And Answer <= 3 Then
 ' Checkxe "Check" range.

 Exit Do ' Exit Do...Loop.

Else

 Beep ' Beep if not in range.

End If

 Loop

 MsgBox "You entered a value in the proper range."

End Sub

Right Functionxe "Right, Function"

Right (stringexpression, n)

Returns the right most n characters of the string parameter.

The parameter stringexpression is the string from which the rightmost characters are returned.

The parameter n is the number of characters that will be returned and must be a long integer.

Related Topics: Len \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!64", "Len" \D2HTargetDefault
, Left \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!65", "Left" \D2HTargetDefault
, Mid \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!44", "Mid" \D2HTargetDefault
 Functions.

Example:

' The example uses the Right function to return the first of two words

' input by the user.

Sub Main ()

Dim LWord, Msg, RWord, SpcPos, UsrInp
' Declare variables.

Msg = "Enter two words separated by a space."

UsrInp = InputBox(Msg)
' Get user input.

print UsrInp

SpcPos = InStr(1, UsrInp, " ")
' Find space.

If SpcPos Then

LWord = Left(UsrInp, SpcPos - 1)
' Get left word.

print "LWord: "; LWord

RWord = Right(UsrInp, Len(UsrInp) - SpcPos)
' Get right word.

Msg = "The first word you entered is " & LWord

Msg = Msg & "." & " The second word is "

Msg = "The first word you entered is <" & LWord & ">"

Msg = Msg & RWord & "."

Else

Msg = "You didn't enter two words."

End If

MsgBox Msg
' Display message.

End Sub

RmDir Statementxe "RmDir Statement"
RmDir path

Removes an existing directory.

The parameter path is a string that is the name of the directory to be removed.
Related Topics: ChDir \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!12", "ChDir" \D2HTargetDefault
, CurDir \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!7", "CurDir" \D2HTargetDefault

Example:

' This sample shows the functions mkdir (Make Directory)

' and rmdir (Remove Directory)

Sub Main

 Dim dirName As String

 dirName = "t1"

 mkdir dirName

 mkdir "t2"

 MsgBox "Directories: t1 and t2 created. Press OK to remove them"

 rmdir "t1"

 rmdir "t2"

End Sub

Rndxe "Rnd" Function

Rnd (number)

Returns a random number.

The parameter number must be a valid numeric expression.

Example:

'Rnd Function Example

'The example uses the Rnd function to simulate rolling a pair of dice by

'generating random values from 1 to 6. Each time this program is run,

Sub Main ()

Dim Dice1, Dice2, Msg
' Declare variables.

Dice1 = CInt(6 * Rnd() + 1)
' Generate first die value.

Dice2 = CInt(6 * Rnd() + 1)
' Generate second die value.

Msg = "You rolled a " & Dice1

Msg = Msg & " and a " & Dice2

Msg = Msg & " for a total of "

Msg = Msg & Str(Dice1 + Dice2) & "."

MsgBox Msg
' Display message.

End Sub

Second Functionxe "Second Function"
Second (number)

Returns an integer that is the second portion of the minute in the time parameter.

The parameter number must be a valid numeric expression.

Related Topics: Day \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!57", "Day" \D2HTargetDefault
, Hour \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!19", "Hour" \D2HTargetDefault
, Minute \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!66", "Minute" \D2HTargetDefault
, Now \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!67", "Now" \D2HTargetDefault
.

Example:
' Format Function Example

' This example shows various uses of the Format function to format values

' using both named and user-defined formats. For the date separator (/),

' time separator (:), and AM/ PM literal, the actual formatted output

' displayed by your system depends on the locale settings on which the code

' is running. When times and dates are displayed in the development

' environment, the short time and short date formats of the code locale

' are used. When displayed by running code, the short time and short date

' formats of the system locale are used, which may differ from the code

' locale. For this example, English/United States is assumed.

' MyTime and MyDate are displayed in the development environment using

' current system short time and short date settings.

Sub Main

MyTime = "08:04:23 PM"

MyDate = "03/03/95"

MyDate = "January 27, 1993"

MsgBox Now

MsgBox MyTime

MsgBox Second(MyTime) & " Seconds"

MsgBox Minute(MyTime) & " Minutes"

MsgBox Hour(MyTime) & " Hours"

MsgBox Day(MyDate) & " Days"

MsgBox Month(MyDate) & " Months"

MsgBox Year(MyDate) & " Years"

' Returns current system time in the system-defined long time format.

MsgBox Format(Time, "Short Time")

MyStr = Format(Time, "Long Time")

' Returns current system date in the system-defined long date format.

MsgBox Format(Date, "Short Date")

MsgBox Format(Date, "Long Date")

'This section not yet supported

MsgBox Format(MyTime, "h:n:s") ' Returns "17:4:23".

MsgBox Format(MyTime, "hh:nn:ss")' Returns "05:04:23".

MsgBox Format(MyDate, "dddd, mmm d yyyy")' Returns "Wednesday, Jan 27 1993".

' If format is not supplied, a string is returned.

MsgBox Format(23) ' Returns "23".

' User-defined formats.

MsgBox Format(5459.4, "##,##0.00") ' Returns "5,459.40".

MsgBox Format(334.9, "###0.00") ' Returns "334.90".

MsgBox Format(5, "0.00%") ' Returns "500.00%".

MsgBox Format("HELLO", "<") ' Returns "hello".

MsgBox Format("This is it", ">") ' Returns "THIS IS IT".

End Sub

Seek Functionxe "Seek Function"
Seek (filenumber)

The parameter filenumber is used in the open statement and must be a valid numeric expression.

Seek returns a number that represents the byte position where the next operation is to take place. The first byte in the file is at position 1.

Related Topics: Open \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!31", "Open" \D2HTargetDefault

Example:

Sub Main

 Open "TESTFILE" For Input As #1
' Open file for reading.

 Do While Not EOF(1)

' Loop until end of file.

MyChar = Input(1, #1)
' Read next character of data.

Print Seek(1)

' Print byte position .

 Loop

 Close #1

' Close file.

End Sub

Seek Statement

Seek filenumber, position
The parameter filenumber is used in the open statement and must be a valid numeric expression, the parameter position is the number that indicates where the next read or write is to occur. In Cypress Enable Basic position is the byte position relative to the beginning of the file.

Seek statement sets the position in a file for the next read or write

Related Topics: Open \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!31", "Open" \D2HTargetDefault

Example:

Sub Main

 Open "TESTFILE" For Input As #1
' Open file for reading.

 For i = 1 To 24 Step 3

' Loop until end of file.

Seek #1, i

' Seek to byte position

MyChar = Input(1, #1)
' Read next character of data.

Print MyChar

'Print character of data

 Next i

 Close #1

' Close file.

End Sub

Select Case Statement

Executes one of the statement blocks in the case based on the test variable

Select Case testvar

Case var1

Statement Block

Case var2

Statement Block

Case Else

Statement Block

End Select

The syntax supported by the Select statement includes the “To” keyword, a coma delimited list and a constant or variable.

Select Case Number ' Evaluate Number.

Case 1 To 5 ' Number between 1 and 5, inclusive.

…
' The following is the only Case clause that evaluates to True.

Case 6, 7, 8 ' Number between 6 and 8.

…
Case 9 To 10 ' Number is 9 or 10.

…

Case Else ' Other values.

…

End Select
Related Topics: If...Then...Else \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!28", "If...Then...Else" \D2HTargetDefault

Example:

' This rather tedious test shows nested select statements and if uncommented,

' the exit for statement

Sub Test ()

 For x = 1 to 5

 print x

 Select Case x

 Case 2

 Print "Outer Case Two"

 Case 3

 Print "Outer Case Three"

' Exit For

 Select Case x

 Case 2

 Print "Inner Case Two"

 Case 3

 Print "Inner Case Three"

' Exit For

 Case Else
' Must be something else.

 Print "Inner Case Else:", x

 End Select

 Print "Done with Inner Select Case"

 Case Else
' Must be something else.

 Print "Outer Case Else:",x

 End Select

 Next x

 Print "Done with For Loop"

End Sub

SendKeysxe "SendKeys" Function

SendKeys (Keys, [waitxe "Wait"])

Sends one or more keystrokes to the active window as if they had been entered at the keyboard

The SendKeys statement has two parameters. The first parameter keys is a string and is sent to the active window. The second parameter wait is optional and if omitted is assumed to be false. If wait is true the keystrokes must be processed before control is returned to the calling procedure.

Example:

Sub Main ()

Dim I, X, Msg
' Declare variables.

X = Shell("Calc.exe", 1)
' Shell Calculator.

For I = 1 To 5
' Set up counting loop.

SendKeys I & "{+}", True
' Send keystrokes to Calculator

Next I
' to add each value of I.

AppActivate "Calculator"
' Return focus to Calculator.

SendKeys "%{F4}", True
' Alt+F4 to close Calculator.

End Sub

Set Statementxe "Set Statement"
Set Object = {[New] objectexpression | Nothing}

Assigns an object to an object variable.

Related Topics: Dim \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!32", "Dim" \D2HTargetDefault
, Global \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!62", "Global" \D2HTargetDefault
, Static \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!68", "Static" \D2HTargetDefault

Example:

Sub Main

Dim visio As Object

Set visio = CreateObject("visio.application")

Dim draw As Object

Set draw = visio.Documents

draw.Open "c:\visio\drawings\Sample1.vsd"

MsgBox "Open docs: " & draw.Count

Dim page As Object

Set page = visio.ActivePage

Dim red As Object

Set red = page.DrawRectangle (1, 9, 7.5, 4.5)

red.FillStyle = "Red fill"

Dim cyan As Object

Set cyan = page.DrawOval (2.5, 8.5, 5.75, 5.25)

cyan.FillStyle = "Cyan fill"

Dim green As Object

Set green = page.DrawOval (1.5, 6.25, 2.5, 5.25)

green.FillStyle = "Green fill"

Dim DarkBlue As Object

set DarkBlue = page.DrawOval (6, 8.75, 7, 7.75)

DarkBlue.FillStyle = "Blue dark fill"

visio.Quit

End Sub

[image: image55.png]2.0 Version 2.0 forWindows 3.1
DRAG 8 DROP DRAWING FOR EVERYDAY GRAPHICS
Copyright © 1991-1953 Shapeware Corporation
Al fights reserved

Shellxe "Shell" Function

Shell (app [, style])

Runs an executable program.

The shell function has two parameters. The first one, app is the name of the program to be executed. The name of the program in app must include a .PIF, .COM, .BAT, or .EXE file extension or an error will occur. The second argument, style is the number corresponding to the style of the window . It is also optional and if omitted the program is opened minimized with focus.

Window styles:

Normal with focus 1,5,9

Minimized with focus (default) 2

Maximized with focus 3

normal without focus 4,8

minimized without focus 6,7

Return value: ID, the task ID of the started program.

Example:

' This example uses Shell to leave the current application and run the

' Calculator program included with Microsoft Windows; it then

' uses the SendKeys statement to send keystrokes to add some numbers.xe "Numbers"
Sub Main ()

Dim I, X, Msg
' Declare variables.

X = Shell("Calc.exe", 1)
' Shell Calculator.

For I = 1 To 5
' Set up counting loop.

SendKeys I & "{+}", True
' Send keystrokes to Calculator

Next I
' to add each value of I.

AppActivate "Calculator"
' Return focus to Calculator.

SendKeys "%{F4}", True
' Alt+F4 to close Calculator.

End Sub

Sinxe "Sin" Function

Sin (rad)

Returns the sine of an angle that is expressed in radians

Example:

Sub Main ()

pi = 4 * Atn(1)

rad = 90 * (pi/180)

x = Sin(rad)

print x

End Sub

Spacexe "Space" Function

Space[$] (number)

Skips a specified number of spaces in a print# statement.

The parameter number can be any valid integer and determines the number of blank spaces.

Example:

' This sample shows the space function

Sub Main

 MsgBox "Hello" & Space(20) & "There"

End Sub

Sqrxe "Sqr" Function

Sqr(num)

Returns the square root of a number.

The parameter num must be a valid number greater than or equal to zero.

Example:

Sub Form_Click ()

Dim Msg, Number
' Declare variables.

Msg = "Enter a non-negative number."

Number = InputBox(Msg)
' Get user input.

If Number < 0 Then

Msg = "Cannot determine the square root of a negative number."

Else

Msg = "The square root of " & Number & " is "

Msg = Msg & Sqr(Number) & "."

End If

MsgBox Msg
' Display results.

End Sub

[image: image56.png]= InputBox Dialog

Enter a non-negative number.

The square root of 456 is 21.3542.

OK!

Staticxe "Static" Statement

Static variable

Used to declare variables and allocate storage space. These variables will retain their value through the program run

Related Topics: Dim \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!32", "Dim" \D2HTargetDefault
, Function \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!27", "Function" \D2HTargetDefault
, Sub \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!39", "Sub" \D2HTargetDefault

Example:

' This example shows how to use the static keyword to retain the value of

' the variable i in sub Joe. If Dim is used instead of Static then i

' is empty when printed on the second call as well as the first.

Sub Main

 For i = 1 to 2

 Joe 2

 Next i

End Sub

Sub Joe(j as integer)

 Static i

 print i

 i = i + 5

 print i

End Sub

Stopxe "Stop" Statement

Stop

Ends execution of the program

The Stop statement can be placed anywhere in your code.

Example:

Sub main ()

Dim x,y,z

For x = 1 to 5

For y = 1 to 5

For z = 1 to 5

Print "Looping" ,z,y,x

Next z

Next y

 Stop

Next x

End Sub

[image: image57.png]Looping 551

Str Functionxe "Str Function"
Str(numericexpr)

Returns the value of a numeric expression.

Str returns a String.

Related topics: Format \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!69", "Format" \D2HTargetDefault
, Val \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!70", "Val" \D2HTargetDefault

Example:

Sub main ()

Dim msg

a = -1

msgBox "Num = " & Str(a)

MsgBox "Abs(Num) =" & Str(Abs(a))

End Sub

[image: image58.png]OK!

StrComp Functionxe "StrComp Function"
StrComp(nstring1,string2, [compare])

Returns a variant that is the result of the comparison of two strings

Example:

Sub Main

Dim MStr1, MStr2, MComp

MStr1 = "ABCD": MStr2 = "today"
' Define variables.

print MStr1, MStr2

MComp = StrComp(MStr1, MStr2)
' Returns -1.

print MComp

MComp = StrComp(MStr1, MStr2)
' Returns -1.

print MComp

MComp = StrComp(MStr2, MStr1)
' Returns 1.

print MComp

End Sub

String Functionxe "String, Function"
String (numeric, charcode)

String returns a string.

String is used to create a string that consists of one character repeated over and over.

Related topics: Space Function \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!71", "Space Function" \D2HTargetDefault

Example:

Sub Main

 Dim MString

 MString = String(5, "*")
 ' Returns "*****".

 MString = String(5, 42)
 ' Returns "44444".

 MString = String(10, "Today")
 ' Returns "TTTTTTTTTT".

 Print MString

End Sub

Sub Statementxe "Sub Statement"
Sub SubName [(arguments)]

Dim [variable(s)]

[statementblock]

[Exit Function]

End Sub

Declares and defines a Sub procedures name, parameters and code.

When the optional argument list needs to be passed the format is as follows:

([ByVal] variable [As type] [,ByVal] variable [As type]]…])

The optional ByVal parameter specifies that the variable is [passed by value instead of by reference (see “ByRef and ByVal” in this manual). The optional As type parameter is used to specify the data type. Valid types are String, Integer, Double, Long, and Varaint (see “Variable Types” in this manual).

Related Topics: Call \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!21", "Call" \D2HTargetDefault
, Dim \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!32", "Dim" \D2HTargetDefault
, Function \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!27", "Function" \D2HTargetDefault

Example:

Sub Main

 Dim DST As String

 DST = "t1"

 mkdir DST

 mkdir "t2"

End Sub

Tan Function

Tan(angle)

Returns the tangent of an angle as a double.

The parameter angle must be a valid angle expressed in radians.

Related Topic: Atn \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!72", "Atn" \D2HTargetDefault
, Cos \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!3", "Cos" \D2HTargetDefault
, Sin \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!6", "Sin" \D2HTargetDefault

Example:

' This sample program show the use of the Tan function

Sub Main ()

 Dim Msg, Pi ' Declare variables.

 Pi = 4 * Atn(1) ' Calculate Pi.

 Msg = "Pi is equal to " & Pi

 MsgBox Msg ' Display results.

 x = Tan(Pi/4)

 MsgBox x & " is the tangent of Pi/4"

End Sub

Textxe "Text" Statement

Text Starting X position, Starting Y position, Width, Height, Label

Creates a text field for titles and labels.

Example:

Sub Main ()

 Begin Dialog DialogName1 60, 60, 160, 70, "ASC - Hello"

 TEXT 10, 10, 28, 12, "Name:"

 TEXTBOX 42, 10, 108, 12, .nameStr

 TEXTBOX 42, 24, 108, 12, .descStr

 CHECKBOX 42, 38, 48, 12, "&CHECKME", .checkInt

 OKBUTTON 42, 54, 40, 12

 End Dialog
 Dim Dlg1 As DialogName1

 Dialog Dlg1

 MsgBox Dlg1.nameStr

 MsgBox Dlg1.descStr

 MsgBox Dlg1.checkInt

End Sub

[image: image59.png]ASC - Hello

Name: [Test1

Test2

CICHECKME!

TextBoxxe "TextBox" Statement

TextBox Starting X position, Starting Y position, Width, Height, Default String

Creates a Text Box for typing in numbersxe "Numbers" and text

Example:

Sub Main ()

 Begin Dialog DialogName1 60, 60, 160, 70, "ASC - Hello"

 TEXT 10, 10, 28, 12, "Name:"

 TEXTBOX 42, 10, 108, 12, .nameStr

 TEXTBOX 42, 24, 108, 12, .descStr

 CHECKBOX 42, 38, 48, 12, "&CHECKME", .checkInt

 OKBUTTON 42, 54, 40, 12

 End Dialog
 Dim Dlg1 As DialogName1

 Dialog Dlg1

 MsgBox Dlg1.nameStr

 MsgBox Dlg1.descStr

 MsgBox Dlg1.checkInt

End Sub

Time Functionxe "Time, Function"
Time[()]

Returns the current system time.

Related topics: To set the time use the TIME$ statement.

Example:

Sub Main

 x = Time$(Now)

 Print x

End Sub

Timer Eventxe "Timer Event"
Timer

Timer Event is used to track elapsed time or can be display as a stopwatch in a dialog. The timers value is the number of seconds from midnight.

Related topics: DateSerial \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!16", "DateSerial" \D2HTargetDefault
, DateValue \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!13", "DateValue" \D2HTargetDefault
, Hour \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!19", "Hour" \D2HTargetDefault
, Minute \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!66", "Minute" \D2HTargetDefault
, Now \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!67", "Now" \D2HTargetDefault
, Second \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!20", "Second" \D2HTargetDefault
, TimeValue \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!15", "TimeValue" \D2HTargetDefault
.

Example:

Sub Main

Dim TS As Single

Dim TE As Single

Dim TEL As Single

TS = Timer

MsgBox "Starting Timer"

TE = Timer

TT = TE - TS

Print TT

End Sub

TimeSerial - Functionxe "TimeSerial - Function"
TimeSerial (hour, minute, second)

Returns the time serial for the supplied parameters hour, minute, second.

Related topics: DateSerial \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!16", "DateSerial" \D2HTargetDefault
, DateValue \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!13", "DateValue" \D2HTargetDefault
, Hour \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!19", "Hour" \D2HTargetDefault
, Minute \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!66", "Minute" \D2HTargetDefault
, Now \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!67", "Now" \D2HTargetDefault
, Second \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!20", "Second" \D2HTargetDefault
, TimeValue \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!15", "TimeValue" \D2HTargetDefault
.

Example:

Sub Main

Dim MTime

MTime = TimeSerial(12, 25, 27)

Print MTime

End Sub

TimeValue - Functionxe "TimeValue - Function"
TimeValue (TimeString)

Returns a double precision serial number based of the supplied string parameter.

Midnight = TimeValue(“23:59:59”)

Related topics: DateSerial \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!16", "DateSerial" \D2HTargetDefault
, DateValue \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!13", "DateValue" \D2HTargetDefault
, Hour \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!19", "Hour" \D2HTargetDefault
, Minute \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!66", "Minute" \D2HTargetDefault
, Now \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!67", "Now" \D2HTargetDefault
, Second \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!20", "Second" \D2HTargetDefault
, TimeSerial \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!14", "TimeSerial" \D2HTargetDefault
.

Example:

Sub Main

Dim MTime

MTime = TimeValue("12:25:27 PM")

Print MTime

End Sub

Trim, LTrim,xe "Trim, LTrim Rtrim Functions" RTrim Functions

[L| R] Trim (String)

Ltrim, Rtrim and Trim all Return a copy of a string with leading, trailing or both leading and trailing spaces removed.

Ltrim, Rtrim and Trim all return a string

Ltrim removes leading spaces.

Rtrim removes trailing spaces.

Trim removes leading and trailing spaces.

Example:

' This example uses the LTrim and RTrim functions to strip leading and

' trailing spaces, respectively, from a string variable. It

' uses the Trim function alone to strip both types of spaces.

' LCase and UCase are also shown in this example as well as the use

' of nested function calls

Sub Main

 MyString = " <-Trim-> "
' Initialize string.

 TrimString = LTrim(MyString)
' TrimString = "<-Trim-> ".

 MsgBox "|" & TrimString & "|"

 TrimString = LCase(RTrim(MyString))
' TrimString = " <-trim->".

 MsgBox "|" & TrimString & "|"

 TrimString = LTrim(RTrim(MyString))
' TrimString = "<-Trim->".

 MsgBox "|" & TrimString & "|"

 ' Using the Trim function alone achieves the same result.

 TrimString = UCase(Trim(MyString))
' TrimString = "<-TRIM->".

 MsgBox "|" & TrimString & "|"

End Sub

Type Statementxe "Type Statement"

xe "Type Statement"
Type usertype
 elementname As typename

[elementname As typename]

. . .

End Type

Defines a user-defined data type containing one or more elements.

The Type statement has these parts:

	Part
	Description

	Type
	Marks the beginning of a user-defined type.

	usertype
	Name of a user-defined data type. It follows standard variable naming conventions.

	elementname
	Name of an element of the user-defined data type. It follows standard variable-naming conventions.

	subscripts
	Dimensions of an array element. You can declare multiple dimensions. (not currently implemented)

	typename
	One of these data types: Integer, Long, Single, Double, String (for variable-length strings), String * length (for fixed-length strings), Variant, or another user-defined type. The argument typename can't be an object type. End Type Marks the end of a user-defined type.

Once you have declared a user-defined type using the Type statement, you can declare a variable of that type anywhere in your script. Use Dim or Static to declare a variable of a user-defined type. Line numbersxe "Numbers" and line labels aren't allowed in Type...End Type blocks.

User-defined types are often used with data records because data records frequently consist of a number of related elements of different data types. Arrays cannot be an element of a user defined type in Enable.

Example:

' This sample shows some of the features of user defined typesxe "User Defined Types"
Type type1

 a As Integer

 d As Double

 s As String

End Type

Type type2

 a As String

 o As type1

End Type

Type type3

 b As Integer

 c As type2

End Type

Dim type2a As type2

Dim type2b As type2

Dim type1a As type1

Dim type3a as type3

Sub Form_Click ()

 a = 5

 type1a.a = 7472

 type1a.d = 23.1415

 type1a.s = "YES"

 type2a.a = "43 - forty three"

 type2a.o.s = "Yaba Daba Doo"

 type3a.c.o.s = "COS"

 type2b.a = "943 - nine hundred and forty three"

 type2b.o.s = "Yogi"

 MsgBox type1a.a

 MsgBox type1a.d

 MsgBox type1a.s

 MsgBox type2a.a

 MsgBox type2a.o.s

 MsgBox type2b.a

 MsgBox type2b.o.s

 MsgBox type3a.c.o.s

 MsgBox a

End Sub

UBound Functionxe "UBound Function"
Ubound(arrayname[,dimension])

Returns the value of the largest usable subscript for the specified dimension of an array.

Related Topics: Dim \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!32", "Dim" \D2HTargetDefault
, Global \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!62", "Global" \D2HTargetDefault
, Lbound \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!63", "Lbound" \D2HTargetDefault
, and Option Base \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!73", "Option Base" \D2HTargetDefault

Example:

' This example demonstrates some of the features of arrays. The lower bound

' for an array is 0 unless it is specified or option base is set it as is

' done in this example.

Option Base 1

Sub Main

 Dim a(10) As Double

 MsgBox "LBound: " & LBound(a) & " UBound: " & UBound(a)

 Dim i As Integer

 For i = 1 to 3

 a(i) = 2 + i

 Next i

 Print a(1),a(1),a(2), a(3)

End Sub

UCase Functionxe "UCase, Function"
Ucase (String)

Returns a copy of String in which all lowercase characters have been converted to uppercase.

Related Topics: Lcase \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!74", "Lcase" \D2HTargetDefault
, Lcase$ Function

Example:

' This example uses the LTrim and RTrim functions to strip leading and

' trailing spaces, respectively, from a string variable. It

' uses the Trim function alone to strip both types of spaces.

' LCase and UCase are also shown in this example as well as the use

' of nested function calls

Sub Main

 MyString = " <-Trim-> "
' Initialize string.

 TrimString = LTrim(MyString)
' TrimString = "<-Trim-> ".

 MsgBox "|" & TrimString & "|"

 TrimString = LCase(RTrim(MyString))
' TrimString = " <-trim->".

 MsgBox "|" & TrimString & "|"

 TrimString = LTrim(RTrim(MyString))
' TrimString = "<-Trim->".

 MsgBox "|" & TrimString & "|"

 ' Using the Trim function alone achieves the same result.

 TrimString = UCase(Trim(MyString))
' TrimString = "<-TRIM->".

 MsgBox "|" & TrimString & "|"

End Sub

Valxe "Val"
Val(string)

Returns the numeric value of a string of characters.

Example:

Sub main

Dim Msg

Dim YourVal As Double

YourVal = Val(InputBox$("Enter a number"))

Msg = "The number you enered is: " & YourVal

MsgBox Msg

End Sub

VarTypexe "VarType"
VarType(varname)

Returns a value that indicates how the parameter varname is stored internally.

The parameter varname is a variant data type.

	VarType
	return values:

	Empty
	0

	Null
	1

	Integer
	2

	Long
	3

	Single
	4

	Double
	5

	Currency
	6 (not available at this time)

	Date/Time
	7

	String
	8

Related Topics: IsNull \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!51", "IsNull" \D2HTargetDefault
, IsNumeric \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!47", "IsNumeric" \D2HTargetDefault

Example:

If VarType(x) = 5 Then Print "Vartype is Double" 'Display variable type

Weekdayxe "Weekday Function" Function

Weekday(date,firstdayof week)

Returns a integer containing the whole number for the weekday it is representing.

Related Topics: Hour \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!19", "Hour" \D2HTargetDefault
, Second \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!20", "Second" \D2HTargetDefault
, Minute \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!66", "Minute" \D2HTargetDefault
, Day \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!57", "Day" \D2HTargetDefault

Example:

Sub Main

x = Weekday(#5/29/1959#)

Print x

End Sub

While...Wend Statementxe "While...Wend Statement"
While condition

.

.

.

[StatementBlock]

.

.

.

Wend

While begins the while...Wend flow of control structure. Condition is any numeric or expression that evaluates to true or false. If the condition is true the statements are executed. The statements can be any number of valid Enable Basic statements. Wend ends the While...Wend flow of control structure.

Related Topics: Do...Loop \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!75", "Do...Loop" \D2HTargetDefault
 Statement

Example:

Sub Main

Const Max = 5

Dim A(5) As String

A(1) = "Programmer"

A(2) = "Engineer"

A(3) = "President"

A(4) = "Tech Support"

A(5) = "Sales"

Exchange = True

While Exchange

Exchange = False

For I = 1 To Max

MsgBox A(I)

Next
 I

Wend

With Statementxe "With Statement"
With object

[STATEMENTS]

End With

The With statement allows you to proeform a series of commands or statements on a particular object without again refering to the name of that object. With statements can be nested by putting one With block within another With block. You will need to fully specify any object in an inner With block to any memeber of an object in an outer With block.

Related Topics: While Statement \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!25", "While Statement" \D2HTargetDefault
 and Do Loop \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!75", "Do Loop" \D2HTargetDefault

Example:

' This sample shows some of the features of user defined types and the with

' statement

Type type1

 a As Integer

 d As Double

 s As String

End Type

Type type2

 a As String

 o As type1

End Type

Dim type1a As type1

Dim type2a As type2

Sub Main ()

 With type1a

 .a = 65

 .d = 3.14

 End With

 With type2a

 .a = "Hello, world"

 With .o

 .s = "Goodbye"

 End With

 End With

 type1a.s = "YES"

 MsgBox type1a.a

 MsgBox type1a.d

 MsgBox type1a.s

 MsgBox type2a.a

 MsgBox type2a.o.s

End Sub

Write # - Statementxe "Write # - Statement"
Write #filenumber [,parameterlist]

Writes and formats data to a sequential file that must be opened in output or append mode.xe "Mode"

A comma delimited list of the supplied parameters is written to the indicated file. If no parameters are present, the newline character is all that will be written to the file.

Related Topics: Open \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!31", "Open" \D2HTargetDefault
 and Print# \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!76", "Print#" \D2HTargetDefault
 Statements

Example:

Sub Main ()

Open "TESTFILE" For Output As #1
' Open to write file.

userData1$ = InputBox ("Enter your own text here")

userData2$ = InputBox ("Enter more of your own text here")

Write #1, "This is a test of the Write # statement."

Write #1,userData1$, userData2

Close #1

Open "TESTFILE" for Input As #2
' Open to read file.

Do While Not EOF(2)

Line Input #2, FileData
' Read a line of data.

PRint FileData

' Construct message.

Loop

Close #2

' Close all open files.

MsgBox "Testing Print Statement"
' Display message.

Kill "TESTFILE"
' Remove file from disk.

End Sub

Yearxe "Year" Function

Year(serial#)

Returns an integer representing a year between 1930 and 2029, inclusive. The returned integer represents the year of the serial parameter.

The parameter serial# is a string that represents a date.

If serial is a Null, this function returns a Null.

Related Topics: Date \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!77", "Date" \D2HTargetDefault
, Date$ Function/Statement, Day \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!57", "Day" \D2HTargetDefault
, Hour \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!19", "Hour" \D2HTargetDefault
, Month \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!17", "Month" \D2HTargetDefault
, Minute \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!66", "Minute" \D2HTargetDefault
, Now \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!67", "Now" \D2HTargetDefault
, Second \Relate "5_pcdbasic_LanguageReferenceA_Z.doc!20", "Second" \D2HTargetDefault
.

Example:

Sub Main

 MyDate = "11/11/94"

 x = Year(MyDate)

 print x

End Sub

PC-DMIS

Chapter 6: Seq D2HDocument \h \r7 Automation

Introduction

xe "Automation Objects:introduction of"PC-DMIS's Automation gives you the ability to automate repetitive tasks within PC-DMIS or even to use elements of PC-DMIS functionality, within a custom built application.

PC-DMIS Automation contains these benefits:

· PC-DMIS Automation is computer independent. You can have a process on one computer automating a process on another computer.

· PC-DMIS Automation is location independent. You can run automation scripts within PC-DMIS itself, using the BASIC Script Editor or you can run automation scripts in external Visual Basic Editors. In addition, you can run automation scripts across a network.

· PC-DMIS Automation is Language independent: If you don't know BASIC but are familiar with another programming language, you can configure that programming language to use PC-DMIS's library (the examples and descriptions in this manual, however, are written using the BASIC programming language).

This Automation chapter contains a detailed list of methods and properties for each PC-DMIS Automation Object. The various objects are listed in alphabetical order. A bold item indicates a default property or method for the object.

To get started with Automation, you should look at "Sample Automation Scripts" on page 174 to get a feel for what's needed, and then look at "Accessing an Object's Properties, Methods and Events" on page 175 for details on how to access the various methods and properties contained in the various objects. For questions beyond the scope of this chapter, consult a Visual BASIC book on automation.

Important Miscellaneous Programming Notes

Using Parentheses in BASIC Scripts: For information on when to use or omit parentheses, please refer to your BASIC Language documentation; generally however, for methods and properties you should only use parentheses if you're receiving a value.

Invalid Function Return Type: Be aware that objects are not a valid return type for functions.

Sample Automation Scripts

Below are some very simple sample automation scripts that will demonstrate some of the necessary components needed to get started automating PC-DMIS.

Note: Notice in the examples below that you must declare and set the proper automation objects before you can access and use PC-DMIS's automation methods and properties. The "Accessing an Object's Properties, Methods and Events" topic on page 175 will be of assistance to you as you create your own scripts.

Sample Automation Script 1

The following example first uses PC-DMIS code to receive an integer value from the user and assigns it to the V1 variable.

C1=COMMENT/INPUT,Please type an integer value.
ASSIGN/V1 = INT(C1.INPUT)
COMMENT/OPER,BEFORE SCRIPT: Variable is:
,V1

It then calls a BASIC script named TEST2.BAS.

CS1=SCRIPT/FILENAME= D:\PROGRAM FILES\PCDMIS35\TEST2.BAS
FUNCTION/Main,,
STARTSCRIPT/
ENDSCRIPT/

Here is TEST2.BAS:

Sub Main
 Dim App As Object
 Set App = CreateObject ("PCDLRN.Application")
 Dim Part As Object
 Set Part = App.ActivePartProgram
 Dim Var As Object
 Set Var = Part.GetVariableValue ("V1")
 Dim I As Object
 If Not Var Is Nothing Then
 Var.LongValue = Var.LongValue + 1
 Part.SetVariableValue "V1", Var
 MsgBox "V1 is now: " & Var
 Else
 Msgbox "Could Not find variable"
 End If
End Sub
This script takes V1 variable and, using the GetVariableValue and SetVariableValue automation methods, increments the V1 by one and then sets the new value for V1 in the part program.

PC-DMIS then displays the changed variable in an operator comment.

COMMENT/OPER,AFTER SCRIPT: Variable is now
,V1

Note: PC-DMIS variables only hold values during execution; at learn time PC-DMIS variables have a value of zero. The GetVariableValue
 and SetVariableValue
 methods only change a variable's value during the script's execution. If you want to permanently change a value of a variable inside PC-DMIS, you should use the PutText
 method instead.
Sample Automation Script 2

The following script receives an operator name from the user and then inserts an COMMENT/OPER command into the Edit window for the currently open part program, displaying the name of the operator.

PC-DMIS must be running with an open part program in the background.

Sub Main
'Get operator Name And assign it To variable: N$.
N$ = InputBox$("Please enter your name:", "Operator", "", 200, 175)

'The following section adds a comment cmd to the part program
Dim App As Object

'Get the pointer to the PC-DMIS application
Set App = CreateObject("PCDLRN.Application")
Dim Part As Object

'Get the pointer to the current part program
Set Part = App.ActivePartProgram
Dim Cmds As Object

'Get the pointer to the set of commands In the part program
Set Cmds = Part.Commands
Dim Cmd As Object

'Add a COMMENT command
Set Cmd = Cmds.Add(SET_COMMENT, True)

'Set the comment's type to REPT
retvaltype = Cmd.PutText("REPT", COMMENT_TYPE, 0)

'Put the string held in variable N$ into the comment's text
retvaltext = Cmd.PutText(N$, COMMENT_FIELD, 1)

'Redraws the COMMENT command so that the applied changes are applied to the part program
Cmd.ReDraw
End Sub
Accessing an Object's Properties, Methods and Events

xe "Automation Objects:accessing"Objects are external classes that contain methods, properties and events.

[image: image60.png]

Methods: Methods are functions that usually perform actions. This usually returns a boolean value to determine whether or not the function succeeded. Methods are analogous to verbs in languages.

[image: image61.png]

Properties: Properties allow you to read or sometime write certain characteristics or attributes of an object or control. Properties are analogous to adjectives in languages.

[image: image62.png]

Events: Events are routines that get called when certain conditions are met. Events differ from methods and properties in that PC-DMIS is the source of the action, instead of the destination. To take advantage of events, the automation controller application must support events. Visual BASIC, for example supports events. Handling events involves declaring an object of the correct type and then adding handling functions for the different events. Currently events are found in only these objects:

· ApplicationObjectEvents

· Machine

·
PartProgram

Accessing Event Subroutines

The easiest way to access an object’s event subroutines is by following this procedure.

10. Access a readily available and robust Visual BASIC editor (such as one that ships with Microsoft’s Word or Excel products).

11. Select (General) from the Object list in the code window. This allows you to make global variable declarations.
[image: image63.png][emdAutoeatures

lemdBreakpoi
lemdcurrent
lemdLast
lemdLaunch

lForm

12. Declare a variable using the WithEvents keyword and specify an object that has events. For example:

Dim WithEvents AppEvents As PCDLRN.ApplicationObjectEvents

This code would enable the AppEvents variable in the Object list

13. Select your declared variable from the Object list in the code window.
[image: image64.png]P Project1 - frmPCDBASICScripts (Co
[AppEvents E

This enables you to select specific event subroutines from the Procedure list.

14. From the code window, select an event subroutine from the Procedure list.
[image: image65.png]) |

[onopenpartProgram E

fonCornectiave =
lonDisconnectsiave

lonEndExecution
iOnOHjectaboLtToExecute
lonObjectanoutToExectte2
lonOtjectexecuted
lonCtjecte ecuted
nOpenPartbrogram
[orOpenRemotePaneiDidog
lonSavePartPragrem
[onStartExecution
onUpdateStatusMessage.

The new subroutine appears in the code window.

15. Make modifications to the event’s subroutine code as needed. When PC-DMIS meets the specified condition, the event subroutine gets ran along with any code you added.

Accessing Methods and Properites

There are two ways to get to an object's methods, properties, and events.

1. Create objects by their ID

2. Call the object from an existing object

Whether you're creating an object or calling an object from an existing object, you'll need to first create and then set a pointer to the appropriate object.

Step 1: Declare the pointer variable name for the application by using the "DIM" statement. For example:

Dim App As Object
Step 2: Set the pointer variable to the PCDLRN Application using CreateObject. For example:

Set App = CreateObject("PCDLRN.Application")
Step 3: Declare and set additional pointer variable names for any needed sub objects found within the Application object. For example if you wanted to access commands available for the active part program, you're code would look something like this:

Dim Part As Object

Set Part = App.ActivePartProgram

Dim Cmds As Object

Set Cmds = Part.Commands

Dim Cmd As Object

Set Cmd = Cmds.Add(SET_COMMENT, True)
Use the heirarchy charts \Relate "6_pcdbasic_automation.doc!1", "heirarchy charts" \D2HTargetDefault
 and the Object Browser
 \Relate "6_pcdbasic_automation.doc!87", "Object Browser" \D2HTargetDefault topics below as guides.

Automation Object Heirarchy Charts

xe "Automation Objects:heirarchy charts"The following are the charts showing the heirarchy of the various charts and how to get to the methods or properties you need.

xe "Automation Objects:main overfiew heirarchy chart" Chart 1 - Main Overview

[image: image66.png]See Chart2

ActivePartProgram.

ActiveMachine

xe "Automation Objects:command subobjects heirarchy chart" Chart 2 – Command Subobjects

[image: image67.png]‘Active Tip

HI

Aigment
Aray Index
Attach

|

Basic Scan

HI

Callbration
Comment

HI

Dimension
GimFormat

‘I

Diminfo

Display Metafile
demal Command

Command

Feaure Command

|

i[

Fiow Control
Leap Frog
Load Machine

Load Probe

|

Modal
Move
ption Probe

Hi

Option Metion
Scan

i

Statistics

il

Temp Comp.

TraceField

xe "Automation Objects:probe subobjects heirarchy chart" Chart 3 – Probe Subobjects

[image: image68.png]

Using the Object Browser in Other Editors

While the PC-DMIS Basic Script Editor has its uses, it doesn’t have a lot of the visual syntax and other programming aids available to you from other common programs that also support automation.

The Object Browser, available in standard Visual Basic Editors, is essential to getting the proper help when writing automation scripts. It contains all the different objects for any library you have chosen to use in your automation project.

[image: image69.png]PO

S Racus

=
2 osatoms Al
@ owecns

o WOEDIRECTON |-® Omisou "
» woEnre e camngon

= oerwee s ScinE

@ osasi) S

@ oPronerose | > Boart

 optiston e Funan

b | KT o
[FoncionGatvariamevatus/arame 1o o e Varie =
Werker o PCOLR PrEroeam
et e e o i a1 s

Example Object Browser

To set up the object browser with the appropriate libraries, do the following:

1. Open Visual Basic (or you can open the VB editor that ships with MS Word or MS Excel)

2. In Visual Basic, select the References menu item. In VB5 this is Project | References. (In Excel or Word’s VB Editor, select Tools | References).

3. The References dialog box appears. Items that are checked are libraries already included currently.

4. Scroll down to PC-DMIS X.X Object Library (where X.X is your library version type and select the check box—this should be similar to your version of PC-DMIS).

5. Click OK.

6. Access the Object Browser (press F2 within the VB Editor). In the list at the top it should say <All Libraries>. From the list, select the PCDLRN libary.

You can now browse through all the objects and view their properties, methods, and events. Most of the objects have properties and methods in the Pcdmis object library. Only a few objects have events.

Additionally, when writing code, your Visual Basic Editor will now contain the visual syntax aids for the various PC-DMIS objects and commands.

Note: If new objects, methods, properties, or events are added, the Object Browser will most likely contain the new information first and will subsequently be more up to date than this manual another good reason to use the Object Browser when coding your scripts.

Active Tip Object Overview

The Active Tip object gives access to the properties of the PC-DMIS Set Active Tip command.

Properties:

xe "Active Tip Members:ActiveTip.Angle"ActiveTip.Angle XE "Angle"
DOUBLE value representing the rotation angle of the tip transformation matrix.

Read/Write Double

xe "Active Tip Members:ActiveTip.TipID"ActiveTip.TipID XE "TipID"
STRING value representing the ID of the tip to be made active.

Read/Write String
Methods:

xe "Active Tip Members:ActiveTip.GetShankVector"ActiveTip.GetShankVector

Syntax:

expression.GetOrigin (I, J, K)

Return Value: Boolean value representing whether the call successfully retrieved the values or not.

expression: Required expression that evaluates to a PC-DMIS ActiveTip object.

I: Required Long variable that receives the I component of the shank vector.

J: Required Long variable that receives the J component of the shank vector.

K: Required Long variable that receives the K component of the shank vector.

xe "Active Tip Members:ActiveTip.SetShankVector"ActiveTip.SetShankVector XE "SetShankVector"
Syntax:

expression.SetOrigin (I, J, K)

Return Value: Boolean value representing whether the call successfully set the shank vector values.

expression: Required expression that evaluates to a PC-DMIS ActiveTip object.

I: Required Long used to set the I component of the shank vector.

J: Required Long used to set the J component of the shank vector.

K: Required Long used to set the K component of the shank vector.

xe "AlignCommand Object Overview"

xe "Automation Objects:AlignCommand Object"AlignCommand Object Overview

Objects of type AlignCommand are created from more generic Command objects to pass alignment information back and forth.

roperties:

xe "AlignCommand Members:AlignCommand.Angle"AlignCommand.Angle XE "Angle"
Represents the offset angles of a 3D or 2D alignment. Read/write PointData. If used on an object other than a 3D or 2D alignment, setting this variable will do nothing, and getting this variable will return Nothing.

xe "AlignCommand Members:AlignCommand.AboutAxis"AlignCommand.AboutAxis XE "AboutAxis"
Represents the axis about which the alignment object rotates. Read/write Long.

Remarks
This function only works for objects of type ROTATE_ALIGN, ROTATE_CIRCLE_ALIGN, and ROTATEOFF_ALIGN. For other object types, trying to set this property does nothing, and trying to get this property always returns PCD_ZPLUS.

Valid Settings to set this property to are as follows:

PCD_XPLUS
PCD_XMINUS
PCD_YPLUS
PCD_YMINUS
PCD_ZPLUS
PCD_ZMINUS

xe "AlignCommand Members:AlignCommand.AverageError"AlignCommand.AverageError XE "AverageError"
Represents whether or not error averaging is used during the iterative alignment. Read/write Boolean.

Remarks
This property is only valid for objects of type ITER_ALIGN. For other objects, getting this property always returns FALSE, and setting it does nothing.

xe "AlignCommand Members:AlignCommand.Axis"AlignCommand.Axis XE "Axis"
Represents the axis that the alignment object uses. Read/write Long.

Remarks
This function only works for objects of type ROTATE_ALIGN, ROTATE_CIRCLE_ALIGN, TRANS_ALIGN, and TRANSOFF_ALIGN. For other object types, trying to set this property does nothing, and trying to get this property always returns PCD_ZPLUS.

Valid Settings to set this property to are as follows:

PCD_XPLUS
PCD_XMINUS
PCD_YPLUS
PCD_YMINUS
PCD_ZPLUS
PCD_ZMINUS

xe "AlignCommand Members:AlignCommand.BFOffset"AlignCommand.BFOffset XE "BFOffset"
Represents the offsets of a 3D or 2D alignment. Read/write PointData. If used on an object other than a 3D or 2D alignment, setting this variable will do nothing, and getting this variable will return Nothing.

xe "AlignCommand Members:AlignCommand.CadToPartMatrix"AlignCommand.CadToPartMatrix XE "CadToPartMatrix"
Represents the matrix used to transform points between the cad and part alignment systems. Read only DmisMatrix.

If used on an object other than a start alignment or a recall alignment, the identity matrix will be returned.

xe "AlignCommand Members:AlignCommand.ExternalID"AlignCommand.ExternalID XE "ExternalID"
Represents the external ID. Read/write String.

Remarks
This function only works for objects of type RECALL_ALIGN and SAVE_ALIGN. If used on an object other than a RECALL_ALIGN or SAVE_ALIGN, setting this variable will do nothing, and getting this variable will return the empty string.

xe "AlignCommand Members:AlignCommand.ExternalFileID"AlignCommand.ExternalFileID XE "ExternalFileID"
Represents the external filename for recalling external alignments. Read/write String.

Remarks

This function only works for objects of type RECALL_ALIGN and SAVE_ALIGN. If used on an object other than a RECALL_ALIGN or SAVE_ALIGN, setting this variable will do nothing, and getting this variable will return the empty string.

xe "AlignCommand Members:AlignCommand.FeatID"AlignCommand.FeatID XE "FeatID"
Represents the first (or only) feature ID used by this alignment object. Read/write String.

Remarks
This function only works for objects of type LEVEL_ALIGN, ROTATE_ALIGN, ROTATE_CIRCLE_ALIGN, TRANS_ALIGN, and EQUATE_ALIGN. If used on any other object type, setting this variable will do nothing, and getting this variable will return the empty string.

xe "AlignCommand Members:AlignCommand.FeatID2"AlignCommand.FeatID2 XE "FeatID2"
Represents the second feature ID used by this alignment object. Read/write String.

Remarks
This function only works for objects of type ROTATE_CIRCLE_ALIGN and EQUATE_ALIGN. If used on any other object type, setting this variable will do nothing, and getting this variable will return the empty string.

xe "AlignCommand Members:AlignCommand.FindCad"AlignCommand.FindCad XE "FindCad"
Represents the Findxe "Find" Cad property status of this best fit alignmentxe "Best Fit Alignment" object. Read/write Boolean.

Remarks
This function only works for objects of type BF2D_ALIGN and BF3D_ALIGN. If used on any other object type, setting this variable will do nothing, and getting this variable will return FALSE.

xe "AlignCommand Members:AlignCommand.ID"AlignCommand.ID XE "ID"
Represents the ID of this alignment object. Read/write String.

Remarks
This function only works for objects of type START_ALIGN and RECALL_ALIGN. If used on any other object type, setting this variable will do nothing, and getting this variable will return the empty string.

xe "AlignCommand Members:AlignCommand.InitID"AlignCommand.InitID XE "InitID"
Represents the intial ID of this alignment object. The intial ID is the ID of the alignment to recall before modifying it with this alignment. Read/write String.

Remarks
This function only works for objects of type START_ALIGN and RECALL_ALIGN. If used on any other object type, setting this variable will do nothing, and getting this variable will return the empty string.

xe "AlignCommand Members:AlignCommand.IterativeLevelAxis"AlignCommand.IterativeLevelAxis XE "IterativeLevelAxis"
Represents the level axis for an iterative alignment. Read/write PaxisType.

xe "AlignCommand Members:AlignCommand.IterativeOriginAxis"AlignCommand.IterativeOriginAxis XE "IterativeOriginAxis"
Represents the origin axis for an iterative alignment. Read/write PaxisType.

xe "AlignCommand Members:AlignCommand.IterativeRotateAxis"AlignCommand.IterativeRotateAxis XE "IterativeRotateAxis"
Represents the rotate axis for an iterative alignment. Read/write PaxisType.

xe "AlignCommand Members:AlignCommand.MachineToPartMatrix"AlignCommand.MachineToPartMatrix XE "MachineToPartMatrix"
Represents the matrix used to transform points between the machine and part alignment systems. Read only DmisMatrix.

If used on an object other than a start alignment or a recall alignment, the identity matrix will be returned.

xe "AlignCommand Members:AlignCommand.MeasAllFeat"AlignCommand.MeasAllFeat XE "MeasAllFeat"
Represents the “Measure All Features” property of this iterative alignment object. Read/write Boolean.

Remarks

This function only works for objects of type ITER_ALIGN. If used on any other object type, setting this variable will do nothing, and getting this variable will return FALSE.

xe "AlignCommand Members:AlignCommand.MeasAllFeatAlways"AlignCommand.MeasAllFeatAlways XE "MeasAllFeatAlways"
Represents the “Measure All Features Always” property of this iterative alignment object. Read/write Boolean.

Remarks

This function only works for objects of type ITER_ALIGN. If used on any other object type, setting this variable will do nothing, and getting this variable will return FALSE.

xe "AlignCommand Members:AlignCommand.NumInputs"AlignCommand.NumInputs XE "NumInputs"
Returns the number of inputs to this alignment object. Read-only Long.

Remarks

This function only works for objects of type ITER_ALIGN, BF2D_ALIGN, and BF3D_ALIGN. If used on any other object type, setting this variable will do nothing, and getting this variable will return zero.

xe "AlignCommand Members:AlignCommand.Offset"AlignCommand.Offset XE "Offset"
Represents the offset property of this offset alignment object. For objects of type TRANSOFF_ALIGN, it is the number of MM or inches to offset the alignment. For objects of type ROTATEOFF_ALIGN, it is the number of radians to offset the alignment. Read/write Double.

Remarks

This function only works for objects of type TRANSOFF_ALIGN and ROTATEOFF_ALIGN. If used on any other object type, setting this variable will do nothing, and getting this variable will return zero.

xe "AlignCommand Members:AlignCommand.Parent"AlignCommand.Parent XE "Parent"
Returns the parent Command object. Read-only.

Remarks
The parent of an AlignCommand object is the same underlying PC-DMIS object as the AlignCommand object itself. Getting the parent allows you to access the generic Command properties and methods of a given object.

xe "AlignCommand Members:AlignCommand.PointTolerance"AlignCommand.PointTolerance XE "PointTolerance"
Represents the “Point Tolerance” property of this alignment object. Read/write Double.

Remarks
This function only works for objects of type ITER_ALIGN, BF2D_ALIGN, and BF3D_ALIGN. If used on any other object type, setting this variable will do nothing, and getting this variable will return zero.

xe "AlignCommand Members:AlignCommand.RepierceCad"AlignCommand.RepierceCad XE "RepierceCad"
Represents whether or not to repierce the cad model during the execution of this iterative alignment object. Read/write Boolean.

Remarks
This function only works for objects of type ITER_ALIGN. If used on any other object type, setting this variable will do nothing, and getting this variable will return FALSE.

xe "AlignCommand Members:AlignCommand.UseBodyAxis"AlignCommand.UseBodyAxis XE "UseBodyAxis"
Represents whether or not to use the “Body Axis” method during the calculation of this iterative alignment object. Read/write Boolean.

Remarks
This function only works for objects of type ITER_ALIGN. If used on any other object type, setting this variable will do nothing, and getting this variable will return FALSE.

xe "AlignCommand Members:AlignCommand.Workplane"AlignCommand.Workplane XE "Workplane"
Represents the workplane of this alignment object. It can take the values PCD_XPLUS, PCD_XMINUS, PCD_YPLUS, PCD_YMINUS, PCD_ZPLUS, and PCD_ZMINUS.Read/write Long.

Remarks
This function only works for objects of type ITER_ALIGN. If used on any other object type, setting this variable will do nothing, and getting this variable will return PCD_ZPLUS.

Methods:

xe "AlignCommand Members:AlignCommand.AddBestFitFeat"AlignCommand.AddBestFitFeat

Syntax

Return Value=expression.AddBestFitFeat(ID, tolerance)

expression: Required expression that evaluates to a PC-DMIS AlignCommand object.

ID: Required String that is the ID of the feature to add to the level set.

tolerance: Required Double that is the tolerance to associate with ID.

Return Value: This method returns a boolean value. Boolean returns true if the function succeeds, false if it fails.

Remarks
This function only has an effect on objects of type BF2D_ALIGN and BF3D_ALIGN. On objects of these types, it adds the feature with the ID ID to the set of best fit features with tolerance tolerance. On objects of other types, it does nothing.

xe "AlignCommand Members:AlignCommand.AddLevelFeat"AlignCommand.AddLevelFeat XE "AddLevelFeat"
Syntax

Return Value=expression.AddLevelFeat(ID)

expression: Required expression that evaluates to a PC-DMIS AlignCommand object.

ID: Required String that is the ID of the feature to add to the level set.

Return Value: This method returns a boolean value. Boolean returns true if the function succeeds, false if it fails.

Remarks
This function only has an effect on objects of type ITER_ALIGN. On objects of this type, it adds the feature with the ID ID to the set of level features. On objects of other types, it does nothing.

xe "AlignCommand Members:AlignCommand.AddOriginFeat"AlignCommand.AddOriginFeat XE "AddOriginFeat"
Syntax

Return Value=expression.AddOriginFeat(ID)

expression: Required expression that evaluates to a PC-DMIS AlignCommand object.

ID: Required String that is the ID of the feature to add to the origin set.

Return Value: This method returns a boolean value. Boolean returns true if the function succeeds, false if it fails.

Remarks
This function only has an effect on objects of type ITER_ALIGN. On objects of this type, it adds the feature with the ID ID to the set of origin features. On objects of other types, it does nothing.

xe "AlignCommand Members:AlignCommand.AddRotateFeat"AlignCommand.AddRotateFeat XE "AddRotateFeat"
Syntax

Return Value=expression.AddRotateFeat(ID)

expression: Required expression that evaluates to a PC-DMIS AlignCommand object.

ID: Required String that is the ID of the feature to add to the Rotate set.

Return Value: This method returns a boolean value. Boolean returns true if the function succeeds, false if it fails.

Remarks
This function only has an effect on objects of type ITER_ALIGN. On objects of this type, it adds the feature with the ID ID to the set of rotate features. On objects of other types, it does nothing.

xe "AlignCommand Members:AlignCommand.CalculateMatrices"AlignCommand.CalculateMatrices XE "CalculateMatrices"
Forces immediate calculation of alignment matrices.

xe "Application Object Overview"

xe "Automation Objects:Application Object"Application Object Overview

The Application object represents the PC-DMIS application.

To start PC-DMIS using Automation from another application, use CreateObject or GetObject to return an Application object.

Example:
Dim App as Object.
Set App = CreateObject(“Pcdlrn.Application”)

aunching PC-DMIS With Startup Options

Because of an inherent weakness in the way Microsoft designed the CreateObject function, the CreateObject doesn't allow startup parameters. This means when the code executes it will launch PC-DMIS always in ONLINE mode.

However, there is a way around this. Your code can dynamically create a special startup file that will cause PC-DMIS to launch with specific startup options.

In order to launch PC-DMIS via automation with a startup file you must do the following:

· Create a text file named AutomationStartupOptions.txt.

· Create a single line of text in the file with the available startup options. The PC-DMIS specific startup options include the following:

/f – Launches in Offline mode.

/o – Launches in Operator mode.

/d – Launches in Debug mode.

/r – Launches in Reverse Axes mode

/postin – Launches in import mode. PC-DMIS will automatically import a specified file.

/postout – Launches in export mode. PC-DMIS will automatically export a specified file.

The line of text would look like this: /f /o /d /r /postin /postout

· Launch PC-DMIS via automation.

When PC-DMIS starts, it checks to see if the AutomationStartupOptions.txt file exists. If it does, then it uses the file to set the necessary flags. However, when PC-DMIS closes, it will delete the text file. This means that the code you use to launch PC-DMIS must also create the needed text file on the fly or must rename an existing file to AutomationStartupOptions.txt. See the "Example Code from C++" below.

Example Code from C++

 // Create my startup file

 int nIndex;

 CString szFileName, szLine(_T("/f"));

 GetModuleFileName (AfxGetInstanceHandle(), szFileName.GetBuffer (_MAX_PATH), _MAX_PATH);

 szFileName.ReleaseBuffer();

 nIndex = szFileName.ReverseFind('\\');

 szFileName = szFileName.Left(nIndex);

 szFileName += _T("\\AutomationStartupOptions.txt");

 CStdioFile StartupFile;

 if(StartupFile.Open(szFileName, CFile::modeCreate|CFile::modeWrite|CFile::typeText))

 {

 StartupFile.WriteString(szLine);

 StartupFile.Close();

 }

Properties:

xe "Application Members:Application.ActivePartProgram"Application.ActivePartProgram XE "ActivePartProgram"
Represents the currently active part program. Read/Write PartProgram.

xe "Application Members:Application.ApplicationEvents"Application.ApplicationEvents XE "ApplicationEvents"
Returns the Application Events Object for use in capturing application events.

xe "Application Members:Application.ApplicationSettings"Application.ApplicationSettings XE "ApplicationSettings"
Returns the Application Settings Object for use in modifying PC-DMIS’s settings.

xe "Application Members:Application.Caption"Application.Caption XE "Caption"
The text in the title bar of the application. Read/Write String.

xe "Application Members:Application.CurrentUserDirectory"Application.CurrentUserDirectory XE "CurrentUserDirectory"
This returns a string showing the directory that contains the current user’s setup information. Read-only String.

xe "Application Members:Application.DefaultFilePath"Application.DefaultFilePath XE "DefaultFilePath"
The directory in which the File Openxe "Open" dialog starts. If you set this property to empty it returns the installation path. Read/Write String.
xe "Application Members:Application.DefaultProbeFile"Application.DefaultProbeFile XE "DefaultProbeFile"
The name of the last chosen probe file used when creating a new part program. Read Only String
xe "Application Members:Application.DefaultFilePath"Application.DefaultMachineName XE "DefaultMachineName"
The name of the next available machine for attaching to a part program. Read Only String
xe "Application Members:Application.FullName"Application.FullName XE "FullName"
The fully qualified path name of the PC-DMIS executable. Read-only String.

Example: If the PC-DMIS executable is C:\PCDMISW\PCDLRN.EXE, the FullName property is “C:\PCDMISW\PCDLRN.EXE”.

xe "Application Members:Application.Height"Application.Height XE "Height"
The height of the PC-DMIS window in screen pixels. Read/Write Long.

xe "Application Members:Application.Left"Application.Left XE "Left"
The left edge of the PC-DMIS window, measured from the left edge of the Windows Desktop. Read/Write Long.

Remarks
The Left property is measured in screen pixels.

xe "Application Members:Application.Machines"Application.Machines XE "Machines"
Returns the read-only Machines collection object.

xe "Application Members:Application.MajorVersion"Application.MajorVersion XE "MajorVersion"
Returns the major version number of the application. Read only Long.

xe "Application Members:Application.MinorVersion"Application.MinorVersion XE "MinorVersion"
Returns the minor version number of the application. Read only Long.

xe "Application Members:Application.Name"Application.Name XE "Name"
The file name of the PC-DMIS executable. Read-only String.

Remarks
The Name property is the default property for the Application object. If the PC-DMIS executable is C:\PCDMISW\PCDLRN.EXE, the FullName property is “PCDLRN.EXE”.

xe "Application Members:Application.OperatorMode"Application.OperatorMode XE "OperatorMode"
Represents whether or not you are in operator mode. TRUE when in operator mode, FALSE otherwise. Read/Write Boolean.

Remarks
Changing into or out of operator mode makes significant changes to the appearance and utility of PC-DMIS.

xe "Application Members:Application.PartPrograms"Application.PartPrograms XE "PartPrograms"
Returns the collection of part programs currently active in PC-DMIS. Read-only PartPrograms collection.

xe "Application Members:Application.Path"Application.Path XE "Path"
Returns the directory in which the PC-DMIS executable resides. Read-only String.

Remarks
If the PC-DMIS executable is C:\PCDMISW\PCDLRN.EXE, the FullName property is “C:\PCDMISW\”.

xe "Application Members:Application.RemotePanelMode"Application.RemotePanelMode XE "RemotePanelMode"
Indicates that PC-DMIS is in Remote Panel mode. Used by Remote Panel Application (RPA). Read/write boolean.

xe "Application Members:Application.StatusBar"Application.StatusBar XE "StatusBar"
The text on the status bar of the main PC-DMIS window. Read/Write String.

xe "Application Members:Application.Top"Application.Top XE "Top"
The top edge of the PC-DMIS window, measured from the top edge of the Windows Desktop. Read/Write Long.

Remarks
The Top property is measured in screen pixels.

xe "Application Members:Application.UserExit"Application.UserExit XE "UserExit"
TRUE if the PC-DMIS automation engine is will shut down when the user exits PC-DMIS, otherwise FALSE. Read/Write Boolean.

xe "Application Members:Application.VersionString"Application.VersionString XE "VersionString"
Returns the version string for the application. Read only string.

xe "Application Members:Application.Visible"Application.Visible XE "Visible"
TRUE if PC-DMIS is visible, otherwise FALSE. Read/Write Boolean.

xe "Application Members:Application.Width"Application.Width XE "Width"
The width of the PC-DMIS window in screen pixels. Read/Write Long.

Methods:

xe "Help"

xe "Application Members:Application.Help"Application.Help

Syntax:

expression.Help HelpFile, HelpContext, HelpString
expression: Required expression that evaluates to a PC-DMIS Application object.

HelpFile: Required String parameter that indicates what help file to open.xe "Open"
HelpContext: Optional Long parameter that indicates which Context ID number in HelpFile to open.

HelpString: Optional String parameter that indicates a string to match among HelpFile’s topics.

Remarks
If both the HelpContext and HelpString are provided, the HelpString will be ignored. If neither is provided, the first help page is shown.

xe "Application Members:Application.Minimize"Application.Minimize XE "Minimize"
Syntax:

expression.Minimize

The Minimize subroutine reduces the PC-DMIS window to the taskbar.

expression: Required expression that evaluates to a PC-DMIS Application object.

xe "Application Members:Application.Maximize"Application.Maximize XE "Maximize"
Syntax:

expression.Maximize

The Maximize Subroutine expands the PC-DMIS window to full-screen size.

expression: Required expression that evaluates to a PC-DMIS Application object.

xe "Application Members:Application.Post"Application.Post XE "Post"
Syntax:

Return Value=expression.Post(Source, Destination)

expression: Required expression that evaluates to a PC-DMIS Application object.

Source: Required String that indicates the file from which to import or export.xe "Export"
Destination: Required String that indicates the file into which to import or export.

Return Value: This method returns a boolean value. Boolean returns true if the function succeeds, false if it fails.

The Post function tells PC-DMIS to import or export Source into Destination. It returns TRUE if the import or export process is successful, FALSE otherwise.

Exactly one of Source and Destination must be a PC-DMIS .prg or .cad file. If it is Source, then PC-DMIS will export based on the name of the Destination file. If the Destination file is a PC-DMIS .prg or .cad file, then PC-DMIS will import based on the name of the Source file.

The Source file must already exist, but the Destination file need not already exist.

xe "Application Members:Application.Quit"Application.Quit XE "Quit"
Syntax:

expression.Quit

The Quit function tells PC-DMIS to close. It always returns TRUE.

expression: Required expression that evaluates to a PC-DMIS Application object.

xe "Application Members:Application.Restore"Application.Restore XE "Restore"
Syntax:

expression.Restore

The Restore subroutine makes the PC-DMIS window openxe "Open" and neither maximized nor minimized.

expression: Required expression that evaluates to a PC-DMIS Application object.

xe "Application Members:Application.SetActive"Application.SetActive XE "SetActive"
Syntax:

Return Value=expression.SetActive

expression: Required expression that evaluates to a PC-DMIS Application object.

Brings PC-DMIS to the foreground, making it the active application.

Return Value: This method returns a boolean value. Boolean returns true if the function succeeds, false if it fails.

xe "Application Members:Application.SpawnNewInstance"Application.SpawnNewInstance XE "SpawnNewInstance"
Returns Application Object of newly created instance of application.

xe "Application Members:Application.WaitUntilReady"Application.WaitUntilReady XE "WaitUntilReady"
Waits until online machine has fully initialized or timeout period has elapsed before returning.

xe "Application Events Object Overview"

xe "Automation Objects:Application Events Object"Application Object Events Object Overview

The ApplicationObjectEvents object provides you with a series of events that get called when the PC-DMIS application meets certain conditions.

ents:

The following events are available to the Application Object Events object.

xe "Application Object Events Members:ApplicationObjectEvents.OnAddObject"ApplicationObjectEvents.OnAddObject XE "OnAddObject"
Syntax:

expression.OnAddObject(program, command)

expression: Required expression that evaluates to a PC-DMIS ApplicationObjectEvents object.

program: expression that evaluates to a PartProgram object to determine the part program for which this event should wait.

command: expression that evaluates to a Command object to determine the command for which this event should wait.

This event gets launched when the specified command gets added to the specified program.

xe "Application Object Events Members:ApplicationObjectEvents.OnClosePartProgram"ApplicationObjectEvents.OnClosePartProgram XE "OnClosePartProgram"
Syntax:

expression.OnClosePartProgram(program)

expression: Required expression that evaluates to a PC-DMIS ApplicationObjectEvents object.

program: expression that evaluates to a PartProgram object to determine the part program for which this event should wait.

This event gets launched when the specified program gets closed.

xe "Application Object Events Members:ApplicationObjectEvents.OnConnectSlave"ApplicationObjectEvents.OnConnectSlave XE "OnConnectSlave"
Syntax:

expression.OnConnectSlave(program)

expression: Required expression that evaluates to a PC-DMIS ApplicationObjectEvents object.

program: expression that evaluates to a PartProgram object to determine the part program for which this event should wait.

This event gets launched when PC-DMIS connects to and launches the specified program on the the slave computer.

xe "Application Object Events Members:ApplicationObjectEvents.OnDisconnectSlave"ApplicationObjectEvents.OnDisconnectSlave XE "OnDisconnectSlave"
Syntax:

expression.OnDisconnectSlave(program)

expression: Required expression that evaluates to a PC-DMIS ApplicationObjectEvents object.

program: expression that evaluates to a PartProgram object to determine the part program for which this event should wait.

This event gets launched when PC-DMIS disconnects from the slave computer.

xe "Application Object Events Members:ApplicationObjectEvents.OnEndExecution"ApplicationObjectEvents.OnEndExecution XE "OnEndExecution"
Syntax:

expression.OnEndExecution(program, type)

expression: Required expression that evaluates to a PC-DMIS ApplicationObjectEvents object.

program: expression that evaluates to a PartProgram object to determine the part program for which this event should wait.

type: this Long number determines the termination type used by this event.

This event gets launched when PC-DMIS finishes executing the specified program. PC-DMIS determines it has finished execution based on the termination type.
xe "Application Object Events Members:ApplicationObjectEvents.OnObjectAboutToExecute"ApplicationObjectEvents.OnObjectAboutToExecute XE "OnObjectAboutToExecute"
Syntax:

expression.OnObjectAboutToExecute(program, command)

expression: Required expression that evaluates to a PC-DMIS ApplicationObjectEvents object.

program: expression that evaluates to a PartProgram object to determine the part program for which this event should wait.

command: expression that evaluations to a Command object to determine the command about to be executed.

This event gets launched immediately before the specified command gets executed.
xe "Application Object Events Members:ApplicationObjectEvents.OnObjectAboutToExecute2ApplicationObjectEvents.OnObjectAboutToExecute2 XE "OnObjectAboutToExecute2"
Syntax:

expression.OnObjectAboutToExecute(program, command,arm)

expression: Required expression that evaluates to a PC-DMIS ApplicationObjectEvents object.

program: expression that evaluates to a PartProgram object to determine the part program for which this event should wait.

command: expression that evaluations to a Command object to determine the command about to be executed.

arm: Long value representing the arm on a multiple arm machine that is about to execute the command causing the event to launch.

This event gets launched immediately before the specified command gets executed on a specified arm of a multiple arm system.
xe "Application Object Events Members:ApplicationObjectEvents.OnObjectExecutedApplicationObjectEvents.OnObjectExecuted XE "OnObjectExecuted"
Syntax:

expression.OnObjectAboutToExecute(program, command)

expression: Required expression that evaluates to a PC-DMIS ApplicationObjectEvents object.

program: expression that evaluates to a PartProgram object to determine the part program for which this event should wait.

command: expression that evaluations to a Command object to determine the command that gets executed.

This event gets launched immediately after the specified command gets executed.
xe "Application Object Events Members:ApplicationObjectEvents.OnObjectExecuted2ApplicationObjectEvents.OnObjectExecuted2 XE "OnObjectExecuted2"
Syntax:

expression.OnObjectAboutToExecute(program, command,arm)

expression: Required expression that evaluates to a PC-DMIS ApplicationObjectEvents object.

program: expression that evaluates to a PartProgram object to determine the part program for which this event should wait.

command: expression that evaluations to a Command object to determine the command that gets executed.

arm: Long value representing the arm on a multiple arm machine that executes the command causing the event to launch.

This event gets launched immediately after the specified command gets executed on a specified arm of a multiple arm system.
xe "Application Object Events Members:ApplicationObjectEvents.OnOpenPartProgramApplicationObjectEvents.OnOpenPartProgram XE "OnOpenPartProgram"
Syntax:

expression.OnClosePartProgram(program)

expression: Required expression that evaluates to a PC-DMIS ApplicationObjectEvents object.

program: expression that evaluates to a PartProgram object to determine the part program for which this event should wait.

This event gets launched when the specified program gets opened.

xe "Application Object Events Members:ApplicationObjectEvents.OnOpenRemotePanelDialogApplicationObjectEvents.OnOpenRemotePanelDialog XE "OnOpenRemotePanelDialog"
Syntax:

expression.OnOpenRemotePanelDialog(program,ID, hwnd, msg, btn1, btn2, btn3, btn4, default)

expression: Required expression that evaluates to a PC-DMIS ApplicationObjectEvents object.

program: expression that evaluates to a PartProgram object to determine the part program for which this event should wait.

ID: A Long value representing a dialog box’s ID.

msg: A message displayed in the dialog box.

btn1: A Long value representing button 1.

btn2: A Long value representing button 2.

btn3: A Long value representing button 3.

btn4: A Long value representing button 4.

default: a Long value representing the default button.

This event gets launched when the specified Remote Panel Application dialog box opens.

xe "Application Object Events Members:ApplicationObjectEvents.OnSavePartProgramApplicationObjectEvents.OnSavePartProgram XE "OnSavePartProgram"
Syntax:

expression.OnSavePartProgram(program)

expression: Required expression that evaluates to a PC-DMIS ApplicationObjectEvents object.

program: expression that evaluates to a PartProgram object to determine the part program for which this event should wait.

This event gets launched when the specified program gets saved.

xe "Application Object Events Members:ApplicationObjectEvents.OnStartExecutionApplicationObjectEvents.OnStartExecution XE "OnStartExecution"
Syntax:

expression.OnStartExecution(program)

expression: Required expression that evaluates to a PC-DMIS ApplicationObjectEvents object.

program: expression that evaluates to a PartProgram object to determine the part program for which this event should wait.

This event gets launched when the specified part program begins execution.

xe "Application Object Events Members:ApplicationObjectEvents.OnUpdateStatusMessageApplicationObjectEvents.OnUpdateStatusMessage XE "OnUpdateStatusMessage"
Syntax:

expression.OnUpdateStatusMessage(msg)

expression: Required expression that evaluates to a PC-DMIS ApplicationObjectEvents object.

msg: string of the displayed message

This event gets launched when the status bar gets updated with the specified message.
xe "Application Settings Object Overview"

xe "Automation Objects:Application Settings Object"Application Settings Object Overview

The Application Settings object is a class that contains various properties and methods that allow you to work with PC-DMIS settings.

Properties:

xe "Application Settings Members:ApplicationSettings.WarningDefault19"ApplicationSettings.WarningDefault19 XE "WarningDefault19"
Documentation Pending.

xe "Application Settings Members:ApplicationSettings.WarningDefault48"ApplicationSettings.WarningDefault48 XE "WarningDefault48"
Documentation Pending.

xe "Application Settings Members:ApplicationSettings.WarningDefault60"ApplicationSettings.WarningDefault60 XE "WarningDefault60"
Documentation Pending.

xe "Application Settings Members:ApplicationSettings.WarnNoSavePrg"ApplicationSettings.WarnNoSavePrg XE "WarnNoSavePrg"
Documentation Pending.

xe "Application Settings Members:ApplicationSettings.WarnOKPh9"ApplicationSettings.WarnOKPh9 XE "WarnOKPh9"
Documentation Pending.

xe "Application Settings Members:ApplicationSettings.WarnOKRotPh9"ApplicationSettings.WarnOKRotPh9 XE "WarnOKRotPh9"
Documentation Pending.

xe "Application Settings Members:ApplicationSettings.WarnOverwritingAlignment"ApplicationSettings.WarnOverwritingAlignment XE "WarnOverwritingAlignment"
Documentation Pending.

xe "Array Index Object Overview"

xe "Automation Objects:Array Index Object"Array Index Object Overview

The Array Index Object is used to set up multi-dimensional feature arrays in PC-DMIS. Methods are provided to add, remove, or edit array upper and lower bounds for array indices.

Methods:

xe "Array Index Members:ArrayIndex.AddIndexSet"ArrayIndex.AddIndexSet XE "AddIndexSet"
Syntax:

expression.AddIndexSet (LowerBound, UpperBound)

expression: Required expression that evaluates to a PC-DMIS ArrayIndex object.

LowerBound: Required Long parameter representing the lower bound of the index set to be added.

UpperBound: Required Long parameter representing the upper bound of the index set to be added.

Remarks

Adds the supplied index set to the array index command.

xe "Array Index Members:ArrayIndex.GetLowerBound"ArrayIndex.GetLowerBound XE "GetLowerBound"
Syntax:

expression.GetLowerBound (Index)

Return Value: Long representing the lower bound of the specified index set.

expression: Required expression that evaluates to a PC-DMIS ArrayIndex object.

Index: Required Long parameter that specifies which index set to use in retrieving the lower bound.

Remarks

Retrieves the lower bound of the specified index set.

xe "Array Index Members:ArrayIndex.GetUpperBound"ArrayIndex.GetUpperBound XE "GetUpperBound"
Syntax:

expression.GetUpperBound (Index)

Return Value: Long representing the upper bound of the specified index set.

expression: Required expression that evaluates to a PC-DMIS ArrayIndex object.

Index: Required Long parameter that specifies which index set to use in retrieving the upper bound.

Remarks

Retrieves the upper bound of the specified index set.

xe "Array Index Members:ArrayIndex.RemoveIndexSet"ArrayIndex.RemoveIndexSet XE "RemoveIndexSet"
Syntax:

expression.RemoveIndexSet (Index)

expression: Required expression that evaluates to a PC-DMIS ArrayIndex object.

Index: Required Long parameter that specifies which index set to remove.

Remarks

Removes the index set specified by index from the array index object.

xe "Array Index Members:ArrayIndex.SetLowerBound"ArrayIndex.SetLowerBound XE "SetLowerBound"
Syntax:

expression.SetLowerBound (Index)

expression: Required expression that evaluates to a PC-DMIS ArrayIndex object.

Index: Required Long parameter that specifies which index set to use in setting the lower bound.

Remarks

Sets the lower bound of the specified index set.

xe "Array Index Members:ArrayIndex.SetUpperBound"ArrayIndex.SetUpperBound XE "SetUpperBound"
Syntax:

expression.SetUpperBound (Index)

expression: Required expression that evaluates to a PC-DMIS ArrayIndex object.

Index: Required Long parameter that specifies which index set to use in setting the upper bound.

Remarks

Setting the upper bound of the specified index set.

xe "Attach Object Overview"

xe "Automation Objects:Attach Object"Attach Object Overview

The attach command object attaches part programs to the current part program. The current part program can then access objects from the attached part programs.

Properties:

xe "Attach Members:Attach.AttachedAlign"Attach.AttachedAlign XE "AttachedAlign"
ID associated with an alignment in the attached program that corresponds with an alignment in the attaching program. Read/Write String
xe "Attach Members:Attach.Execute"Attach.Execute XE "Execute"
BOOLEAN value that determines whether or not the attached part program should be executed when PC-DMIS encounters the attached program.

Read/Write Boolean

xe "Attach Members:Attach.ID"Attach.ID XE "ID"
ID associated with the attached part program. This ID identies items in the attached part program. For example, if the ID for the attach statement is “PART2”, then feature “F1” in the attached program can be referred to as “F1:PART2”.

Read/Write String
xe "Attach Members:Attach.LocalAlign"Attach.LocalAlign XE "LocalAlign"
ID associated with an alignment in the attaching program that corresponds to an alignment in the attached program. Read/Write String
xe "Attach Members:Attach.PartName"Attach.PartName XE "PartName"
File name of the attached part program.

Read/Write String

xe "Autotrigger Object Overview"

xe "Automation Objects:Autotrigger Object"Autotrigger Object Overview

The Autotrigger command object automatically takes hits when the probe enters a specified zone.

Properties:

xe "Autotrigger Members:Autotrigger.Autotriggeron"Autotrigger.Autotriggeron XE "Autotriggeron"
Determines whether or not the Autotrigger feature is used when measuring. Read/write BOOLEAN.

xe "Autotrigger Members:Autotrigger.Beepingon"Autotrigger.Beepingon XE "Beepingon"
Determines whether or not the Beeping feature is used when the probe approaches the target. The closer you get to your target the more frequently you will hear the beeps. Read/write BOOLEAN.

xe "Autotrigger Members:Autotrigger.Radius"Autotrigger.Radius XE "Radius"
Determines the size of the radius, or tolerance zone, that surrounds the original hit location. When the probe enters this tolerance zone it will automatically take a hit. Read/Write double.

xe "BasicScanCommand Object Overview"

xe "Automation Objects:BasicScanCommand Object"BasicScanCommand Object Overview

Objects of type BasicScanCommand are created from more generic Command objects to pass information specific to the scan command back and forth. At present only DCC basic scans are user accessible.

Related Topics: Command.BasicScanCommand \Relate "6_pcdbasic_automation.doc!212", "Command.BasicScanCommand" \D2HTargetDefault
 \Relate "6_pcdbasic_automation.doc!93", "BasicScanCommand Members" \D2HTargetDefault
Properties

xe "BasicScanCommand Members:BasicScan.AutoClearPlane"BasicScan.AutoClearPlane XE "AutoClearPlane"
Determines whether auto clearance planes mode is on or off. Read/Write BOOLEAN.

xe "BasicScanCommand Members:BasicScan.BoundaryCondition"BasicScan.BoundaryCondition XE "BoundaryCondition"
Represents the boundary condition type. Read/write of enumeration BSBOUNDCOND_ENUM.

The allowable values have the following meaning:

BSBOUNDCOND_SPHENTRY: Represents a Spherical Boundary Condition. This Boundary condition requires the following parameters to be set by you using Automation Properties and/or Automation Methods : BoundaryConditionCenter, BoundaryConditionEndApproach, Diameter, number of Crossings.

BSBOUNDCOND_PLANECROSS: Represents a Planar Boundary Condition. This Boundary condition requires the following parameters to be set by you using Automation Properties and/or Automation Methods : BoundaryConditionCenter, BoundaryConditionEndApproach, BoundaryConditionPlaneV, number of Crossings.

BSBOUNDCOND_CYLINDER: Represents a Cylindrical Boundary Condition. This Boundary condition requires the following parameters to be set by you using Automation Properties and/or Automation Methods : BoundaryConditionCenter, BoundaryConditionEndApproach, BoundaryConditionAxisV, Diameter, number of Crossings.

BSBOUNDCOND_CONE: Represents a Conical Boundary Condition. This Boundary condition requires the following parameters to be set you user using Automation Properties and/or Automation Methods : BoundaryConditionCenter, BoundaryConditionEndApproach, BoundaryConditionAxisV, HalfAngle, number of Crossings.

The SetBoundaryConditionParams \Relate "6_pcdbasic_automation.doc!198", "SetBoundaryConditionParams" \D2HTargetDefault
 method should be used to set the values for:

· HalfAngle

· Number of Crossings

· Diameter

xe "BasicScanCommand Members:BasicScan.BoundaryConditionAxisV"BasicScan.BoundaryConditionAxisV XE "BoundaryConditionAxisV"
Represents the boundary condition axis vector. Read/write PointData object. This vector is used as the axis of the Cylindrical and Conical BoundaryConditions.

xe "BasicScanCommand Members:BasicScan.BoundaryConditionCenter"BasicScan.BoundaryConditionCenter XE "BoundaryConditionCenter"
Represents the boundary condition center. Read/write PointData object.

This Point is used by all Boundary Conditions and is the location of the Boundary Condition.

xe "BasicScanCommand Members:BasicScan.BoundaryConditionEndApproach"BasicScan.BoundaryConditionEndApproach XE "BoundaryConditionEndApproach"
Represents the boundary condition end approach vector. Read/write PointData object.

This vector is used by all Boundary Conditions and is the Approach Vector of the Probe as it crosses the Boundary condition.

xe "BasicScanCommand Members:BasicScan.BoundaryConditionPlaneV"BasicScan.BoundaryConditionPlaneV XE "BoundaryConditionPlaneV"
Represents the boundary condition plane vector. Read/write PointData object.

This vector is the normal vector of the Plane used by the Plane and OldStyle Boundary Conditions.

	Boundary Condition
	Properties Required

	Plane
	BoundaryConditionCenter

BoundaryConditionEndApproach

BoundaryConditionPlaneV

	Cone
	BoundaryConditionCenter

BoundaryConditionEndApproach

BoundaryConditionAxisV

	Cylinder
	BoundaryConditionCenter

BoundaryConditionEndApproach

BoundaryConditionAxisV

	Sphere
	BoundaryConditionCenter

BoundaryConditionEndApproach

xe "BasicScanCommand Members:BasicScan.BoundaryPointCount"BasicScan.BoundaryPointCount XE "BoundaryPointCount"
Indicates the number of boundary points to used in a patch scan. Read/Write LONG.

Individual boundary points can be set or retrieved via the "BasicScan.GetBoundaryPoint" and "BasicScan.SetBoundaryPoint" methods on page 211.

xe "BasicScanCommand Members:BasicScan.DisplayHits"BasicScan.DisplayHits XE "DisplayHits"
Determines whether hits of the scan are displayed in the Edit window or not. Read/Write BOOLEAN.

xe "BasicScanCommand Members:BasicScan.Filter"BasicScan.Filter XE "Filter"
Represents the filter type. Read/write of enumeration BSF_ENUM.

The allowable values have the following meaning:

BSF_DISTANCE: PC-DMIS determines each hit based on the set increment and the last two measured hits. The approach of the probe is perpendicular to the line between the last two measured hits. The probe will stay on the cut plane. PC-DMIS will start at the first boundary point and continue taking hits at the set increment, stopping when it satisfies the Boundary Condition. In the case of a continous scan, PC-DMIS would filter the data from the CMM and keep only the hits that are apart by at least the increment. Both DCC and Manual scans can use this filter.

BSF_BODYAXISDISTANCE: PC-DMIS will take hits at the set increment along the current part's coordinate system. The approach of the probe is perpendicular to the indicated axis. The probe will stay on the cut plane. The approach vector will be normal to the selected axis and on the cut plane. This technique uses the same approach for taking each hit (unlike the previous technique which adjusts the approach to be perpendicular to the line between the previous two hits). Only DCC scans should use this filter.

BSF_VARIABLEDISTANCE: This technique allows you to set specific maximum and minimum angle and increment values that will be used in determining where PC-DMIS will take a hit. The probe's approach is perpendicular to the line between the last two measured hits. You should provide the maximum and minimum values that will be used to determine the increments between hits. You also must enter the desired values for the maximum and minimum angles. PC-DMIS will take three hits using the minimum increment. It will then measure the angle between hit's 1-2 and 2-3.

· If the measured angle is between the maximum and minimum values defined, PC-DMIS will continue to take hits at the current increment.

· If the angle is greater than the maximum value, PC-DMIS will erase the last hit and measure it again using one quarter of the current increment value.

· If the angle is less than the minimum increment, PC-DMIS will take the hit at the minimum increment value.

PC-DMIS will again measure the angle between the newest hit and the two previous hits. It will continue to erase the last hit and drop the increment value to one quarter of the increment until the measured angle is within the range defined, or the minimum value of the increment is reached.

If the measured angle is less than the minimum angle, PC-DMIS will double the increment for the next hit. (If this is greater than the maximum increment value it will take the hit at the maximum increment.) PC-DMIS will again measure the angle between the newest hit and the two previous hits. It will continue to double the increment value until the measured angle is within the range defined, or the maximum increment is reached. Only DCC scans should use this filter.

xe "BasicScanCommand Members:BasicScan.HitType"BasicScan.HitType XE "HitType"
Represents the type of hit to use. Read/write of enumeration BSCANHIT_ENUM.

The allowable values have the following meaning:

BSCANHIT_VECTOR – use vector hits for this scan

BSCANHIT_SURFACE – use surface hits for this scan

BSCANHIT_EDGE – use edge hits for this scan.

BSCANHIT_BASIC – use basic hits for this scan. Only Manual scans use this hit type. Currently there are no Manual BasicScans.

Remarks
Not every hit type can be used with every method and filter combination.

	Method
	EdgeHit
	Vector Hit
	Surface Hit
	Basic Hit

	Linear
	-
	Y
	Y
	-

	Edge
	Y
	-
	-
	-

	Circle
	-
	Y
	-
	-

	Cylinder
	-
	Y
	-
	-

	Str Line
	-
	Y
	-
	-

	Center
	-
	Y
	-
	-

xe "BasicScanCommand Members:BasicScan.Method"BasicScan.Method XE "Method"
Represents the method type for this scan. Read/write of enumeration BSMETHOD_ENUM.

The allowable values have the following meaning:

BSCANMETH_LINEAR: This method will scan the surface along a line. This procedure uses the starting and ending point for the line, and also includes a direction point. The probe will always remain within the cut plane while doing the scan.

BSCANMETH_EDGE: This method will scan the Edge of the Surface in a Touch Trigger mode.

BSCANMETH_CIRCLE: This method will scan around a Circle in High Speed, Continous contact mode.

BSCANMETH_CYLINDER: This method will scan around a Cylinder in High Speed, Continous contact mode.

BSCANMETH_STRAIGHTLINE: This method will scan a straight line in a plane in High Speed , Continous contact mode.

BSCANMETH_CENTER: This method will find a Low Point on a surface.

Remarks
The Method type defines the geometry of the feature to be scanned and has parameters that need to be set properly before scanning. The parameters can be set using the SetMethodParams method.

xe "BasicScanCommand Members:BasicScan.MethodCutPlane"BasicScan.MethodCutPlane XE "MethodCutPlane"
Represents the method’s cut plane vector. Read/write PointData object.

xe "BasicScanCommand Members:BasicScan.MethodEnd"BasicScan.MethodEnd XE "MethodEnd"
Represents the scan’s end point. Read/write PointData object.

xe "BasicScanCommand Members:BasicScan.MethodEndTouch"BasicScan.MethodEndTouch XE "MethodEndTouch"
Represents the method’s end touch vector. Read/write PointData object.

xe "BasicScanCommand Members:BasicScan.MethodInitDir"BasicScan.MethodInitDir XE "MethodInitDir"
Represents the method’s initial direction vector. Read/write PointData object.

xe "BasicScanCommand Members:BasicScan.MethodInitTopSurf"BasicScan.MethodInitTopSurf XE "MethodInitTopSurf"
Represents the initial Surface Vector for the Edge method. Read/write PointData object.

xe "BasicScanCommand Members:BasicScan.MethodInitTouch"BasicScan.MethodInitTouch XE "MethodInitTouch"
Represents the method’s initial touch vector. Read/write PointData object.

xe "BasicScanCommand Members:BasicScan.MethodStart"BasicScan.MethodStart XE "MethodStart"
Represents the scan’s start point. Read/write PointData object.

	Method
	Method

Start
	Method

End
	Method

CutPlane
	Method

InitDir
	Method

InitTouch
	Method

InitTopSurf
	Method

EndTouch

	Linear
	Y
	Y
	Y
	Y
	Y
	-
	Y

	Edge
	Y
	Y
	-
	Y
	Y
	Y
	Y

	Circle
	Y
	-
	Y
	-
	Y
	-
	-

	Cylinder
	Y
	-
	Y
	-
	Y
	-
	-

	Str Line
	Y
	Y
	Y
	-
	-
	-
	-

	Center
	Y
	Y
	Y
	-
	Y
	
	-

xe "BasicScanCommand Members:BasicScan.NominalMode"BasicScan.NominalMode XE "NominalMode"
Represents how to determine the nominals for this scan. Read/write of enumeration BSCANNMODE_ENUM.

The allowable values have the following meaning:

BSCANNMODE_FINDCADNOMINAL: This mode would findxe "Find" the Nominal data from CAD after scanning. This mode is useful only when CAD surface data is available.

SCANNMODE_MASTERDATA: This mode keeps the data scanned the first time as Master data.

xe "BasicScanCommand Members:BasicScan.OperationMode"BasicScan.OperationMode XE "OperationMode"
Represents mode of operation of the scan . Read/write of enumeration BSOPMODE_ENUM.

The allowable values have the following meaning:

BSCANOPMODE_REGULARLEARN: When this mode is used, PC-DMIS will executexe "Execute" the scan as though it is learning it. All learned measured data will replacexe "Replace" the new measured data. The nominal will be re-calculated depending on the Nominals mode.

BSCANOPMODE_DEFINEPATHFROMHITS: This mode is available only when using analog probe heads that can do continuous contact scanning. When this option is selected, PC-DMIS allows the controller to ‘define’ a scan. PC-DMIS gathers all hit locations from the editor and passes them onto the controller for scanning. The controller will then adjust the path allowing the probe to pass through all the points. The data is then reduced according to the increment provided and the new data will replace any old measured data. Currently, this value cannot be used through Automation since there is no method provided to define a path.

BSCANOPMODE_HIGHSPEEDFEATUREBASED: This execute mode is available only for Analog Probe Heads. When this is selected, PC-DMIS uses the built-in High Speed scanning capability of the controller to execute a scan.

Example: If you selected a Circle scan, PC-DMIS would use a corresponding Circle scanning command in the controller and pass on the parameters to the controller to execute. In this case, PC-DMIS does not control execution of the scans.

BSCANOPMODE_NORMALEXECUTION: If a DCC scan is executed, PC-DMIS will take hits at each of the learned locations in Stitch scanning mode, storing the newly measured data.
	Method
	Regular Learn
	Defined Path
	Feature Based
	Normal

	Linear
	Y
	-
	-
	Y

	Edge
	Y
	-
	-
	Y

	Circle
	-
	-
	Y
	Y

	Cylinder
	-
	-
	Y
	Y

	Str Line
	-
	-
	Y
	Y

	Center
	Y
	-
	-
	Y

xe "BasicScanCommand Members:BasicScan.SinglePoint"BasicScan.SinglePoint XE "SinglePoint"
Determines whether single point mode is on or off. Read/Write BOOLEAN.

When on, each point will be considered as a single measured point.

Methods:

xe "BasicScanCommand Members:BasicScan.AddControlPoint"BasicScan.AddControlPoint

Syntax

Return Value=expression.AddCountrolPoint(1,0)

Return Value: This value returns a boolean value. If the value is 1 (True), it adds a control point to the scan.

Expression: Required expression that evaluates to a PC-DMIS BasicScanCommand object.

xe "BasicScanCommand Members:BasicScan.CreateBasicScan"BasicScan.CreateBasicScan XE "CreateBasicScan"
Syntax

Return Value=expression.CreateBasicScan(1,0)

Return Value: This value returns a boolean value. If the value is 1 (or True), it causes DCC and Manual Scans to create a basic scan object.

Expression: Required expression that evaluates to a PC-DMIS BasicScanCommand object.

xe "BasicScanCommand Members:BasicScan.GetBoundaryConditionParams"BasicScan.GetBoundaryConditionParams XE "GetBoundaryConditionParams"
Syntax

Return Value=expression. GetBoundaryConditionParams (nCrossings, dRadius, dHalfAngle)

expression: Required expression that evaluates to a PC-DMIS BasicScanCommand object.

nCrossing: Required Long variable that gets the number of crossings for this boundary condition. The scan would stop after the probe crosses (breaks) the Boundary Condition like a Sphere, Cylinder, Cone, or a Plane the given number of times.

dRadius: Required Double variable that gets the radius of the boundary condition. This is used by the Spherical and Cylindrical Boundary Conditions.

dHalfAngle: Required Double variable that gets the half-angle of the cone-type boundary condition, or gets zero if the boundary condition is not of cone type.

Return Value: This method returns a boolean value. Boolean returns true if the function succeeds, false if it fails.

Remarks
	Boundary Condition
	GetBoundaryConditionParams (nCrossings, dRadius, dHalfAngle)

	Plane
	Ncrossings

	Cone
	NCrossings, ,dHalfAngle

	Cylinder
	NCrossings, dRadius

	Sphere
	NCrossings, dRadius

xe "BasicScanCommand Members:BasicScan.GetBoundaryPoint"BasicScan.GetBoundaryPoint XE "GetBoundaryPoint"
Syntax

Return Value=expression. GetBoundaryPoint (Index, X,Y, Z)

Return Value: This method returns a boolean value. Boolean returns true if the function succeeds, false if it fails.

expression: Required expression that evaluates to a PC-DMIS BasicScanCommand object.

Index: Required Long which indicates which boundary point to get.

X: Required Long variable that will hold the X value of the bounday point.

Y: Required Long variable that will hold the Y value of the bounday point.

Z: Required Long variable that will hold the Z value of the bounday point.

Remarks

This function works with patch scans. Use the boundarypointcount property to determine how many boundary points are available.

xe "BasicScanCommand Members:BasicScan.GetControlPoint"BasicScan.GetControlPoint XE "GetControlPoint"
Syntax

Return Value=expression.GetControlPoint(Index)

Return Value: Returns the control point specified by the index.

expression: Required expression that evaluates to a PC-DMIS BasicScanCommand object.

Index: Required Long value which indicates which control point to return.

xe "BasicScanCommand Members:BasicScan.GetFilterParams"BasicScan.GetFilterParams XE "GetFilterParams"
Syntax

Return Value=expression. GetFilterParams (dCutAxisLocation, nAxis, dMaxIncrement, dMinIncrement, dMaxAngle, dMinAngle)

Return Value: This method returns a boolean value. Boolean returns true if the function succeeds, false if it fails.

expression: Required expression that evaluates to a PC-DMIS BasicScanCommand object.

dCutAxisLocation: Not used.

nAxis: Required Long variable that gets the cut axis. Returns non-zero only for axis filters. For axis filters, 0 means the X axis, 1 means the Y-axis, and 2 means the Z-axis.

dMaxIncrement: Required Double variable that gets the maximum increment. For fixed-length filters, this is simply the fixed increment for Variable Distance Filters.

dMinIncrement: Required Double variable that gets the minimum increment.

dMaxAngle: Required Double variable that gets the maximum angle used in Variable Distance Filters.

dMinAngle: Required Double variable that gets the minimum angle

used in Variable Distance Filters.

Remarks
	Filter
	GetFilterParams (dCutAxisLocation, nAxis, dMaxIncrement, dMinIncrement, dMaxAngle, dMinAngle)

	Distance
	,,dMaxIncrement

	BodyAxisDistance
	,nAxis, dMaxIncrement

	VariableDistance
	,,dMaxIncrement, dMinIncrement, dMaxAngle, dMinAngle

xe "BasicScanCommand Members:BasicScan.GetHitParams"BasicScan.GetHitParams XE "GetHitParams"
Syntax

Return Value=expression. GetHitParams (nInitSamples, nPermSamples, dSpacer, dIndent, dDepth)

Return Value: This method returns a boolean value. Boolean returns true if the function succeeds, false if it fails.

expression: Required expression that evaluates to a PC-DMIS BasicScanCommand object.

nInitSamples: Required Long variable that gets the number of initial sample hits for the hits in this scan. It always returns zero for basic hits and vector hits.

nPermSamples: Required Long variable that gets the number of permanent sample hits for the hits in this scan. It always returns zero for basic hits and vector hits.

dSpacer: Required Double variable that gets the spacing of the sample hits from the hit center. It always returns zero for basic hits and vector hits.

dIndent: Required Double variable that gets the indent of the sample hits from the hit center. It always returns zero for basic hits, vector hits, and surface.

dDepth: Required Double variable that gets the depth of the sample hits from the hit center. It always returns zero for basic hits, vector hits, and surface.

xe "BasicScanCommand Members:BasicScan.GetMethodParams"BasicScan.GetMethodParams XE "GetMethodParams"
Syntax

Return Value=expression. GetMethodParams (bIn, bCenteringType, nCenteringDirection, dDiameter, dArcAngle, dDepth, dPitch)

Return Value: This method returns a boolean value. Boolean returns true if the function succeeds, false if it fails.

expression: Required expression that evaluates to a PC-DMIS BasicScanCommand object.

bIn: Required variable that gets 0 for Inside scans, 1 for Outside scans, and 2 for Plane Circle scans.

bCenteringType: Required Variable for Centering Scans that gets 0 for Axis Centering and 1 for Plane centering.

nCenteringDirection: Required Long variable that takes a +1 for measurement with the direction of the probe and –1 for against the direction of probe.

dDiameter: Required Double variable that gets the diameter of the circle or cylinder scan, and zero otherwise.

dArcAngle: Required Double variable that gets arc angle for circle and cylinder scans.

dDepth: Required Double variable that gets the depth for cylinder scans, and zero otherwise.

dPitch: Required Double variable that gets a Pitch for Cylinder scans.

Remarks
	Method
	GetMethodParams (bIn, bCenteringType, nCenteringDirection, dDiameter, dArcAngle, dDepth, dPitch)

	Linear
	None

	Edge
	None

	Circle
	bIn, , , dDiameter, dArcAngle, dDepth

	Cylinder
	bIn, , , dDiameter, dArcAngle, dDepth, dPitch

	Str Line
	None

	Center
	, bCenteringType, nCenteringDirection

xe "BasicScanCommand Members:BasicScan.GetMethodPointData"BasicScan.GetMethodPointData XE "GetMethodPointData"
Syntax

Return Value=expression. GetMethodPointData (MethodStart, MethodEnd, MethodInitTouch, MethodEndTouch, MethodInitDir, MethodCutPlane)

Return Value: This method returns a boolean value. Boolean returns true if the function succeeds, false if it fails.

expression: Required expression that evaluates to a PC-DMIS BasicScanCommand object.

MethodStart: Required PointData object that gets the MethodStart property.

MethodEnd: Required PointData object that gets the MethodEnd property.

MethodInitTouch: Required PointData object that gets the MethodInitTouch property.

MethodEndTouch: Required PointData object that gets the MethodEndTouch property.

MethodInitDir: Required PointData object that gets the MethodInitDir property.

MethodCutPlane: Required PointData object that gets the MethodCutPlane property.

Remarks
If scan is a BasicScanCommand object, and MS, ME, MIT, MET, MID,and MCP are all Dimensioned as Object, the following are equivalent:

scan.GetMethodParams MS,ME,MIT,MET,MID,MCP

set MS = scan.MethodStart
set ME = scan.MethodEnd
set MIT = scan.MethodInitTouch
set MET = scan.MethodEndTouch
set MID = scan.MethodInitDir
set MCP = scan.MethodCutPlane

This method is provided as a shortcut to getting these commonly used properties all at once.

xe "BasicScanCommand Members:BasicScan.GetNomsParams"BasicScan.GetNomsParams XE "GetNomsParams"
Syntax

Return Value=expression. GetNomsParams (dFindNomsTolerance, dSurfaceThickness, dEdgeThickness)

Return Value: This method returns a boolean value. Boolean returns true if the function succeeds, false if it fails.

expression: Required expression that evaluates to a PC-DMIS BasicScanCommand object.

dFindNomsTolerance: Required Double variable that gets the Findxe "Find" Noms tolerance and is used only when the NominalMode property is BSCANNMODE_FINDCADNOMINAL.

dSurfaceThickness: Required Double variable that gets the surface thickness and is used only when the NominalMode property is BSCANNMODE_FINDCADNOMINAL.

dEdgeThickness: Required Double variable that gets the edge thickness and is used only when the NominalMode property is BSCANNMODE_FINDCADNOMINAL and when the Method property is BSCANMETH_EDGE.

xe "BasicScanCommand Members:BasicScan.GetParams"BasicScan.GetParams XE "GetParams"
Syntax

Return Value=expression. GetParams (Method, Filter, OperationMode, HitType, NominalMode, BoundaryCondition)

Return Value: This method returns a boolean value. Boolean returns true if the function succeeds, false if it fails.

expression: Required expression that evaluates to a PC-DMIS BasicScanCommand object.

Method: Required Long variable that gets the Method property.

Filter: Required Long variable that gets the Filter property.

OperationMode: Required Long variable that gets the OperationMode property.

HitType: Required Long variable that gets the HitType property.

NominalMode: Required Long variable that gets the NominalMode property.

BoundaryCondition: Required Long variable that gets the BoundaryCondition property.

Remarks
If scan is a BasicScanCommand object, and M, F, O, H, N,and B are all Dimensioned as Object, the following are equivalent:

scan.GetParams M, F, O, H, N, B

M = scan.Method
F = scan.Filter
O = scan.OperationMode
H = scan.HitType
N = scan.NominalMode
B = scan.BoundaryCondition

This method is provided as a shortcut to getting these commonly used properties all at once.

xe "BasicScanCommand Members:BasicScan.RemoveControlPoint"BasicScan.RemoveControlPoint XE "RemoveControlPoint"
Syntax

Return Value=expression.RemoveControlPoint(Index)

Return Value: Returns a boolean value. If set to 1 (True), the control point is removed at the specified index.

expression: Required expression that evaluates to a PC-DMIS BasicScanCommand object.

Index: Required Long value which indicates which control point to remove.

xe "BasicScanCommand Members:BasicScan.SetBoundaryConditionParams"BasicScan.SetBoundaryConditionParams XE "SetBoundaryConditionParams"
Syntax

Return Value=expression.SetBoundaryConditionParams (nCrossings, dRadius, dHalfAngle)

Return Value: This method returns a boolean value. Boolean returns true if the function succeeds, false if it fails.

expression: Required expression that evaluates to a PC-DMIS BasicScanCommand object.

nCrossing: Required Long that sets the number of crossings for this boundary condition.

dRadius: Required Double that sets the radius of the boundary condition.

dHalfAngle: Required Double that sets the half-angle of the cone-type boundary condition, or is ignored if the boundary condition is not of cone type.

Remarks
	Boundary Condition
	SetBoundaryConditionParams (nCrossings, dRadius, dHalfAngle)

	Plane
	Ncrossings

	Cone
	NCrossings,, dHalfAngle

	Cylinder
	NCrossings, dRadius

	Sphere
	NCrossings, dRadius

xe "BasicScanCommand Members:BasicScan.SetBoundaryPoint"BasicScan.SetBoundaryPoint XE "SetBoundaryPoint"
Syntax

Return Value=expression.SetBoundaryPoint (Index, X,Y, Z)

Return Value: This method returns a boolean value. Boolean returns true if the function succeeds, false if it fails.

expression: Required expression that evaluates to a PC-DMIS BasicScanCommand object.

Index: Required Long which indicates which boundary point to set.

X: Required Long that indicates the X value of the bounday point.

Y: Required Long that indicates the Y value of the bounday point.

Z: Required Long that indicates the Z value of the bounday point.

Remarks

This function works with patch scans. Use the boundarypointcount property to set the number of boundary points.

xe "BasicScanCommand Members:BasicScan.SetControlPoint"BasicScan.SetControlPoint XE "SetControlPoint"
Syntax

Return Value=expression.SetControlPoint(Index)

Return Value: Returns a boolean value. If set to 1 (True), the control point is set at the specified index.

expression: Required expression that evaluates to a PC-DMIS BasicScanCommand object.

Index: Required Long value which indicates which control point to set.

xe "BasicScanCommand Members:BasicScan.SetFilterParams"BasicScan.SetFilterParams XE "SetFilterParams"
Syntax

Return Value=expression.SetFilterParams (dCutAxisLocation, nAxis, dMaxIncrement, dMinIncrement, dMaxAngle, dMinAngle)

Return Value: This method returns a boolean value. Boolean returns true if the function succeeds, false if it fails.

expression: Required expression that evaluates to a PC-DMIS BasicScanCommand object.

dCutAxisLocation: Not used

nAxis: Required Long that sets the cut axis. It is used only for axis filters. For axis filters, 0 means the X axis, 1 means the Y-axis, and 2 means the Z-axis.

dMaxIncrement: Required Double that sets the maximum increment. For fixed-length filters, this is simply the fixed increment

dMinIncrement:. Required Double that sets the minimum increment.

dMaxAngle: . Required Double that sets the maximum angle.

dMinAngle: . Required Double that sets the minimum angle.

Remarks
	Filter
	SetFilterParams (dCutAxisLocation, nAxis, dMaxIncrement, dMinIncrement, dMaxAngle, dMinAngle)

	Distance
	,,dMaxIncrement

	BodyAxisDistance
	,nAxis, dMaxIncrement

	VariableDistance
	,,dMaxIncrement, dMinIncrement, dMaxAngle, dMinAngle

xe "BasicScanCommand Members:BasicScan.SetHitParams"BasicScan.SetHitParams XE "SetHitParams"
Syntax

Return Value=expression.SetHitParams (nInitSamples, nPermSamples, dSpacer, dIndent, dDepth)

Return Value: This method returns a boolean value. Boolean returns true if the function succeeds, false if it fails.

expression: Required expression that evaluates to a PC-DMIS BasicScanCommand object.

nInitSamples: Required Long that sets the number of initial sample hits for the hits in this scan. It is ignored for basic hits and vector hits.

nPermSamples: Required Long that sets the number of permanent sample hits for the hits in this scan. It is ignored for basic hits and vector hits.

dSpacer: Required Double that sets the spacing of the sample hits from the hit center. It is ignored for basic hits and vector hits.

dIndent: Required Double that sets the indent of the sample hits from the hit center. It is ignored for basic hits, vector hits, and surface.

dDepth: Required Double that sets the depth of the sample hits from the hit center. It is ignored for basic hits, vector hits, and surface.

xe "BasicScanCommand Members:BasicScan.SetMethodParams"BasicScan.SetMethodParams XE "SetMethodParams"
Syntax

Return Value=expression.SetMethodParams (bIn, bCenteringType, nCenteringDirection, dDiameter, dArcAngle, dDepth, dPitch)

Return Value: This method returns a boolean value. Boolean returns true if the function succeeds, false if it fails.

expression: Required expression that evaluates to a PC-DMIS BasicScanCommand object.

bIn: Required variable that sets 0 for Inside scans, 1 for Outside scans, nd 2 for Plane Circle scans.

bCenteringType: Required Variable for Centering Scans that sets 0 for Axis Centering and 1 for Plane centering.

nCenteringDirection: Required Long variable that sets +1 for measurement with the direction of the probe and –1 for against the direction of probe.

dDiameter: Required Double variable that sets the diameter of the circle or cylinder scan, and zero otherwise.

dArcAngle: Required Double variable that sets arc angle for circle and cylinder scans.

dDepth: Required Double variable that sets the depth for circle and cylinder scans, and zero otherwise.

dPitch: Required Double variable that sets Pitch for Cylinder scans.

Remarks
	Method
	SetMethodParams (bIn, bCenteringType, nCenteringDirection, dDiameter, dArcAngle, dDepth, dPitch)

	Linear
	None

	Edge
	None

	Circle
	bIn, , , dDiameter, dArcAngle, dDepth

	Cylinder
	bIn, , , dDiameter, dArcAngle, dDepth, dPitch

	Str Line
	None

	Center
	, bCenteringType, nCenteringDirection

xe "BasicScanCommand Members:BasicScan.SetMethodPointData"BasicScan.SetMethodPointData XE "SetMethodPointData"
Syntax

Return Value=expression.SetMethodPointData (MethodStart, MethodEnd, MethodInitTouch, MethodEndTouch, MethodInitDir, MethodCutPlane)
Return Value: This method returns a boolean value. Boolean returns true if the function succeeds, false if it fails.

expression: Required expression that evaluates to a PC-DMIS BasicScanCommand object.

MethodStart: Required PointData object that sets the MethodStart property.

MethodEnd: Required PointData object that sets the MethodEnd property.

MethodInitTouch: Required PointData object that sets the MethodInitTouch property.

MethodEndTouch: Required PointData object that sets the MethodEndTouch property.

MethodInitDir: Required PointData object that sets the MethodInitDir property.

MethodCutPlane: Required PointData object that sets the MethodCutPlane property.

Remarks
If scan is a BasicScanCommand object, and MS, ME, MIT, MET, MID,and MCP are all Dimensioned as Object, the following are equivalent:

scan.SetMethodParams MS,ME,MIT,MET,MID,MCP

set scan.MethodStart = MS
set scan.MethodEnd = ME
set scan.MethodInitTouch = MIT
set scan.MethodEndTouch = MET
set scan.MethodInitDir = MID
set scan.MethodCutPlane = MCP

This method is provided as a shortcut to setting these commonly used properties all at once.

xe "BasicScanCommand Members:BasicScan.SetNomsParams"BasicScan.SetNomsParams XE "SetNomsParams"
Syntax

Return Value=expression.SetNomsParams (dFindNomsTolerance, dSurfaceThickness, dEdgeThickness)

Return Value: This method returns a boolean value. Boolean returns true if the function succeeds, false if it fails.

expression: Required expression that evaluates to a PC-DMIS BasicScanCommand object.

dFindNomsTolerance: Required Double that sets the Findxe "Find" Noms tolerance.

dSurfaceThickness: Required Double that sets the surface thickness.

dEdgeThickness: Required Double that sets the edge thickness.

xe "BasicScanCommand Members:BasicScan.SetParams"BasicScan.SetParams XE "SetParams"
Syntax

Return Value=expression.SetParams (Method, Filter, OperationMode, HitType, NominalMode, BoundaryCondition)

Return Value: This method returns a boolean value. Boolean returns true if the function succeeds, false if it fails.

expression: Required expression that evaluates to a PC-DMIS BasicScanCommand object.

Method: Required Long that sets the Method property.

Filter: Required Long that sets the Filter property.

OperationMode: Required Long that sets the OperationMode property.

HitType: Required Long that sets the HitType property.

NominalMode: Required Long that sets the NominalMode property.

BoundaryCondition: Required Long that sets the BoundaryCondition property.

Remarks
If scan is a BasicScanCommand object, and M, F, O, H, N,and B are all Dimensioned as Object, the following are equivalent:

scan.SetParams M, F, O, H, N, B

scan.Method = M
scan.Filter = F
scan.OperationMode = O
scan.HitType = H
scan.NominalMode = N
scan.BoundaryCondition = B

This method is provided as a shortcut to setting these commonly used properties all at once.

xe "Basic Scan Object Combinations"Basic Scan Object Combinations

The tables below describes the different combination of Objects that can be used to create and executexe "Execute" a Basic Scan. The Methods will only work with the combination of different of Objects selected from this table (i.e. if you decide to set a method type of BSCANMETH_CIRCLE, then you have to use a Filter type of BSF_DISTANCE etc).

Table 1

	Method
	Filters

	BSCANMETH_LINEAR
	BSF_DISTANCE

BSF_BODYAXISDISTANCE

BSF_VARIABLEDISTANCE

	BSCANMETH_EDGE
	BSF_DISTANCE

BSF_VARIABLEDISTANCE

	BSCANMETH_CIRCLE
	BSF_DISTANCE

	BSCANMETH_CYLINDER
	BSF_DISTANCE

	BSCANMETH_STRAIGHTLINE
	BSF_DISTANCE

	BSCANMETH_CENTER
	BSF_DISTANCE

Table 2

	Method
	NominalMode

	BSCANMETH_LINEAR
	BSCANNMODE_FINDCADNOMINAL BSCANNMODE_MASTERDATA

	BSCANMETH_EDGE
	BSCANNMODE_FINDCADNOMINAL BSCANNMODE_MASTERDATA

	BSCANMETH_CIRCLE
	BSCANNMODE_FINDCADNOMINAL BSCANNMODE_MASTERDATA

	BSCANMETH_CYLINDER
	BSCANNMODE_FINDCADNOMINAL BSCANNMODE_MASTERDATA

	BSCANMETH_STRAIGHTLINE
	BSCANNMODE_FINDCADNOMINAL BSCANNMODE_MASTERDATA

	BSCANMETH_CENTER
	BSCANNMODE_FINDCADNOMINAL BSCANNMODE_MASTERDATA

Table 3

	Method
	OperationMode

	BSCANMETH_LINEAR
	BSCANOPMODE_REGULARLEARN BSCANOPMODE_DEFINEPATHFROMHITS

BSCANOPMODE_NORMALEXECUTION

	BSCANMETH_EDGE
	BSCANOPMODE_REGULARLEARN

BSCANOPMODE_NORMALEXECUTION

	BSCANMETH_CIRCLE
	BSCANOPMODE_HIGHSPEEDFEATUREBASED

BSCANOPMODE_NORMALEXECUTION

	BSCANMETH_CYLINDER
	BSCANOPMODE_HIGHSPEEDFEATUREBASED

BSCANOPMODE_NORMALEXECUTION

	BSCANMETH_STRAIGHTLINE
	BSCANOPMODE_HIGHSPEEDFEATUREBASED

BSCANOPMODE_NORMALEXECUTION

	BSCANMETH_CENTER
	BSCANOPMODE_REGULARLEARN

BSCANOPMODE_NORMALEXECUTION

Table 4

	Method
	HitType

	BSCANMETH_LINEAR
	BSCANHIT_VECTOR

BSCANHIT_SURFACE

	BSCANMETH_EDGE
	BSCANHIT_EDGE

	BSCANMETH_CIRCLE
	BSCANHIT_VECTOR

	BSCANMETH_CYLINDER
	BSCANHIT_VECTOR

	BSCANMETH_STRAIGHTLINE
	BSCANHIT_VECTOR

	BSCANMETH_CENTER
	BSCANHIT_VECTOR

Table 5

	Method
	BoundaryCondition

	BSCANMETH_LINEAR
	BSBOUNDCOND_SPHENTRY BSBOUNDCOND_PLANECROSS BSBOUNDCOND_CYLINDER

BSBOUNDCOND_CONE

	BSCANMETH_EDGE
	BSBOUNDCOND_SPHENTRY BSBOUNDCOND_PLANECROSS BSBOUNDCOND_CYLINDER

BSBOUNDCOND_CONE

	BSCANMETH_CIRCLE
	None

	BSCANMETH_CYLINDER
	None

	BSCANMETH_STRAIGHTLINE
	None

	BSCANMETH_CENTER
	None

CadModel Object Overview:

The CadModel object allows you to work with the imported CAD model in PC-DMIS' Graphics Display window.

Methods:

xe "CadModel Members:CadModel.HighLightElement"CadModel.HighLightElement XE "HighLightElement"
Syntax

Return Value=expression.HighlightElement(Name, All)

Return Value: This method returns a boolean value. Boolean returns true if the function succeeds in highlighting the specified CAD element, false if it fails.

expression: Required expression that evaluates to CadModel object.

Name: Required case-sensitive String that indicates the CAD element to highlight.

All: Boolean value that indicates whether or not all CAD elements of that have Name should be highlighted. If set to TRUE then all elements with Name are selected. If set to FALSE, then only the first item in the list that has Name is selected.

Remarks:

This method highlights the specified CAD element (or elements) on the CAD model in the Graphics Display window.

Sample Code:

Dim App As PCDLRN.Application

Set App = CreateObject("PCDLRN.Application")

Dim Parts As PCDLRN.PartPrograms

Set Parts = App.PartPrograms

Dim Part As PCDLRN.PartProgram

Set Part = App.ActivePartProgram

Dim CADMod As PCDLRN.CadModel

Set CADMod = Part.CadModel

Dim strElement As String

Dim boolYesNo As Boolean

strElement = InputBox("Type the CAD element to highlight", "Highlight CAD")

boolYesNo = MsgBox("Select all?", vbYesNo, "Select All")

If CADMod.HighlightElement(strElement, boolYesNo) = False Then

 MsgBox "Element: " & strElement & " couldn't be highlighted", vbCritical, "No CAD Highlighted"

 Else

 MsgBox "Success. Element: " & strElement & " was highlighted", vbOKOnly, "CAD Highlighted"

End If
xe "CadModel Members:CadModel.UnHighLightElement"CadModel.UnHighLightElement XE "UnHighLightElement"
Syntax

Return Value=expression.UnHighlightElement(Name, All)

Return Value: This method returns a boolean value. Boolean returns true if the function succeeds in removing the highlight from the specified CAD element, false if it fails.

expression: Required expression that evaluates to CadModel object.

Name: Required case-sensitive String that indicates the CAD element from which to remove highlighting.

All: Boolean value that indicates whether or not all CAD elements of that have Name should be deselected. If set to TRUE then all elements with Name are deselected. If set to FALSE, then only the first item in the list that has Name is deselected.

Remarks:

This method removes highlighting from the specified CAD element (or elements) on the CAD model in the Graphics Display window.

xe "CadWindow Object Overview"

xe "Automation Objects:CadWindow Object"CadWindow Object Overview:

The CadWindow object is the one and only cad window for a part program.

Properties:

xe "CadWindow Members:CadWindow.Application"CadWindow.Application XE "Application"
Represents the read-only PC-DMIS application. The Application object includes properties and methods that return top-level objects. For example, the ActivePartProgram property returns a PartProgram object.

xe "CadWindow Members:CadWindow.Height"CadWindow.Height XE "Height"
The height of the Cad window in screen pixels. Read/Write Long.

xe "CadWindow Members:CadWindow.Left"CadWindow.Left XE "Left"
The left edge of the Cad window, measured from the left edge of the Windows Desktop. Read/Write Long.

Remarks
The Left property is measured in screen pixels.

xe "CadWindow Members:CadWindow.Parent"CadWindow.Parent XE "Parent"
Returns the parent CadWindows object. Read-only.

xe "CadWindow Members:CadWindow.Top"CadWindow.Top XE "Top"
The top edge of the Cad window, measured from the top edge of the Windows Desktop. Read/Write Long.

Remarks
The Top property is measured in screen pixels.

xe "CadWindow Members:CadWindow.Visible"CadWindow.Visible XE "Visible"
This property is TRUE if the Cad window is visible, FALSE otherwise. Read/write Boolean.

If you make the Cad window invisible, the only way to make it visible again is to set this property to TRUE.

xe "CadWindow Members:CadWindow.Width"CadWindow.Width XE "Width"
The width of the Cad window in screen pixels. Read/Write Long.

Methods:

xe "Print"

xe "CadWindow Members:CadWindow.Print"CadWindow.Print

Syntax

Return Value=expression.Print(long Option, BOOL DrawRuler)

Return Value: This method returns a boolean value. Boolean returns true if the function succeeds, false if it fails.

expression: Required expression that evaluates to CadWindow object.

Option: Required Long that indicates the type of printing to occur. Options include Scale to Fit on Single Page, Print Visible Screen Area, Print Complete Views, and Print Complete Viewxe "View" w/ Current Scale. Print Visible Screen Area is only available one of the views are zoomed. Print Complete Views is only available when multiple views exist.

DrawRuler: Required BOOL that indicates whether rulers should be included on the printout. This option is only available if rulers are currently turned on in the cad drawing.

Prints the Cad window

xe "Print"

xe "CadWindow Members:CadWindow.SelectCADObject"CadWindow.SelectCADObject XE "SelectCADObject"
Syntax

Return Value=expression.SelectCADObject(long Option, BOOL On)

Return Value: This method returns a boolean value. Boolean returns true if the function succeeds, false if it fails.

expression: Required expression that evaluates to CadWindow object.

Option: An expression evaluating to a long which represents a valid cad object.

On: An expression that evaluates to a boolean value. This should be true if the cad object is to be selected, and false if the cad object is to be deselected.

This method selects or deselects a cad object.

xe "CadWindows Object Overview"

xe "Automation Objects:CadWindows Object"CadWindows Object Overview

The CadWindows object is an object containing a collection of CadWindow objects currently available to a part program.

Currently, there is exactly one CadWindow object associated with each part program, but the CAD Windows object class is made available for future changes.

Properties:

xe "CadWindows Members:CadWindows.Application"CadWindows.Application XE "Application"
Represents the read-only PC-DMIS application. The Application object includes properties and methods that return top-level objects. For example, the ActivePartProgram property returns a PartProgram object.

xe "CadWindows Members:CadWindows.Count"CadWindows.Count XE "Count"
Returns the number of CadWindow objects active in this part program. Read-only Long.

Currently, this property always returns one.

xe "CadWindows Members:CadWindows.Parent"CadWindows.Parent XE "Parent"
Represents the parent PartProgram object. Read-only.

Methods:

xe "CadWindows Members:CadWindows.Item"CadWindows.Item

Syntax

Return Value=expression.Item(Item)

Return Value: This method returns the CadWindow object from the parent CadWindows object. Read-only.

expression: Required expression that evaluates to FlowControlCommand object.

Item: Required Variant that denotes which CadWindow object to return.

Since there is only and exactly one CadWindow object, it does not matter what you pass into the Item argument. For the sake of future compatibility, you should pass 1.

xe "Calibration Object Overview"

xe "Automation Objects:Calibration Object"Calibration Object Overview

The calibration object allows for tip calibration during part program execution. This object is placed into a part program through the add method of the commands object and obtained from the command object via the CalibrationCommand property.

Properties:

xe "Calibration Members:Calibration.Moved"Calibration.Moved XE "Moved"
BOOLEAN value that represents whether the sphere used as the calibration tool has moved since the last tip calibration.

· If this value is true, then the tool’s (identified by ToolID) calibration data is reset using the data from the sphere (identified by SphereID) that was just measured.

· If this value is false, then the current tool calibration data is used to calibrate the active tip.

Read/Write Boolean
xe "Calibration Members:Calibration.SphereID"Calibration.SphereID XE "SphereID"
ID of a sphere command that occurs prior to the calibration commmand. The sphere should have identical characteristics with the tool identified by ToolID.

Read/Write String
xe "Calibration Members:Calibration.ToolID"Calibration.ToolID XE "ToolID"
ID of a previously defined calibration tool that is similar to the sphere identified by SphereID. The tool data is used in the tip calibration or reset depending on the value of the moved data member.

xe "Command Object Overview"

xe "Automation Objects:Command Object"Command Object Overview

The Command object represents a single command in PC-DMIS. Examples of single commands in PC-DMIS are the start of a feature, a hit, the end of a feature, a single X dimension line, an auto feature, etc.

The Command object is also a "collection object" as it represents:

· the collection of executions of this object in the current execution.

· the collection of executions of this object in the previous execution.

Properties:

xe "Command Members:Command.ActiveTipCommand"Command.ActiveTipCommand

Returns an ActiveTip Command object if Command is of Type SET_ACTIVE_TIP. Nothing otherwise. Read-only.

xe "Command Members:Command.AlignmentCommand"Command.AlignmentCommand XE "AlignmentCommand"
Returns this Command object as an AlignCommand object if it can, Nothing otherwise.

The Commands that have the following Type can become AlignCommand objects are as follows:

START_ALIGN
LEVEL_ALIGN
ROTATE_ALIGN
TRANS_ALIGN
TRANSOFF_ALIGN
ROTATEOFF_ALIGN
SAVE_ALIGN
RECALL_ALIGN
EQUATE_ALIGN
ITER_ALIGN
BF2D_ALIGN
ROTATE_CIRCLE_ALIGN
BF3D_ALIGN

xe "Command Members:Command.Application"Command.Application XE "Application"
Represents the read-only PC-DMIS application. The Application object includes properties and methods that return top-level objects. For example, the ActivePartProgram property returns a PartProgram object.

xe "Command Members:Command.ArrayIndex"Command.ArrayIndexCommand XE "ArrayIndexCommand"
Returns an ArrayIndex Command object if Command is of Type ARRAY_INDEX. Returns Nothing otherwise. Read-only.

xe "Command Members:Command.AttachCommand"Command.AttachCommand XE "AttachCommand"
Returns an Attach Command object if Command is of Type ATTACH_PROGRAM. Returns Nothing otherwise. Read-only.

xe "Command Members:Command.BasicScanCommand"Command.BasicScanCommand XE "BasicScanCommand"
Returns this Command object as an BasicScanCommand object if it can, Nothing otherwise. Read-only.

Only Command objects of type BASIC_SCAN_OBJECT can become BasicScanCommand objects.

xe "Command Members:Command.CalibrationCommand"Command.CalibrationCommand XE "CalibrationCommand"
Returns a Calibration Command object if Command is of Type CALIB_SPHERE. Otherwise it returns Nothing. Read-only.

xe "Command Members:Command.CommentCommand"Command.CommentCommand XE "CommentCommand"
Returns a Calibration Command object if Command is of Type SET_COMMENT. Otherwise it returns Nothing. Read-only.

xe "Command Members:Command.CopyMeastoNom"Command.CopyMeastoNom XE "CopyMeastoNom"
Property used to indicate/set whether the object should execute in MASTER mode. After executing in MASTER mode, the object copies the measured vector, centroid , and other nominal information to the nominals and turns off MASTER mode. This copies the same information that gets calculated using the CalculateNominals method. Read/Write Boolean.

The nominal information that this copies included the following:

· CENTROID

· VECTOR

· DIAMETER

· STARTPOINT

· ENDPOINT

· BALLCENTER

· LENGTH

· ELLIPSEMINORAXIS

· ANGLE

· SURFACEVECTOR

· THICKNESS

· NUMHITS

· SPACER

· INDENT

· AUTO_MOVE_DISTANCE

· DEPTH

· TARG

· SCANROWCOUNT

· ANGLE_VECTOR

· PUNCH_VECTOR

· PIN_VECTOR

· PIN_DIAMETER

· REPORT_VECTOR

· REPORT_SURF_VECTOR

· HEIGHT

· MEASURE_VECTOR

· UPDATE_VECTOR

· CORNER_RADIUS

· ANGLE2

xe "Command Members:Command.Count"Command.Count XE "Count"
Represents the number of copies of this Command which are available. If the part program is currently being executed, it is the number of times it has been executed so far in the current execution cycle. If the part program is not currently being executed, it is the number of times it was executed during the previous execution cycle. If Command has never been executed, Count has the value one. Read-only Long.

xe "Command Members:Command.DimensionCommand"Command.DimensionCommand XE "DimensionCommand"
Returns this Command object as an DimensionCommand object if it can, Nothing otherwise. Read-only.

The Command objects that have the following Type can become DimensionCommand objects:

DIMENSION_START_LOCATION
DIMENSION_X_LOCATION
DIMENSION_Y_LOCATION
DIMENSION_Z_LOCATION
DIMENSION_D_LOCATION
DIMENSION_R_LOCATION
DIMENSION_A_LOCATION
DIMENSION_T_LOCATION
DIMENSION_V_LOCATION
DIMENSION_L_LOCATION
DIMENSION_H_LOCATION
DIMENSION_PR_LOCATION
DIMENSION_PA_LOCATION
DIMENSION_PD_LOCATION
DIMENSION_RT_LOCATION
DIMENSION_S_LOCATION
DIMENSION_RS_LOCATION
DIMENSION_STRAIGHTNESS
DIMENSION_ROUNDNESS
DIMENSION_FLATNESS
DIMENSION_PERPENDICULARITY
DIMENSION_PARALLELISM
DIMENSION_PROFILE
DIMENSION_3D_DISTANCE
DIMENSION_2D_DISTANCE
DIMENSION_3D_ANGLE
DIMENSION_2D_ANGLE
DIMENSION_RUNOUT
DIMENSION_CONCENTRICITY
DIMENSION_ANGULARITY
DIMENSION_KEYIN
DIMENSION_TRUE_START_POSITION
DIMENSION_TRUE_X_LOCATION
DIMENSION_TRUE_Y_LOCATION
DIMENSION_TRUE_Z_LOCATION
DIMENSION_TRUE_DD_LOCATION
DIMENSION_TRUE_DF_LOCATION
DIMENSION_TRUE_PR_LOCATION
DIMENSION_TRUE_PA_LOCATION
DIMENSION_TRUE_DIAM_LOCATION

xe "Command Members:Command.DimFormat"Command.DimFormatCommand XE "DimFormatCommand"
Returns a DimFormat Command object if Command is of Type DIMENSION_FORMAT. Otherwise it returns Nothing. Read-only.

xe "Command Members:Command.DimInfoCommand"Command.DimInfoCommand XE "DimInfoCommand"
Returns a DimInfo Command object if Command is of Type DIMENSION_INFORMATION. Otherwise it returns Nothing. Read-only.

xe "Command Members:Command.DisplayMetaFileCommand"Command.DisplayMetaFileCommand XE "DisplayMetaFileCommand"
Returns a DispMetaFile Command object if Command is of Type DISPLAY_METAFILE. Otherwise it returns Nothing. Read-only.

xe "Command Members:Command.ExternalCommand"Command.ExternalCommand XE "ExternalCommand"
Returns an ExternalCommand Command object if Command is of Type EXTERNAL_COMMAND. Otherwise it returns Nothing. Read-only.

xe "Command Members:Command.Feature"Command.Feature XE "Feature"
Represents the kind of feature that this Command object is. If it is not a feature it will return F_NONE. Otherwise it will return a value from the following list. Read-only ENUM_FEATURE_TYPES.

	Type of Feature
	Return Value

	POINT
	F_POINT

	CIRCLE
	F_CIRCLE

	SPHERE
	F_SPHERE

	LINE
	F_LINE

	CONE
	F_CONE

	CYLINDER
	F_CYLINDER

	PLANE
	F_PLANE

	CURVE
	F_CURVE

	SLOT
	F_SLOT

	SET
	F_SET

	ELLIPSE
	F_ELLIPSE

	SURFACE
	F_SURFACE

xe "Command Members:Command.FeatureCommand"Command.FeatureCommand XE "FeatureCommand"
Returns this Command object as an FeatCommand object if it can, Nothing otherwise. Read-only.

The Commands that have the following Type can become FeatCommand objects are as follows:

ANGLE_HIT
AUTO_ANGLE_FEATURE
AUTO_CIRCLE
AUTO_CORNER_FEATURE
AUTO_CYLINDER
AUTO_EDGE_FEATURE
AUTO_ELLIPSE
AUTO_HIGH_FEATURE
AUTO_NOTCH
AUTO_ROUND_SLOT
AUTO_SPHERE
AUTO_SQUARE_SLOT
AUTO_SURFACE_FEATURE
AUTO_VECTOR_FEATURE
BASIC_HIT
CONST_ALN_LINE
CONST_ALN_PLANE
CONST_BF_CIRCLE
CONST_BF_CONE
CONST_BF_CYLINDER
CONST_BF_LINE
CONST_BF_PLANE
CONST_BF_SPHERE
CONST_BFRE_CIRCLE
CONST_BFRE_CONE
CONST_BFRE_CYLINDER
CONST_BFRE_LINE
CONST_BFRE_PLANE
CONST_BFRE_SPHERE
CONST_CAST_CIRCLE
CONST_CAST_CONE
CONST_CAST_CYLINDER
CONST_CAST_LINE
CONST_CAST_PLANE
CONST_CAST_POINT
CONST_CAST_SPHERE
CONST_CONE_CIRCLE
CONST_CORNER_POINT
CONST_DROP_POINT
CONST_HIPNT_PLANE
CONST_INT_CIRCLE
CONST_INT_LINE
CONST_INT_POINT
CONST_MID_LINE
CONST_MID_PLANE
CONST_MID_POINT
CONST_OFF_LINE
CONST_OFF_PLANE
CONST_OFF_POINT
CONST_ORIG_POINT
CONST_PIERCE_POINT
CONST_PLTO_LINE
CONST_PLTO_PLANE
CONST_PROJ_CIRCLE
CONST_PROJ_CONE
CONST_PROJ_CYLINDER
CONST_PROJ_LINE
CONST_PROJ_POINT
CONST_PROJ_SPHERE
CONST_PRTO_LINE
CONST_PRTO_PLANE
CONST_REV_CIRCLE
CONST_REV_CONE
CONST_REV_CYLINDER
CONST_REV_LINE
CONST_REV_PLANE
CONST_REV_SPHERE
CONST_ROUND_SLOT
CONST_SET
CORNER_HIT
EDGE_HIT
GENERIC_CONSTRUCTION
MEASURED_CIRCLE
MEASURED_CONE
MEASURED_CYLINDER
MEASURED_LINE
MEASURED_PLANE
MEASURED_POINT
MEASURED_SET
MEASURED_SPHERE
SURFACE_HIT
VECTOR_HIT

xe "Command Members:Command.FileIOCommand"Command.FileIOCommand XE "FileIOCommand"
Returns a FileIO Command object if Command is of Type FILE_IO_OBJECT. Otherwise it returns Nothing. Read-only.

xe "Command Members:Command.FlowControlCommand"Command.FlowControlCommand XE "FlowControlCommand"
Returns this Command object as an FlowControlCommand object if it can, Nothing otherwise. Read-only.

The Commands that have the following Type can become FlowControlCommand objects are as follows:

LOOP_START
START_SUBROUTINE
CALL_SUBROUTINE
LABEL
GOTO
IF_GOTO_COMMAND
BASIC_SCRIPT
ONERROR
WHILE_COMMAND
ENDWHILE_COMMAND
IF_BLOCK_COMMAND
END_IF_COMMAND
IF_ELSE_COMMAND
END_IF_ELSE_COMMAND,
END_ELSE_COMMAND
DO_COMMAND
UNTIL_COMMAND
CASE_COMMAND
END_CASE_COMMAND
DEFAULT_CASE_COMMAND
END_DEFAULT_CASE_COMMAND
SELECT_COMMAND
END_SELECT_COMMAND

xe "Command Members:Command.HasBreakPoint"Command.HasBreakPoint XE "HasBreakPoint"
Returns TRUE if the current PC-DMIS command has a breakpoint. Read/Write BOOL.

Remarks

You can also use this property to automatically set or clear breakpoints on individual commands by setting the HasBreakPoint property for the command to TRUE or FALSE.

Related Topics: Commands.ClearAllBreakPoints

xe "Command Members:Command.ID"Command.ID XE "ID"
Represents the ID of the command. Read/write String.

Remarks
Only objects that have ID strings can be set. If a object does not have a string, this property is the zero-length string “”.

xe "Command Members:Command.IsAlignment"Command.IsAlignment XE "IsAlignment"
Returns TRUE if the command is an alignment command type. Read only BOOL.

Remarks

Commands that return TRUE for this property can successfully retrieve an Alignment Command object using the AlignmentCommand Property.

xe "Command Members:Command.IsActiveTip"Command.IsActiveTip XE "IsActiveTip"
Returns TRUE if the command is an ActiveTip command. Read only BOOL.

Remarks

Commands that return TRUE for this property can successfully retrieve an ActiveTip Command object using the ActiveTipCommand Property.

xe "Command Members:Command.IsAttach"Command.IsAttach XE "IsAttach"
Returns TRUE if the command is an Attach command. Read only BOOL.

Remarks

Commands that return TRUE for this property can successfully retrieve an Attach Command object using the AttachCommand Property.

xe "Command Members:Command.IsArrayIndex"Command.IsArrayIndex XE "IsArrayIndex"
Returns TRUE if the command is an ArrayIndex command. Read only BOOL.

Remarks

Commands that return TRUE for this property can successfully retrieve an ArrayIndex Command object using the ArrayIndexCommand Property.

Related Topics: ArrayIndex Object Overview \Relate "6_pcdbasic_automation.doc!95", "ArrayIndex Object Overview" \D2HTargetDefault

xe "Command Members:Command.IsBasicScan"Command.IsBasicScan XE "IsBasicScan"
Returns TRUE if the command is a basic scan command. Read only BOOL.

Remarks

Commands that return TRUE for this property can successfully retrieve a Basic Scan Command object using the BasicScanCommand Property.

xe "Command Members:Command.IsCalibration"Command.IsCalibration XE "IsCalibration"
Returns TRUE if the command is a Calibration command. Read only BOOL.

Remarks

Commands that return TRUE for this property can successfully retrieve a Calibration Command object using the CalibrationCommand Property.

xe "Command Members:Command.IsComment"Command.IsComment XE "IsComment"
Returns TRUE if the command is a Comment command. Read only BOOL.

Remarks

Commands that return TRUE for this property can successfully retrieve a Comment Command object using the CommentCommand Property.

xe "Command Members:Command.IsConstructedFeature"Command.IsConstructedFeature XE "IsConstructedFeature"
Returns TRUE if the command is a constructed feature. Read only BOOL.

xe "Command Members:Command.IsDCCFeature"Command.IsDCCFeature XE "IsDCCFeature"
Returns TRUE if the command is a DCC (Auto) Feature. Read only BOOL.

xe "Command Members:Command.IsDimension"Command.IsDimension XE "IsDimension"
Returns TRUE if the command is a Dimension command type. Read only BOOL.

Remarks

Commands that return TRUE for this property can successfully retrieve a Dimension Command object using the DimensionCommand Property.

xe "Command Members:Command.IsDimFormat"Command.IsDimFormat XE "IsDimFormat"
Returns TRUE if the command is a DimFormat command. Read only BOOL.

Remarks

Commands that return TRUE for this property can successfully retrieve a DimFormat Command object using the DimFormatCommand Property.

xe "Command Members:Command.IsDimInfo"Command.IsDimInfo XE "IsDimInfo"
Returns TRUE if the command is a DimInfo command. Read only BOOL.

Remarks

Commands that return TRUE for this property can successfully retrieve a DimInfo Command object using the DimInfoCommand Property.

xe "Command Members:Command.IsDisplayMetaFile"Command.IsDisplayMetaFile XE "IsDisplayMetaFile"
Returns TRUE if the command is a DispMetaFile command. Read only BOOL.

Remarks

Commands that return TRUE for this property can successfully retrieve a DispMetaFile Command object using the DisplayMetaFileCommand Property.

xe "Command Members:Command.IsExternalCommand"Command.IsExternalCommand XE "IsExternalCommand"
Returns TRUE if the command is an externalcommand command. Read only BOOL.

Remarks

Commands that return TRUE for this property can successfully retrieve an External Command object using the ExternalCommand Property.

Related Topics: ExternalCommand Object Overview
, Command.Type Property \Relate "6_pcdbasic_automation.doc!215", "Command.Type Property" \D2HTargetDefault

xe "Command Members:Command.IsFileIOCommand"Command.IsFileIOCommand XE "IsFileIOCommand"
Returns TRUE if the command is a FileIO command. Read only BOOL.

Remarks

Commands that return TRUE for this property can successfully retrieve a FileIO command object using the FileIOCommand Property.

Related Topics: File IO Overview \Relate "6_pcdbasic_automation.doc!112", "File IO Overview" \D2HTargetDefault
, Command.Type Property \Relate "6_pcdbasic_automation.doc!215", "Command.Type Property" \D2HTargetDefault

xe "Command Members:Command.IsFeature"Command.IsFeature XE "IsFeature"
Returns TRUE if the command is a feature command type. Read only BOOL.

Remarks

Commands that return TRUE for this property can successfully retrieve a Feature Command object using the FeatureCommand Property.

Related Topics: FeatCommand Object Overview \Relate "6_pcdbasic_automation.doc!190", "FeatCommand Object Overview" \D2HTargetDefault

xe "Command Members:Command.IsFlowControl"Command.IsFlowControl XE "IsFlowControl"
Returns TRUE if the command is a flow control command type. Read only BOOL.

Remarks

Commands that return TRUE for this property can successfully retrieve a Flow Control Command object using the FlowContorlCommand Property.

Related Topics: FlowControlCommand Object Overview \Relate "6_pcdbasic_automation.doc!221", "FlowControlCommand Object Overview" \D2HTargetDefault

xe "Command Members:Command.IsHit"Command.IsHit XE "IsHit"
Returns TRUE if the command is a one of the hit command types. Read only BOOL.

xe "Command Members:Command.IsLeapFrog"Command.IsLeapFrog XE "IsLeapFrog"
Returns TRUE if the command is a Leapfrog command. Read only BOOL.

Related Topics: Leapfrog Object Overview \Relate "6_pcdbasic_automation.doc!136", "Leapfrog Object Overview" \D2HTargetDefault

xe "Command Members:Command.IsLeitzMotion"Command.IsLeitzMotion XE "IsLeitzMotion"
Returns TRUE if the command is a LeitzMot command. Read only BOOL.

Remarks

Commands that return TRUE for this property can successfully retrieve a LetizMotion Command object using the LeitzMotionCommand Property.

Related Topics: Leitz Motion Object Overview \Relate "6_pcdbasic_automation.doc!136", "Leitz Motion Object Overview" \D2HTargetDefault
, Command.Type Property \Relate "6_pcdbasic_automation.doc!215", "Command.Type Property" \D2HTargetDefault

xe "Command Members:Command.IsLoadMachine"Command.IsLoadMachine XE "IsLoadMachine"
Returns TRUE if the command is a LoadMachine command. Read only BOOL.

Remarks

Commands that return TRUE for this property can successfully retrieve a LoadMachine Command object using the LoadProbeCommand Property.

Related Topics: Load Machine Object Overview \Relate "6_pcdbasic_automation.doc!177", "Load Machine Object Overview" \D2HTargetDefault
, Command.Type Property \Relate "6_pcdbasic_automation.doc!215", "Command.Type Property" \D2HTargetDefault

xe "Command Members:Command.IsLoadProbe"Command.IsLoadProbe XE "IsLoadProbe"
Returns TRUE if the command is a LoadProbe command. Read only BOOL.

Remarks

Commands that return TRUE for this property can successfully retrieve a LoadProbe Command object using the LoadProbeCommand Property.

Related Topics: Load Probes Object Overview \Relate "6_pcdbasic_automation.doc!225", "Load Probes Object Overview" \D2HTargetDefault

xe "Command Members:Command.IsModal"Command.IsModal XE "IsModal"
Returns TRUE if the command is a modal command type. Read only BOOL.

Remarks

Commands that return TRUE for this property can successfully retrieve a Modal Command object using the ModalCommand Property.

Related Topics: ModalCommand Object Overview \Relate "6_pcdbasic_automation.doc!86", "ModalCommand Object Overview" \D2HTargetDefault

xe "Command Members:Command.IsMeasuredFeature"Command.IsMeasuredFeature XE "IsMeasuredFeature"
Returns TRUE if the command is a measured feature command. Read only BOOL.

xe "Command Members:Command.IsMove"Command.IsMove XE "IsMove"
Returns TRUE if the command is a move command type. Read only BOOL.

Remarks

Commands that return TRUE for this property can successfully retrieve a Move Command object using the MoveCommand Property.

Related Topics: MoveCommand Object Overview \Relate "6_pcdbasic_automation.doc!114", "MoveCommand Object Overview" \D2HTargetDefault

xe "Command Members:Command.IsOptionProbe"Command.IsOptionProbe XE "IsOptionProbe"
Returns TRUE if the command is an option probe command. Read only BOOL.

xe "Command Members:Command.IsOptMotion"Command.IsOptMotion XE "IsOptMotion"
Returns TRUE if the command is an OptMotion command. Read only BOOL.

Remarks

Commands that return TRUE for this property can successfully retrieve an OptMotion Command object using the OptMotionCommand Property.

Related Topics: Opt Motion Object Overview \Relate "6_pcdbasic_automation.doc!89", "Opt Motion Object Overview" \D2HTargetDefault

xe "Command Members:Command.IsStatistic"Command.IsStatistic XE "IsStatistic"
Returns TRUE if the command is a Statistics command. Read only BOOL.

Remarks

Commands that return TRUE for this property can successfully retrieve a Statistics Command object using the StatisticCommand Property.

Related Topics: Statistics Object Overview \Relate "6_pcdbasic_automation.doc!227", "Statistics Object Overview" \D2HTargetDefault

xe "Command Members:Command.IsScan"Command.IsScan XE "IsScan"
Returns TRUE if the command is a Scan command. Read only BOOL.

Remarks

Commands that return TRUE for this property can successfully retrieve a Scan Command object using the ScanCommand Property.

Related Topics: ScanCommand Object Overview \Relate "6_pcdbasic_automation.doc!173", "ScanCommand Object Overview" \D2HTargetDefault

xe "Command Members:Command.IsTempComp"Command.IsTempComp XE "IsTempComp"
Returns TRUE if the command is a TempComp command. Read only BOOL.

Remarks

Commands that return TRUE for this property can successfully retrieve a TempComp Command object using the TempCompCommand Property.

Related Topics: Temperature Compensation Object Overview \Relate "6_pcdbasic_automation.doc!158", "Temperature Compensation Object Overview" \D2HTargetDefault

xe "Command Members:Command.IsTraceField"Command.IsTraceField XE "IsTraceField"
Returns TRUE if the command is a TraceField command. Read only BOOL.

Remarks

Commands that return TRUE for this property can successfully retrieve a TraceField Command object using the TraceFieldCommand Property.

Related Topics: TraceField Object Overview \Relate "6_pcdbasic_automation.doc!175", "TraceField Object Overview" \D2HTargetDefault

xe "Command Members:Command.LeapfrogCommand"Command.LeapfrogCommand XE "LeapfrogCommand"
Returns a Leapfrog Command object if Command is of Type LEAPFROG. Otherwise it returns Nothing. Read-only.

Related Topics: Leapfrog Object Overview \Relate "6_pcdbasic_automation.doc!136", "Leapfrog Object Overview" \D2HTargetDefault
, Command.Type Property \Relate "6_pcdbasic_automation.doc!215", "Command.Type Property" \D2HTargetDefault

xe "Command Members:Command.LeitzMotion"Command.LeitzMotionCommand XE "LeitzMotionCommand"
Returns a LietzMotion Command object if Command is of Type OPTIONPROBE. Otherwise it returns Nothing. Read-only.

Related Topics: Leitz Motion Object Overview \Relate "6_pcdbasic_automation.doc!136", "Leitz Motion Object Overview" \D2HTargetDefault
, Command.Type Property \Relate "6_pcdbasic_automation.doc!215", "Command.Type Property" \D2HTargetDefault

xe "Command Members:Command.LoadMachineCommand"Command.LoadMachineCommand XE "LoadMachineCommand"
Returns a LoadMachine Command object if Command is of Type GET_MACHINE_DATA. Otherwise it returns Nothing. Read-only.

Related Topics: Load Machine Object Overview \Relate "6_pcdbasic_automation.doc!177", "Load Machine Object Overview" \D2HTargetDefault
, Command.Type Property \Relate "6_pcdbasic_automation.doc!215", "Command.Type Property" \D2HTargetDefault

xe "Command Members:Command.LoadProbeCommand"Command.LoadProbeCommand XE "LoadProbeCommand"
Returns a LoadProbe Command object if Command is of Type GET_PROBE_DATA. Otherwise it returns Nothing. Read-only.

Related Topics: Load Probes Overview \Relate "6_pcdbasic_automation.doc!177", "Load Probes Overview" \D2HTargetDefault
, Command.Type Property \Relate "6_pcdbasic_automation.doc!215", "Command.Type Property" \D2HTargetDefault

xe "Command Members:Command.Marked"Command.Marked XE "Marked"
Property used to indicate/set whether command is marked in the edit window. Read/Write Boolean.
xe "Command Members:Command.ModalCommand"Command.ModalCommand XE "ModalCommand"
Returns this Command object as a ModalCommand object if it can, Nothing otherwise. Read-only.

The Command objects that have the following Type can become ModalCommand objects are as follows:

CLAMP
PREHIT
RETRACT
CHECK
MOVE_SPEED
TOUCH_SPEED
SCAN_SPEED
CLEARANCE_PLANES
MAN_DCC_MODE
DISPLAYPRECISION
PROBE_COMPENSATION
POLARVECTORCOMP
SET_WORKPLANE
RMEAS_MODE
GAP_ONLY
RETROLINEAR_ONLY
FLY_MODE
COLUMN132

Related Topics: ModalCommand Object Overview \Relate "6_pcdbasic_automation.doc!86", "ModalCommand Object Overview" \D2HTargetDefault
, Command.Type Property \Relate "6_pcdbasic_automation.doc!215", "Command.Type Property" \D2HTargetDefault

xe "Command Members:Command.MoveCommand"Command.MoveCommand XE "MoveCommand"
Returns this Command object as a MoveCommand object if it can, Nothing otherwise. Read-only.

The Command objects that have the following Type can become MoveCommand objects are as follows:

MOVE_POINT = 150,
MOVE_ROTAB = 153,
MOVE_INCREMENT = 154,
MOVE_CIRCULAR = 155,
MOVE_PH9_OFFSET = 156,

Related Topics: MoveCommand Object Overview \Relate "6_pcdbasic_automation.doc!114", "MoveCommand Overview" \D2HWindow Main
, Command.Type Property \Relate "6_pcdbasic_automation.doc!215", "Command.Type Property" \D2HTargetDefault

xe "Command Members:Command.OptMotion"Command.OptMotionCommand XE "OptMotionCommand"
Returns an OptMotion Command object if Command is of Type OPTIONMOTION. Otherwise it returns Nothing. Read-only.

Related Topics: OptMotion Object Overview \Relate "6_pcdbasic_automation.doc!89", "OptMotion Object Overview" \D2HTargetDefault
, Command.Type Property \Relate "6_pcdbasic_automation.doc!215", "Command.Type Property" \D2HTargetDefault

xe "Command Members:Command.OptionProbeCommand"Command.OptionProbeCommand XE "OptionProbeCommand"
Returns an OptMotion Command object if Command is of Type OPTIONPROBE. Otherwise it returns Nothing. Read-only.

Related Topics: OptProbe Object Overview \Relate "6_pcdbasic_automation.doc!237", "OptProbe Object Overview" \D2HTargetDefault
, Command.Type Property \Relate "6_pcdbasic_automation.doc!215", "Command.Type Property" \D2HTargetDefault

xe "Command Members:Command.Parent"Command.Parent XE "Parent"
Returns the parent Commands collection object. Read-only.

xe "Command Members:Command.ScanCommand"Command.ScanCommand XE "ScanCommand"
Returns a Scan Command object if Command is of Type DCCSCAN_OBJECT or Type MANSCAN_OBJECT. Otherwise it returns Nothing. Read-only.

Related Topics: ScanCommand Object Overview \Relate "6_pcdbasic_automation.doc!173", "ScanCommand Object Overview" \D2HTargetDefault
, Command.Type Property \Relate "6_pcdbasic_automation.doc!215", "Command.Type Property" \D2HTargetDefault

xe "Command Members:Command.ShowIDOnCad"Command.ShowIDOnCad XE "ShowIDOnCad"
Property used to indicate/set whether the command ID should be displayed in the CAD window. Read/Write Boolean
xe "Command Members:Command.SlaveArm"Command.SlaveArm XE "SlaveArm"
Property used to indicate/set whether command is a slave arm object. Read/Write Boolean
xe "Command Members:Command.StatisticCommand"Command.StatisticCommand XE "StatisticCommand"
Returns a Statistics Command object if Command is of Type STATISTICS. Otherwise it returns Nothing. Read-only.

Related Topics: Statistics Object Overview \Relate "6_pcdbasic_automation.doc!173", "Statistics Object Overview" \D2HTargetDefault
, Command.Type Property \Relate "6_pcdbasic_automation.doc!215", "Command.Type Property" \D2HTargetDefault

xe "Command Members:Command.TempCompCommand"Command.TempCompCommand XE "TempCompCommand"
Returns a TempComp Command object if Command is of Type TEMP_COMP. Otherwise it returns Nothing. Read-only.

Related Topics: Temperature Compensation Object Overview \Relate "6_pcdbasic_automation.doc!158", "Temperature Compensation Object Overview" \D2HTargetDefault
, Command.Type Property \Relate "6_pcdbasic_automation.doc!215", "Command.Type Property" \D2HTargetDefault

xe "Command Members:Command.TraceFieldCommand"Command.TraceFieldCommand XE "TraceFieldCommand"
Returns a TraceField Command object if Command is of Type TRACEFIELD. Otherwise it returns Nothing. Read-only.

Related Topics: TraceField Object Overview \Relate "6_pcdbasic_automation.doc!175", "TraceField Object Overview" \D2HTargetDefault
, Command.Type Property \Relate "6_pcdbasic_automation.doc!215", "Command.Type Property" \D2HTargetDefault

xe "Command Members:Command.Type"Command.Type XE "Type"
Returns the type of the Command. Read-only OBTYPE.

Remarks
The returned type is the same as the type argument to Commands.Add.xe "Commands Members:Commands.Add"
Related Topics: Commands.Add Method \Relate "6_pcdbasic_automation.doc!115", "Commands.Add Method" \D2HTargetDefault

xe "Command Members:Command.TypeDescription"Command.TypeDescription XE "TypeDescription"
Returns a human-readable description of Type of the object. Read-only String

For example, an object of type CONST_OFF_PLANE has the string “Constructed Offset Plane” returned by this function.

Related Topics: Command.Type Property \Relate "6_pcdbasic_automation.doc!215", "Command.Type Property" \D2HTargetDefault

Methods:

xe "Command Members:Command.Execute"Command.Execute

Syntax

Return Value=expression.Execute

Return Value: This method returns a boolean value. Boolean returns true if the function succeeds, false if it fails.

expression: Required expression that evaluates to a PC-DMIS Command object.

Executes the command if the command is immediately executable.

xe "Command Members:Command.Dialog"Command.Dialog XE "Dialog"
Syntax

Return Value=expression.Dialog

Return Value: This method returns a boolean value. Boolean returns true if the function succeeds, false if it fails.

expression: Required expression that evaluates to a PC-DMIS Command object.

Opens the PC-DMIS dialog for the corresponding command.

Related Topics: Command.Dialog2 Method \Relate "6_pcdbasic_automation.doc!185", "Command.Dialog2 Method" \D2HTargetDefault

xe "Command Members:Command.Dialog2"Command.Dialog2 XE "Dialog2"
Syntax

Return Value=expression.Dialog2(Object *Dialog)

Return Value: This method returns a boolean value. Boolean returns true if the function succeeds, false if it fails.

expression: Required expression that evaluates to a PC-DMIS Command object.

Object: Dmis dialog command object returned if the dialog is a modeless dialog.

Opens the PC-DMIS dialog for for the corresponding command.

Related Topics: Command.Dialog Method \Relate "6_pcdbasic_automation.doc!228", "Command.Dialog Method" \D2HTargetDefault
, DmisDialog Overview \Relate "6_pcdbasic_automation.doc!186", "DmisDialog Overview" \D2HTargetDefault

xe "Command Members:Command.GetExpression"Command.GetExpression XE "GetExpression"
Syntax

expression.GetExpression(FieldType, TypeIndex)

Return Value: String which is the expression on the given field if it has an expression. Otherwise, the string will be empty.
expression: Required expression that evaluates to a PC-DMIS Command object.

FieldType: Used to indicate from which field the expression is being retrieved. Type ENUM_FIELD_TYPES enumeration.

TypeIndex: Long value used to indicate which instance of the supplied field type to use when an object has more than one instance of a field type.

Gets the expression of the indicated field of the command.

Remarks
Use this command to get expressions for different object fields. The ENUM_FIELD_TYPES enumeration is a large enumeration. Documentation for which field types go with which objects is not given here. You can find this information by creating the desired object in PC-DMIS, inserting the desired expression in the desired field, and exporting (posting out) the containing part program to BASIC.

Beginning with PC-DMIS version 3.5, the following are now a part of the ENUM_FIELD_TYPES enumeration:

SOLID = 416

FIT = 452

TRACE_VALUE_LIMIT = 473

ROI_DIRECTION = 474

ROI_CENTER_X = 475

ROI_CENTER_Y = 476

CENTER_ROTATION_THEO = 477

CENTER_ROTATION_MEAS = 478

Related Topics: Command.SetExpression Method \Relate "6_pcdbasic_automation.doc!229", "Command.SetExpression Method" \D2HTargetDefault
, Command.RemoveExpression Method \Relate "6_pcdbasic_automation.doc!116", "Command.RemoveExpression Method" \D2HTargetDefault
, Command.GetText Method \Relate "6_pcdbasic_automation.doc!230", "Command.GetText Method" \D2HTargetDefault

xe "Command Members:Command.GetText"Command.GetText XE "GetText"
Syntax

expression.GetText(FieldType, TypeIndex)

Return Value: String which is the text on the given field.
expression: Required expression that evaluates to a PC-DMIS Command object.

FieldType: Used to indicate the field from which the text is being retrieved. Type ENUM_FIELD_TYPES enumeration.

TypeIndex: Long value used to indicate which instance of the supplied field type to use when an object has more than one instance of a field type.

Gets the text of the indicated field of the command.

Remarks
Use this command to get text that is displayed in the edit window for different object fields. The ENUM_FIELD_TYPES enumeration is a large enumeration. Documentation for which field types go with which objects is not given here. You can find this information by creating the desired object in PC-DMIS, inserting the desired expression in the desired field, and exporting (posting out) the containing part program to BASIC.

Beginning with PC-DMIS version 3.5, the following are now a part of the ENUM_FIELD_TYPES enumeration:

SOLID = 416

FIT = 452

TRACE_VALUE_LIMIT = 473

ROI_DIRECTION = 474

ROI_CENTER_X = 475

ROI_CENTER_Y = 476

CENTER_ROTATION_THEO = 477

CENTER_ROTATION_MEAS = 478

Related Text: Command.PutText Method \Relate "6_pcdbasic_automation.doc!231", "Command.PutText Method" \D2HTargetDefault
, Command.GetExpression Method \Relate "6_pcdbasic_automation.doc!232", "Command.GetExpression Method" \D2HTargetDefault

xe "Command Members:Command.GetToggleString"Command.GetToggleString XE "GetToggleString"
Syntax

Return Value=expression.GetToggleString(FiledType,TypeIndex)

Return Value: The return value is the string of text if the field is a toggle field, otherwise it returns an empty string.

expression: Required expression that evaluates to a Command object.

FieldType: Used to indicate the field from which the text is being retrieved. Type ENUM_FIELD_TYPES enumeration.

TypeIndex: Long value used to indicate which instance of the supplied field type to use when an object has more than one instance of a field type.

Beginning with PC-DMIS version 3.5, the following are now a part of the ENUM_FIELD_TYPES enumeration:

SOLID = 416

FIT = 452

TRACE_VALUE_LIMIT = 473

ROI_DIRECTION = 474

ROI_CENTER_X = 475

ROI_CENTER_Y = 476

CENTER_ROTATION_THEO = 477

CENTER_ROTATION_MEAS = 478

xe "Command Members:Command.GetUniqueID"Command.GetUniqueID XE "GetUniqueID"
Syntax

Return Value=expression.GetUniqueID(HiPart, LoPart)

This command retrieves the low and high parts of the 64-bit unique id of the command.

Return Value: This method doesn't have a return value.

Expression: Required expression that evaluates to a PC-DMIS Command object.

HiPart: Long value used to indicate the high part of the 64-bit unique id of the command.

LoPart: Long value used to indicate the low part of the 64-bit unique id of the command.
xe "Command Members:Command.IsExpressionValid"Command.IsExpressionValid XE "IsExpressionValid"
Syntax

Return Value=expr.IsExpressionValid(Expression)

Return Value: This method returns a boolean value. Boolean returns true if the function succeeds, false if it fails.

expr: Required expression that evaluates to Command object.

Expression: Required String that is the expression to evaluate for validity.

This function returns TRUE if the expression is valid, and FALSE otherwise.

xe "Command Members:Command.Item"Command.Item XE "Item"
Syntax

Return value=expression.Item(Num)

Return Value: The Item function returns a Command object.

expression: Required expression that evaluates to a Command object.

Num: Required Long that indicates which Command object to return. It is the index number of the execution in the current or previous execution

xe "Command Members:Command.Mark"Command.Mark XE "Mark"
Syntax

expression.Mark SameAlign
expression: Required expression that evaluates to a PC-DMIS Command object.

SameAlign: Required Boolean. If SameAlign is FALSE, the features that are a part of the alignment for this Command will be marked. Otherwise, they will not be marked.

Marks the current object and all objects that depend on it. Optionally the features of the current alignment are also marked.

Remarks
If the object is a measured feature, its hits are marked. If the object is a constructed feature, the features on which it depends are marked. If the object is a dimension, the dimension feature(s) being dimensioned are marked.

xe "Command Members:Command.Next"Command.Next XE "Next"
Syntax

Return Value=expression.Next

Return Value: This method returns a boolean value. Boolean returns true if the function succeeds, false if it fails.

expression: Required expression that evaluates to a PC-DMIS Command object.

Sets expression to the next command in the parent Commands list. If expression is the last command, it remains unchanged. This function returns FALSE if expression is the last command in the parent Commands list, TRUE otherwise.

Related Text: Command.Prev Method \Relate "6_pcdbasic_automation.doc!233", "Command.Prev Method" \D2HTargetDefault

xe "Command Members:Command.Prev"Command.Prev XE "Prev"
Syntax

Return Value=expression.Prev

Return Value: This method returns a boolean value. Boolean returns true if the function succeeds, false if it fails.

expression: Required expression that evaluates to a PC-DMIS Command object.

Sets expression to the previous command in the parent Commands list. If expression is the first command, it remains unchanged. This function returns FALSE if expression is the first command in the parent Commands list, TRUE otherwise.

Related Text: Command.Next Method \Relate "6_pcdbasic_automation.doc!234", "Command.Next Method" \D2HTargetDefault

xe "Command Members:Command.PutText"Command.PutText XE "PutText"
Syntax

expression.PutText(NewVal,FieldType,TypeIndex)

Return Value: TRUE if the field’s text was set successfully, FALSE otherwise.
expression: Required expression that evaluates to a PC-DMIS Command object.

NewVal: STRING to put into the indicated field.

FieldType: Used to indicate which field into which the text is being put. Type ENUM_FIELD_TYPES enumeration.

TypeIndex: Long value used to indicate which instance of the supplied field type to use when an object has more than one instance of a field type. When using the index property on a field type that can have a variable number of fields, the index must not be greater than the current number of fields (of the type being changed) + 1.

Puts the text in the indicated field of the command.

Remarks
Use this command to put text that is displayed in the Edit window for different object fields. The ENUM_FIELD_TYPES enumeration is a large enumeration. Documentation for which field types go with which objects is not given here. You can find this information by:

1. Creating the desired object in PC-DMIS

2. Inserting the desired expression in the desired field

3. Exporting (posting out) the containing part program to BASIC.

If the field already has an expression in it, the expression is removed.

Beginning with PC-DMIS version 3.5, the following are now a part of the ENUM_FIELD_TYPES enumeration:

SOLID = 416

FIT = 452

TRACE_VALUE_LIMIT = 473

ROI_DIRECTION = 474

ROI_CENTER_X = 475

ROI_CENTER_Y = 476

CENTER_ROTATION_THEO = 477

CENTER_ROTATION_MEAS = 478

Related Topics: Command.GetText Method
 \Relate "6_pcdbasic_automation.doc!230", "Command.GetText Method" \D2HTargetDefault , Command.SetExpression Method
 \Relate "6_pcdbasic_automation.doc!229", "Command.SetExpression Method" \D2HTargetDefault
xe "Command Members:Command.ReDraw"Command.ReDraw XE "ReDraw"
This method requests that the object be redrawn in the Edit window. This method has no return value.

xe "Command Members:Command.Remove"Command.Remove XE "Remove"
Syntax

expression.Remove

expression: Required expression that evaluates to a PC-DMIS Command object.

Removes expression from the part Commands list.

Remarks
If there are other objects which depend on expression, they are also removed. For example, if expression is a measured feature, its hits are removed as well.

Related Topics: Commands.Add Method
 \Relate "6_pcdbasic_automation.doc!115", "Commands.Add Method" \D2HTargetDefault
xe "Command Members:Command.RemoveExpression"Command.RemoveExpression XE "RemoveExpression"
Syntax

expression.RemoveExpression(FieldType, TypeIndex)

This method has no return value.

expression: Required expression that evaluates to a PC-DMIS Command object.

FieldType: Used to indicate the field from which the expression is being removed. Type ENUM_FIELD_TYPES enumeration.

TypeIndex: Long value used to indicate which instance of the supplied field type to use when an object has more than one instance of a field type.

Removes the expression from the indicated field of the command.

Remarks
Use this command to remove expressions from different object fields. The ENUM_FIELD_TYPES enumeration is a large enumeration. Documentation for which field types go with which objects is not given here. You can find this information by:

1. Creating the desired object in PC-DMIS

2. Inserting the desired expression in the desired field

3. Exporting (posting out) the containing part program to BASIC.

Beginning with PC-DMIS version 3.5, the following are now a part of the ENUM_FIELD_TYPES enumeration:

SOLID = 416

FIT = 452

TRACE_VALUE_LIMIT = 473

ROI_DIRECTION = 474

ROI_CENTER_X = 475

ROI_CENTER_Y = 476

CENTER_ROTATION_THEO = 477

CENTER_ROTATION_MEAS = 478

Related Topics: Command.SetExpression
, Command.GetExpression
 \Relate "6_pcdbasic_automation.doc!232", "Command.GetExpression" \D2HTargetDefault , Command.PutText
 \Relate "6_pcdbasic_automation.doc!231", "Command.PutText" \D2HTargetDefault
xe "Command Members:Command.SetExpression"Command.SetExpression XE "SetExpression"
Syntax

command.SetExpression(Expression,FieldType, TypeIndex)

Return Value: This function returns a Boolean,TRUE if the expression was successfully set, FALSE otherwise

command: Required expression that evaluates to a PC-DMIS Command object.

Expression: String to which to set the expression.

FieldType: Used to indicate which field the expression is being set for. Type ENUM_FIELD_TYPES enumeration.
TypeIndex: Long value used to indicate which instance of the supplied field type to use when an object has more than one instance of a field type.

Sets the expression of the indicated field of the command.

Remarks
Use this command to set expressions for different object fields. The ENUM_FIELD_TYPES enumeration is a large enumeration. Documentation for which field types go with which objects is not given here. You can find this information by:

1. Creating the desired object in PC-DMIS

2. Inserting the desired expression in the desired field

3. Exporting (posting out) the containing part program to BASIC.

Beginning with PC-DMIS version 3.5, the following are now a part of the ENUM_FIELD_TYPES enumeration:

SOLID = 416

FIT = 452

TRACE_VALUE_LIMIT = 473

ROI_DIRECTION = 474

ROI_CENTER_X = 475

ROI_CENTER_Y = 476

CENTER_ROTATION_THEO = 477

CENTER_ROTATION_MEAS = 478

xe "Command Members:Command.SetToggleString"Command.SetToggleString XE "SetToggleString"
Syntax:

Boolean Command.SetToggleString(long ToggleIndex, ENUM_FIELD_TYPES DataType, long TypeIndex)

Return Value: This method returns a Boolean. It returns True if the underlying Command object exists in PC-DMIS the appropriate DataType and TypeIndex parameters successfully set the toggle string. Otherwise, it returns false.

Command: Required expression that evaluates to a PC-DMIS Command object.

ToggleIndex: long value representing the new toggle field that will be set.

· If you pass a number less than 1, it will set the field to the first string.

· If you pass a number larger than the number of possible strings, it will set the field to the last string.

DataType: Indicate the toggle field being changed. Type ENUM_FIELD_TYPES enumeration.

TypeIndex: long value indicating the instance of the supplied field type to use when an object has more than one instance of a field type.

Remarks

This method lets you set a toggle field in a numerical, language-independent way.

Example:

The Measured Circle has a BF_MATH_TYPE field that takes one of "QUAD MIN", "SEP MIN", "MAX ISCR", "MIN CIRCOS", or "RAG FISSO" in Italian, or "LEAST_SQR", "MIN_SEP", "MAX_INSC", "MIN_CIRCSC", or "FIXED_RAD" in English. If we do not know which language we are importing into, we can not know which phrase to use.

However, the ENUM_FIELD_TYPES number is the same in both languages, e.g., "MIN CIRCOS" and "MIN_CIRCSC" are both string number 4.

The SetToggleString method can be called in the following fashion to set the BF_MATH_TYPE to use the minimum circumscribed method:

retval = DmisCommand.SetToggleString(4, BF_MATH_TYPE,0)

xe "Command Members:Command.SolveExpression"Command.SolveExpression XE "SolveExpression"
Syntax

Return Value=expr.SolveExpression(Expression)

Return Value: This method returns a variable object if the solved expression is valid.

expr: Required expression that evaluates to a PC-DMIS Command object.

Expression:String value of the expression to solve.

Remarks

SolveExpression evaluates the expression based on the objects above the command on which SolveExpression gets called.
xe "Commands Object Overview"

xe "Automation Objects:Commands Object"Commands Object Overview

The Commands collection object contains all the command objects in a part program. Use Commands(index) where index is the index number to return a single Command object.

Properties:

xe "Commands Members:Commands.Application"Commands.Application XE "Application"
Represents the read-only PC-DMIS application. The Application object includes properties and methods that return top-level objects. For example, the ActivePartProgram property returns a PartProgram object.

Related Topics: Application Object Overview \Relate "6_pcdbasic_automation.doc!90", "Application Object Overview" \D2HTargetDefault

xe "Commands Members:Commands.Count"Commands.Count XE "Count"
Represents the number of Command objects in the parent PartProgram object. Read-only Long.

Related Topics: Command Object Overview
 \Relate "6_pcdbasic_automation.doc!188", "Command Object Overview" \D2HWindow Main
xe "Commands Members:Commands.CurrentCommand"Commands.CurrentCommand XE "CurrentCommand"
Returns a Command object representing the current PC-DMIS command. Note that if you use the Commands.Add
 method prior to this property, the current command returned will be the last added command from the Add method.

Read-only Command object.

xe "Commands Members:Commands.LastCommand"Commands.LastCommand XE "LastCommand"
Returns a Command object representing the last command in the part program. This gives you a faster way of getting the last command. Before you had to use this syntax:

Commands.Item
(Commands.Count
).

Read-only Command object.

xe "Commands Members:Commands.Parent"Commands.Parent XE "Parent"
Returns the parent PartProgram object. Read-only.

Methods:

xe "Commands Members:Commands.Add"Commands.Add

Syntax

Return Value=expression.Add(Type, AutoPosition)

Return Value: This function returns the Command object added.

expression: Required expression that evaluates to a PC-DMIS Commands object.

Type: Required LONG in the OBTYPE enumeration that denotes what type of object to create.

AutoPosition: Required Boolean that determines what should happen when the new Command object is being inserted in an inappropriate place in the part program.

· If AutoPosition is FALSE, it will not be inserted at all.

· If it is TRUE, the new Command will be inserted at the new appropriate position.

Remarks

PC-DMIS only supports one way for adding commands while executing a part program in PC-DMIS: Insert a script command (select Insert | Basic Script from within PC-DMIS) that points to the BASIC script containing the Add method. Otherwise, you will need to run your script with the Add method first and control part program execution from within your script.

Beginning with PC-DMIS version 3.5, the following are now a part of the OBTYPE enumeration for this method:

MOVE_ALL = 162

DIMENSION_SYMMETRY = 1115

CONST_SCAN_SEG_ARC = 527

CONST_SCAN_SEG_LINE = 539

CONST_BFRE_ELLIPSE = 580

CONST_BF_ELLIPSE = 581

CONST_PROJ_ELLIPSE = 582

CONST_REV_ELLIPSE = 583

CONST_CAST_ELLIPSE = 584

CONST_INT_ELLIPSE = 585

Related Topics: Command Object Overview \Relate "6_pcdbasic_automation.doc!188", "Command Object Overview" \D2HWindow Main
, Command.Remove Method
 \Relate "6_pcdbasic_automation.doc!87", "Command.Remove Method" \D2HTargetDefault

Commands.ClearAllBreakPoints

 XE "ClearAllBreakPoints"

xe "Command Members:Command.ClearAllBreakPoints"Syntax

Return Value=expression.ClearAllBreakPoints

Return Value: This method returns a boolean value. Boolean returns true if the function succeeds, false if it fails.

expression: Required expression that evaluates to a PC-DMIS Commands object.

Clears all the breakpoints on all Command objects in the collection. You should use this method if you don’t want to step through the execution of a part program.

xe "Commands Members:Commands.ClearMarked"Commands.ClearMarked XE "ClearMarked"
Syntax

Return Value=expression.ClearMarked

Return Value: This method returns a boolean value. Boolean returns true if the function succeeds, false if it fails.

expression: Required expression that evaluates to a PC-DMIS Commands object.

Clears all marked Command objects in the collection. ClearMarked always returns TRUE.

xe "Commands Members:Commands.FindByUniqueID"Commands.FindByUniqueID XE "FindByUniqueID"
Syntax

Return Value=expression.FindByUniqueID(HiPart,LoPart)

Return Value: This finds and returns the command identified by the Unique ID formed from the LoPart and HiPart values.
Return Value: This finds the command from the collection based on a unique ID.

expression: Required expression that evaluates to a PC-DMIS Commands object.

HiPart: DOCUMENTATION PENDING

LoPart: DOCUMENTATION PENDING

xe "Commands Members:Commands.GetCommandText"Commands.GetCommandText XE "GetCommandText"
 Syntax

Return Value=expression.GetCommandText(Cmd)

Return Value: This method returns a string value of the current command's text if the function succeeds.

expression: Required expression that evaluates to a PC-DMIS Commands object.

Cmd: Required Command object that indicates the command from which to read the command text.

This command returns all the lines of text for the current command object. If your command occupies more than one line in Edit window's command mode, the function returns text for all the lines in the command. However, this command only returns text for the current command object. For example, if your edit window had a circle:

CIR1 = FEAT/CIRCLE,...

THEO/...

ACTL/...

The returned string would not contain the hits because they are actually different command objects.

xe "Commands Members:Commands.InsertionPointAfter"Commands.InsertionPointAfter XE "InsertionPointAfter"
Syntax

Return Value=expression.InsertionPointAfter(Cmd)

Return Value: This method returns a boolean value. Boolean returns true if the function succeeds, false if it fails.

expression: Required expression that evaluates to a PC-DMIS Commands object.

Cmd: Required Command object that indicates which command after which to set the insertion point.

This function returns TRUE if the insertion point was successfully set, FALSE otherwise.

xe "Commands Members:Commands.Item"Commands.Item XE "Item"
Syntax 1

Return Value=expression.Item(NameOrNum)

Syntax 2

expression(NameOrNum)

Return Value: The Item function returns a Command object.

expression: Required expression that evaluates to a Commands object.

Identifier: Required Long that indicates which Command object to return. It is the index number of the desired Command in the Commands collection denoted by expression.

xe "Commands Members:Commands.MarkAll"Commands.MarkAll XE "MarkAll"
Syntax

Return Value=expression.MarkAll(MarkManual)

Return Value: This method returns a boolean value. Boolean returns true if the function succeeds, false if it fails.

expression: Required expression that evaluates to a PC-DMIS Commands object.

MarkManual: Required Boolean that indicates whether or not to mark manual alignment features.

This function always returns TRUE

xe "Comment Object Overview"

xe "Automation Objects:Comment Object"Comment Object Overview

The Comment Automation object gives access to the properties of the PC-DMIS Comment command.

Properties:

xe "Comment Members:Comment.Comment"Comment.Comment XE "Comment"
STRING value representing the comment text. Since comments in PC-DMIS can be multi-line comments, this property represents the full text of all the lines. Each line is separated by ASCII character 13 and ASCII character 10 in that order. This is a read only property. To set individual lines of the comment use the SetLine method. To get individual lines of the comment use the GetLine method.

Read Only String

xe "Comment Members:Comment.CommentType"Comment.CommentType XE "CommentType"
ENUM_PCD_COMMENT_TYPES enumeration type value representing the type of comment. The following enumeration values are available:

PCD_COMMENT_OPER = 0

PCD_COMMENT_REPORT = 1

PCD_COMMENT_INPUT = 2

PCD_COMMENT_DOCUMENTATION = 3

PCD_COMMENT_YESNO = 4

Read/Write ENUM_PCD_COMMENT_TYPES enumeration type
xe "Comment Members:Comment.ID"Comment.ID XE "ID"
STRING value representing the ID of the comment. The ID is only used for comments of type INPUT and type YESNO.

Read/Write String
xe "Comment Members:Comment.Input"Comment.Input XE "Input"
STRING value representing the text input by the user for comments of type INPUT or YESNO.

Read/Write String
Methods:

xe "Comment Members:Comment.AddLine"Comment.AddLine

Syntax:

expression.AddLine (Text)

Return Value: Boolean value indicating success or failure of call to method.

expression: Required expression that evaluates to a PC-DMIS Comment object.

Text: Required String representing the line of text to be added to the comment.

xe "Comment Members:Comment.GetLine"Comment.GetLine XE "GetLine"
Syntax:

expression.GetLine (Line)

Return Value: String text of the line of the comment specified by the line paramter. If Line is greater than the number of current lines in the comment, the string will be empty.

expression: Required expression that evaluates to a PC-DMIS Comment object.

Line: Required Long representing the line of text to be retrieved.

xe "Comment Members:Comment.RemoveLine"Comment.RemoveLine XE "RemoveLine"
Syntax:

expression.RemoveLine (Line)

Return Value: Boolean value indicating success or failure of call to remove a line of text from the comment. If Line is greater than the number of current lines in the comment, the call will fail.

expression: Required expression that evaluates to a PC-DMIS Comment object.

Line: Required Long representing the line of text to be removed.

xe "Comment Members:Comment.SetLine"Comment.SetLine XE "SetLine"
Syntax:

expression.SetLine (Line, Text)

Return Value: Boolean value indicating success or failure of call to set the line of text. If Line is greater than the number of current lines in the comment, the call will fail.

expression: Required expression that evaluates to a PC-DMIS Comment object.

Line: Required Long representing the line of text to be set.

Text: Required String which is the text to be used to set the text for the line of the comment.

xe "ControlPoint Object Overview"

xe "Automation Objects:ControlPoint Object"ControlPoint Object Overview

With the ControlPoint object you can insert control point locations. These locations interrupt the normal scan and alter scan speed, point density or both for defined portions of the scan. The ControlPoint object is used with only the following scans:

· LinearOpen

· LinearClose

· Patch

· Section

· Line (Basic Scan)

Additionally, the ControlPoint object only works on machines that use an analog probe that allows continuous contact scanning.

In the PC-DMIS HelpFile, the Control Points are called Interrupt Points. See "Interrupts" in the "Scanning Your Part" of that documentation.

Properties

xe "ControlPoint Members:ControlPoint.PointDensity"ControlPoint.Crossings XE "Crossings"
This defines the number of time the scan crosses the specified boundary before the alterations defined by the crossing point take effect. Read/write Long.

xe "ControlPoint Members:ControlPoint.I"ControlPoint.I XE "I"
This specifies the I component of the interrupt location's IJK vector. Read/write Double.

xe "ControlPoint Members:ControlPoint.J"ControlPoint.J XE "J"
This specifies the J component of the interrupt location's IJK vector. Read/write Double.

xe "ControlPoint Members:ControlPoint.K"ControlPoint.K XE "K"
This specifies the K component of the interrupt location IJK vector. Read/write Double.

xe "ControlPoint Members:ControlPoint.Crossings"ControlPoint.PointDensity XE "PointDensity"
This defines the density of points per millimeter the scan shoud take after it encounters the control point. Read/write Long.

xe "ControlPoint Members:ControlPoint.Radius"ControlPoint.Radius XE "Radius"
This defines the Radius of circular control point types (Cones, Spheres, Cylinders). Read/write Double.

xe "ControlPoint Members:ControlPoint.Radius"ControlPoint.Radius XE "Radius"
This defines the speed the scan shoud take after it encounters the control point.

xe "ControlPoint Members:ControlPoint.Type"ControlPoint.Type XE "Type"
This specifies the type of control point. Read/write BSCTRLPT_ENUM.

There are four types of control points:

1) Plane (uses these elements: Plane, X,Y,Z,I,J,K,Num Crossings, Scan Speed, Point Density)

2) Sphere (uses these elements: Sphere, X, Y, Z, I, J, K, Num Crossings, Scan Speed, Point Density, Diameter)

3) Cone (uses these elements: Cone, X, Y, Z, I, J, K, Num Crossings, Scan Speed, Point Density, Angle)

4) Cylinder (uses these elements: Cylinder, X, Y, Z, I, J, K, Num Crossings, Scan Speed, Point Density, Diameter)

xe "ControlPoint Members:ControlPoint.X"ControlPoint.X XE "X"
This specifies the X value of the interrupt XYZ location. Read/write Double.

xe "ControlPoint Members:ControlPoint.Y"ControlPoint.Y XE "Y"
This specifies the Y component of the interrupt XYZ location. Read/write Double.

xe "ControlPoint Members:ControlPoint.Z"ControlPoint.Z XE "Z"
This specifies the Z component of the interrupt XYZ location. Read/write Double.

xe "DataType Object Overview"

xe "Automation Objects:DataType Object"DataType Object Overview

The DataType Object allows you to return objects of information about a particular data type or field.

Properties:

xe "DataType Members:DataType.Application"DataType.Application XE "Application"
This returns the Application Object. Read only.

xe "DataType Members:DataType.Parent"DataType.Parent XE "Parent"
This returns the Parent Command Object. Read only.

xe "DataType Members:DataType.Count"DataType.Count XE "Count"
This returns the number of instances of this data type in command. Read only Long.

xe "DataType Members:DataType.Value"DataType.Value XE "Value"
This returns the Default Property for a Field Type Number. Read only Long.

xe "DataType Members:DataType.Description"DataType.Description XE "Description"
This returns a description of the data type. Read only String.

xe "DataType Members:DataType.Type"DataType.Type XE "Type"
This returns the field type of the data type. Read only DATA_TYPE_TYPES.

xe "DataTypes Object Overview"

xe "Automation Objects:DataTypes Object"DataTypes Object Overview

The DataTypes Object allows you to return objects of varying data types.

Properties:

xe "DataTypes Members:DataTypes.Application"DataTypes.Application XE "Application"
This returns the Application Object. Read only.

xe "DataTypes Members:DataTypes.Count"DataTypes.Count XE "Count"
This returns the number of data type information objects in the data type collection. Read only Long.

xe "DataTypes Members:DataTypes.Parent"DataTypes.Parent XE "Parent"
This returns the Parent Command Object. Read only.

Methods:

xe "DataTypes Members:DataTypes.Item"DataTypes.Item

Syntax

Return Value=expression.item(Num)

Return Value: This returns the data type information object specified by the Num value from the data type collection.

expression: Required expression that evaluates to a PC-DMIS DataTypes object.

Num: Long value specifiying the data type information object.

xe "DataTypes Members:DataTypes.GetDataTypeInfo"DataTypes.GetDataTypeInfo XE "GetDataTypeInfo"
Syntax

Return Value=expression.GetDataTypeInfo(DataType)

Return Value: This returns the specified data type information object if supported by the data type collection.

expression: Required expression that evaluates to a PC-DMIS DataTypes object.

DataType: ENUM_FIELD_TYPES value specifiying the DataType information object to return.

Remarks

Beginning with PC-DMIS version 3.5, the following are now a part of the ENUM_FIELD_TYPES enumeration:

SOLID = 416

FIT = 452

TRACE_VALUE_LIMIT = 473

ROI_DIRECTION = 474

ROI_CENTER_X = 475

ROI_CENTER_Y = 476

CENTER_ROTATION_THEO = 477

CENTER_ROTATION_MEAS = 478

xe "DimData Object Overview"

xe "Automation Objects:DimData Object"DimData Object Overview

The DimData object is similar to a type define as follows:

Type DimData

Bonus as Double

Dev as Double

DevAngle as Double

Max as Double

Meas as Double

Min as Double

Minus as Double

Out as Double

Nom as Double

Plus as Double

End Type

It is be used to pass dimension information in automation functions that accept this type

Properties

xe "DimData Members:DimData.Bonus"DimData.Bonus XE "Bonus"
Represents the Bonus member of this object. Read/write Double.

xe "DimData Members:DimData.Dev"DimData.Dev XE "Dev"
Represents the Dev member of this object. Read/write Double.

Remarks
The Dev member is the default property.

xe "DimData Members:DimData.DevAngle"DimData.DevAngle XE "DevAngle"
Represents the DevAngle member of this object. Read/write Double.

xe "DimData Members:DimData.Max"DimData.Max XE "Max"
Represents the Max member of this object. Read/write Double.

xe "DimData Members:DimData.Meas"DimData.Meas XE "Meas"
Represents the Meas member of this object. Read/write Double.

xe "DimData Members:DimData.Min"DimData.Min XE "Min"
Represents the Min member of this object. Read/write Double.

xe "DimData Members:DimData.Minus"DimData.Minus XE "Minus"
Represents the Minus member of this object. Read/write Double.

xe "DimData Members:DimData.Out"DimData.Out XE "Out"
Represents the Out member of this object. Read/write Double.

xe "DimData Members:DimData.Nom"DimData.Nom XE "Nom"
Represents the Nom member of this object. Read/write Double.

xe "DimData Members:DimData.Plus"DimData.Plus XE "Plus"
Represents the Plus member of this object. Read/write Double.

xe "DimensionCommand Object Overview"

xe "Automation Objects:DimensionCommand Object"DimensionCommand Object Overview

Objects of type DimensionCommand are created from more generic Command objects to pass information specific to the dimension command back and forth.

Properties:

xe "DimensionCommand Members:DimensionCommand.Angle"DimensionCommand.Angle XE "Angle"
Represents the theoretical angle of a DIMENSION_ANGULARITY dimension. Read/Write Double.

Remarks
This function only works for objects of type DIMENSION_ANGULARITY. If used on any other object type, setting this variable will do nothing, and getting this variable will return zero.

xe "DimensionCommand Members:DimensionCommand.ArrowMultiplier"DimensionCommand.ArrowMultiplier XE "ArrowMultiplier"
Multiplier for display arrows of dimension. Read/Write Double.
xe "DimensionCommand Members:DimensionCommand.Axis"DimensionCommand.Axis XE "Axis"
Axis used with dimension. Possible values include the following:

DIMAXIS_NONE

DIMAXIS_XAXIS

DIMAXIS_YAXIS

DIMAXIS_ZAXIS

Read/Write Enum_Dim_AxisType Enumeration.

Remarks
This function only works with dimensions that can accept an axis as one of the inputs.

xe "DimensionCommand Members:DimensionCommand.AxisLetter"DimensionCommand.AxisLetter XE "AxisLetter"
Axis letter used to describe the axis or type of the dimension. Read only String.

xe "DimensionCommand Members:DimensionCommand.Bonus"DimensionCommand.Bonus XE "Bonus"
Returns the bonus tolerance of a true position dimension. Read-only Double.

Remarks
This function only works for single true position objects, i.e., DIMENSION_TRUE_Z_LOCATION, but not DIMENSION_TRUE_START_POSITION or DIMENSION_TRUE_END_POSITION. If used on any other object type, getting this variable will return zero.

xe "DimensionCommand Members:DimensionCommand.Deviation"DimensionCommand.Deviation XE "Deviation"
Returns the deviation of a dimension. Read/Write Double.

xe "DimensionCommand Members:DimensionCommand.DevAngle"DimensionCommand.DevAngle XE "DevAngle"
Returns the deviation angle of a dimension. Read/Write Double.

xe "DimensionCommand Members:DimensionCommand.GraphicalAnalysis"DimensionCommand.GraphicalAnalysis XE "GraphicalAnalysis"
Flag indicating whether graphical analysis is ON for the dimension. Read/Write Boolean.
xe "DimensionCommand Members:DimensionCommand.ID"DimensionCommand.ID XE "ID"
Returns the ID of a dimension. Read/Write String.

Remarks
For location and true position dimensions, only the start object has an id. For single location or true position object, i.e., DIMENSION_TRUE_Z_LOCATION or DIMENSION_Y_LOCATION, setting the ID property has no afffect and getting it returns the empty string.

xe "DimensionCommand Members:DimensionCommand.Feat1"DimensionCommand.Feat1 XE "Feat1"
Returns the ID of the first feature associated with a dimension. Read/Write String.

Remarks
For location and true position dimensions, only the start object has an associated feature. For single location or true position object, i.e., DIMENSION_TRUE_Z_LOCATION or DIMENSION_Y_LOCATION, setting the Feat1 property has no afffect and getting it returns the empty string. Also, objects of type DIMENSION_KEYIN have no associated features.

xe "DimensionCommand Members:DimensionCommand.Feat2"DimensionCommand.Feat2 XE "Feat2"
Returns the ID of the second feature associated with a dimension. Read/Write String.

Remarks
Not every dimension type has two features associated with it. Trying to set the Feat2 property of one of these types has no effect, and getting it returns the empty string.

xe "DimensionCommand Members:DimensionCommand.Feat3"DimensionCommand.Feat3 XE "Feat3"
Returns the ID of the second feature associated with a dimension. Read/Write String.

Remarks
Not every dimension type has three features associated with it. Trying to set the Feat3 property of one of these types has no effect, and getting it returns the empty string.

xe "DimensionCommand Members:DimensionCommand.Length"DimensionCommand.IsLocationAxis XE "IsLocationAxis"
boolean value… no help string associated

xe "DimensionCommand Members:DimensionCommand.Length"DimensionCommand.IsTruePosAxis XE "IsTruePosAxis"
boolean value… no help string associated

xe "DimensionCommand Members:DimensionCommand.Length"DimensionCommand.Length XE "Length"
Returns the length associated with a dimension. Read/Write Double.

Remarks
Only object of type DIMENSION_ANGULARITY, DIMENSION_ANGULARITY, DIMENSION_PERPENDICULARITY, and DIMENSION_PROFILE have a useful length property. For all other types, setting the property has no effect, and getting it always returns zero.

Related Topics: Command.Type Property \Relate "6_pcdbasic_automation.doc!215", "Command.Type Property" \D2HTargetDefault

xe "DimensionCommand Members:DimensionCommand.Nominal"DimensionCommand.Nominal XE "Nominal"
Returns the nominal associated with a dimension. Read/Write Double.

Remarks
Only object of type DIMENSION_START_LOCATION, DIMENSION_TRUE_START_POSITION do not have a useful nominal property. For these types, setting the property has no effect, and getting it always returns zero.

xe "DimensionCommand Members:DimensionCommand.Max"DimensionCommand.Max XE "Max"
Returns the maximum value of a dimension. Read-only Double.

xe "DimensionCommand Members:DimensionCommand.Measured"DimensionCommand.Measured XE "Measured"
Returns the measured value of a dimension. Read-only Double.

xe "DimensionCommand Members:DimensionCommand.Min"DimensionCommand.Min XE "Min"
Returns the minimum value of a dimension. Read-only Double.

xe "DimensionCommand Members:DimensionCommand.Minus"DimensionCommand.Minus XE "Minus"
Represents the negative tolerance of a dimension. Read/write Double.

xe "DimensionCommand Members:DimensionCommand.OutputMode"DimensionCommand.OutputMode XE "OutputMode"
Output mode of the dimension. Possible values include the following:

DIMOUTPUT_STATS

DIMOUTPUT_REPORT

DIMOUTPUT_BOTH

Read/Write Enum_Dim_OutputType Enumeration.

Remarks
The output mode determines where to send dimension data during execution.

xe "DimensionCommand Members:DimensionCommand.OutTol"DimensionCommand.OutTol XE "OutTol"
Returns the out-of-tolerance value of a dimension. Read-only Double.

xe "DimensionCommand Members:DimensionCommand.ParallelPerpindicular"DimensionCommand.ParallelPerpindicular XE "ParallelPerpindicular"
Indicates whether calculations are performed parallel or perpindicular to input for 2-D dimensions. Possible values include the following:

DIM_PERPINDICULAR

DIM_PARALLEL

Read/Write Enum_Dim_Perp_Parallel Enumeration.

xe "DimensionCommand Members:DimensionCommand.Profile"DimensionCommand.Profile XE "Profile"
Enumeration value indicating what type of profile should be used. Possible values include the following:

DIM_PROF_FORM_ONLY

DIM_PROF_FORM_AND_LOCATION

Read/Write Enum_Dim_Prof_Type Enumeration.

xe "DimensionCommand Members:DimensionCommand.Plus"DimensionCommand.Plus XE "Plus"
Returns the positive tolerance of a dimension. Read-only Double.

xe "DimensionCommand Members:DimensionCommand.Parent"DimensionCommand.Parent XE "Parent"
Returns the parent Command object. Read-only.

Remarks
The parent of a DimensionCommand object is the same underlying PC-DMIS object as the DimensionCommand object itself. Getting the parent allows you to access the generic Command properties and methods of a given object.

xe "DimensionCommand Members:DimensionCommand.RadiusType"DimensionCommand.RadiusType XE "RadiusType"
Radius calculation type used with true position dimensions. Possible values include the following:

DIM_NO_RADIUS

DIM_ADD_RADIUS

DIM_SUB_RADIUS

Read/Write Enum_Dim_Radius_Type Enumeration.

xe "DimensionCommand Members:DimensionCommand.TextualAnalysis"DimensionCommand.TextualAnalysis XE "TextualAnalysis"
Flag indicating whether textual analysis is ON for the dimension. Read/Write Boolean.
xe "DimensionCommand Members:DimensionCommand.TruePositionModifier"DimensionCommand.TruePositionModifier XE "TruePositionModifier"
Enumeration value indicating material conditions that should be used to calculate possible bonus tolerances. Possible values include the following:

DIM_RFS_RFS

DIM_RFS_MMC

DIM_RFS_LMC

DIM_MMC_RFS

DIM_MMC_MMC

DIM_MMC_LMC

DIM_LMC_RFS

DIM_LMC_MMC

DIM_LMC_LMC

Read/Write Enum_Dim_TP_Modifier Enumeration.

xe "DimensionCommand Members:DimensionCommand.TruePosUseAxis"DimensionCommand.TruePosUseAxis XE "TruePosUseAxis"
Enumeration value indicating axis type to use with true position dimension. Possible values include the following:

DIM_AXIS_AVERAGE

DIM_AXIS_START_POINT

DIM_AXIS_END_POINT

Read/Write Enum_Dim_TP_Use_Axis Enumeration.

xe "DimensionCommand Members:DimensionCommand.UnitType"DimensionCommand.UnitType XE "UnitType"
Unit type in use by dimension. Possible values include the following:

INCH

MM (for millimeters)

Read/Write UnitType Enumeration.

Methods:

xe "DimensionCommand Members:DimensionCommand.Evaluate"DimensionCommand.Evaluate

Syntax:

expression.DimensionCmd.Evaluate

Return Value: Boolean indicating success or failure in evaluating the dimension.

expression: Required expression that evaluates to a PC-DMIS DimensionCmd (dimension command) object.

Evaluates a dimension’s data from its feature data.

Remarks:

Some dimension commands exist as command blocks inside of PC-DMIS. Because of this, the Evaluate method only works on a command block if you call the method from the very first item of the block. Calls made from other items of a dimension’s command block won’t function.

xe "Dimension Format Object Overview"

xe "Automation Objects:Dimension Format Object"Dimension Format Object Overview

The Dimension Format Automation object gives access to the properties of the PC-DMIS Dimension Format command. For additional information on dimensions, see the topic "Dimension Options" in the PC-DMIS.

Properties:

xe "Dimension Format Members:DimFormat.ShowDevSymbols"DimFormat.ShowDevSymbols XE "ShowDevSymbols"
BOOLEAN value representing whether deviation symbols should be shown in the dimension report text.

Read/Write Boolean

xe "Dimension Format Members:DimFormat.ShowDimensionText"DimFormat.ShowDimensionText XE "ShowDimensionText"
BOOLEAN value indicating whether the top two lines of the dimension command should appear or not.

Read/Write Boolean

xe "Dimension Format Members:DimFormat.ShowDimensionTextOptions"DimFormat.ShowDimensionTextOptions XE "ShowDimensionTextOptions"
BOOLEAN value indicating whether various dimension such as arrow multiplier, graphical analysis, and textual analysis should appear in the dimension text or not.

Read/Write Boolean

xe "Dimension Format Members:DimFormat.ShowHeadings"DimFormat.ShowHeadings XE "ShowHeadings"
BOOLEAN value indicating whether the dimension headings such as NOM, MAX, MIN, DEV, OUTTOL, etc. should appear in the dimension text or not.

Read/Write Boolean

xe "Dimension Format Members:DimFormat.ShowStdDev"DimFormat.ShowStdDev XE "ShowStdDev"
BOOLEAN value indicating whether the standard deviation value should appear or not.

Read/Write Boolean

Methods:

xe "Dimension Format Members:DimFormat.GetHeading Type"DimFormat.GetHeadingType

Syntax:

expression.GetHeadingType (Index)

Return Value: DimFormatType Enumeration value indicating the dimension information type of the position indicated by the index parameter.

Possible values include the following:

PCD_NOT_USED = 0

PCD_NOM = 1

PCD_TOL = 2

PCD_MEAS = 3

PCD_MAXMIN = 4

PCD_DEV = 5

PCD_OUTTOL = 6

expression: Required expression that evaluates to a PC-DMIS Dimension Format object.

Index: Required Long representing which index position to retrieve.

xe "Dimension Format Members:DimFormat.SetHeadingType"DimFormat.SetHeadingType XE "SetHeadingType"
Syntax:

expression.SetHeadingType (Index, HeadingType)

Return Value: Boolean indicating success or failure in setting the heading type.

expression: Required expression that evaluates to a PC-DMIS Dim Format object.

Index: Required long indicating the index position that is being set.

HeadingType: Required DimFormatType Enumeration representing the type of value to be used at the given index position.

Possible values include the following:

PCD_NOT_USED = 0

PCD_NOM = 1

PCD_TOL = 2

PCD_MEAS = 3

PCD_MAXMIN = 4

PCD_DEV = 5

PCD_OUTTOL = 6

xe "Dimension Information Object Overview"

xe "Automation Objects:Dimension Information Object"Dimension Information Object Overview

The Dimension Information Automation object gives access to the properties and methods of the PC-DMIS Dimension Information command. See "DIMINFO Command" in the PC-DMIS for additional information.

Properties:

xe "Dimension Information Members:DimInfo.DimensionID"DimInfo.DimensionID XE "DimensionID"
STRING value representing the name of the dimension for which the dimension information object will be showing information.

Read/Write String

xe "Dimension Information Members:DimInfo.ShowDimensionID"DimInfo.ShowDimensionID XE "ShowDimensionID"
BOOLEAN value indicating whether the Dimension ID should be shown in the dimension information object.

Read/Write Boolean

xe "Dimension Information Members:DimInfo.ShowFeatID"DimInfo.ShowFeatID XE "ShowFeatID"
BOOLEAN value indicating whether to display the feature id of the feature belonging to the dimension used in the dimension information command.

Read/Write Boolean

Methods:

xe "Dimension Information Members:DimInfo.GetFieldFormat"DimInfo.GetFieldFormat

Syntax:

expression.GetFieldFormat (Index)

Return Value: Enum_Dinfo_Field_Types Enumeration value indicating the dimension information type of the position indicated by the index parameter.

Possible values include the following:

DINFO_NOT_USED = 0

DINFO_MEAS = 1

DINFO_NOM = 2

DINFO_TOL = 3

DINFO_DEV = 4

DINFO_MAXMIN = 5

DINFO_OUTTOL = 6

DINFO_MEAN = 7

DINFO_STDDEV = 8

DINFO_NUMPOINTS = 9

expression: Required expression that evaluates to a PC-DMIS Dimension Information object.

Index: Required Long representing which index position to retrieve.

xe "Dimension Information Members:DimInfo.GetLocationAxis"DimInfo.GetLocationAxis XE "GetLocationAxis"
Syntax:

expression.GetLocationAxis (Index)

Return Value: Enum_Dinfo_Loc_Axes Enumeration value indicating the dimension location axis order used at the position indicated by the index parameter. This function only works if the dimension being referenced in the command is an axis location dimension.

Possible values include the following:

DINFO_LOC_USE_DIM_AXES = -2

DINFO_LOC_WORST = -1

DINFO_LOC_NOT_USED = 0

DINFO_LOC_X = 1

DINFO_LOC_Y = 2

DINFO_LOC_Z = 3

DINFO_LOC_D = 4

DINFO_LOC_R = 5

DINFO_LOC_V = 6

DINFO_LOC_A = 7

DINFO_LOC_L = 8

DINFO_LOC_H = 9

DINFO_LOC_PR = 10

DINFO_LOC_PA = 11

DINFO_LOC_T = 12

DINFO_LOC_RT = 13

DINFO_LOC_S = 14

DINFO_LOC_RS = 15

DINFO_LOC_PD = 16

expression: Required expression that evaluates to a PC-DMIS Dimension Information object.

Index: Required Long representing which index position to retrieve.

xe "Dimension Information Members:DimInfo.GetTruePosAxis"DimInfo.GetTruePosAxis XE "GetTruePosAxis"
Syntax:

expression.GetTruePosAxis (Index)

Return Value: Enum_Dinfo_TP_Axes Enumeration value indicating the dimension true position axis order used at the position indicated by the index parameter. This command only works with dimension information commands that are referencing true position dimensions.

Possible values include the following:

DINFO_TP_USE_DIM_AXES = -2

DINFO_TP_WORST = -1

DINFO_TP_NOT_USED = 0

DINFO_TP_X = 1

DINFO_TP_Y = 2

DINFO_TP_Z = 3

DINFO_TP_PR = 4

DINFO_TP_PA = 5

DINFO_TP_DD = 6

DINFO_TP_LD = 7

DINFO_TP_WD = 8

DINFO_TP_DF = 9

DINFO_TP_LF = 10

DINFO_TP_WF = 11

DINFO_TP_TP = 12

expression: Required expression that evaluates to a PC-DMIS Dimension Information object.

Index: Required Long representing which index position to retrieve.

xe "Dimension Information Members:DimInfo.SetFieldFormat"DimInfo.SetFieldFormat XE "SetFieldFormat"
Syntax:

expression.SetFieldFormat (Index, FieldType)

Return Value: Boolean indicating success or failure in setting the field type.

expression: Required expression that evaluates to a PC-DMIS Dim Information object.

Index: Required long indicating the index position that is being set.

FieldType: Required Enum_Dinfo_Field_Types Enumeration representing the type of value used at the given index position.

Possible values include the following:

DINFO_NOT_USED = 0

DINFO_MEAS = 1

DINFO_NOM = 2

DINFO_TOL = 3

DINFO_DEV = 4

DINFO_MAXMIN = 5

DINFO_OUTTOL = 6

DINFO_MEAN = 7

DINFO_STDDEV = 8

DINFO_NUMPOINTS = 9

xe "Dimension Information Members:DimInfo.SetLocationAxis"DimInfo.SetLocationAxis XE "SetLocationAxis"
Syntax:

expression.SetFieldFormat (Index, Axis)

Return Value: Boolean indicating success or failure in setting the field type. Dimension needs to be a location dimension in order for this command to succeed.

expression: Required expression that evaluates to a PC-DMIS Dim Information object.

Index: Required long indicating the index position that is being set.

Axis: Required Enum_Dinfo_Loc_Axes Enumeration representing the type the axis used at the given index position.

Possible values include the following:

DINFO_LOC_USE_DIM_AXES = -2

DINFO_LOC_WORST = -1

DINFO_LOC_NOT_USED = 0

DINFO_LOC_X = 1

DINFO_LOC_Y = 2

DINFO_LOC_Z = 3

DINFO_LOC_D = 4

DINFO_LOC_R = 5

DINFO_LOC_V = 6

DINFO_LOC_A = 7

DINFO_LOC_L = 8

DINFO_LOC_H = 9

DINFO_LOC_PR = 10

DINFO_LOC_PA = 11

DINFO_LOC_T = 12

DINFO_LOC_RT = 13

DINFO_LOC_S = 14

DINFO_LOC_RS = 15

DINFO_LOC_PD = 16

xe "Dimension Information Members:DimInfo.SetTruePosAxis"DimInfo.SetTruePosAxis XE "SetTruePosAxis"
Syntax:

expression.SetTruePosAxis (Index, Axis)

Return Value: Boolean indicating success or failure in setting the field type. Dimension needs to be a true position dimension in order for this command to succeed.

expression: Required expression that evaluates to a PC-DMIS Dim Information object.

Index: Required long indicating the index position that is being set.

Axis: Required Enum_Dinfo_TP_Axes Enumeration representing the type the axis used at the given index position.

Possible values include the following:

DINFO_TP_USE_DIM_AXES = -2

DINFO_TP_WORST = -1

DINFO_TP_NOT_USED = 0

DINFO_TP_X = 1

DINFO_TP_Y = 2

DINFO_TP_Z = 3

DINFO_TP_PR = 4

DINFO_TP_PA = 5

DINFO_TP_DD = 6

DINFO_TP_LD = 7

DINFO_TP_WD = 8

DINFO_TP_DF = 9

DINFO_TP_LF = 10

DINFO_TP_WF = 11

DINFO_TP_TP = 12

xe "Display Metafile Object Overview"

xe "Automation Objects:Display Metafile Object"Display Metafile Object Overview

The Display Metafile Automation object gives access to the comment properties of the PC-DMIS Display Metafile command.

Properties:

xe "Display Metafile Members:DispMetafile.Comment"DispMetafile.Comment XE "Comment"
STRING value representing the comment to be used as a caption for the metafile object.

Read/Write String

xe "DmisDialog Object Overview"

xe "Automation Objects:DmisDialog Object"DmisDialog Object Overview

The DmisDialog object represents a PC-DMIS modeless dialog and can be used to determine if the dialog is still visible. A DmisDialog object can be obtained from the Dialog2 method \Relate "6_pcdbasic_automation.doc!185", "Dialog2 method" \D2HTargetDefault
 of the command automation object. This object has one property: visible.

If true, the dialog is still visible to the user. If false, the dialog either no longer exists or is no longer visible to the user.

Properties:

xe "DmisDialog Members:DmisDialog.Visible"DmisDialog.Visible XE "Visible"
Indicates whether the dialog is still visible to the user.

Read Only: Boolean

xe "Dmis Matrix Object Overview"

xe "Automation Objects:DmisMatrix Object"DmisMatrix Object Overview

The DmisMatrix object is a four by three array of doubles modeled after the transformation matrices used in PC-DMIS. The first set of three doubles represent the matrix offset. The second set of three doubles represent the X axis. The third set of three doubles represent the Y axis. The fourth set of three doubles represent the Z axis.

Properties:

xe "DmisMatrix Members:DmisMatrix.Copy"DmisMatrix.Copy XE "Copy"
Returns a copy of the matrix.

Read Only: DmisMatrix

xe "DmisMatrix Members:DmisMatrix.Inverse"DmisMatrix.Inverse XE "Inverse"
Returns an inverse matrix of the current matrix.

Read Only: DmisMatrix

xe "DmisMatrix Members:DmisMatrix.IsIdentity"DmisMatrix.IsIdentity XE "IsIdentity"
BOOLEAN property set to true if the matrix is the identity matrix.

Read Only: Boolean

xe "DmisMatrix Members:DmisMatrix.OffsetAxis"DmisMatrix.OffsetAxis XE "OffsetAxis"
The first set of three doubles in the matrix representing the translation offset of the matrix.

Read/Write: PointData

xe "DmisMatrix Members:DmisMatrix.PrimaryAxis"DmisMatrix.PrimaryAxis XE "PrimaryAxis"
The second set of three doubles in the matrix representing the matrix's primary axis.

Read/Write PointData

xe "DmisMatrix Members:DmisMatrix.SecondaryAxis"DmisMatrix.SecondaryAxis XE "SecondaryAxis"
The third set of three doubles in the matrix representing the matrix's secondary axis.

Read/Write PointData

xe "DmisMatrix Members:DmisMatrix.TertiaryAxis"DmisMatrix.TertiaryAxis XE "TertiaryAxis"
The fourth set of three doubles in the matrix representing the matrix's tertiary axis.

Read/Write PointData

Methods:

xe "DmisMatrix Members:DmisMatrix.Item"DmisMatrix.Item

Syntax:

expression.Item (Num)

expression: Required expression that evaluates to a PC-DMIS DmisMatrix object.

Num: Required parameter of type long between 1 and 12 inclusive from which the matrix data is copied.

Return Value:
Data item of matrix of type double.

xe "DmisMatrix Members:DmisMatrix.Multiply"DmisMatrix.Multiply XE "Multiply"
Syntax:

expression.Multiply (SecondMatrix)

expression: Required expression that evaluates to a PC-DMIS DmisMatrix object.

SecondMatrix: Required paramter of type DmisMatrix representing the second matrix.

Return Value:

Matrix that is the result of multiplying the two matrices of type DmisMatrix.

xe "DmisMatrix Members:DmisMatrix.Normalize"DmisMatrix.Normalize XE "Normalize"
Syntax:

expression.Normalize ()

expression: Required expression that evaluates to a PC-DMIS DmisMatrix object.

Remarks
Normalizes the matrix.

xe "DmisMatrix Members:DmisMatrix.Reset"DmisMatrix.Reset XE "Reset"
Syntax:

expression.Reset ()

expression: Required expression that evaluates to a PC-DMIS DmisMatrix object.

Remarks
Resets the matrix to the identity matrix.

xe "DmisMatrix Members:DmisMatrix.RotateByAngle"DmisMatrix.RotateByAngle XE "RotateByAngle"
Syntax:

expression.RotateByAngle (Angle, Workplane)

expression: Required expression that evaluates to a PC-DMIS DmisMatrix object.

Angle: Required Double parameter representing the rotation angle (in degrees).

Workplane: Optional Long parameter used to define which axis to rotate about. Defaults to PCD_TOP.

Remarks
Rotates the matrix by the specified angle relative to the workplane.

xe "DmisMatrix Members:DmisMatrix.RotateToPoint"DmisMatrix.RotateToPoint XE "RotateToPoint"
Syntax:

expression.RotateToPoint (X, Y, Workplane)

expression: Required expression that evaluates to a PC-DMIS DmisMatrix object.

X: Required Double X component used in calculating rotation angle.

Y: Required Double Y component used in calculation rotation angle.

Workplane: Optional Long parameter used to define which axis to rotate about. Defaults to PCD_TOP.

Remarks
Rotates the matrix by the calculated angle relative to the workplane.

xe "DmisMatrix Members:DmisMatrix.RotateToVector"DmisMatrix.RotateToVector XE "RotateToVector"
Syntax:

expression.RotateToVector (Vector, Workplane)

expression: Required expression that evaluates to a PC-DMIS DmisMatrix object.

Vector: Required Pointdata parameter specifying the vector that the primary axis should be rotated to.

Workplane: Optional Long parameter used to define which axis to rotate about. Defaults to PCD_TOP.

Remarks
Rotates the primary axis (as determined by the workplane parameter) to the specified vector.

xe "DmisMatrix Members:DmisMatrix.SetMatrix"DmisMatrix.SetMatrix XE "SetMatrix"
Syntax:

expression.SetMatrix (Vector, Point, Workplane)

expression: Required expression that evaluates to a PC-DMIS DmisMatrix object.

Vector: Required Pointdata parameter used with the workplane parameter to establish the orientation of the matrix.

Point: Required Pointdata parameter used to set the matrix offset.

Workplane: Optional Long parameter used to define the direction of the primary axis.

Remarks
Initializes the matrix using the vector and workplane to set the matrix orientation and the point to set the matrix offset.

xe "DmisMatrix Members:DmisMatrix.TransformDataBack"DmisMatrix.TransformDataBack XE "TransformDataBack"
Syntax:

expression.TransformDataBack (PointData, TransformationType, Workplane)

expression: Required expression that evaluates to a PC-DMIS DmisMatrix object.

PointData: Required PointData object parameter that is modifed by multiplying the data in the point by the inverse of the matrix.

TransformationType: Optional Long parameter that identifies the type of transformation desired. The following options are available:

ROTATE_AND_TRANSLATE = 0

ROTATE_ONLY = 1

MAJOR_MINOR_THIRD_ROT_AND_TRANS = 2

MAJOR_MINOR_THIRD_ROTATE_ONLY = 3

The default is ROTATE_AND_TRANSLATE.

Workplane: Optional Long parameter used to define which axis to rotate about. Defaults to PCD_TOP. This parameter is used when the MAJOR_MINOR_THIRD_ROT_AND_TRANS parameter or the MAJOR_MINOR_THIRD_ROTATE_ONLY transformation type parameter is used.

xe "DmisMatrix Members:DmisMatrix.TransformDataForward"DmisMatrix.TransformDataForward XE "TransformDataForward"
Syntax:

expression.TransformDataForward (PointData, TransformationType, Workplane)

expression: Required expression that evaluates to a PC-DMIS DmisMatrix object.

PointData: Required PointData object parameter that is modifed by multiplying the data in the point by the matrix.

TransformationType: Optional Long parameter that identifies the type of transformation desired. The following options are available:

ROTATE_AND_TRANSLATE = 0

ROTATE_ONLY = 1

MAJOR_MINOR_THIRD_ROT_AND_TRANS = 2

MAJOR_MINOR_THIRD_ROTATE_ONLY = 3

The default is ROTATE_AND_TRANSLATE.

Workplane: Optional Long parameter used to define which axis to rotate about. Defaults to PCD_TOP. This parameter is used when the MAJOR_MINOR_THIRD_ROT_AND_TRANS parameter or the MAJOR_MINOR_THIRD_ROTATE_ONLY transformation type parameter is used.

xe "EditWindow Object Overview"

xe "Automation Objects:EditWindow Object"EditWindow Object Overview

The EditWindow object represents the edit window associated with a part program. It is always present, although sometimes it is invisible. When in command mode, the edit window lists all the commands in the part program. When in report mode, the edit window lists the part program’s current report.

Properties:

xe "EditWindow Members:EditWindow.Application"EditWindow.Application XE "Application"
Represents the read-only PC-DMIS application. The Application object includes properties and methods that return top-level objects. For example, the ActivePartProgram property returns a PartProgram object.

xe "EditWindow Members:EditWindow.Height"EditWindow.Height XE "Height"
The height of the edit window in screen pixels. Read/Write Long.

xe "EditWindow Members:EditWindow.Left"EditWindow.Left XE "Left"
The left edge of the edit window, measured from the left edge of the Windows Desktop. Read/Write Long.

Remarks
The Left property is measured in screen pixels.

xe "EditWindow Members:EditWindow.Parent"EditWindow.Parent XE "Parent"
Returns the parent PartProgram of this object. Read-only PartProgram.

xe "EditWindow Members:EditWindow.ShowAlignments"EditWindow.ShowAlignments XE "ShowAlignments"
This property is TRUE if alignments are being shown in the edit window, FALSE otherwise. Read/Write Boolean.

xe "EditWindow Members:EditWindow.ShowComments"EditWindow.ShowComments XE "ShowComments"
This property is TRUE if comments are being shown in the edit window, FALSE otherwise. Read/Write Boolean.

xe "EditWindow Members:EditWindow.ShowDimensions"EditWindow.ShowDimensions XE "ShowDimensions"
This property is TRUE if dimensions are being shown in the edit window, FALSE otherwise. Read/Write Boolean.

xe "EditWindow Members:EditWindow.ShowFeatures"EditWindow.ShowFeatures XE "ShowFeatures"
This property is TRUE if features are being shown in the edit window, FALSE otherwise. Read/Write Boolean.

xe "EditWindow Members:EditWindow.ShowHeaderFooter"EditWindow.ShowHeaderFooter XE "ShowHeaderFooter"
This property is TRUE if headers and footers are being shown in the edit window, FALSE otherwise. Read/Write Boolean.

xe "EditWindow Members:EditWindow.ShowHits"EditWindow.ShowHits XE "ShowHits"
This property is TRUE if hits are being shown in the edit window, FALSE otherwise. Read/Write Boolean.

xe "EditWindow Members:EditWindow.ShowMoves"EditWindow.ShowMoves XE "ShowMoves"
This property is TRUE if moves are being shown in the edit window, FALSE otherwise. Read/Write Boolean.

xe "EditWindow Members:EditWindow.ShowOutTolOnly"EditWindow.ShowOutTolOnly XE "ShowOutTolOnly"
This property is TRUE if only out-of-tolerance dimensions are being shown in the edit window, FALSE otherwise. If ShowDimensions is FALSE, this property is ignored. Read/Write Boolean.

xe "EditWindow Members:EditWindow.ShowTips"EditWindow.ShowTips XE "ShowTips"
This property is TRUE if tips are being shown in the edit window, FALSE otherwise. Read/Write Boolean.

xe "EditWindow Members:EditWindow.StatusBar"EditWindow.StatusBar XE "StatusBar"
This property represents the text in the edit window’s status bar. Read-Write String.

xe "EditWindow Members:EditWindow.Top"EditWindow.Top XE "Top"
The top edge of the edit window, measured from the top edge of the Windows Desktop. Read/Write Long.

Remarks
The Top property is measured in screen pixels.

xe "EditWindow Members:EditWindow.Visible"EditWindow.Visible XE "Visible"
This property is TRUE if the edit window is visible, FALSE otherwise. Read/write Boolean.

xe "EditWindow Members:EditWindow.Width"EditWindow.Width XE "Width"
The width of the edit window in screen pixels. Read/Write Long.

Methods:

xe "EditWindow Members:EditWindow.CommandMode"EditWindow.CommandMode

Syntax

expression.CommandMode

expression: Required expression that evaluates to a PC-DMIS EditWindow object.

This function puts the Edit window into command mode.

xe "Print"

xe "EditWindow Members:EditWindow.Print"EditWindow.Print XE "Print"
Syntax

expression.Print

expression: Required expression that evaluates to a PC-DMIS EditWindow object.

This function prints the contents of the Edit window.

xe "EditWindow Members:EditWindow.ReportMode"EditWindow.ReportMode XE "ReportMode"
Syntax

expression.ReportMode

expression: Required expression that evaluates to a PC-DMIS EditWindow object.

This function puts the Edit window into report mode.

xe "EditWindow Members:EditWindow.SetPrintOptions"EditWindow.SetPrintOptions XE "SetPrintOptions"
Syntax

expression.SetPrintOptions long Location, long Draft, long FileMode, long ExtNum

expression: Required expression that evaluates to a PC-DMIS EditWindow object.

Location: Destination of printed data. Options include Off, File, or Printer

Draft: When destination is printer, specifies if printer should print in draft mode or not. Options include On and Off.

FileMode: When destination is file, specifies file naming and writing parameters. Options include: Append, New File, Overwrite, and Auto. Auto mode automatically increments a numeric extension for the output file.

ExtNum: Number to be used for the file extension of the output file.

This function allows you to set Edit window print options.

xe "EditWindow Members:EditWindow.SetPrintOptionsEx"EditWindow.SetPrintOptionsExxe "SetPrintOptionsEx"
Syntax

expression.SetPrintOptionsEx long Location, long Draft, long FileMode, long ExtNum, FileName, Format, bHyperReportsInline

expression: Required expression that evaluates to a PC-DMIS EditWindow object.

Location: Destination of printed data. Options include Off (PCD___OFF), File (PCD_FILE), or Printer (PCD_PRINTER)
Draft: When destination is printer, specifies if printer should print in draft mode or not. Options include On (DMIS_ON) and Off (DMIS_OFF).

FileMode: When the Location is set to PCD_FILE, this specifies file naming and writing parameters. Options include: Append (PDF_APPEND), New File (PCD_NEWFILE), Overwrite (PCD_OVERWRITE), and Auto (PCD_AUTO). Auto mode automatically increments a numeric extension for the output file.

ExtNum: Number to be used for the file extension of the output file.

FileName: If PCD_FILE is selected for the Location parameter, this string value identifies the filename and path for the created file.

Format: If PCD_FILE is selected for the Location parameter, the Format parameter specifies the file format for the saved file. You can print the Edit window contents to a file in either the RTF (PCD_RTF) format or the PDF (PCD_PDF) format.

bHyperReportsInline: If PCD_PDF is selected for the Format parameter, this True or False parameter determines whether or not data from inline HyperView commands appear in the PDF generated file.

This function allows you to set extended Edit window print options.
xe "EditWindow Members:EditWindow.SetDMISOutputOptions"EditWindow.SetDMISOutputOptionsxe "SetDMISOutputOptions"
Syntax

expression.SetDMISOutputOptions bEnable, FileName, bOverwrite, bOutputTheos, bOutputFeatWithDimensions

expression: Required expression that evaluates to a PC-DMIS EditWindow object.

bEnable: This Boolean value determines whether or not PC-DMIS prints the contents of the Edit window as a DMIS output file.
FileName: This string value identifies the filename and path for the created DMIS output file.
bOverwrite: This parameter determines how PC-DMIS outputs the DMIS file. You can choose to append the DMIS output file to an existing file (PCD_DMIS_FILE_APPEND), overwrite an existing file with the new contents (PCD_DMIS_FILE_OVERWRITE), or append to the existing file name a number (PCD_DMIS_FILE_ADD_INDEX).
bOutputTheos: With this parameter you can choose to not include theoretical values in the output DMIS file (PCD_DMIS_OUTPUT_THEOS_NONE), output all theoretical values along with the measured values (PCD_DMIS_OUTPUT_THEOS_ALL), or to only output theoretical values output by the DMIS program (PCD_DMIS_OUTPUT_THEOS_USE_IMPORTED_SETTING).
bOutputFeatWithDimensions: This Boolean value allows you determine whether or not to output the measured features and associated tolerances together in the output file.
This function sets output options for printing the Edit window contents as a DMIS file.
ExecutedCommands Object Overview

The ExecutedCommands object acts much like the Commands object except that it only returns a collection of the executed commands from the last part program, while the Commands object returns all the commands in the part program.

Properties

xe "ExecutedCommands Members:ExecutedCommands.Application"

xe "Application"ExecutedCommands.Application

Syntax

expression.Application

expression: Required expression that evaluates to a PC-DMIS ExecutedCommands object.

The Application property returns the application object.

xe "ExecutedCommands Members:ExecutedCommands.Parent"

xe "Parent"ExecutedCommands.Parent

Syntax

expression.Parent

expression: Required expression that evaluates to a PC-DMIS ExecutedCommands object.

The Parent property returns the parent part program object.

xe "ExecutedCommands Members:ExecutedCommands.Count"

xe "Count"ExecutedCommands.Count

Syntax

expression.Parent

expression: Required expression that evaluates to a PC-DMIS ExecutedCommands object.

The Count property returns a number indicating how many commands were executed.

Methods

xe "ExecutedCommands Members:ExecutedCommands.Item"

xe "Item"ExecutedCommands.Item
Syntax

Return Value=expression.Item(NameOrNum)

Return Value: The Item method returns the executed command specified by the provided index number or name in NameorNum.

expression: Required expression that evaluates to an ExecutedCommands object.

NameOrNum: Required Long that indicates which executed command to return. This is the index number of the executed command in the ExecutedCommands collection denoted by expression.

xe "ExecutedCommands Members:ExecutedCommands.FindByUniqueID"

xe "FindByUniqueID"ExecutedCommands.FindByUniqueID

Syntax

Return Value=expression.FindByUniqueID(LoPart,HiPart)

Return Value: This finds and returns the command identified by the Unique ID formed from the LoPart and HiPart values.
expression: Required expression that evaluates to an ExecutedCommands object.

LoPart: DOCUMENTATION PENDING
HiPart: DOCUMENTATION PENDING
xe "ExternalCommand Object Overview"

xe "Automation Objects:ExternalCommand Object"ExternalCommand Object Overview

The external command object causes PC-DMIS to launch an external program during part program execution. This object has one property: The command property. This property consists of a string value used to execute the external command.

Properties:

xe "ExternalCommand Members:ExtCommand.Command"ExtCommand.Command XE "Command"
String value which is the command to be executed. This string should be in the same format as a string entered into Window's Run Dialog box (i.e. The string should include full pathname and executable name of the external command to be executed).

Read/Write String
xe "FeatCommand Object Overview"

xe "Automation Objects:FeatCommand Object"FeatCommand Object Overview

Objects of type FeatureCommand are created from more generic Command objects to pass information specific to the feature command back and forth.

Properties:

xe "FeatCommand Members:FeatCommand.AlignWorkPlane"FeatCommand.AlignWorkPlane XE "AlignWorkPlane"
Workplane value for constructed alignment planes and lines. Possible values include the following:

ALIGN_ZPLUS = 0

ALIGN_ZMINUS = 1

ALIGN_XPLUS = 2

ALIGN_XMINUS = 3

ALIGN_YPLUS = 4

ALIGN_YMINUS = 5

ALIGN_CURRENT_WORKPLANE = 6

Enum_Align_WorkPlane Enumeration Read/Write.

Remarks

This property applies only to PC-DMIS constructed features that have a workplane field.

xe "FeatCommand Members:FeatCommand.AutoCircularMove"FeatCommand.AutoCircularMove XE "AutoCircularMove"
Flag indicating whether circular moves should be used between hits. Boolean Read/Write.

Remarks

This property applies only to PC-DMIS commands that have an auto circular move field.

xe "FeatCommand Members:FeatCommand.AutoClearPlane"FeatCommand.AutoClearPlane XE "AutoClearPlane"
Flag indicating whether clearance planes should automatically be used with the feature. Boolean Read/Write.

Remarks

This property applies only to PC-DMIS commands that have an auto clearplane field.

xe "FeatCommand Members:FeatCommand.AutoMove"FeatCommand.AutoMove XE "AutoMove"
Auto Move Flag. Boolean Read/Write.

Remarks

This property applies only to PC-DMIS commands that have an auto move field.

xe "FeatCommand Members:FeatCommand.AutoMoveDistance"FeatCommand.AutoMoveDistance XE "AutoMoveDistance"
Distance used in calculating auto move. Double Read/Write.

Remarks

This property applies only to PC-DMIS commands that have an auto move distance field.

xe "FeatCommand Members:FeatCommand.AutoPH9"FeatCommand.AutoPH9 XE "AutoPH9"
Flag indicating if selected tip should be automatically adjusted during measurement of feature. Boolean Read/Write.

Remarks

This property applies only to PC-DMIS commands that have an AutoPH9 field.

xe "FeatCommand Members:FeatCommand.AutoReadPos"FeatCommand.AutoReadPos XE "AutoReadPos"
Auto Read Position Flag. Boolean Read/Write.

Remarks

This property applies only to PC-DMIS commands that have an auto read pos field.

xe "FeatCommand Members:FeatCommand.BestFitMathType"FeatCommand.BestFitMathType XE "BestFitMathType"
Value representing the best fit math algorithm to be used in calculating the measured feature values based on the measured hits. Possible values include the following.

BF_MATH_LEAST_SQUARES = 0

BF_MATH_MIN_SEPARATION = 1

BF_MATH_MAX_INSCRIBED = 2

BF_MATH_MIN_CIRCUMSCRIBED = 3

BF_MATH_FIXED_RADIUS = 4

ENUM_BEST_FIT_MATH_TYPES Enumeration Read/Write.

Remarks

This property applies only to the circle and cylinder measured features and best fit constructed features.

FeatCommand.Bound XE "Bound"
Flag indicating whether or not feature is bound. Boolean Read/Write.

Remarks

This property applies only to PC-DMIS commands that have a bound/unbound field.

xe "FeatCommand Members:FeatCommand.BoxWidth"FeatCommand.BoxWidth XE "BoxWidth"
Box width value for auto high point. Double Read/Write.

Remarks

This property is only applicable for the PC-DMIS auto high point command.

xe "FeatCommand Members:FeatCommand.BoxLength"FeatCommand.BoxLength XE "BoxLength"
Box length value for auto high point. Double Read/Write.

Remarks

This property is only applicable for the PC-DMIS auto high point command.

xe "FeatCommand Members:FeatCommand.CirclularRadiusIn"FeatCommand.CircularRadiusIn XE "CircularRadiusIn"
Inside circular radius value for auto high point. Double Read/Write.

Remarks

This property is only applicable for the PC-DMIS auto high point command.

xe "FeatCommand Members:FeatCommand.CirclularRadiusOut"FeatCommand.CircularRadiusOut XE "CircularRadiusOut"
Outside circular radius value for auto high point. Double Read/Write.

Remarks

This property is only applicable for the PC-DMIS auto high point command.

xe "FeatCommand Members:FeatCommand.CornerRadius"FeatCommand.CornerRadius XE "CornerRadius"
Corner radius value for auto square slot and auto notch objects. Double Read/Write.

Remarks

This property is only applicable for the PC-DMIS auto square slot and auto notch commands.

xe "FeatCommand Members:FeatCommand.DCCFindNomsMode"FeatCommand.DCCFindNomsMode XE "DCCFindNomsMode"
Boolean read/write value that indicates if the measurement mode for an auto feature should be done in find nominals mode or not.

Remarks

This property applies only to PC-DMIS auto features with a find nominals measurement field.

xe "FeatCommand Members:FeatCommand.DCCMeasureInMasterMode"FeatCommand.DCCMeasureInMasterMode XE "DCCMeasureInMasterMode"
Boolean read/write value that indicates if the measurement mode for an auto feature should be done in master mode or not.

Remarks

This property applies only to PC-DMIS auto features with a master mode measurement field.

xe "FeatCommand Members:FeatCommand.Depth"FeatCommand.Depth XE "Depth"
Depth value. Double Read/Write.

Remarks

This property applies only to PC-DMIS commands that have a depth field. Currently, this is only useful for Edge Hit and DCC Edge.

xe "FeatCommand Members:FeatCommand.Deviation"FeatCommand.Deviation XE "Deviation"
Auto sphere deviation value. Double Read/Write.

Remarks

This property applies only to the PC-DMIS auto sphere command.

xe "FeatCommand Members:FeatCommand.DisplayConeAngle"FeatCommand.DisplayConeAngle XE "DisplayConeAngle"
Flag indicating whether or not to display the angle of the cone. If this value is false, then the cone length is displayed. Boolean Read/Write.

Remarks

This property applies only to PC-DMIS cone commands that have a display option on angle vs. length.

xe "FeatCommand Members:FeatCommand.EdgeMeasureOrder"FeatCommand.EdgeMeasureOrder XE "EdgeMeasureOrder"
Measure order for edge points. Possible values include the following.

EDGE_SURFACE_FIRST = 0

EDGE_EDGE_FIRST = 1

EDGE_BOTH =2

Edge_Measure_Types Enumeration Read/Write.

Remarks

This property applies only to PC-DMIS edge commands.

xe "FeatCommand Members:FeatCommand.EdgeThickness"FeatCommand.EdgeThickness XE "EdgeThickness"
Thickness value for edge points. Double Read/Write.

Remarks

This property is only applicable for PC-DMIS edge commands.

xe "FeatCommand Members:FeatCommand.EndAngle"FeatCommand.EndAngle XE "EndAngle"
End Angle value. Double Read/Write.

Remarks

This property applies only to PC-DMIS commands that have an end angle field.

xe "FeatCommand Members:FeatCommand.EndAngle2"FeatCommand.EndAngle2 XE "EndAngle2"
Second End Angle value. Double Read/Write.

Remarks

This property applies only to PC-DMIS commands that have a second end angle field.

xe "FeatCommand Members:FeatCommand.FilterType"FeatCommand.FilterType XE "FilterType"
Filter object filter type. Possible values include the following:

FILTER_LINEAR = 0

FILTER_POLAR = 1

Enum_Filter_Types Enumeration Read/Write.

Remarks

This property is only applicable for the PC-DMIS filter command.

xe "FeatCommand Members:FeatCommand.FindHole"FeatCommand.FindHole XE "FindHole"
Flag indicating whether or not to use the Find Hole routine. If this value is true, then the Fild Hole routine is used. Boolean Read/Write.

xe "FeatCommand Members:FeatCommand.GenericAlignMode"FeatCommand.GenericAlignMode XE "GenericAlignMode"
Generic alignment mode. Possible values include the following:

GENERIC_ALIGN_DEPENDENT =0

GENERIC_ALIGN_INDEPENDENT =1

Enum_Generic_Align Enumeration Read/Write.

Remarks

This property is only applicable for the PC-DMIS generic feature command.

xe "FeatCommand Members:FeatCommand.GenericDisplayMode"FeatCommand.GenericDisplayMode XE "GenericDisplayMode"
Generic display mode. Possible values include the following:

GENERIC_DISPLAY_RADIUS = 0

GENERIC_DISPLAY_DIAMETER = 1

Enum_Generic_Display Enumeration Read/Write.

Remarks

This property is only applicable for the PC-DMIS generic feature command.

xe "FeatCommand Members:FeatCommand.GenericType"FeatCommand.GenericType XE "GenericType"
Generic feature type. Possible values include the following:

GENERIC_POINT = 0

GENERIC_PLANE = 1

GENERIC_LINE = 2

GENERIC_CIRCLE = 3

GENERIC_SPHERE = 4

GENERIC_CYLINDER = 5

GENERIC_ROUND_SLOT = 6

GENERIC_SQUARE_SLOT = 7

GENERIC_CONE = 8

GENERIC_NONE = 9

Enum_Generic_Types Enumeration Read/Write.

Remarks

This property is only applicable for the PC-DMIS generic feature command.

xe "FeatCommand Members:FeatCommand.HighPointSearchMode"FeatCommand.HighPointSearchMode XE "HighPointSearchMode"
Search mode for auto high point. Possible values include the following:

SEARCH_MODE_BOX = 0

SEARCH_MODE_CIRCULAR = 1

High_Point_Search_Modes Enumeration Read/Write.

Remarks

This property is only applicable for the PC-DMIS auto high point command.

xe "FeatCommand Members:FeatCommand.ID"FeatCommand.ID XE "ID"
Represents the ID of the feature. Read/Write String.

Remarks

The IDs of the various objects in a part program should be unique.

xe "FeatCommand Members:FeatCommand.Increment"FeatCommand.Increment XE "Increment"
Increment value for auto high point. Double Read/Write.

Remarks

This property is only applicable for the PC-DMIS auto high point command.

xe "FeatCommand Members:FeatCommand.Indent"FeatCommand.Indent XE "Indent"
Indent distance (used with sample hits). Double Read/Write.

Remarks

This property applies only to PC-DMIS commands that have an indent field.

xe "FeatCommand Members:FeatCommand.Indent2"FeatCommand.Indent2 XE "Indent2"
Second indent distance (used with sample hits). Double Read/Write.

Remarks

This property applies only to PC-DMIS commands that have a second indent field.

xe "FeatCommand Members:FeatCommand.Indent3"FeatCommand.Indent3 XE "Indent3"
Third indent distance (used with sample hits). Double Read/Write.

Remarks

This property applies only to PC-DMIS commands that have a third indent field.

xe "FeatCommand Members:FeatCommand.InitHits"FeatCommand.InitHits XE "InitHits"
Number of intitial sample hits. Double Read/Write.

Remarks

This property applies only to PC-DMIS commands that have a working initial hits field. These include:

· AUTO Angle

· AUTO Circle

· AUTO Cylinder

· AUTO Edge

· AUTO Ellipse

· AUTO Notch

· AUTO Round Slot

· AUTO Sphere

· AUTO Square Slot

· AUTO Surface

· Angle Hit

· Edge Hit

All other features only allow a read-only zero for initial hits.

xe "FeatCommand Members:FeatCommand.Inner"FeatCommand.Inner XE "Inner"
Boolean read/write value that indicates whether the feature is a hole (inner) or a stud (outer).

Remarks

This property applies only to PC-DMIS commands that can be either inside or outside features.

xe "FeatCommand Members:FeatCommand.InteriorHit"FeatCommand.InteriorHit XE "InteriorHit"
Flag used to indicate type of hit for objects that can have interior/exterior hits. Boolean Read/Write.

Remarks

This property applies only to PC-DMIS commands that have an interior/exterior hit field.

xe "FeatCommand Members:FeatCommand.Line3D"FeatCommand.Line3D XE "Line3D"
Boolean read/write value that indicates whether the feature is a three dimensional line or a two dimensional line. A value of false indicates a two dimensional line.

Remarks

This property applies only to PC-DMIS lines features with and 2D/3D field.

xe "FeatCommand Members:FeatCommand.MeasAngle"FeatCommand.MeasAngle XE "MeasAngle"
Measured angle value. Double Read Only.

Remarks

This property applies only to PC-DMIS commands that have an angle field.

xe "FeatCommand Members:FeatCommand.MeasDiam"FeatCommand.MeasDiam XE "MeasDiam"
Measured diameter value. Double Read Only.

Remarks

This property applies only to PC-DMIS commands that have a diameter field.

xe "FeatCommand Members:FeatCommand.MeasHeight"FeatCommand.MeasHeight XE "MeasHeight"
Measured height value. Double Read Only.

Remarks

This property applies only to PC-DMIS commands that have a height field.

xe "FeatCommand Members:FeatCommand.MeasMajorAxis"FeatCommand.MeasMajorAxis XE "MeasMajorAxis"
Measured major axis length value (ellipse). Double Read only.

Remarks

This property applies only to PC-DMIS commands that have a major axis field.

xe "FeatCommand Members:FeatCommand.MeasMinorAxis"FeatCommand.MeasMinorAxis XE "MeasMinorAxis"
Measured minor axis length value (ellipse). Double Read Only.

Remarks

This property applies only to PC-DMIS commands that have a minor axis field.

xe "FeatCommand Members:FeatCommand.MeasLength"FeatCommand.MeasLength XE "MeasLength"
Measured length value. Double Read Only.

Remarks

This property applies only to PC-DMIS commands that have a length field.

xe "FeatCommand Members:FeatCommand.MeasPinDiam"FeatCommand.MeasPinDiam XE "MeasPinDiam"
Measured pin diameter value. Double Read Only.

Remarks

This property applies only to PC-DMIS commands that have a pin diameter field.

xe "FeatCommand Members:FeatCommand.MeasSmallLength"FeatCommand.MeasSmallLength XE "MeasSmallLength"
Measured shorter length value. Double Read Only.

Remarks

This property applies only to PC-DMIS commands that have a small length field.

xe "FeatCommand Members:FeatCommand.MeasureSlotWidth"FeatCommand.MeasureSlotWidth XE "MeasureSlotWidth"
Flag indicating whether the slot width should be measured. Boolean Read/Write.

Remarks

This property applies only to PC-DMIS commands that have a measure slot width flag.

xe "FeatCommand Members:FeatCommand.NumHits"FeatCommand.NumHits XE "NumHits"
Represents the number of inputs in the feature. Read/Write Long.

Remarks

If this feature is constructed, it reports the number of input features.

xe "FeatCommand Members:FeatCommand.NumHitsPerRow"FeatCommand.NumHitsPerRow XE "NumHitsPerRow"
Represents the number of hits on each row of the feature. Read/Write Long.

Remarks

You can use this variable only with features that have rows (such as spheres and cylinders).

xe "FeatCommand Members:FeatCommand.NumRows"FeatCommand.NumRows XE "NumRows"
Represents the number of rows in the feature. Read/Write Long.

Remarks

You can use this variable only with features that have rows (such as spheres and cylinders).

xe "FeatCommand Members:FeatCommand.Parent"FeatCommand.Parent XE "Parent"
Returns the parent Command object. Read-only.

Remarks

The parent of a FeatCommand object is the same underlying PC-DMIS object as the FeatCommand object itself. Getting the parent allows you to access the generic Command properties and methods of a given object.

xe "FeatCommand Members:FeatCommand.PermHits"FeatCommand.PermHits XE "PermHits"
Number of permanent sample hits. Double Read/Write.

Remarks

This property applies only to PC-DMIS commands that have a working permanent hits field. These include

· AUTO Angle

· AUTO Circle

· AUTO Cylinder

· AUTO Edge

· AUTO Ellipse

· AUTO Notch

· AUTO Round Slot

· AUTO Sphere

· AUTO Square Slot

· AUTO Surface

· Angle Hit

· Edge Hit

All other features only allow a read-only zero for premanent hits.

xe "FeatCommand Members:FeatCommand.Polar"FeatCommand.Polar XE "Polar"
Flag indicating whether polar coordinates are used on the feature. Usually defaults to false. Boolean Read/Write.

Remarks

This property applies only to PC-DMIS commands that have support for polar coordinates.

xe "FeatCommand Members:FeatCommand.ReferenceType"FeatCommand.ReferenceType XE "ReferenceType"
Reference type used with measured circles and measured lines. ENUM_FEATREF_TYPES Enumeration Read/Write.

Remarks

This property applies only to PC-DMIS measured line and measured circle commands. Possible value include the following:

FEATREF_FEATURE = -3 (Use ReferenceID Property to specify feature)

FEATREF_3D = -2, (Feature is a 3D feature, no projections)

FEATREF_CURRENT_WORKPLANE = -1,

FEATREF_ZPLUS = 0,

FEATREF_XPLUS = 1,

FEATREF_YPLUS = 2,

FEATREF_ZMINUS = 3,

FEATREF_XMINUS = 4,

FEATREF_YMINUS = 5

xe "FeatCommand Members:FeatCommand.ReferenceID"FeatCommand.ReferenceID XE "ReferenceID"
ID of the feature to be used when the "ReferenceType \Relate "6_pcdbasic_automation.doc!219", "ReferenceType" \D2HTargetDefault
" property is set to FEATREF_FEATURE. This property is used with measured lines or measured circles. String Read/Write.

Remarks

This property applies only to measured lines and circles that have the projection reference type set to feature.

xe "FeatCommand Members:FeatCommand.RMeasFeature"FeatCommand.RMeasFeature XE "RMeasFeature"
ID of the feature to be used for relative measurement. String Read/Write.

Remarks

This property applies only to PC-DMIS commands that support relative measurement

xe "FeatCommand Members:FeatCommand.Spacer"FeatCommand.Spacer XE "Spacer"
Spacer distance (Usually used with sample hits). Double Read/Write.

Remarks

This property applies only to PC-DMIS commands that have a spacer field.

xe "FeatCommand Members:FeatCommand.StartAngle"FeatCommand.StartAngle XE "StartAngle"
Start Angle value. Double Read/Write.

Remarks

This property applies only to PC-DMIS commands that have a start angle field.

xe "FeatCommand Members:FeatCommand.StartAngle2"FeatCommand.StartAngle2 XE "StartAngle2"
Second Start Angle value. Double Read/Write.

Remarks

This property applies only to PC-DMIS commands that have a second start angle field.

xe "FeatCommand Members:FeatCommand.TheoAngle"FeatCommand.TheoAngle XE "TheoAngle"
Theoretical angle value. Double Read/Write.

Remarks

This property applies only to PC-DMIS commands that have an angle field.

xe "FeatCommand Members:FeatCommand.TheoDiam"FeatCommand.TheoDiam XE "TheoDiam"
Theoretical diameter value. Double Read/Write.

Remarks

This property applies only to PC-DMIS commands that have a diameter field.

xe "FeatCommand Members:FeatCommand.TheoHeight"FeatCommand.TheoHeight XE "TheoHeight"
Theoretical height value. Double Read/Write.

Remarks

This property applies only to PC-DMIS commands that have a height field.

xe "FeatCommand Members:FeatCommand.TheoLength"FeatCommand.TheoLength XE "TheoLength"
Theoretical length value. Double Read/Write.

Remarks

This property applies only to PC-DMIS commands that have a length field. These include:

· Lines

· Cylinders

· Cones

· Slots

· Notches

· Generic Features

xe "FeatCommand Members:FeatCommand.TheoMajorAxis"FeatCommand.TheoMajorAxis XE "TheoMajorAxis"
Theoretical major axis length value (ellipse). Double Read/Write.

Remarks

This property applies only to PC-DMIS commands that have a major axis field.

xe "FeatCommand Members:FeatCommand.TheoMinorAxis"FeatCommand.TheoMinorAxis XE "TheoMinorAxis"
Theoretical minor axis length value (ellipse). Double Read/Write.

Remarks

This property applies only to PC-DMIS commands that have a minor axis field.

xe "FeatCommand Members:FeatCommand.TheoPinDiam"FeatCommand.TheoPinDiam XE "TheoPinDiam"
Theoretical pin diameter value. Double Read/Write.

Remarks

This property applies only to PC-DMIS commands that have a pin diameter field.

xe "FeatCommand Members:FeatCommand.TheoLength"FeatCommand.TheoSmallLength XE "TheoSmallLength"
Theoretical shorter length value. Double Read/Write.

Remarks

This property applies only to PC-DMIS commands that have a small length field.

xe "FeatCommand Members:FeatCommand.Thickness"FeatCommand.Thickness XE "Thickness"
Sheet metal (material) thickness. Double Read/Write.

Remarks

This property applies only to PC-DMIS commands that have a thickness field.

xe "FeatCommand Members:FeatCommand.Tolerance"FeatCommand.Tolerance XE "Tolerance"
Tolerance value for auto high point. Double Read/Write.

Remarks

This property applies only to the PC-DMIS auto high point command.

xe "FeatCommand Members:FeatCommand.UsePin"FeatCommand.UsePin XE "UsePin"
Boolean read/write value indicating whether pin information should be used during measurement.

Remarks

This property applies only to PC-DMIS commands that have a use pin field.

Methods:

xe "FeatCommand Members:FeatCommand.AddInputFeat"FeatCommand.AddInputFeat

Syntax

Return Value=expression.AddInputFeat(ID)

Return Value: This method returns a boolean value. Boolean returns true if the function succeeds, false if it fails.

expression: Required expression that evaluates to a PC-DMIS FeatCommand object that represents a constructed feature.

ID: Required String that is the ID of the feature to add to the set of input features.

This function returns TRUE if the feature was successfully added to set of input features of expression, FALSE otherwise.

Remarks

This function only tries to add ID to expression if the two features exist and ID precedes expression in the command list.xe "Command List" If expression is not a constructed feature, this function will fail.

xe "FeatCommand Members:FeatCommand.CalculateNominals"FeatCommand.CalculateNominals XE "CalculateNominals"
Syntax

Return Value=expression.CalculateNominals

Return Value: This method returns a boolean value. Boolean returns true if the function succeeds, false if it fails.

expression: Required expression that evaluates to a PC-DMIS FeatCommand object that represents a measured feature.

This returns TRUE if the function recalculated the feature nominals. FALSE otherwise.

xe "FeatCommand Members:FeatCommand.CountHits"FeatCommand.CountHits XE "CountHits"
Syntax

Return Value=expression.CountHits

Return Value: This method returns a boolean value. Boolean returns true if the function succeeds, false if it fails.

expression: Required expression that evaluates to a PC-DMIS FeatCommand object that represents a measured feature.

This returns TRUE if the function recounted the hits for a measured feature. FALSE otherwise.

xe "FeatCommand Members:FeatCommand.Evaluate"FeatCommand.Evaluate XE "Evaluate"
Syntax:

Return Value=expression.FeatCmd.Evaluate (type)

Return Value: Boolean value indicating success (if TRUE) or failure (if FALSE) in evaluating the feature.

expression: Required expression that evaluates to a PC-DMIS FeatCmd (Feat Command) object.

type: This specifies the type of evaluation to perform. Possible enumerated types that you can use for this parameter include:

EVAL_NOMINALS – Evaluates the feature’s nominals

EVAL_ACTUALS – Evaluates the feature’s actuals

EVAL_BOTH – Evaluates both the feature’s nominals and actuals
Forces an evaluation
 of a feature without executing it. This takes one parameter that specifies the type of feature evaluation to perform.

xe "FeatCommand Members:FeatCommand.GenerateHits"FeatCommand.GenerateHits XE "GenerateHits"
Syntax

Return Value=expression.GenerateHits

Return Value: This method returns a boolean value. Boolean returns true if the function succeeds, false if it fails.

expression: Required expression that evaluates to a PC-DMIS FeatCommand object that represents a measured feature.

This function returns TRUE if the hits were successfully added to expression, FALSE otherwise.

Remarks

This function tries to add evenly spaced hits to expression. If expression is not a measured feature, this function will fail.

xe "FeatCommand Members:FeatCommand.GetData"FeatCommand.GetData XE "GetData"
Syntax

Return Value=expression.GetData(PointData, DataType, TheoMeas, CoordSystem, AlignID, Workplane)

Return Value: This method returns a boolean value. Boolean returns true if the function succeeds, false if it fails.

expression: Required expression that evaluates to a PC-DMIS FeatCommand object.

PointData: Required PointData object into which the data is stored.

DataType: Optional Long that is one of the following values:

FDATA_CENTROID,

FDATA_VECTOR,

FDATA_DIAMETER,

FDATA_STARTPOINT,

FDATA_MIDPOINT,

FDATA_ENDPOINT,

FDATA_LENGTH,

FDATA_MINOR_AXIS,

FDATA_ANGLE,

FDATA_SURFACE_VECTOR,

FDATA_THICKNESS,

FDATA_SPACER,

FDATA_INDENT,

FDATA_AUTO_MOVE_DISTANCE,

FDATA_DEPTH,

FDATA_ANGLE_VECTOR,

FDATA_PUNCH_VECTOR,

FDATA_PIN_VECTOR,

FDATA_PIN_DIAMETER,

FDATA_REPORT_VECTOR,

FDATA_REPORT_SURF_VECTOR,

FDATA_HEIGHT,

FDATA_MEASURE_VECTOR,

FDATA_UPDATE_VECTOR,

FDATA_SNAP_CENTROID,

FDATA_ANALOG_DEVIATIONS,

FDATA_CORNER_RADIUS,

FDATA_AB_ANGLES,

FDATA_ORG_HIT_VECTOR,

FDATA_ANGLE2,

FDATA_WIDTH,

FDATA_MAJOR_AXIS,

FDATA_SLOT_VECTOR,

SCANSEG_START,

SCANSEG_END

If no value is supplied, the default value is FDATA_CENTROID.

TheoMeas: Optional Long that is one of FDATA_THEO, FDATA_MEAS, or FDATA_TARG.

If no value is supplied, the default value is FDATA_MEAS.

CoordSystem: Optional Long that denotes the coordinate system in which to report. Values include FDATA_POLAR, FDATA_CAD, FDATA_PARTMM3, FDATA_MACHINE, and FDATA_PART.If no value is supplied, the default value is FDATA_PART.

AlignID: Optional String that denotes what alignment to use. You can pass the empty string to denote the current alignment.

If no value is supplied, the default value is an empty string which causes the current alignment to be used.

Workplane: Optional Long. Used for the PARTMM3 and POLAR coordinate system to denote the workplane to be used. Possible values include PCD_TOP, PCD_BOTTOM, PCD_LEFT, PCD_RIGHT, PCD_FRONT, PCD_BACK.
If no value is supplied, the default value is PCD_TOP.

 This function returns TRUE if the data was successfully retrieved from expression, FALSE otherwise.

Remarks

Not every data type can be used with every feature type. Some data types return a single value, some data types return multiple values. Some data types return both depending on the feature. For example, a cone will return two diameters in the first and second data fields of the point object while only returning one diameter for a circle object.Use the FDATA_THEO flag if you want theoretical data, FDATA_MEAS if you want measured data.

xe "FeatCommand Members:FeatCommand.GetInputFeat"FeatCommand.GetInputFeat XE "GetInputFeat"
Syntax

Return Value=expression.GetInputFeat(Index)

expression: Required expression that evaluates to a PC-DMIS FeatCommand object.

Index: Required Long between one and expression.NumHits

Return Value: If successful, this function returns the String ID of the input feature at the specified index.

Remarks

When successful, this returns the ID of the input feature, otherwise it returns an empty string.

xe "FeatCommand Members:FeatCommand.GetInputOffset"FeatCommand.GetInputOffset XE "GetInputOffset"
Syntax

Return Value=expression.GetInputOffset(Index)

expression: Required expression that evaluates to a PC-DMIS FeatCommand object.

Index: Required Long between one and expression.NumHits

Return Value: If successful, this function returns the Double offset value.

Remarks

Use this function with constructed features that have offset values from input features.

xe "FeatCommand Members:FeatCommand.GetHit"FeatCommand.GetHit XE "GetHit"
Syntax

Return Value=expression.GetHit(Index, DataType, TheoMeas, CoordSystem, AlignID, Workplane)

Return Value: This method returns a Point Data object with the values of the hit.

expression: Required expression that evaluates to a PC-DMIS FeatCommand object.

Index: The index number of the desired hit object to retrieve.

DataType: Optional Long that is one of the following values: FHITDATA_CENTROID, FHITDATA_VECTOR, FHITDATA_BALLCENTER

If no value is supplied, the default value is FHITDATA_CENTROID.

TheoMeas: Optional Long that is one of FDATA_THEO, FDATA_MEAS, or FDATA_TARG.

If no value is supplied, the default value is FDATA_MEAS.

CoordSystem: Optional Long that denotes the coordinate system in which to report. Values include FDATA_POLAR, FDATA_CAD, FDATA_PARTMM3, FDATA_MACHINE, and FDATA_PART.

If no value is supplied, the default value is FDATA_PART.

AlignID: Optional String that denotes what alignment to use. You can pass the empty string to denote the current alignment.

If no value is supplied, the default value is an empty string which causes the current alignment to be used.

Workplane: Optional Long. Used for the PARTMM3 and POLAR coordinate system to denote the workplane to be used. Possible values include PCD_TOP, PCD_BOTTOM, PCD_LEFT, PCD_RIGHT, PCD_FRONT, PCD_BACK.

If no value is supplied, the default value is PCD_TOP.

Remarks

Use this function to obtain hit information from individual objects. This command works with objects that the hits are supplied by the user and with objects in which the hits are generated by the object itself.

xe "FeatCommand Members:FeatCommand.GetPoint"FeatCommand.GetPoint XE "GetPoint"
Syntax

Return Value=expression.GetPoint(PointType, TheoMeas, X, Y, Z)

Return Value: This method returns a boolean value indicating success or failure of the call.

expression: Required expression that evaluates to a PC-DMIS FeatCommand object.

VectorType: FPOINT_TYPES enumeration. Possible values include the following:

FPOINT_CENTROID

FPOINT_STARTPOINT

FPOINT_MIDPOINT

FPOINT_ENDPOINT

FPOINT_BALLCENTER

FPOINT_SNAP_CENTROID

TheoMeas: Long that is one of FDATA_THEO, FDATA_MEAS, or FDATA_TARG.

X: Variable of type double that will hold the X data for the point.

Y: Variable of type double that will hold the Y data for the point.

Z: Variable of type double that will hold the Z data for the point.

Remarks

Use this function to retrieve point information of individual objects.

Related Topics: FeatCommand.PutPoint \Relate "6_pcdbasic_automation.doc!197", "FeatCommand.PutPoint" \D2HTargetDefault

xe "FeatCommand Members:FeatCommand.GetSurfaceVectors"FeatCommand.GetSurfaceVectors XE "GetSurfaceVectors"
Syntax

Return Value=expression.GetSurfaceVectors(TheoMeas, I1, J1, K1, I2, J2, K2)

Return Value: This method returns a boolean value indicating success or failure of the call.

expression: Required expression that evaluates to a PC-DMIS FeatCommand object.

TheoMeas: Long that is one of FDATA_THEO or FDATA_MEAS

I1: Variable of type double that will hold the I component of the first vector.

J1: Variable of type double that will hold the J component of the first vector.

K1: Variable of type double that will hold the K component of the first vector.

I2: Variable of type double that will hold the I component of the second vector.

J2: Variable of type double that will hold the J component of the second vector.

K2: Variable of type double that will hold the K component of the second vector.

Remarks

Use this function to get the surface vectors of an angle hit function.
Related Topics: FeatCommand.PutSurfaceVectors \Relate "6_pcdbasic_automation.doc!196", "FeatCommand.PutSurfaceVectors" \D2HTargetDefault

xe "FeatCommand Members:FeatCommand.GetVector"FeatCommand.GetVector XE "GetVector"
Syntax

Return Value=expression.GetVector(VectorType, TheoMeas, I, J, K)

Return Value: This method returns a boolean value indicating success or failure of the call.

expression: Required expression that evaluates to a PC-DMIS FeatCommand object.

VectorType: FVECTOR_TYPES enumeration. Possible values include the following:

FVECTOR_VECTOR,

FVECTOR_SURFACE_VECTOR

FVECTOR_ANGLE_VECTOR

FVECTOR_PUNCH_VECTOR

FVECTOR_PIN_VECTOR

FVECTOR_REPORT_VECTOR

FVECTOR_REPORT_SURF_VECTOR

FVECTOR_MEASURE_VECTOR

FVECTOR_UPDATE_VECTOR

FVECTOR_ORG_HIT_VECTOR

FVECTOR_CORNER_VECTOR2

FVECTOR_CORNER_VECTOR3

FVECTOR_SLOT_VECTOR

TheoMeas: Long that is one of FDATA_THEO, FDATA_MEAS, or FDATA_TARG.

I: Variable of type double that will hold the I component of the vector.

J: Variable of type double that will hold the J component of the vector.

K: Variable of type double that will hold the K component of the vector.

Remarks

Use this function to retrieve vector components of individual objects.

xe "FeatCommand Members:FeatCommand.PutData"FeatCommand.PutData XE "PutData"
Syntax

Return Value=expression.PutData(Data, DataType, TheoMeas, CoordSystem, AlignID, Workplane)

Return Value: This method returns a boolean value. Boolean returns true if the function succeeds, false if it fails.

expression: Required expression that evaluates to a PC-DMIS FeatCommand object.

Data: Required PointData object from which the data is taken to set values in the corresponding object.

DataType: Optional Long that is one of the following values:

FDATA_CENTROID, FDATA_VECTOR, FDATA_DIAMETER, FDATA_STARTPOINT, FDATA_MIDPOINT, FDATA_ENDPOINT, FDATA_LENGTH, FDATA_MINOR_AXIS, FDATA_ANGLE, FDATA_SURFACE_VECTOR, FDATA_THICKNESS, FDATA_SPACER, FDATA_INDENT, FDATA_AUTO_MOVE_DISTANCE, FDATA_DEPTH, FDATA_ANGLE_VECTOR, FDATA_PUNCH_VECTOR, FDATA_PIN_VECTOR, FDATA_PIN_DIAMETER, FDATA_REPORT_VECTOR, FDATA_REPORT_SURF_VECTOR, FDATA_HEIGHT, FDATA_MEASURE_VECTOR, FDATA_UPDATE_VECTOR, FDATA_SNAP_CENTROID, FDATA_ANALOG_DEVIATIONS, FDATA_CORNER_RADIUS, FDATA_AB_ANGLES, FDATA_ORG_HIT_VECTOR, FDATA_ANGLE2, FDATA_WIDTH, FDATA_MAJOR_AXIS, or FDATA_SLOT_VECTOR, SCANSEG_START, SCANSEG_END

If no value is supplied, the default value is FDATA_CENTROID.

TheoMeas: Optional Long that is one of FDATA_THEO, FDATA_MEAS, or FDATA_TARG.

If no value is supplied, the default value is FDATA_MEAS.

CoordSystem: Optional Long that denotes the coordinate system in which to report. Values include FDATA_POLAR, FDATA_CAD, FDATA_PARTMM3, FDATA_MACHINE, and FDATA_PART.If no value is supplied, the default value is FDATA_PART.

AlignID: Optional String that denotes what alignment to use. You can pass the empty string to denote the current alignment.

If no value is supplied, the default value is an empty string which causes the current alignment to be used.

Workplane: Optional Long. Used for the PARTMM3 and POLAR coordinate system to denote the workplane to be used. Possible values include PCD_TOP, PCD_BOTTOM, PCD_LEFT, PCD_RIGHT, PCD_FRONT, PCD_BACK.

If no value is supplied, the default value is PCD_TOP.

This function returns TRUE if the data was successfully retrieved from expression, FALSE otherwise.

Remarks

Not every data type can be used with every feature type. Some data types take a single value, some data types take multiple values. Some data types take one or more depending on the feature. For example, a cone can take two diameters in the first and second data fields of the point object while the circle object only takes one diamter.

Use the FDATA_THEO flag if you want theoretical data, FDATA_MEAS if you want measured data.

Related Topics: FeatCommand.GetData \Relate "6_pcdbasic_automation.doc!220", "FeatCommand.GetData" \D2HTargetDefault

xe "FeatCommand Members:FeatCommand.PutPoint"FeatCommand.PutPoint XE "PutPoint"
Syntax

Return Value=expression.PutPoint(PointType, TheoMeas, X, Y, Z)

Return Value: This method returns a boolean value indicating success or failure of the call.

expression: Required expression that evaluates to a PC-DMIS FeatCommand object.

VectorType: FPOINT_TYPES enumeration. Possible values include the following:

FPOINT_CENTROID

FPOINT_STARTPOINT

FPOINT_MIDPOINT

FPOINT_ENDPOINT

FPOINT_BALLCENTER

FPOINT_SNAP_CENTROID

TheoMeas: Long that is one of FDATA_THEO, FDATA_MEAS, or FDATA_TARG.

X: Double representing X value of the point.

Y: Double representing Y value of the point.

Z: Double representing Z value of the point.

Remarks

Use this function to set point information for individual objects.

xe "FeatCommand Members:FeatCommand.PutSurfaceVectors"FeatCommand.PutSurfaceVectors XE "PutSurfaceVectors"
Syntax

Return Value=expression.PutSurfaceVectors(TheoMeas, I1, J1, K1, I2, J2, K2)

Return Value: This method returns a boolean value indicating success or failure of the call.

expression: Required expression that evaluates to a PC-DMIS FeatCommand object.

TheoMeas: Long that is one of FDATA_THEO or FDATA_MEAS

I1: Double representing the I component of the first vector.

J1: Double representing the J component of the first vector.

K1: Double representing the K component of the first vector.

I2: Double representing the I component of the second vector.

J2: Double representing the J component of the second vector.

K2: Double representing the K component of the second vector.

Remarks

Use this function to set the surface vectors for an angle hit object.

xe "FeatCommand Members:FeatCommand.PutVector"FeatCommand.PutVector XE "PutVector"
Syntax

Return Value=expression.PutVector(VectorType, TheoMeas, I, J, K)

Return Value: This method returns a boolean value indicating success or failure of the call.

expression: Required expression that evaluates to a PC-DMIS FeatCommand object.

VectorType: FVECTOR_TYPES enumeration. Possible values include the following:

FVECTOR_VECTOR

FVECTOR_SURFACE_VECTOR

FVECTOR_ANGLE_VECTOR

FVECTOR_PUNCH_VECTOR

FVECTOR_PIN_VECTOR

FVECTOR_REPORT_VECTOR

FVECTOR_REPORT_SURF_VECTOR

FVECTOR_MEASURE_VECTOR

FVECTOR_UPDATE_VECTOR

FVECTOR_ORG_HIT_VECTOR

FVECTOR_CORNER_VECTOR2

FVECTOR_CORNER_VECTOR3

FVECTOR_SLOT_VECTOR

TheoMeas: Long that is one of FDATA_THEO, FDATA_MEAS, or FDATA_TARG.

I: Double indicating the I component of the vector.

J: Double indicating the J component of the vector.

K: Double indicating the K component of the vector.

Remarks

Use this function to set vector components of individual objects.

FeatCommand.RemoveInputFeat XE "RemoveInputFeat"

Syntax

Return Value=expression.RemoveInputFeat(Index)

expression: Required expression that evaluates to a PC-DMIS FeatCommand object.

Index: Required Long between one and expression.NumHits

Return Value: This function returns TRUE if expression is a constructed feature and Index is the index of a input feature, FALSE otherwise.

Remarks

When successful, this function removes the feature at the specified index position.

xe "FeatCommand Members:FeatCommand.SetHit"FeatCommand.SetHit XE "SetHit"
Syntax

Return Value=expression.SetHit(Index, DataType, MeasOrTheo, X, Y, Z)

Return Value: This function returns TRUE if the hit or vector gets successfully set, FALSE otherwise.
Index: Integer representing the hit number.

DataType: Enumerated data type that specifies what type of data you are setting. This can be Centroid, Vector, or BallCenter. The can use the following values:

12
FHITDATA_BALLCENTER

0
FHITDATA_CENTROID

1
FHITDATA_VECTOR

MeasOrTheo: Enumerated value that indentifies the portion of the hit getting set. The possible enumerated values for all, measured, theoretical, or targets are:

100
FDATA_ALL
3
FDATA_MEAS
27
FDATA_TARG
2
FDATA_THEO

X: The X value for the point / vector being set.
Y: The Y value for the point / vector being set.
Z: The Z value for the point / vector being set.
This method sets the hit data of a specified hit. It uses the part coordinate system relative to the current alignment.
xe "FeatCommand Members:FeatCommand.SetHit2"FeatCommand.SetHit2 XE "SetHit2"
Syntax

Return Value=expression.SetHit(Index, DataType, MeasOrTheo, CoordSystem, Alignment, Workplane, X, Y, Z)

Return Value: This function returns TRUE if the hit or vector gets successfully set, FALSE otherwise.
Index: Integer representing the hit number.

DataType: Enumerated data type that specifies what type of data you are setting. This can be Centroid, Vector, or BallCenter. The can use the following values:

12
FHITDATA_BALLCENTER

0
FHITDATA_CENTROID

1
FHITDATA_VECTOR

MeasOrTheo: Enumerated value that indentifies the portion of the hit getting set. The possible enumerated values for all, measured, theoretical, or targets are:

100
FDATA_ALL
3
FDATA_MEAS
27
FDATA_TARG
2
FDATA_THEO

CoordSystem: Enumerated value that indentifies the type of coordinate system to use (Cad, Machine, Part, PartMM3, or Polar). Possible values are:

5
FDATA_CAD
11
FDATA_MACHINE

13
FDATA_PART
10
FDATA_PARTMM3

4
FDATA_POLAR
Alignment: string value representing the ID of the alignment to use.
Workplane: Enumerated value that represents the work plane. Possible values are:

0
PLANE_TOP

1
PLANE_RIGHT

2
PLANE_BACK

3
PLANE_BOTTOM

4
PLANE_LEFT

5
PLANE_FRONT

X: The X value for the point / vector being set.
Y: The Y value for the point / vector being set.
Z: The Z value for the point / vector being set.
This method works just like the SetHit method—it sets the hit data of a specified hit—but it uses a specified coordinate system and alignment.

FeatCommand.SetInputFeat XE "SetInputFeat"
Syntax

Return Value=expression.SetInputFeat(ID, Index)

expression: Required expression that evaluates to a PC-DMIS FeatCommand object.

ID: Required String that is the ID of a feature.

Index: Required Long between one and expression.NumHits. The index value must be less than the value retunred by the NumHits property (you can use the NumHits property with constructed features to determine the number of inputs. For adding inputs you will need to use the AddInputFeat
 method).

Return Value: This function returns TRUE if expression is a constructed feature and ID is the ID of a valid input feature, and Index is the index of a input feature, FALSE otherwise.

Remarks

When successful, this function replaces the input feature at position Index in expression’s list of input features with ID.

xe "FeatCommand Members:FeatCommand.SetInputOffset"FeatCommand.SetInputOffset XE "SetInputOffset"
Syntax

Return Value=expression.SetInputOffset(Index, Offset)

expression: Required expression that evaluates to a PC-DMIS FeatCommand object.

Index: Required Long between one and expression.NumHits

Offset: Required Double which specifies the offset value

Return Value: If successful, this function returns the Boolean set to true.

Remarks

Use this function with constructed features to set the offset values for input features.

xe "FeatData Object Overview"

xe "Automation Objects:FeatData Object"FeatData Object Overview

The FeatData object is similar to a type define as follows:

Type FeatData

X as Double

Y as Double

Z as Double

I as Double

J as Double

K as Double

DIAM as Double

LENGTH as Double

ANGLE as Double

SmallDiam as Double

StartAngle as Double

EndAngle as Double

StartAngle2 as Double

EndAngle2 as Double

F as Double

TP as Double

P1 as Double

P2 as Double

ID as String

End Type

It is be used to pass feature data in automation functions that accept this type

Properties

xe "FeatData Members:FeatData.X"FeatData.X XE "X"
Represents the X member of this object. Read/write Double.

xe "FeatData Members:FeatData.Y"FeatData.Y XE "Y"
Represents the Y member of this object. Read/write Double.

xe "FeatData Members:FeatData.Z"FeatData.Z XE "Z"
Represents the Z member of this object. Read/write Double.

xe "FeatData Members:FeatData.I"FeatData.I XE "I"
Represents the I member of this object. Read/write Double.

xe "FeatData Members:FeatData.J"FeatData.J XE "J"
Represents the J member of this object. Read/write Double.

xe "FeatData Members:FeatData.K"FeatData.K XE "K"
Represents the K member of this object. Read/write Double.

xe "FeatData Members:FeatData.DIAM"FeatData.DIAM XE "DIAM"
Represents the DIAM member of this object. Read/write Double.

xe "FeatData Members:FeatData.LENGTH"FeatData.LENGTH XE "LENGTH"
Represents the LENGTH member of this object. Read/write Double.

xe "FeatData Members:FeatData.ANGLE"FeatData.ANGLE XE "ANGLE"
Represents the ANGLE member of this object. Read/write Double.

xe "FeatData Members:FeatData.SmallDiam"FeatData.SmallDiam XE "SmallDiam"
Represents the SmallDiam member of this object. Read/write Double.

xe "FeatData Members:FeatData.StartAngle"FeatData.StartAngle XE "StartAngle"
xe "FeatData Members:FeatData.EndAngle"FeatData.EndAngle

Represents the EndAngle member of this object. Read/write Double.

xe "FeatData Members:FeatData.StartAngle2"FeatData.StartAngle2 XE "StartAngle2"
Represents the StartAngle2 member of this object. Read/write Double.

xe "FeatData Members:FeatData.EndAngle2"FeatData.EndAngle2 XE "EndAngle2"
Represents the EndAngle2 member of this object. Read/write Double.

xe "FeatData Members:FeatData.F"FeatData.F XE "F"
Represents the F member of this object. Read/write Double.

xe "FeatData Members:FeatData.TP"FeatData.TP XE "TP"
Represents the TP member of this object. Read/write Double.

xe "FeatData Members:FeatData.P1"FeatData.P1 XE "P1"
Represents the P1 member of this object. Read/write Double.

Remarks
The P1 member is never set or used by PC-DMIS. It is available for the programmer to use as he wishes.

xe "FeatData Members:FeatData.P2"FeatData.P2 XE "P2"
Represents the P2 member of this object. Read/write Double.

Remarks
The P2 member is never set or used by PC-DMIS. It is available for the programmer to use as he wishes.

xe "FeatData Members:FeatData.ID"FeatData.ID XE "ID"
Represents the ID member of this object. Read/write String.

Remarks
The ID member is the default property.

The ID member is the default

xe "File IO Object Overview"

xe "Automation Objects:File IO Object"File IO Object Overview

The File IO object is used to access the PC-DMIS File I/O object. Properties provide access to the file mode: open, close, readline, etc.; the expression to write or read, the filename, etc. For additional information, see the "Using File Input / Output" in the.

Properties:

xe "File IO Members:FileIO.BufferSize"FileIO.BufferSize XE "BufferSize"
LONG value representing the buffer size used with the Read Block File I/O command.

Read/Write Long

xe "File IO Members:FileIO.Expression"FileIO.Expression XE "Expression"
STRING value representing the text to be used in reading from or writing to the opened file.

Read/Write String

xe "File IO Members:FileIO.FailIfExists"FileIO.FailIfExists XE "FailIfExists"
BOOLEAN value indicating whether a file copy operation should fail or not if the destination file already exists.

Read/Write Boolean
xe "File IO Members:FileIO.FileIOType"FileIO.FileIOType XE "FileIOType"
Value of ENUM_FILE_IO_TYPES enumeration type which specifies the type of File I/O operation the object will perform. Possible values include the following:

PCD_FILE_OPEN = 0

PCD_FILE_CLOSE = 1

PCD_FILE_WRITELINE = 2

PCD_FILE_READLINE = 3

PCD_FILE_WRITECHARACTER = 4

PCD_FILE_READCHARACTER = 5

PCD_FILE_WRITEBLOCK = 6

PCD_FILE_READBLOCK = 7

PCD_FILE_REWIND = 8

PCD_FILE_SAVEPOSITION = 9

PCD_FILE_RECALLPOSITION = 10

PCD_FILE_COPY = 11

PCD_FILE_MOVE = 12

PCD_FILE_DELETE = 13

PCD_FILE_EXISTS = 14

PCD_FILE_DIALOG = 15

Read/Write Enum_File_IO_Types enumeration
xe "File IO Members:FileIO.FileName1"FileIO.FileName1 XE "FileName1"
STRING value representing the file name to be used in the File I/O operation. This parameter is used with the File Open, File Copy, File Move, File Delete, and File Exists File I/O types.

Read/Write String
xe "File IO Members:FileIO.FileName2"FileIO.FileName2 XE "FileName2"
STRING value representing the second filename to be used in the File I/O operation. This parameter is used as the destination file in the File Copy and File Move File I/O commands.

Read/Write String
xe "File IO Members:FileIO.FileOpenType"FileIO.FileOpenType XE "FileOpenType"
Value of ENUM_FILE_OPEN_TYPES enumeration type which specifies the file open mode used in opening a file. Possible values include the following:

PCD_FILE_WRITE = 1

PCD_FILE_READ = 2

PCD_FILE_APPEND = 3

Read/Write Enum_File_Open_Types enumeration
xe "File IO Members:FileIO.FilePointerID"FileIO.FilePointerID XE "FilePointerID"
STRING value representing the file pointer Id to be used in the File I/O operation. The file pointer ID is established and linked to a specific file in the File Open command.

Read/Write String
xe "File IO Members:FileIO.VariableID"FileIO.VariableID XE "VariableID"
STRING value representing the name of the variable to be used to hold the results of the File I/O operation of the File I/O command.

Read/Write String

xe "FlowControlCommand Object Overview"

xe "Automation Objects:FlowControlCommand Object"FlowControlCommand Object Overview

Objects of type FlowControlCommand are created from more generic Command objects to pass information specific to the flow control command back and forth.

Properties:

xe "FlowControlCommand Members:FlowControlCommand.AngleOffset"FlowControlCommand.AngleOffset XE "AngleOffset"
Represents the angular offset of a LOOP_START object. Read/write Double.

Remarks
This property only affects objects of type LOOP_START. For other objects, setting the property has no effect, and getting it always returns zero.

xe "FlowControlCommand Members:FlowControlCommand.GetEndNum"FlowControlCommand.GetEndNum XE "GetEndNum"
Represents the end value of a LOOP_START object. Read/write Long.

Remarks
This property only affects objects of type LOOP_START. For other objects, setting the property has no effect, and getting it always returns zero.

xe "FlowControlCommand Members:FlowControlCommand.ErrorMode"FlowControlCommand.ErrorMode XE "ErrorMode"
Represents the error mode of a ONERROR object. Read/write Long.

Remarks
This property only affects objects of type ONERROR. For other objects, setting the property has no effect, and getting it always returns zero.

The valid values for ErrorMode: 0 for off, 1 for jump to label, and 2 for set a variable.

xe "FlowControlCommand Members:FlowControlCommand.ErrorType"FlowControlCommand.ErrorType XE "ErrorType"
Represents the error mode of a ONERROR object. Read/write Long.

Remarks
This property only affects objects of type ONERROR. For other objects, setting the property has no effect, and getting it always returns zero.

The valid values for ErrorMode: 0 for off, 1 for jump to label, and 2 for set a variable.

xe "FlowControlCommand Members:FlowControlCommand.Expression"FlowControlCommand.Expression XE "Expression"
Represents the test expression of an IF_COMMAND object. Read/write String.

Remarks
This property only affects objects of type IF_COMMAND. For other objects, setting the property has no effect, and getting it always returns the empty string.

xe "FlowControlCommand Members:FlowControlCommand.FileName"FlowControlCommand.FileName XE ""
Represents the file name of an external subroutine in a CALL_SUBROUTINE object. Read/write String.

Remarks
This property only affects objects of type CALL_SUBROUTINE. For other objects, setting the property has no effect, and getting it always returns the empty string.

This property only returns the name of the file, not its full path. The path is determined by the settings in PCDMIS’s Search Directory dialog.

xe "FlowControlCommand Members:FlowControlCommand.ID"FlowControlCommand.ID XE "ID"
Represents the id of a CALL_SUBROUTINE object. Read/write String.

Remarks
This property only affects objects of type CALL_SUBROUTINE. For other objects, setting the property has no effect, and getting it always returns the empty string.

xe "FlowControlCommand Members:FlowControlCommand.Label"FlowControlCommand.Label XE "Label"
Represents the label associated with an object. Read/write String.

Remarks
This property only affects objects of type GOTO, IF_COMMAND, ONERROR, and LABEL. For other objects, setting the property has no effect, and getting it always returns the empty string.

For objects of type LABEL, this property is the id of the object. For the other valid types, this property is the label to which execution is redirected when the appropriate conditions are met. For GOTO, redirection always occurs. For IF_COMMAND, the redirection occurs only when the expression is TRUE. For ONERROR, the redirection happens when the error condition is met.

xe "FlowControlCommand Members:FlowControlCommand.NumArguments"FlowControlCommand.NumArguments XE "NumArguments"
Returns the number of arguments in a START_SUBROUTINE or CALL_SUBROUTINE object. Read-only Long.

Remarks
This property only affects objects of type START_SUBROUTINE and CALL_SUBROUTINE. For other objects it always returns zero.

xe "FlowControlCommand Members:FlowControlCommand.ReportAutoPrint"FlowControlCommand.ReportAutoPrint XE "ReportAutoPrint"
Returns True if you have Hyper Report's Auto Print checkbox selected. False otherwise.

xe "FlowControlCommand Members:FlowControlCommand.SkipCount"FlowControlCommand.SkipCount XE "SkipCount"
Returns the number of skipped numbers in a LOOP_START object. Read-only Long.

Remarks
This property only affects objects of type LOOP_START. For other objects it always returns zero.

xe "FlowControlCommand Members:FlowControlCommand.StartNum"FlowControlCommand.StartNum XE "StartNum"
Represents the start number of a LOOP_START object. Read/write Long.

Remarks
This property only affects objects of type LOOP_START. For other objects, setting the property has no effect, and getting it always returns zero.

xe "FlowControlCommand Members:FlowControlCommand.SubName"FlowControlCommand.SubName XE "SubName"
Represents the subroutine name of a START_SUBROUTINE and CALL_SUBROUTINE object. Read/write String.

Remarks
This property only affects objects of type START_SUBROUTINE and CALL_SUBROUTINE. For other objects, setting the property has no effect, and getting it always returns the empty string.

For the START_SUBROUTINE object, it is the name of the subroutine. For the CALL_SUBROUTINE, it is the name of the called subroutine.

xe "FlowControlCommand Members:FlowControlCommand.XAxisOffset"FlowControlCommand.XAxisOffset XE "XAxisOffset"
Represents the X-axis offset of a LOOP_START object. Read/write Long.

Remarks
This property only affects objects of type LOOP_START. For other objects, setting the property has no effect, and getting it always returns zero.

xe "FlowControlCommand Members:FlowControlCommand.YAxisOffset"FlowControlCommand.YAxisOffset XE "YAxisOffset"
Represents the Y-axis offset of a LOOP_START object. Read/write Long.

Remarks
This property only affects objects of type LOOP_START. For other objects, setting the property has no effect, and getting it always returns zero.

xe "FlowControlCommand Members:FlowControlCommand.ZAxisOffset"FlowControlCommand.ZAxisOffset XE "ZAxisOffset"
Represents the Z-axis offset of a LOOP_START object. Read/write Long.

Remarks
This property only affects objects of type LOOP_START. For other objects, setting the property has no effect, and getting it always returns zero.

Methods:

xe "FlowControlCommand Members:FlowControlCommand.AddArgument"FlowControlCommand.AddArgument

Syntax

Return Value=expression.AddArgument(Position, Name, Description, DefaultValue)

Return Value: This method returns a boolean value. Boolean returns true if the function succeeds, false if it fails.

expression: Required expression that evaluates to FlowControlCommand object.

Position: Required Long that indicates the index of the argument to add in the list of arguments.

Name: Required String that indicates the name of the argument to be added.

Description: Required String that is the description of the argument to be added.

DefaultValue: Required String that indicates the default value of the argument to be added.

The AddArgument adds or replaces an argument in objects of type CALL_SUBROUTINE and START_SUBROUTINE. When used with objects of other types, it has no effect.

This function returns TRUE if the argument was added successfully, FALSE otherwise.

When used with objects of type CALL_SUBROUTINE, the Name and Description fields are ignored, and the DefaultValue field is used to set the value.

If Position is equal to 1 + expression.NumArguments, an argument is added to the tail of the list of arguments . If Position is between 1 and expression.NumArguments, the current argument is replaced. To completely remove an argument, use DimensionCommand.RemoveArgument.

xe "FlowControlCommand Members:FlowControlCommand.AddSkipNum"FlowControlCommand.AddSkipNum XE "AddSkipNum"
Syntax

Return Value=expression.AddSkipNum(Number)

Return Value: This method returns a boolean value. Boolean returns true if the function succeeds, false if it fails.

expression: Required expression that evaluates to FlowControlCommand object.

Number: Required Long that indicates the number to skip.

The AddSkipNum function adds a number to be skipped to an object of type LOOP_START. For objects of other types, it does nothing.

This function returns TRUE if Number was successfully added to the LOOP_START object’s skip list, FALSE otherwise.

xe "FlowControlCommand Members:FlowControlCommand.GetArgumentDescription"FlowControlCommand.GetArgumentDescription XE "GetArgumentDescription"
Syntax

Return Value=expression.GetArgumentDescription(Position)

Return Value: This function returns a string value.

expression: Required expression that evaluates to FlowControlCommand object.

Position: Required Long that indicates the number of the argument from which to obtain the description..

The GetArgumentDescription function returns the description of an argument to an object of type START_SUBROUTINE. For objects of other types, it returns the empty string.

xe "FlowControlCommand Members:FlowControlCommand.GetArgumentExpression"FlowControlCommand.GetArgumentExpression XE "GetArgumentExpression"
Syntax

Return Value=expr.GetArgumentExpression(Expression)

Return Value: This function returns a string value.

expr: Required expression that evaluates to FlowControlCommand object.

Expression: Required Long that indicates the number of the argument from which to obtain the value.

The GetArgumentDescription function returns the value or default value of an argument to an object of type CALL_SUBROUTINE or START_SUBROUTINE, respectively. For objects of other types, it returns the empty string.

xe "FlowControlCommand Members:FlowControlCommand.GetArgumentName"FlowControlCommand.GetArgumentName XE "GetArgumentName"
Syntax

Return Value=expression.GetArgumentName(Position)

Return Value: This function returns a string value.

expression: Required expression that evaluates to FlowControlCommand object.

Number: Required Long that indicates the number of the argument from which to obtain the name..

The GetArgumentName function returns the Name of an argument to an object of type START_SUBROUTINE. For objects of other types, it returns the empty string.

xe "FlowControlCommand Members:FlowControlCommand.GetLeftSideOfExpression"FlowControlCommand.GetLeftSideOfExpression XE "GetLeftSideOfExpression"
Syntax

Return Value=expression.GetLeftSideOfExpression

expression: Required expression that evaluates to FlowControlCommand object.

Return value: For FlowControlCommand objects of type ASSIGNMENT, this function returns the name of the variable being assigned to. For other types of objects, it returns an empty string.

xe "FlowControlCommand Members:FlowControlCommand.GetRightSideOfExpression"FlowControlCommand.GetRightSideOfExpression XE "GetRightSideOfExpression"
Syntax

Return Value=expression.GetRightSideOfExpression

expression: Required expression that evaluates to FlowControlCommand object.

Return value: For FlowControlCommand objects of type ASSIGNMENT, this function returns the value being assigned to the variable. For other types of objects, it returns an empty string.

xe "FlowControlCommand Members:FlowControlCommand.GetSkipNum"FlowControlCommand.GetSkipNum XE "GetSkipNum"
Syntax

Return Value=expression.GetSkipNum(Index)

Return Value: This function returns an integer. The integer is the nth skip number where n is indicated by the value of index.

expression: Required expression that evaluates to FlowControlCommand object.

Index: Required Long that indicates which skip number of the set of skip numbers to retrieve.

xe "FlowControlCommand Members:FlowControlCommand.IsExpressionValid"FlowControlCommand.IsExpressionValid XE "IsExpressionValid"
Syntax

Return Value=expr.IsExpressionValid(Expression)

Return Value: This method returns a boolean value. Boolean returns true if the function succeeds, false if it fails.

expr: Required expression that evaluates to FlowControlCommand object.

Expression: Required String that is the expression to evaluate for validity.

This function returns TRUE if the expression is valid, and FALSE otherwise.

xe "FlowControlCommand Members:FlowControlCommand.IsValidLeftHandValue"FlowControlCommand.IsValidLeftHandValue XE "IsValidLeftHandValue"
Syntax

Return Value=expr.IsValidLeftHandValue(Expression)

Return Value: This method returns a boolean value. Boolean returns true if the function succeeds, false if it fails.

expr: Required expression that evaluates to FlowControlCommand object.

Expression: Required String that is the expression to evaluate for validity.

This function returns TRUE if the expression can be used as a valid left hand value (i.e. can be used on the left-hand side of an assigment statement), and FALSE otherwise.

xe "FlowControlCommand Members:FlowControlCommand.IsValidSubroutineArgumentName"FlowControlCommand.IsValidSubroutineArgumentName XE "IsValidSubroutineArgumentName"
Syntax

Return Value=expr.IsValidSuborutineArgumentName(Expression)

Return Value: This method returns a boolean value. Boolean returns true if the function succeeds, false if it fails.

expr: Required expression that evaluates to FlowControlCommand object.

Expression: Required String that is the argument name to evaluate for validity.

This function returns TRUE if the expression can be used as a valid suroutine argument name, and FALSE otherwise.

xe "FlowControlCommand Members:FlowControlCommand.RemoveArgument"FlowControlCommand.RemoveArgument XE "RemoveArgument"
Syntax

Return Value=expression.RemoveArgument(Position)

Return Value: This method returns a boolean value. Boolean returns true if the function succeeds, false if it fails.

expression: Required expression that evaluates to FlowControlCommand object.

Position: Required Long that indicates which argument to remove.

This function removes an argument from an object of type CALL_SUBROUTINE or START_SUBROUTINE. It returns TRUE if an argument is removed successfully, FALSE otherwise.

This function has an effect only on objects of type CALL_SUBROUTINE and START_SUBROUTINE. It has no effect on objects of other types. If used on other types it returns FALSE even if nothing is being done.

The Position argument should be between one and expression.NumArguments.

xe "FlowControlCommand Members:FlowControlCommand.RemoveSkipNum"FlowControlCommand.RemoveSkipNum XE "RemoveSkipNum"
Syntax

expression.RemoveSkipNum(Index)

expression: Required expression that evaluates to FlowControlCommand object.

Index: Required Long that indicates which argument to remove.

This function removes one of the skip numbers for the Loop Start object from the list of skip numbers. The number removed is determined by the index parameter.

The Index argument should be between one and expression.SkipCount.

xe "FlowControlCommand Members:FlowControlCommand.SetArgumentDescription"FlowControlCommand.SetArgumentDescription XE "SetArgumentDescription"
Syntax

Return Value=expression.SetArgumentDescription(Position, Description)

Return Value: This method returns a boolean value. Boolean returns true if the function succeeds, false if it fails.

expression: Required expression that evaluates to FlowControlCommand object.

Number: Required Long that indicates the number of the argument description to set.

Description: Required String that is the text of the description to set.

This function sets the description of an argument of an object of type START_SUBROUTINE. It does nothing and returns FALSE if the object is not of this type.

The function returns TRUE if the description was set successfully, FALSE otherwise.

xe "FlowControlCommand Members:FlowControlCommand.SetArgumentExpression"FlowControlCommand.SetArgumentExpression XE "SetArgumentExpression"
Syntax

Return Value=expr.GetArgumentExpression(Position, Expression)

Return Value: This method returns a boolean value. Boolean returns true if the function succeeds, false if it fails.

expr: Required expression that evaluates to FlowControlCommand object.

Position: Required Long that indicates the number of the argument value to set.

Expression: Required String that indicates the argument value to set.

This function sets the value or default value of an argument of an object of type CALL_SUBROUTINE or START_SUBROUTINE, respectively. It does nothing and returns FALSE if the object is not one of these types.

The function returns TRUE if the value was set successfully, FALSE otherwise.

xe "FlowControlCommand Members:FlowControlCommand.SetArgumentName"FlowControlCommand.SetArgumentName XE "SetArgumentName"
Syntax

Return Value=expr.GetArgumentExpression(Position, Expression)

Return Value: This method returns a boolean value. Boolean returns true if the function succeeds, false if it fails.

expr: Required expression that evaluates to FlowControlCommand object.

Position: Required Long that indicates the number of the argument value to set.

Name: Required String that indicates the argument name to set.

This function sets the name of an argument of an object of type START_SUBROUTINE. It does nothing and returns FALSE if the object is not of this type.

The function returns TRUE if the value was set successfully, FALSE otherwise.

Related Topics: Command.Type Property \Relate "6_pcdbasic_automation.doc!215", "Command.Type Property" \D2HTargetDefault

xe "FlowControlCommand Members:FlowControlCommand.SetLeftSideOfAssignment"FlowControlCommand.SetLeftSideOfAssignment XE "SetLeftSideOfAssignment"
Syntax

expr.SetLeftSideOfAssignmentExpression
expr: Required expression that evaluates to FlowControlCommand object.

Expression: Required String that indicates the expression to be used for the left side of the assigment.

The function sets the left-hand side of the Assign statement to the expression passed in. Use the function IsValidLeftHandValue to determine validity of expression for a left-hand side before using this function.

xe "FlowControlCommand Members:FlowControlCommand.SetRightSideOfAssignment"FlowControlCommand.SetRightSideOfAssignment XE "SetRightSideOfAssignment"
Syntax

expr.SetRightSideOfAssignmentExpression
expr: Required expression that evaluates to FlowControlCommand object.

Expression: Required String that indicates the expression to be used for the right side of the assigment.

The function sets the right-hand side of the Assign statement to the expression passed in. Use the function IsExpressionValid to determine validity of expression before using this function.

FPanel Object Overview

The FPanel object contains properties that allow you to work with an F-Panel controller.

Properties:

xe "FPanel Members:FPanel.Parent"FPanel.Parent XE "Parent"
This read-only property returns the parent Machine object from which the FPanel object was created.

xe "FPanel Members:FPanel.PanelSelector"FPanel.PanelSelector XE "PanelSelector"
This write-only property allows you to set whether the F-Panel is in automatic or manual.

For Manual, set PanelSelector equal to 1

For Automatic, set PanelSelector equal to 2

xe "Leapfrog Object Overview"

xe "Automation Objects:Leapfrog Object "Leapfrog Object Overview

The Leapfrog command object contains three leapfrog properties that will allow you ato define how to use PC-DMIS's Leapfrog option (available in PC-DMIS Versions 3.0 and above) to translate along a part as well as the numbers of hits to use for each feature.

For information on Leapfrog, see the “Performing a LeapFrog Operation” topic in the.

Properties:

xe "Leapfrog Members:Leapfrog.LeapfrogType"Leapfrog.LeapfrogType XE "LeapfrogType"
Integer value that defines the type of feature used to translate the CMM along the part.

0 Sphere

1 Point Sets (Psets)

2 Points

3 Off

Read/Write Integer.

xe "Leapfrog Members:Leapfrog.LeapfrogNumhits"Leapfrog.Numhits XE "Numhits"
Interger value that determines the number of hits used for the feature types described in the "LeapfrogType" property. The feature type determines if the number of hits are useful or not.

· If LeapfrogType = 0 then useful values of NumHits are between 5 and 50

· If LeapfrogType = 1 then useful values of NumHits are greater than two

· If LeapfrogType = 2 or 3 then useful values of NumHits are ignored.

Read/Write Integer.

xe "Leapfrog Members:Leapfrog.LeapfrogFull"Leapfrog.Full XE "Full"
BOOLEAN value determines whether or not the leapfrog will be full (TRUE) or partial (FALSE). For more information on this, see "Creating and Using Alignments" of the.

Read/Write boolean.

xe "Leitz Motion Object Overview"

xe "Automation Objects:Leitz Motion Object "Leitz Motion Object Overview

The leitz motion automation command object changes motion settings for the PC-DMIS leitz motion command object. This section does not define the meaning of the different properties. More information on the properties can be found under "Optional Probe" in the “Parameter Settings: Optional Probe Tab” topic in the “Setting Your Preferences” of the.

Properties:

xe "Leitz Motion Members:LeitzMot.LowForce "LeitzMot.LowForce XE "LowForce"
Double value used to set or get the low force setting for the probe.

Read/Write Double

xe "Leitz Motion Members:LeitzMot.MaxForce "LeitzMot.MaxForce XE "MaxForce"
Double value used to set or get the max force setting for the probe.

Read/Write Double

xe "Leitz Motion Members:LeitzMot.PositionalAccuracy"LeitzMot.PositionalAccuracy XE "PositionalAccuracy"
Double value used to set or get the positional accuracy setting.

Read/Write Double

xe "Leitz Motion Members:LeitzMot.ProbeAccuracy"LeitzMot.ProbeAccuracy XE "ProbeAccuracy"
Double value used to set or get the probe accuracy setting.

Read/Write Double

xe "Leitz Motion Members:LeitzMot.ReturnData"LeitzMot.ReturnData XE "ReturnData"
Double value used to set or get the return data setting.

Read/Write Double

xe "Leitz Motion Members:LeitzMot.ReturnSpeed"LeitzMot.ReturnSpeed XE "ReturnSpeed"
Double value used to set or get the return speed.

Read/Write Double

xe "Leitz Motion Members:LeitzMot.ScanPointDensity"LeitzMot.ScanPointDensity XE "ScanPointDensity"
Double value used to set or get the scan point density.

Read/Write Double

xe "Leitz Motion Members:LeitzMot.TriggerForce"LeitzMot.TriggerForce XE "TriggerForce"
Double value used to set or get the trigger force setting for the probe.

Read/Write Double

xe "Leitz Motion Members:LeitzMot.UpperForce"LeitzMot.UpperForce XE "UpperForce"
Double value used to set or get the upper force setting for the probe.

Read/Write Double

xe "Load Machine Object Overview"

xe "Automation Objects:Load Machine Object"Load Machine Object Overview

The Load Machine object gives access to the machine name property of the PC-DMIS Load Machine command.

Properties:

xe "Load Machine Members:LoadProbes.MachineName" LoadMachine.MachineName XE "MachineName"
STRING value representing the name of the machine to be loaded.

Read/Write String

xe "Load Probes Object Overview"

xe "Automation Objects:Load Probes Object"Load Probes Object Overview

The Load Probes object gives access to the filename property of the PC-DMIS Load Probes command.

Properties:

xe "Load Probes Members:LoadProbes.Filename" LoadProbes.Filename XE ""
STRING value representing the name of the probes file to be loaded.

Read/Write String
xe "Machine Object Overview"

xe "Automation Objects:Machine Object"Machine Object Overview

The Machine object represent a CMM, or a virtual off-line “machine”. The Machine objects are contained in the Machines collection.

The Machine object is primarily an event source.

Properties:

xe "Machine Members:Machine.Application"Machine.Application XE "Application"
Represents the read-only PC-DMIS application. The Application object includes properties and methods that return top-level objects. For example, the ActivePartProgram property returns a PartProgram object.

Related Topics: Application Object Overview
 \Relate "6_pcdbasic_automation.doc!90", "Application Object Overview" \D2HWindow Main

xe "Machine Members:Machine.FPanel"Machine.FPanel XE "FPanel"
Returns the read-only FPanel object if your controller is indeed an FPanel controller.

Related Topics: FPanel Object Overview
. Machine.IsFPanel

xe "Machine Members:Machine.IsFPanel"Machine.IsFPanel XE "IsFPanel"
Returns a read-only TRUE or FALSE value. Returns TRUE if your controller is indeed an FPanel controller, FALSE otherwise.

xe "Machine Members:Machine.Name"Machine.Name XE "Name"
Returns the name of the Machine object. Read-only String.

xe "Machine Members:Machine.Parent"Machine.Parent XE "Parent"
Returns the read-only Machines collection object to which the machine belongs.

Events:

· xe "Machine Members:Machine.LearnHit"LearnHit (Double X, Double Y, Double Z, Double I, Double J, Double K)

This function will be called in your application when a hit is taken in PC-DMIS in learn mode. The values of X, Y, Z and I, J, K are the location of the hit and the vector of the hit in machine coordinates.

· xe "Machine Members:Machine.ExecuteHit"ExecuteHit (Double X, Double Y, Double Z, Double I, Double J, Double K)

This function will be called in your application when a hit is taken in PC-DMIS in executexe "Execute" mode. The values of X, Y, Z and I, J, K are the location of the hit and the vector of the hit in machine coordinates.

· xe "Machine Members:Machine.ErrorMsg"ErrorMsg(String ErrorText, Long ErrorType)

This function is called when an error occurs on the CMM. The ErrorText variabel contains the error message, and the ErrorType variable contains the type of error. (missed hit, unexpected hit)

· xe "Machine Members:Machine.Command"Command(Long code)

This function is called when a command button is pressed on the CMM controller. The code can be used to determine which button was pressed.

xe "Machines Object Overview"

xe "Automation Objects:Machines Object"Machines Object Overview

The Machines object is the collection of all Machine objects currently available in PC-DMIS. Each Machine object is bound to exactly one PartProgram object, and vice versa. Use Machines(index) where index is the index number or on-line machine’s name to return a single Machine object.

Remarks
There may be multiple machines named “OFFLINE”, one for each openxe "Open" off-line part program. To distinguish between them, use the index number, or use the machine’s Parent member.

Properties:

xe "Machines Members:Machines.Application"Machines.Application XE "Application"
Represents the read-only PC-DMIS application. The Application object includes properties and methods that return top-level objects. For example, the ActivePartProgram property returns a PartProgram object.

xe "Machines Members:Machines.Count"Machines.Count XE "Count"
Represents the number of Machine objects currently active in PC-DMIS. Read-only Integer.

xe "Machines Members:Machines.Parent"Machines.Parent XE "Parent"
Represents the read-only PC-DMIS application. The Application object includes properties and methods that return top-level objects. For example, the ActivePartProgram property returns a PartProgram object.

Methods:

xe "Machines Members:Machines.Item"Machines.Item

Syntax 1

Return Value=expression.Item(NameOrNum)

Syntax 2

expression(NameOrNum)

Return Value=The Item function returns a Machine object.

expression: Required expression that evaluates to a Machines object identified by the NameOrNum parameter.

NameOrNum: Required Variant that indicates which Machine object to return. It can be either a Long or a String. If it is a Long, it is the index number of the Machine object in the Machines collection. If it is a String, it is the ID of the Machine object.

Remarks
There may be several machines named “OFFLINE”. To avoid possible confusion with off-line machines, use the index number with these machines.

Since the Item method is the default, the function name can be omitted as in Syntax 2.

xe "MasterSlaveDlg Object Overview"

xe "Automation Objects:MasterSlaveDlg Object"MasterSlaveDlg Object Overview

The MasterSlaveDlg object gets called when the PartProgram.MasterSlaveDlg method is used.

Properties:

xe "MasterSlaveDlg Members:MasterSlaveDlg.Applications"Application

This read-only object returns the Application object.

xe "MasterSlaveDlg Members:MasterSlaveDlg.DCC"DCC

LONG value that gets or sets whether the Master / Slave calibration is a manual or DCC calibration. The available settings are:

MEASURE_MANUAL = 0

MEASURE_DCC = 1

Read/Write Long
xe "MasterSlaveDlg Members:MasterSlaveDlg.MasterProbe"MasterProbe

STRING that gets or sets which probe is used on the Master machine. The names are taken from the owning PartProgram object's Probes collection.

Read/Write String
xe "MasterSlaveDlg Members:MasterSlaveDlg.MasterTip"MasterTip

STRING that gets or sets which tip is used on the Master machine. The names are taken from the owning PartProgram object's Probes collection.

Read/Write String
xe "MasterSlaveDlg Members:MasterSlaveDlg.MeasuringArm"MeasuringArm

LONG value that gets or sets which arm or arms measure the calibration sphere. The available settings are:

MEAURE_BOTH = 0

MEASURE_MASTER = 1

MEASURE_SLAVE = 2

Read/Write Long

xe "MasterSlaveDlg Members:MasterSlaveDlg.Parent"Parent

This read-only object returns the PartProgram object.

xe "MasterSlaveDlg Members:MasterSlaveDlg.Position"Position

POINTDATA object that gets or sets the first (or only) sphere position.

Read/Write PointData
xe "MasterSlaveDlg Members:MasterSlaveDlg.SlaveProbe"SlaveProbe

STRING that gets or sets which probe is used on the Slave machine. The names are taken from the owning PartProgram object's Probes collection.

Read/Write String
xe "MasterSlaveDlg Members:MasterSlaveDlg.SlaveTip"SlaveTip

STRING that gets or sets which tip is used on the Slave machine. The names are taken from the owning PartProgram object's Probes collection.

Read/Write String
xe "MasterSlaveDlg Members:MasterSlaveDlg.Tool"Tool

STRING that gets or sets which tool is being measured during the calibration process. The names are taken from the owning PartProgram object's Tools collection.

Read/Write String
Methods:

xe "MasterSlaveDlg Members:MasterSlaveDlg.Calibrate"Calibrate

Syntax

Return Value=expression.calibrate()

Return Value=The Calibrate function returns an unused and reserved LONG value for future implementation.

expression: Required expression that evaluates to a MasterSlaveDlg object identified.

Remarks
Using this method is the same as clicking the Calibrate button on the Master / Slave Calibration dialog box inside the application itself.
xe "ModalCommand Object Overview"

xe "Automation Objects:ModalCommand Object"ModalCommand Object Overview

Objects of type AlignCommand are created from more generic Command objects to pass information specific to the modal command back and forth.

Properties:

xe "ModalCommand Members:ModalCommand.ClearPlane"ModalCommand.ClearPlane XE "ClearPlane"
Represents the clearance plane of a CLEARANCE_PLANES type object. Read/Write Long.

Remarks
This property is only useful for objects of type CLEARANCE_PLANES. For objects of other types, setting this property does nothing and getting it always returns PCD_ZPLUS.

Allowable values for this property are PCD_XPLUS, PCD_XMINUS, PCD_YPLUS, PCD_YMINUS, PCD_ZPLUS, and PCD_ZMINUS.

xe "ModalCommand Members:ModalCommand.Digits"ModalCommand.Digits XE "Digits"
Represents the number of digits of a DISPLAYPRECISION type object. Read/write Long.

Remarks
This property is only useful for objects of type DISPLAYPRECISION. For objects of other types, setting this property does nothing and getting it always returns zero.

xe "ModalCommand Members:ModalCommand.Distance"ModalCommand.Distance XE "Distance"
Represents the distance to move for this object. Read/write Double.

Remarks
This property is only useful for objects of type PREHIT, CLAMP, RETRACT, CHECK, and CLEARANCE_PLANES. For objects of other types, setting this property does nothing and getting it always returns zero.

For objects of type PREHIT, CLAMP, RETRACT, and CHECK, the Distance property is the distance to move during that operation. For CLEARANCE_PLANES objects, it is the distance from the axes plane to move. For example, if the clearance plane is LEFT, and the Distance is 2.0, the clearance plane will move to the X=2.0 plane.

Related Topics: Command.Type Property \Relate "6_pcdbasic_automation.doc!215", "Command.Type Property" \D2HTargetDefault
, ModalCommand.Distance2 \Relate "6_pcdbasic_automation.doc!140", "ModalCommand.Distance2" \D2HTargetDefault
, ModalCommand.PassPlane \Relate "6_pcdbasic_automation.doc!141", "ModalCommand.PassPlane" \D2HTargetDefault

xe "ModalCommand Members:ModalCommand.Distance2"ModalCommand.Distance2 XE "Distance2"
Represents the pass-through distance to move for the CLEARANCE_PLANES object. Read/write Double.

Remarks
This property is only useful for objects of type CLEARANCE_PLANES. For objects of other types, setting this property does nothing and getting it always returns zero.

xe "ModalCommand Members:ModalCommand.Mode"ModalCommand.Mode XE "Mode"
Represents the mode of this object. Read/write Long.

Remarks
This property is only useful for objects of type MAN_DCC_MODE and RMEAS_MODE. For objects of other types, setting this property does nothing and getting it always returns zero.

For objects of type MAN_DCC_MODE, the mode can take values 0 for DCC mode and 1 for manual mode. For objects of type RMEAS_MODE, the mode can take values 0 for NORMAL, and 1 for ABSOLUTE.

Related Topics: Command.Type Property \Relate "6_pcdbasic_automation.doc!215", "Command.Type Property" \D2HTargetDefault

xe "ModalCommand Members:ModalCommand.Name"ModalCommand.Name XE "Name"
Returns the name of this GET_PROBE_DATA object. Read-only String.

Remarks
This property is only useful for objects of type GET_PROBE_DATA (LoadProbe). For objects of other types, it always returns the empty string.

xe "ModalCommand Members:ModalCommand.On"ModalCommand.On XE "On"
Represents the on/off state of this object. Read/write Boolean.

Remarks
This property is only useful for objects of types PROBE_COMPENSATION, POLARVECTORCOMP, GAP_ONLY, RETROLINEAR_ONLY, FLY_MODE, and COLUMN132. For objects of other types, setting this property does nothing and getting it always returns FALSE.

xe "ModalCommand Members:ModalCommand.Parent"ModalCommand.Parent XE "Parent"
Returns the parent Command object. Read-only.

Remarks
The parent of a ModalCommand object is the same underlying PC-DMIS object as the ModalCommand object itself. Getting the parent allows you to access the generic Command properties and methods of a given object.

xe "ModalCommand Members:ModalCommand.PassPlane"ModalCommand.PassPlane XE "PassPlane"
Represents the pass-through plane to move for this CLEARANCE_PLANES object. Read/write Long.

Remarks
This property is only useful for objects of type CLEARANCE_PLANES. For objects of other types, setting this property does nothing and getting it always returns PCD_ZPLUS.

Allowable values for this property are PCD_XPLUS, PCD_XMINUS, PCD_YPLUS, PCD_YMINUS, PCD_ZPLUS, and PCD_ZMINUS.

xe "ModalCommand Members:ModalCommand.RmeasMode"ModalCommand.RmeasMode XE "RmeasMode"
Represents the current relative measure (or RMEAS) mode.

Read/write ENUM_RMEAS_MODE enumeration. These can be 0 for RMEAS_NORMAL or 1 for RMEAS_ABSOLUTE.

Related Topics: Command.Type Property \Relate "6_pcdbasic_automation.doc!215", "Command.Type Property" \D2HTargetDefault

xe "ModalCommand Members:ModalCommand.Speed"ModalCommand.Speed XE "Speed"
Represents the speed for this object. Read/write Double.

Remarks
This property is only useful for objects of type MOVE_SPEED, TOUCH_SPEED, and SCAN_SPEED. For objects of other types, setting this property does nothing and getting it always returns zero.

xe "ModalCommand Members:ModalCommand.WorkPlane"ModalCommand.WorkPlane XE "WorkPlane"
Represents the workplane to move for this SET_WORKPLANE object. Read/write Long.

Remarks
This property is only useful for objects of type SET_WORKPLANE. For objects of other types, setting this property does nothing and getting it always returns PCD_ZPLUS.

Allowable values for this property are PCD_XPLUS, PCD_XMINUS, PCD_YPLUS, PCD_YMINUS, PCD_ZPLUS, and PCD_ZMINUS.

xe "MoveCommand Object Overview"

xe "Automation Objects:MoveCommand Object"MoveCommand Object Overview

Objects of type MoveCommand are created from more generic Command objects to pass information specific to the move command back and forth

Properties:

xe "MoveCommand Members:MoveCommand.Angle"MoveCommand.Angle XE "Angle"
Represents the rotation angle of this MOVE_ROTAB object. Read/Write Double.

Remarks
This property is only useful for objects of type MOVE_ROTAB. For objects of other types, setting this property does nothing and getting it always returns zero.

xe "MoveCommand Members:MoveCommand.Direction"MoveCommand.Direction XE "Direction"
Represents the rotation direction of this MOVE_ROTAB object. Read/Write Double.

Remarks
This property is only useful for objects of type MOVE_ROTAB. For objects of other types, setting this property does nothing and getting it always returns zero.

For objects of type MOVE_ROTAB, the allowable values of this property are PCD_CLOCKWISE, PCD_COUNTERCLOCKWISE, and PCD_SHORTEST.

xe "MoveCommand Members:MoveCommand.IJK"MoveCommand.IJK XE "IJK"
A PointData object that represents the IJK vector to use. Read/Write.

Remarks

This property is only useful for objects of type MOVE_POINT, MOVE_INCREMENT, and MOVE_CIRCULAR. For objects of other types, setting this property does nothing and getting it always returns Nothing.

xe "MoveCommand Members:MoveCommand.NewTip"MoveCommand.NewTip XE "NewTip"
Represents the new tip position of this MOVE_PH9_OFFSET object. Read/Write String.

Remarks
This property is only useful for objects of type MOVE_PH9_OFFSET. For objects of other types, setting this property does nothing and getting it always returns the empty string.

For objects of type MOVE_PH9_OFFSET, this property should have the value of the ID of any tip in this part program.

Related Topics: Command.Type Property \Relate "6_pcdbasic_automation.doc!215", "Command.Type Property" \D2HTargetDefault
, Tip.ID Property \Relate "6_pcdbasic_automation.doc!145", "Tip.ID Property" \D2HTargetDefault

xe "MoveCommand Members:MoveCommand.OldTip"MoveCommand.OldTip XE "OldTip"
Represents the new tip position of this MOVE_PH9_OFFSET object. Read/Write String.

Remarks
This property is only useful for objects of type MOVE_PH9_OFFSET. For objects of other types, setting this property does nothing and getting it always returns the empty string.

For objects of type MOVE_PH9_OFFSET, this property should have the value of the ID of any tip in this part program.

Related Topics: Tip.ID Property \Relate "6_pcdbasic_automation.doc!145", "Tip.ID Property" \D2HTargetDefault
, Command.Type Property \Relate "6_pcdbasic_automation.doc!215", "Command.Type Property" \D2HTargetDefault

xe "MoveCommand Members:MoveCommand.Parent"MoveCommand.Parent XE "Parent"
Returns the parent Command object. Read-only.

Remarks

The parent of a MoveCommand object is the same underlying PC-DMIS object as the MoveCommand object itself. Getting the parent allows you to access the generic Command properties and methods of a given object.

xe "MoveCommand Members:MoveCommand.XYZ"MoveCommand.XYZ XE "XYZ"
A PointData object that represents the location to which to move, or in the case of MOVE_INCREMENT, the location offset. Read/Write.

Remarks

This property is only useful for objects of type MOVE_POINT, MOVE_INCREMENT, and MOVE_CIRCULAR. For objects of other types, setting this property does nothing and getting it always returns Nothing.

xe "Opt Motion Object Overview"

xe "Automation Objects:Opt Motion Object"Opt Motion Object Overview

The opt motion automation command object is used to change motion settings for the PC-DMIS probe motion command object. This section does not define the meaning of the different properties. Additional information on the properties can be found in the “Setting Your Preferences” of the PC-DMIS Help File, under the title "Parameter Settings: Acceleration tab".
Properties:

xe "Opt Motion Members:OptMotion.MaxTAcceleration "OptMotion.MaxTAcceleration XE "MaxTAcceleration"
Double value used to set or get the maximum acceleration in T setting.

Read/Write Double

xe "Opt Motion Members:OptMotion.MaxTSpeed"OptMotion.MaxTSpeed XE "MaxTSpeed"
Double value used to set or get the maximum speed in T setting.

Read/Write Double

xe "Opt Motion Members:OptMotion.MaxXAcceleration "OptMotion.MaxXAcceleration XE "MaxXAcceleration"
Double value used to set or get the maximum acceleration in X setting.

Read/Write Double

xe "Opt Motion Members:OptMotion.MaxYAcceleration "OptMotion.MaxYAcceleration XE "MaxYAcceleration"
Double value used to set or get the maximum acceleration in Y setting.

Read/Write Double

xe "Opt Motion Members:OptMotion.MaxZAcceleration "OptMotion.MaxZAcceleration XE "MaxZAcceleration"
Double value used to set or get the maximum acceleration in Z setting.

Read/Write Double

xe "Opt Motion Members:OptMotion.MovePositionalAccuracy "OptMotion.MovePositionalAccuracy XE "MovePositionalAccuracy"
Double value used to set or get the move positional accuracy setting.

Read/Write Double

xe "OptProbe Object Overview"

xe "Automation Objects:OptProbe Object"OptProbe Object Overview

This automation object provides support for the Optional Probe command. Through this object you can get and set various properties of an option probe command in PC-DMIS. For more information on the option probe command, see the "Parameter Settings: Optional Probe tab" topic of the "Setting Your Preferences” of the.

Properties:

xe "Opt Probe Members:OptProbe.LowForce "OptProbe.LowForce XE "LowForce"
Double value used to set or get the probe low force setting.

Read/Write Double

xe "Opt Probe Members:OptProbe.MaxForce "OptProbe.MaxForce XE "MaxForce"
Double value used to set or get the probe max force setting.

Read/Write Double

xe "Opt Probe Members:OptProbe.PositionalAccuracy "OptProbe.PositionalAccuracy XE "PositionalAccuracy"
Double value used to set or get the positional accuracy setting.

Read/Write Double

xe "Opt Probe Members:OptProbe.ProbeAccuracy "OptProbe.ProbeAccuracy XE "ProbeAccuracy"
Double value used to set or get the probe accuracy setting.

Read/Write Double

xe "Opt Probe Members:OptProbe.ReturnData "OptProbe.ReturnData XE "ReturnData"
Double value used to set or get the probe return data value.

Read/Write Double

xe "Opt Probe Members:OptProbe.ReturnSpeed "OptProbe.ReturnSpeed XE "ReturnSpeed"
Double value used to set or get the probe return speed value.

Read/Write Double

xe "Opt Probe Members:OptProbe.ScanPointDensity "OptProbe.ScanPointDensity XE "ScanPointDensity"
Double value used to set or get the probe scan point density setting.

Read/Write Double

xe "Opt Probe Members:OptProbe.TriggerForce "OptProbe.TriggerForce XE "TriggerForce"
Double value used to set or get the probe trigger force setting.

Read/Write Double

xe "Opt Probe Members:OptProbe.UpperForce "OptProbe.UpperForce XE "UpperForce"
Double value used to set or get the probe upper force setting.

Read/Write Double

xe "PartProgram Object Overview"

xe "Automation Objects:PartProgram Object"PartProgram Object Overview

The PartProgram object represents a part program currently available in PC-DMIS. This is the main object used to manipulate part programs.

Properties:

xe "PartProgram Members:PartProgram.ActiveMachine"PartProgram.ActiveMachine XE "ActiveMachine"
Returns the Machine object associated with this part program. Read-only.

xe "PartProgram Members:PartProgram.Application"PartProgram.Application XE "Application"
Represents the read-only PC-DMIS application. The Application object includes properties and methods that return top-level objects. For example, the ActivePartProgram property returns a PartProgram object.

xe "PartProgram Members:PartProgram.CadWindows"PartProgram.CadWindows XE "CadWindows"
Returns the CadWindows object associated with this part program. Read-only.

xe "PartProgram Members:PartProgram.Commands"PartProgram.Commands XE "Commands"
Returns the Commands collection object of this part program. Read-only.

Related Topics: Command Object Overview \Relate "6_pcdbasic_automation.doc!188", "Command Object Overview" \D2HWindow Main

xe "PartProgram Members:PartProgram.ConnectedToMaster"PartProgram.ConnectedToMaster XE "ConnectedToMaster"
New in Version 3.6. Returns TRUE if the part program is on the master computer but is running as the slave part program. Returns FALSE otherwise. Read only.

xe "PartProgram Members:PartProgram.ConnectedToSlave"PartProgram.ConnectedToSlave XE "ConnectedToSlave"
New in Version 3.6. Returns TRUE if the part program is on the slave computer but is running as the master part program. Returns FALSE otherwise. Read only.

xe "PartProgram Members:PartProgram.EditWindow"PartProgram.EditWindow XE "EditWindow"
Returns the Editwindow object associated with this part program. Read-only.

xe "PartProgram Members:PartProgram.ExecutionWasCancelled"PartProgram.ExecutionWasCancelled XE "ExecutionWasCancelled"
Returns TRUE if, during part program execution, the execution is cancelled. Otherwise it returns FALSE. The default value is FALSE. Read only.

xe "PartProgram Members:PartProgram.ExecutedCommands"PartProgram.ExecutedCommands XE "ExecutedCommands"
The ExecutedCommands property returns the ExecutedCommands object. This object contains a collection class of those commands last executed for the current part program.

xe "PartProgram Members:PartProgram.FullName"PartProgram.FullName XE "FullName"
Returns the part program’s full file path and name. Read-only String. If the file name of the part program is C:\PCDMISW\PARTS\1.PRG, the FullName returns “C:\PCDMISW\PARTS\1.PRG”.

xe "PartProgram Members:PartProgram.IsProbeAnalog"PartProgram.IsProbeAnalog XE "IsProbeAnalog"
Returns TRUE if the current loaded probe in a part program is an analog probe; it returns FALSE otherwise. If you have multiple probe types defined for a part program, the return value will depend, of course, on the location of the insertion point in the part program.

xe "PartProgram Members:PartProgram.Name"PartProgram.Name XE "Name"
Returns the part program’s file name. Read/Write String. If the file name of the part program is C:\PCDMISW\PARTS\1.PRG, the FullName returns “1.PRG”.

xe "PartProgram Members:PartProgram.OldBasic"PartProgram.OldBasic XE "OldBasic"
Returns this part program’s OldBasic object. Read-only.

The OldBasic object contains all of the methods from the old basic command set used in previous versions of PC-DMIS.

xe "PartProgram Members:PartProgram.Parent"PartProgram.Parent XE "Parent"
Returns the PartPrograms collection object to which this part program belongs. Read-only.

xe "PartProgram Members:PartProgram.PartName"PartProgram.PartName XE "PartName"
Represents the part name of the part program. Read/Write String.

Remarks
The part name is not the same as the file name. You can view and set the part name in the Properties of the file containing the part program, as well as at the top of the edit window within PC-DMIS.

xe "PartProgram Members:PartProgram.Path"PartProgram.Path XE "Path"
Returns the part program’s file path. Read/Write String. If the file name of the part program is C:\PCDMISW\PARTS\1.PRG, the FullName returns “C:\PCDMISW\PARTS\”.

xe "PartProgram Members:PartProgram.Probes"PartProgram.Probes XE "Probes"
The Probes property returns this part program’s Probes collection object. Read-only.

xe "PartProgram Members:PartProgram.RevisionNumber"PartProgram.RevisionNumber XE "RevisionNumber"
Represents the part program’s revision number. Read/Write String.

Remarks
You can view and set the revision number in the Properties of the file containing the part program, as well as at the top of the edit window within PC-DMIS.

xe "PartProgram Members:PartProgram.SerialNumber"PartProgram.SerialNumber XE "SerialNumber"
Represents the part program’s serial number. Read/Write String.

Remarks
You can view and set the serial number in the Properties of the file containing the part program, as well as at the top of the edit window within PC-DMIS.

xe "PartProgram Members:PartProgram.Tools"PartProgram.Tools XE "Tools"
The Tools property returns this part program’s Tools collection object. Read-only.

xe "PartProgram Members:PartProgram.Units"PartProgram.Units XE "Units"
Returns the measurement unit type used in the part program. Either inches or millimeters. Read only UNITTYPE.

xe "PartProgram Members:PartProgram.Visible"PartProgram.Visible XE "Visible"
Represents the part program’s visibility status. Read/Write Boolean.

Methods:

xe "PartProgram Members:PartProgram.AsyncExecute"PartProgram.AsyncExecute

Syntax

Return Value=expression.AsyncExecute

Return Value: This method returns a boolean value. Boolean returns true if the function succeeds, false if it fails. TRUE if the execution of the part program and the return of control was successful, FALSE otherwise.

expression: Required expression that evaluates to a PartProgram object.

This function starts execution of the part program and then returns immediately, allowing for asynchronous execution.

xe "PartProgram Members:PartProgram.Close"PartProgram.Close XE "Close"
Syntax

expression.Close

expression: Required expression that evaluates to a PartProgram object.

This subroutine saves, closes, and deactivates the part program.

xe "PartProgram Members:PartProgram.DmisOut"

xe "Export"PartProgram.DmisOut XE "DmisOut"
Syntax

Return Value=expression.DmisOut(bExecOrder,FileName)

Return Value: This returns a boolean value. Boolean returns TRUE if the expression suceeds, FALSE otherwise.

expression: Required expression that evaluates to a PartProgram object.

bExecOrder:
FileName:

This function outputs DMIS results to a file.

xe "PartProgram Members:PartProgram.Execute"

xe "Export"PartProgram.Execute XE "Execute"
Syntax

Return Value=expression.Execute

Return Value: This method returns a boolean value. Boolean returns true if the function succeeds, false if it fails. TRUE if the execution of the part program was successful, FALSE otherwise.

expression: Required expression that evaluates to a PartProgram object.

This function executes the part program.

xe "PartProgram Members:PartProgram.Export"

xe "Export"PartProgram.Export XE "Export"
Syntax

Return Value=expression.Export(FileName)

Return Value: This method returns a boolean value. Boolean returns true if the function succeeds, false if it fails.

expression: Required expression that evaluates to a PartProgram object.

FileName: Required String that denotes the file name to which to export.

Remarks
This function exports CAD or part data from the part program to the indicated file. The export format is determined by the file name extension of FileName.

xe "PartProgram Members:PartProgram.GetVariableValue"PartProgram.GetVariableValue XE "GetVariableValue"
Syntax

Return Value=expression.GetVariableValue(VarName)

Return Value: This method returns a variable object specified by the string in VarName.

expression: Required expression that evaluates to a PartProgram object.
VarName: String value representing a variable object.

Note: PC-DMIS variables only hold values during execution; at learn time PC-DMIS variables have a value of zero. The GetVariableValue
 and SetVariableValue
 methods only change a variable's value during the script's execution. If you want to permanently change a value of a variable inside PC-DMIS, you should use the PutText
 method instead.
xe "PartProgram Members:PartProgram.Import"PartProgram.Import XE "Import"
Syntax

Return Value=expression.Import(FileName)

Return Value: This method returns a boolean value. Boolean returns true if the function succeeds, false if it fails.

expression: Required expression that evaluates to a PartProgram object.

FileName: Required String that denotes the file name from which to import.

Remarks
This function imports CAD or part data from the indicated file to the part program. The file format is determined by the file name extension of FileName.

xe "PartProgram Members:PartProgram.LoadLayout"PartProgram.LoadLayout XE "LoadLayout"
Syntax:

Return Value = expression.LoadLayout(layout)

Return Value: This method returns TRUE if the function succeeds, FALSE if it fails.

expression: Required expression that evaluates to a PC-DMIS PartProgram object

layout: Required String that indicates the file the layout should be read from. This can be an absolute path, a relative path, or the name the user typed in when creating the layout in PC-DMIS.

The LoadLayout method loads a customized PC-DMIS user-interface layout as if it were selected from the Windows Layout toolbar inside PC-DMIS. Also, if a layout has been created and moved to a different directory, you can access it by specifying the absolute or relative file name. For information on using this toolbar, see the “Using Toolbars” inside your.
.

Examples:
Dim Part As PCDLRN.PartProgram
Part.LoadLayout "layout1.dat" ' loads the first layout from the current user's setup information directory
Part.LoadLayout "c:\mylayout.dat" ' loads the layout in the specified file

Part.LoadLayout "Learn" ' loads the layout named "Learn", if it exists

xe "PartProgram Members:PartProgram.MasterSlaveDlg"PartProgram.MasterSlaveDlg XE "MasterSlaveDlg"
Return Value: This returns a read-only pointer to the Master/Slave Calibration dialog box, opening the dialog box if necessary.

expression: Required expression that evaluates to a PartProgram object.

xe "PartProgram Members:PartProgram.MessageBox"PartProgram.MessageBox XE "MessageBox"
Syntax

Return Value=expression.MessageBox(Message,Title,Type)

Return Value: Integer value of the button chosen by the user.

expression: Required expression that evaluates to a PartProgram object.

Message: Required String that is the message of the message box

Title: Optional String that is the title of the message box. If ommitted, the title will be the name and version of PC-DMIS.

Type: Optional Long used to indicate the button types to be used in the message box. Examples include, “OK”, “Cancel”, “Retry”, “Yes”, “No” etc. If ommitted, the default is “OK”.

Remarks
This function uses the PC-DMIS message box function. It includes all functionality including cancelling of execution tied to the Cancel button.

xe "PartProgram Members:PartProgram.Quit"PartProgram.Quit XE "Quit"
Syntax

Return Value=expression.Quit

Return Value: This method returns a boolean value. Boolean returns true if the function succeeds, false if it fails. TRUE if the part was quit successfully, FALSE otherwise.

expression: Required expression that evaluates to a PartProgram object.

This subroutine closes, and deactivates the part program without saving.

xe "PartProgram Members:PartProgram.RefreshPart"PartProgram.RefreshPart XE "RefreshPart"
Syntax

Return Value=expression.RefreshPart

Return Value: This method doesn't return a value.

expression: Required expression that evaluates to a PartProgram object.

Refreshes the diplay of the Part in the Edit window and in the CAD window.

xe "PartProgram Members:PartProgram.Save"PartProgram.Save XE "Save"
Syntax

Return Value=expression.Save

Return Value: This method returns a boolean value. Boolean returns true if the function succeeds, false if it fails. TRUE if the part was saved successfully, FALSE otherwise.

expression: Required expression that evaluates to a PartProgram object.

This subroutine saves the part program. If the part program has not been saved before, it opens a Save As Dialog box which requires that you name the file.

xe "PartProgram Members:PartProgram.SaveAs"PartProgram.SaveAs XE "SaveAs"
Syntax

Return Value=expression.SaveAs(name)

Return Value: This method returns a boolean value. Boolean returns true if the function succeeds, false if it fails. TRUE if the part was saved successfully, FALSE otherwise.

expression: Required expression that evaluates to a PartProgram object.

name: Optional expression that evaluates to a String. The file name to which to save.

This subroutine saves the part program. If the name parameter is missing or empty, PC-DMIS asks for a file name using a Save As dialog.

xe "PartProgram Members:PartProgram.SetExecutionBlock"PartProgram.SetExecutionBlock XE "SetExecutionBlock"
Syntax

Return Value=expression.SetExecutionBlock(StartCommand, EndCommand)

Return Value: This method returns TRUE if the block of commands successfully executes; FALSE otherwise.

expression: Required expression that evaluates to a PartProgram object.

StartCommand: This is the first command to execute (as a Command object) in the command block.

EndCommand: This is the last command to execute (as a Command object) in the command block.

This method defines a block of commands to execute. Calls are made to the Execute
 or AsyncExecute
 functions until the execution block is cleared with the ClearExecutionBlock
 method.

xe "PartProgram Members:PartProgram.ClearExecutionBlock"PartProgram.ClearExecutionBlock XE "ClearExecutionBlock"
Syntax

Return Value=expression.ClearExecutionBlock()

Return Value: This method returns TRUE if the block of commands successfully clears; FALSE otherwise.

expression: Required expression that evaluates to a PartProgram object.

This clears the start and end commands set by the SetExecutionBlock
 method.

xe "PartProgram Members:PartProgram.RunJournalFile"PartProgram.RunJournalFile XE "RunJournalFile"
Syntax

Return Value=expression.RunJournalFile(journal)

Return Value: This method returns TRUE if the part program successfully executes; FALSE otherwise.

expression: Required expression that evaluates to a PartProgram object.

journal: string representing the journal file to use.

This executes the part program using point data collected from a journal file. This is the same as a normal execution of a part program except that the point data comes from the specfied journal file. Journal files are used with PC-DMIS/NC, a specialized version of PC-DMIS that executes part programs with CNC (Computer Numeric Control) machines. For more information see the PC-DMIS/NC..
xe "PartProgram Members:PartProgram.SetVariableValue"PartProgram.SetVariableValue XE "SetVariableValue"
Syntax

Return Value=expression.SetVariableValue(VarName)

Return Value: This method sets a value for the variable specified by the string in VarName.

expression: Required expression that evaluates to a PartProgram object.

VarName: String value representing a variable.

 Note: PC-DMIS variables only hold values during execution; at learn time PC-DMIS variables have a value of zero. The GetVariableValue
 and SetVariableValue
 methods only change a variable's value during the script's execution. If you want to permanently change a value of a variable inside PC-DMIS, you should use the PutText
 method instead.
xe "PartProgram Members:PartProgram.WaitUntilExecuted"PartProgram.WaitUntilExecuted XE "WaitUntilExecuted"
Important: This method is currently unavailable.

Syntax:

Return Value =expression.WaitUntilExecuted (Command, Timeout)

Return Value: This methods immediately returns FALSE if the part program is not executing. It returns TRUE if the specified Command executes before Timeout seconds pass. It returns FALSE if the Command does not execute before Timeout seconds pass. If Timeout is a non-positive value, and the Command never executes, this function never returns a value.

expression: Required expression that evaluates to a PartProgram object.

Command: This is an expression that evaluates to a Command object. This is the command that is waited for.

Timeout: This is the number of seconds (a Long value) to wait for the command to finish execution. If you have a non-positive value, the method waits indefinitely.

This method waits until the specified Command object executes, or until Timeout seconds pass.

Events:

The following events are available to the PartProgram object.

xe "PartProgram Members:PartProgram.OnAddObject"PartProgram.OnAddObject XE "OnAddObject"
Syntax:

expression.OnAddObject(command)

expression: Required expression that evaluates to a PC-DMIS PartProgram object.

command: expression that evaluates to a Command object to determine the command for which this event should wait.

This event gets launched when the specified command gets added to the part program.

xe "PartProgram Members:PartProgram.OnEndExecution"PartProgram.OnEndExecution XE "OnEndExecution"
Syntax:

expression.OnEndExecution(type)

expression: Required expression that evaluates to a PC-DMIS PartProgram object.

type: this Long number determines the termination type used by this event.

This event gets launched when PC-DMIS finishes executing the part program. PC-DMIS determines it has finished execution based on the termination type.
xe "PartProgram Members:PartProgram.OnExecuteDialogErrorMsg"PartProgram.OnExecuteDialogErrorMsg XE "OnExecuteDialogErrorMsg"
Syntax:

expression.OnExecuteDialogErrorMsg(message)

expression: Required expression that evaluates to a PC-DMIS PartProgram object.

message: string representing the error message sent to the Machine Errors list in the Execution Mode Options dialog box.

This event gets launched when the Execution Mode Options dialog box displays message.
xe "PartProgram Members:PartProgram.OnExecuteDialogStatusMsg"PartProgram.OnExecuteDialogStatusMsg XE "OnExecuteDialogStatusMsg"
Syntax:

expression.OnExecuteDialogStatusMsg(message)

expression: Required expression that evaluates to a PC-DMIS PartProgram object.

message: string representing the status message sent to the Machine Commands list in the Execution Mode Options dialog box.

This event gets launched when the Execution Mode Options dialog box displays message.
xe "PartProgram Members:PartProgram.OnObjectAboutToExecute"PartProgram.OnObjectAboutToExecute XE "OnObjectAboutToExecute"
Syntax:

expression.OnObjectAboutToExecute(command)

expression: Required expression that evaluates to a PC-DMIS PartProgram object.

command: expression that evaluations to a Command object to determine the command about to be executed.

This event gets launched immediately before the specified command gets executed.
xe "PartProgram Members:PartProgram.OnObjectAboutToExecute2"PartProgram.OnObjectAboutToExecute2 XE "OnObjectAboutToExecute2"
Syntax:

expression.OnObjectAboutToExecute(command,arm)

expression: Required expression that evaluates to a PC-DMIS PartProgram object.

command: expression that evaluations to a Command object to determine the command about to be executed.

arm: Long value representing the arm on a multiple arm machine that is about to execute the command causing the event to launch.

This event gets launched immediately before the specified command gets executed on a specified arm of a multiple arm system.
xe "PartProgram Members:PartProgram.OnObjectExecuted"PartProgram.OnObjectExecuted XE "OnObjectExecuted"
Syntax:

expression.OnObjectAboutToExecute(command)

expression: Required expression that evaluates to a PC-DMIS PartProgram object.

command: expression that evaluations to a Command object to determine the command that gets executed.

This event gets launched immediately after the specified command gets executed.
xe "PartProgram Members:PartProgram.OnObjectExecuted2"PartProgram.OnObjectExecuted2 XE "OnObjectExecuted2"
Syntax:

expression.OnObjectAboutToExecute(command,arm)

expression: Required expression that evaluates to a PC-DMIS PartProgram object.

command: expression that evaluations to a Command object to determine the command that gets executed.

arm: Long value representing the arm on a multiple arm machine that executes the command causing the event to launch.

This event gets launched immediately after the specified command gets executed on a specified arm of a multiple arm system.
xe "PartProgram Members:PartProgram.OnWorkOffset"PartProgram.OnWorkOffset XE "OnWorkOffset"
OnWorkOffset(dX, dY, dZ, Rx , Ry, Rz, file, program, gcode)

dX, dY, dZ. These are double values that represent the change in translation from the base alignment to the finished alignment.
Rx, Ry, Rz. These are double values representing the change in rotation from the base alignment to the finished alignment.
file. This is the NC formatted file that gets created if the NC interface is unidirectional.
program. This is the program name assigned to the generated program
gcode. This is the G code to send to the controller. This code can be G54 through G59. To represent these codes, you should use a Long number of 0 to 5 respectively:

0—G54

1—G55

2—G56

3—G57

4—G58

5—G59

This event gets called when PC-DMIS/NC executes WorkOffset command. PC-DMIS/NC is a specialized version of PC-DMIS that allows you to execute part programs using your CNC (Computer Numeric Control) machine. For more information on PC-DMIS/NC, see the PC-DMIS/NC.

xe "PartProgram Settings Object Overview"

xe "Automation Objects:PartProgram Settings Object"PartProgram Settings Object Overview

The PartProgramSettings object allows you to get or set various part program settings.

Properties:

xe "PartProgram Settings Members:PartProgramSettings.AutoAdjustPH9"PartProgramSettings.AutoAdjustPH9 XE "AutoAdjustPH9"
Returns the check box value or sets the Automatically Adjust Probe Head Wrist check box from the General tab of the SetUp Options dialog box. Read/Write Long.

If you set this property a non-zero value orTrue, then PC-DMIS selects this check box.

If you set this property to a zero value or False, then PC-DMIS deselects this check box.

xe "PartProgram Settings Members:PartProgramSettings.AutoLabelPosition"PartProgramSettings.AutoLabelPosition XE "AutoLabelPosition"
Returns the check box value or sets the Automatic Label Positioning check box from the General tab of the SetUp Options dialog box. Read/Write Long.

If you set this property a non-zero value or True, then PC-DMIS selects this check box.

If you set this property to a zero value or False, then PC-DMIS deselects this check box.

xe "PartProgram Settings Members:PartProgramSettings.WarnLoadProbe"PartProgramSettings.WarnLoadProbe XE "WarnLoadProbe"
Returns the check box value or sets the Please Load Probe = %s warning check box found in the Warnings Display Options dialog box. Read/Write Long.

If you set this property a non-zero value or True, then PC-DMIS selects this check box.

If you set this property to a zero value or False, then PC-DMIS deselects this check box.

xe "PartPrograms Object Overview"

xe "Automation Objects:PartPrograms Object"PartPrograms Object Overview

The PartPrograms object contains all the openxe "Open" part programs in PC-DMIS.

Using the PartPrograms Collection

Use Add to create a fresh new part program and add it to the PartPrograms collection.

Use PartPrograms(index) where index is the part name or index number to access an individual part program.

Properties:

xe "PartPrograms Object Members:PartPrograms.Application"PartPrograms.Application XE "Application"
Represents the read-only PC-DMIS application. The Application object includes properties and methods that return top-level objects. For example, the ActivePartProgram property returns a PartProgram object.

xe "PartPrograms Object Members:PartPrograms.Count"PartPrograms.Count XE "Count"
Returns the number of part programs active in PC-DMIS. Read-only Long.

xe "PartPrograms Object Members:PartPrograms.Parent"PartPrograms.Parent XE "Parent"
Represents the read-only PC-DMIS application. The Application object includes properties and methods that return top-level objects. For example, the ActivePartProgram property returns a PartProgram object.

Methods:

xe "PartPrograms Object Members:PartPrograms.Add"PartPrograms.Add

Syntax

Return Value=expression.Add(FileName, Units, Machine, ProbeFile)

Return Value: This function returns the added PartProgram object

expression: Required. An expression that returns a PartPrograms object.

FileName: Required String. The file name in which to store the new PartProgram.

Units: Required Long. Set units to 1 for inches, anythings else for millimeters.

Machine: Required String. The identifiying string for your machine. If you're running in offline mode, use "Offline".

ProfeFile: Required String. The identifying string for the probe (.prb) file to use in the part program.

Remarks
The Add function creates a new part program and activates it in PC-DMIS. If a part program named FileName exists, it is loaded and the Units parameter is ignored.

\xe "PartPrograms Object Members:PartPrograms.CloseAll"PartPrograms.CloseAll XE "CloseAll"
Syntax

expression.CloseAll

expression: Required. An expression that returns a PartPrograms object.

Remarks
Closes and deactivates all active part programs in PC-DMIS.

xe "PartPrograms Object Members:PartPrograms.Item"PartPrograms.Item XE "Item"
Syntax 1

Return Value=expression.Item(NameOrNum)

Syntax 2

expression(NameOrNum)

Return Value=The Item function returns a PartProgram object.

expression: Required expression that evaluates to a PartPrograms object.

NameOrNum: Required Variant that indicates which PartProgram object to return. It can be either a Long or a String. If it is a Long, it is the index number of the PartProgram object in the PartPrograms collection. If it is a String, it is the ID of the PartProgram object.

Remarks
Since the Item method is the default, the function name can be omitted as in Syntax 2.

Return Value

The PartProgram Object identified by the NameOrNum parameter.

Related Topics: PartProgram Overview \Relate "6_pcdbasic_automation.doc!89", "PartProgram Overview" \D2HWindow Main
 \Relate "6_pcdbasic_automation.doc!146", "PartProgram Members" \D2HWindow Main
xe "PartPrograms Object Members:PartPrograms.Open"

xe "Open"PartPrograms.Open XE "Open"
Syntax

Return Value=expression.Open(FileName)

Return Value: This function returns the opened PartProgram object. If the file does not exist, the function returns Nothing.
expression: Required. An expression that returns a PartPrograms object.

FileName: Required String. The file name of the PartProgram to open.

Remarks
The Open Function activates the part program stored in the file FileName. If the file does not exist, nothing happens.

xe "PartPrograms Object Members:PartPrograms.Remove"PartPrograms.Remove XE "Remove"
Syntax

Return Value=expression.Remove(NameOrNum)

Return Value: This method returns a boolean value. Boolean returns true if the function succeeds, false if it fails. If the function was able to close a part program, it returns TRUE, otherwise FALSE.

expression: Required expression that evaluates to a PartPrograms object.

NameOrNum: Required Variant that indicates which PartProgram object to return. It can be either a Long or a String. If it is a Long, it is the index number of the PartProgram object in the PartPrograms collection. If it is a String, it is the ID of the PartProgram object.

Remarks
The Remove function saves, closes, and deactivates the indicated part program. That part program is no longer active in PC-DMIS.

xe "PointData Object Overview"

xe "Automation Objects:PointData Object"PointData Object Overview

The PointData object is similar to a type define as follows

Type PointData

X as Double

Y as Double

Z as Double

End Type

It is be used to pass points and vectors in automation functions that accept this type

Properties

xe "PointData Members:PointData.X"PointData.X XE "X"
Represents the X member of this object. Read/write Double.

xe "PointData Members:PointData.Y"PointData.Y XE "Y"
Represents the Y member of this object. Read/write Double.

xe "PointData Members:PointData.Z"PointData.Z XE "Z"
Represents the Z member of this object. Read/write Double.

xe "PointData Members:PointData.I"PointData.I XE "I"
Represents the X member of this object. Read/write Double.

Remarks
This property is exactly the same as the X property, but was included for semantic reasons when working with vectors.

xe "PointData Members:PointData.J"PointData.J XE "J"
Represents the X member of this object. Read/write Double.

Remarks
This property is exactly the same as the Y property, but was included for semantic reasons when working with vectors.

xe "PointData Members:PointData.K"PointData.K XE "K"
Represents the Z member of this object. Read/write Double.

Remarks
This property is exactly the same as the Z property, but was included for semantic reasons when working with vectors.

xe "Probe Object Overview"

xe "Automation Objects:Probe Object"Probe Object Overview

The Probe object provides information about a given probe description file. It also allows you to manipulate the Probe dialog in PC-DMIS.

Properties:

xe "Probe Members:Probe.ActiveComponent"Probe.ActiveComponent XE "ActiveComponent"
Represents the highlighted probe component in PC-DMIS’s Probe dialog. Read/write Long.

Example:
The following VB code illustrates how to create a probe containing a PH9, a TP2, and a 5 mm tip, from scratch in the active part program

 m_app.ActivePartProgram.Probes.Add(prbFile)
 Dim prb As PCDLRN.probe = m_app.ActivePartProgram.Probes.Item(prbFile)
 prb.ActiveComponent = 0
 For i As Integer = 0 To prb.ConnectionCount – 1
 If (prb.ConnectionDescription(i) = "PROBEPH9") Then
 prb.ActiveConnection = i
 End If
 Next i
 prb.ActiveComponent = prb.ComponentCount() – 1
 For i As Integer = 0 To prb.ConnectionCount – 1
 If (prb.ConnectionDescription(i) = "PROBETP2") Then
 prb.ActiveConnection = i
 End If
 Next i
 prb.ActiveComponent = prb.ComponentCount() – 1
 For i As Integer = 0 To prb.ConnectionCount – 1
 If (prb.ConnectionDescription(i) = "TIP5BY50MM") Then
 prb.ActiveConnection = i
 End If
 Next i

xe "Probe Members:Probe.ActiveConnection"Probe.ActiveConnection XE "ActiveConnection"
Represents the highlighted probe connection in PC-DMIS’s Probe dialog’s connection drop-down list. Read/write Long.

xe "Probe Members:Probe.Application"Probe.Application XE "Application"
Represents the read-only PC-DMIS application. The Application object includes properties and methods that return top-level objects. For example, the ActivePartProgram property returns a PartProgram object.

xe "Probe Members:Probe.ComponentCount"Probe.ComponentCount XE "ComponentCount"
Returns the number of components in the component list box. There is always at least one, even when it appears that there are no entries. In that case, the one entry is invisible, but it can still be made active.

xe "Probe Members:Probe.ConnectionCount"Probe.ConnectionCount XE "ConnectionCount"
Returns the number of connections in the connection drop-down list. The contents of this list depend on which component is active.

xe "Probe Members:Probe.FullName"Probe.FullName XE "FullName"
Returns the full name of the file containing this probe’s information. Read-only String. If the fully qualified path name is C:\PCDMISW\PROBE\SP600.PRB, FullName returns “C:\PCDMISW\PROBE\SP600.PRB”.

xe "Probe Members:Probe.Name"Probe.Name XE "Name"
Returns the name of the file containing this probe’s information. Read-only String. If the fully qualified path name is C:\PCDMISW\PROBE\SP600.PRB, FullName returns “SP600.PRB”.

xe "Probe Members:Probe.Parent"Probe.Parent XE "Parent"
Returns the Probes collection object to which this object belongs.

xe "Probe Members:Probe.Path"Probe.Path XE "Path"
Returns the path to the file containing this probe’s information. Read-only String. If the fully qualified path name is C:\PCDMISW\PROBE\SP600.PRB, Path returns “C:\PCDMISW\PROBE\”.

xe "Probe Members:Probe.QualificationSettings"Probe.QualificationSettings XE "QualificationSettings"
Returns the Qualify Settings object that can be modifed and passed into the Qualify2 method. It supports these parameters:

· StartA – Returns the starting A angle of the probe

· EndA – Returns the ending A angle of the probe

· IncrementA – Returns the increment value for automatically generated A angles between the starting A angle of the probe and the ending A angle of the probe.

· StartB – Returns the starting B angle of the probe

· EndB – Returns the ending B angle of the probe

· IncrementB – Returns the increment value for automatically generated B angles between the starting B angle of the probe and the ending B angle of the probe.

Related Topics: Qualify2

xe "Probe Members:Probe.UseWristMap"Probe.UseWristMap XE "UseWristMap"
Syntax

Return Value=expression.UseWristMap

Return Value: This method returns a boolean value. Boolean returns TRUE if the probe uses a wrist map, FALSE otherwise.
expression: Required expression that evaluates to a PC-DMIS Probe object.

Determines whether or not a wrist map is used. Read/Write boolean.

xe "Probe Members:Probe.Tips"Probe.Tips XE "Tips"
Returns the Tips object associated with this Probe object.

Methods:

xe "Probe Members:Probe.ClearAllTips"Probe.ClearAllTips

Syntax

expression.ClearAllTips

expression: Required expression that evaluates to a PC-DMIS Probe object.

Clears all tips selected for qualification. Use the "Probe.SelectAllTips" funtion to select all tips. Use the "Tip.Selected" property of the tip object to select or deselect individual tips for probe qualification.

xe "Probe Members:Probe.ComponentDescription"Probe.ComponentDescription XE "ComponentDescription"
Syntax

Return Value=expression.ComponentDescription(Item)

Return Value: This function returns a string which is the nth component description of the component list box as determined by the item parameter.

expression: Required expression that evaluates to a PC-DMIS Probe object.

Item: Required Long. The zero-based index of the string from the list box to return. This must be between 0 and expression.ComponentCount – 1.

xe "Probe Members:Probe.ConnectionDescription"Probe.ConnectionDescription XE "ConnectionDescription"
Syntax

Return Value=expression.ComponentDescription(Item)

Return Value: This function returns the Item number string in the connection drop down list..

expression: Required expression that evaluates to a PC-DMIS Probe object.

Item: Required Long. The zero-based index of the string from the drop down list to return. This must be between 0 and expression.ConnectionCount – 1.

xe "Probe Members:Probe.Dialog"Probe.Dialog XE "Dialog"
Syntax

Return Value=expression.Dialog

Return Value: This method returns a boolean value. Boolean returns true if the function succeeds, false if it fails.

expression: Required expression that evaluates to a PC-DMIS Probe object.

Opens the PC-DMIS Probe Utilities dialog for expression.

xe "Probe Members:Probe.Qualify"Probe.Qualify XE "Qualify"
Syntax

expression.Qualify

expression: Required expression that evaluates to a PC-DMIS Probe object.

Qualifies all of expression’s tips.

xe "Probe Members:Probe.Qualify2"Probe.Qualify2 XE "Qualify2"
Syntax

Return Value=expression.Qualify2(settings)

Return Value: This method reaturns a boolean value. Boolean returns TRUE if the expression succeeds, FALSE otherwise.

expression: Required expression that evaluates to a PC-DMIS Probe object.

Settings: Values passed in from the QualificationSettings object.

Calibrates probes using settings passed in via the QualificationSettings object.

xe "Probe Members:Probe.SelectAllTips"Probe.SelectAllTips XE "SelectAllTips"
Syntax

expression.SelectAllTips

expression: Required expression that evaluates to a PC-DMIS Probe object.

Selects all tips in tip list for qualification. Use the "Probe.ClearAllTips" function to clear all selected tips. Use the "Tip.Selected" property of the tip object to select or deselect individual tips for probe qualification.

xe "Probes Object Overview"

xe "Automation Objects:Probes Object"Probes Object Overview

The Probes object is the collection of all Probe objects currently available to a part program. Use Probes (index) where index is the index number or name of the requested probe file.

Properties:

xe "Probes Members:Probes.Application"Probes.Application XE "Application"
Represents the read-only PC-DMIS application. The Application object includes properties and methods that return top-level objects. For example, the ActivePartProgram property returns a PartProgram object.

xe "Probes Members:Probes.Count"Probes.Count XE "Count"
Represents the number of Machine objects currently active in PC-DMIS. Read-only Integer.

xe "Probes Members:Probes.Parent"Probes.Parent XE "Parent"
Returns the parent PartProgram of this object. Read-only PartProgram.

xe "Probes Members:Probes.Visible"Probes.Visible XE "Visible"
Gets or sets the current visible state of the Probes object. You can use this property to show or hide specific probe components inside the Graphics Display window of PC-DMIS.

Methods:

xe "Probes Members:Probes.Add"Probes.Add

Syntax 1

Return Value=expression.Add(FileName)

The Add function sets the probe name to FileName. This allows the user to start creating a new probe.

Return Value: This method returns a boolean value. Boolean returns true if the function succeeds, false if it fails.

expression: Required expression that evaluates to a Probes object.

FileName: Required String that indicates the name of the new probe.

xe "Probes Members:Probes.CancelChanges"Probes.CancelChanges XE "CancelChanges"
Syntax

expression.CancelChanges

expression: Required expression that evaluates to a Probes object.

The CancelChanges function cancels changes made to a probes collection and then closes the probes collection.

xe "Probes Members:Probes.Item"Probes.Item XE "Item"
Syntax 1

Return Value=expression.Item(NameOrNum)

Syntax 2

expression(NameOrNum)

Return Value=The Item function returns a Probe object.

expression: Required expression that evaluates to a Probes object.

NameOrNum: Required Variant that indicates which Probe object to return. It can be either a Long or a String. If it is a Long, it is the index number of the Probe object in the Probes collection. If it is a String, it is the name of the Probe object.

Remarks
Since the Item method is the default, the function name can be omitted as in Syntax 2.

xe "QualificationSettings Object Overview"

xe "Automation Object:QualificationSettings Object"QualificationSettings Object Overview

The QualificationSettings object specifies how to calibrate your probe. The calibration process tells PC-DMIS the location and diameter of the probe tip. For more information on calibrating the probe, see the "Defining Probes" topic in the PC-DMIS.

Properties

xe "QualificationSettings Members:QualificationSettings.CreateReplaceMap"QualificationSettings.CreateReplaceMap XE "CreateReplaceMap"
This determines whether or not a map should be created or replaced. Read/Write. Type: ENUM_QUAL_CREATE_REPLACE.

The enumerated values you can set this property equal to are:

0
CREATE_NEW_MAP

1
REPLACE_CLOSEST_MAP

xe "QualificationSettings Members:QualificationSettings.EndA"QualificationSettings.EndA XE "EndA"
This determines the ending A angle to use during qualification. Type: Double.

xe "QualificationSettings Members:QualificationSettings.EndAngle"QualificationSettings.EndAngle XE "EndAngle"
This determines the End Angle to use on the qualification tool. Type Double.

xe "QualificationSettings Members:QualificationSettings.EndB"QualificationSettings.EndB XE "EndB"
This determines the ending B angle to use during qualification. Type: Double.

xe "QualificationSettings Members:QualificationSettings.ExecuteMode"QualificationSettings.ExecuteMode XE "ExecuteMode"
This determines the type of calibration action to take. Type ENUM_CALIBRATION_EXECUTE_MODE.

xe "QualificationSettings Members:QualificationSettings.IncrementA"QualificationSettings.IncrementA XE "IncrementA"
This determines the angle increment to use for the A angle during qualification. Type: Double.

xe "QualificationSettings Members:QualificationSettings.IncrementB"QualificationSettings.IncrementB XE "IncrementB"
This determines the angle increment to for the B angle during qualification. Type: Double.

xe "QualificationSettings Members:QualificationSettings.Mode"QualificationSettings.Mode XE "Mode"
This determines the Calibration Mode. Either DCC or Manual. Type DCCMODE.

xe "QualificationSettings Members:QualificationSettings.MoveSpeed"QualificationSettings.MoveSpeed XE "MoveSpeed"
This determines the speed the probe moves during calibration. Type Double.

xe "QualificationSettings Members:QualificationSettings.NumHits"QualificationSettings.NumHits XE "NumHits"
This determines the number of hits to take around the calibration tool. Type Long.

xe "QualificationSettings Members:QualificationSettings.NumLevels"QualificationSettings.NumLevels XE "NumLevels"
This determines the number of levels that to use in the calibration process. PC-DMIS divides the number of hits by the number of levels to determine how many hits will be taken on each level of the qualifcation tool. Type Long.

xe "QualificationSettings Members:QualificationSettings.Offset"QualificationSettings.Offset XE "Offset"
This determines the distance (or length) up from the tip of the shank that PC-DMIS will take the next set of qualification hits. Type Double.

xe "QualificationSettings Members:QualificationSettings.PHSAPriority"QualificationSettings.PHSAPriority XE "PHSAPriority"
This indicates whether angle A or B for a PHS system receives priority during the calibration process. Type Boolean.

TRUE means Angle A gets priority. FALSE means Angle B gets priority.

xe "QualificationSettings Members:QualificationSettings.PHSTol"QualificationSettings.PHSTol XE "PHSTol"
For PHS systems, this determins the PHS tolerance value. Type Double.

xe "QualificationSettings Members:QualificationSettings.Prehit"QualificationSettings.Prehit XE "Prehit"
This determines the Prehit distance to use during calibration. Type Double.

xe "QualificationSettings Members:QualificationSettings.ShankCheck"QualificationSettings.ShankCheck XE "ShankCheck"
This determines whether or not you'll calibrate the shank of the probe as well. Type Boolean.

xe "QualificationSettings Members:QualificationSettings.ShankHits"QualificationSettings.ShankHits XE "ShankHits"
This determines the number of hits used to measure the shank. Type Long.

xe "QualificationSettings Members:QualificationSettings.EndA"QualificationSettings.StartA XE "StartA"
This determines the starting A angle to use during qualification. Type: Double.

xe "QualificationSettings Members:QualificationSettings.StartAngle"QualificationSettings.StartAngle XE "StartAngle"
This determines the Start Angle to use on the qualification tool. Type Double.

xe "QualificationSettings Members:QualificationSettings.EndB"QualificationSettings.StartB XE "StartB"
This determines the starting B angle to use during qualification. Type: Double.

xe "QualificationSettings Members:QualificationSettings.ToolMoved"QualificationSettings.ToolMoved XE "ToolMoved"
This indicates whether a tool has moved or not or if the user should be asked. Type ENUM_TOOL_MOVED.

xe "QualificationSettings Members:QualificationSettings.ToolOnRotaryTable"QualificationSettings.ToolOnRotaryTable XE "ToolOnRotaryTable"
This indicates whether or not the tool is located on a rotary table. Type Boolean.

xe "QualificationSettings Members:QualificationSettings.ToolOverideI"QualificationSettings.ToolOverideI XE "ToolOverideI"
This determines the I value for the Tool Overide's IJK vector. Type Double.

xe "QualificationSettings Members:QualificationSettings.ToolOverideJ"QualificationSettings.ToolOverideJ XE "ToolOverideJ"
This determines the J value for the Tool Overide's IJK vector. Type Double.

xe "QualificationSettings Members:QualificationSettings.ToolOverideK"QualificationSettings.ToolOverideK XE "ToolOverideK"
This determines the K value for the Tool Overide's IJK vector. Type Double.

xe "QualificationSettings Members:QualificationSettings.TouchSpeed"QualificationSettings.TouchSpeed XE "TouchSpeed"
This determines the Touch Speed to use during calibration. Type Double.

xe "QualificationSettings Members:QualificationSettings.UserDefinedCalibrationMode"QualificationSettings.UserDefinedCalibrationMode XE "UserDefinedCalibrationMode"
This determines whether End Angle, Start Angle, and NumLevels are used in the calibration process, or if they're ignored. Type Boolean.

xe "QualificationSettings Members:QualificationSettings.UserDefinedCalibrationOrder"QualificationSettings.UserDefinedCalibrationOrder XE "UserDefinedCalibrationOrder"
This determines whether or not the calibration order is user defined. Type Boolean.

Methods:

xe "QualificationSettings Members:QualificationSettings.GetTool"QualificationSettings.GetTool

Syntax

expression.GetTool

expression: Required expression that evaluates to a QualificationSettings object.

This method returns a tool object.

xe "QualificationSettings Members:QualificationSettings.Tool"QualificationSettings.SetTool XE "SetTool"
Syntax

expression.SetTool(tool)

expression: Required expression that evaluates to a QualificationSettings object.

tool: Required expression that evaluates to a tool object.

This method sets the current qualification tool to tool. This method returns a boolean value: TRUE if the function succeeds, FALSE otherwise.

xe "ScanCommand Object Overview"

xe "Automation Object:ScanCommand Object"ScanCommand Object Overview

Objects of type ScanCommand are created from more generic Command objects to pass information specific to the scan command back and forth. At present only DCC and Manual scans are user accessible.

Properties

xe "ScanCommand Members:Scan.BoundaryCondition"Scan.BoundaryCondition XE "BoundaryCondition"
Represents the boundary condition type. Read/write of enumeration BSBOUNDCOND_ENUM. All Properties and Methods related to the Boundary Conditions apply only to DCC scans.

The following are the allowable values:

BSBOUNDCOND_SPHENTRY: Represents a Spherical Boundary Condition. This Boundary condition requires the following parameters to be set by you using Automation Properties and/or Automation Methods:

BoundaryConditionCenter

BoundaryConditionEndApproach

Diameter

Number of Crossings

BSBOUNDCOND_PLANECROSS: Represents a Planar Boundary Condition. This Boundary condition requires the following parameters to be set by you using Automation Properties and/or Automation Methods:

BoundaryConditionCenter

BoundaryConditionEndApproach

BoundaryConditionPlaneV

Number of Crossings

BSBOUNDCOND_CYLINDER: Represents a Cylindrical Boundary Condition. This Boundary condition requires the following parameters to be set by you using Automation Properties and/or Automation Methods:

BoundaryConditionCenter

BoundaryConditionEndApproach

BoundaryConditionAxisV

Diameter

Number of Crossings

BSBOUNDCOND_CONE: Represents a Conical Boundary Condition. This Boundary condition requires the following parameters to be set you user using Automation Properties and/or Automation Methods:

BoundaryConditionCenter

BoundaryConditionEndApproach

BoundaryConditionAxisV

HalfAngle

Number of Crossings

The SetBoundaryConditionParams Method should be used to set the HalfAngle, number of Crossings and Diameter values.

xe "ScanCommand Members:Scan.BoundaryConditionAxisV"Scan.BoundaryConditionAxisV XE "BoundaryConditionAxisV"
This property represents the boundary condition axis vector. Read/write PointData object. This vector is used as the axis of the Cylindrical and Conical BoundaryConditions.

xe "ScanCommand Members:Scan.BoundaryConditionCenter"Scan.BoundaryConditionCenter XE "BoundaryConditionCenter"
This property represents the boundary condition center. Read/write PointData object.

This point is used by all Boundary Conditions and is the location of the Boundary Condition.

xe "ScanCommand Members:Scan.BoundaryConditionEndApproach"Scan.BoundaryConditionEndApproach XE "BoundaryConditionEndApproach"
This property represents the boundary condition end approach vector. Read/write PointData object.

This vector is used by all Boundary Conditions and is the Approach Vector of the Probe as it crosses the Boundary condition.

xe "ScanCommand Members:Scan.BoundaryConditionPlaneV"Scan.BoundaryConditionPlaneV XE "BoundaryConditionPlaneV"
This property represents the boundary condition plane vector. Read/write PointData object.

This vector is the normal vector of the plane used by the Plane and OldStyle Boundary Conditions.

	Boundary Condition
	Properties Required

	Plane
	BoundaryConditionCenter

BoundaryConditionEndApproach

BoundaryConditionPlaneV

	Cone
	BoundaryConditionCenter

BoundaryConditionEndApproach

BoundaryConditionAxisV

	Cylinder
	BoundaryConditionCenter

BoundaryConditionEndApproach

BoundaryConditionAxisV

	Sphere
	BoundaryConditionCenter

BoundaryConditionEndApproach

xe "ScanCommand Members:Scan.Filter"Scan.Filter XE "Filter"
This property represents the filter type. Read/write of enumeration BSF_ENUM.

The following are the allowable values:

BSF_DISTANCE: PC-DMIS determines each hit based on the set increment and the last two measured hits. The approach of the probe is perpendicular to the line between the last two measured hits. The probe will stay on the cut plane. PC-DMIS will start at the first boundary point and continue taking hits at the set increment, stopping when it satisfies the Boundary Condition. In the case of a continous scan, PC-DMIS would filter the data from the CMM and keep only the hits that are apart by at least the increment. Both DCC and Manual scans can use this filter.

BSF_BODYAXISDISTANCE: PC-DMIS will take hits at the set increment along the current part's coordinate system. The approach of the probe is perpendicular to the indicated axis. The probe will stay on the cut plane. The approach vector will be normal to the selected axis and on the cut plane. This technique uses the same approach for taking each hit (unlike the previous technique which adjusts the approach to be perpendicular to the line between the previous two hits). The above behaviour applies to DCC scans.

When this filter is applied to Manual scans, the following behaviour happens:

This Filter property allows you to scan a part by specifying a cut plane on a certain part axis and dragging the probe across the cut plane. As you scan the part, you should scan so that the probe crisscrosses the defined Cut Plane as many times as desired. PC-DMIS then follows this procedure:

1) PC-DMIS gets data from the controller and finds the two data hits that are closest to the Cut Plane on either side as you crisscross.

2) PC-DMIS then forms a line between the two hits which will pierce the Cut Plane.

3) The pierced point then becomes a hit on the Cut Plane.

This operation happens every time you cross the Cut Plane and you will finally have many hits that are on the Cut Plane.

BSF_VARIABLEDISTANCE: This technique allows you to set specific maximum and minimum angle and increment values that will be used in determining where PC-DMIS will take a hit. The probe's approach is perpendicular to the line between the last two measured hits. You should provide the maximum and minimum values that will be used to determine the increments between hits. You also must enter the desired values for the maximum and minimum angles. PC-DMIS will take three hits using the minimum increment. It will then measure the angle between hit's 1-2 and 2-3.

· If the measured angle is between the maximum and minimum values defined, PC-DMIS will continue to take hits at the current increment.

· If the angle is greater than the maximum value, PC-DMIS will erase the last hit and measure it again using one quarter of the current increment value.

· If the angle is less than the minimum increment, PC-DMIS will take the hit at the minimum increment value.

PC-DMIS will again measure the angle between the newest hit and the two previous hits. It will continue to erase the last hit and drop the increment value to one quarter of the increment until the measured angle is within the range defined, or the minimum value of the increment is reached.

If the measured angle is less than the minimum angle, PC-DMIS will double the increment for the next hit. (If this is greater than the maximum increment value it will take the hit at the maximum increment.) PC-DMIS will again measure the angle between the newest hit and the two previous hits. It will continue to double the increment value until the measured angle is within the range defined, or the maximum increment is reached. The above behaviour applies to DCC scans.

When this filter is applied to Manual scans, the following behaviour occurs:

The filter defines the distance between hits based on the part. PC-DMIS allows you to specify the speed at which it will read hits and the drop point distance. After the scanning process is complete, PC-DMIS will calculate the total number of hits that were measured and the total number that were kept after completing the drop point distance calculations. The reduced data is then converted to hits.

The Time Delta method of scanning allows you to reduce the scan data by setting a time increment. PC-DMIS will start from the first hit and reduce the scan by deleting hits that are read in faster than the time delta specified.

xe "ScanCommand Members:Scan.HitType"Scan.HitType XE "HitType"
Represents the type of hit to use. Read/write of enumeration BSCANHIT_ENUM.

The following are the allowable values:

BSCANHIT_VECTOR – use vector hits for this scan

BSCANHIT_SURFACE – use surface hits for this scan

BSCANHIT_EDGE – use edge hits for this scan.

BSCANHIT_BASIC – use basic hits for this scan. Only Manual scans use this hit type. Currently there are no Manual Scans.

Remarks
Not every hit type can be used with every method and filter combination.

	Method
	Vector Hit
	Surface Hit
	Basic Hit
	Edge Hit

	Open
	Y
	Y
	-
	Y

	Close
	Y
	Y
	-
	Y

	Patch
	Y
	Y
	-
	Y

	HardProb
	-
	-
	-
	Y

	TTP
	-
	-
	-
	Y

xe "ScanCommand Members:Scan.Method"Scan.Method XE "Method"
This property represents the method type for this scan. Read/write of enumeration BSMETHOD_ENUM.

The following are the allowable values:

BSCANMETH_OPEN: This method will scan the surface along a line. This procedure uses the starting and ending point for the line and also includes a direction point. The probe will always remain within the cut plane while doing the scan. This is valid oly for DCC scans.

BSCANMETH_CLOSE: This method will scan the surface along a line. This procedure uses the starting and ending point for the line and also includes a direction point. The probe will always remain within the cut plane while doing the scan.The scan will start and finish at the same Point. This is valid oly for DCC scans.

BSCANMETH_PATCH: This method will scan the surface in multiple rows depending on the Boundary Points. This is valid oly for DCC scans.

BSCANMETH_MANUAL_TTP: This is valid only for Manual scans and will allow you to use a Touch Trigger Probe to take Manual hits.

BSCANMETH_MANUAL_FIXED_PROBE: This is valid only for Manual scans and will allow you to use a Hard Probe to take Manual hits.

xe "ScanCommand Members:Scan.MethodCutPlane"Scan.MethodCutPlane XE "MethodCutPlane"
This property represents the method’s cut plane vector. Read/write PointData object.

xe "ScanCommand Members:Scan.MethodEnd"Scan.MethodEnd XE "MethodEnd"
This property represents the scan’s end point. Read/write PointData object.

xe "ScanCommand Members:Scan.MethodEndTouch"Scan.MethodEndTouch XE "MethodEndTouch"
This property represents the method’s end touch vector. Read/write PointData object.

xe "ScanCommand Members:Scan.MethodInitDir"Scan.MethodInitDir XE "MethodInitDir"
This property represents the method’s initial direction vector. Read/write PointData object.

xe "ScanCommand Members:Scan.MethodInitTopSurf"Scan.MethodInitTopSurf XE "MethodInitTopSurf"
This property represents the initial Surface Vector for the Edge method. Read/write PointData object.

xe "ScanCommand Members:Scan.MethodInitTouch"Scan.MethodInitTouch XE "MethodInitTouch"
This represents the method’s initial touch vector. Read/write PointData object.

xe "ScanCommand Members:Scan.MethodStart"Scan.MethodStart XE "MethodStart"
This property represents the scan’s start point. Read/write PointData object.

	Method
	Method
Start
	Method
End
	Method
Cutplane
	Method
InitDir
	Method InitTouch
	Method InitTopSurf
	Method EndTouch

	Open
	Y
	Y
	Y
	Y
	Y
	-
	Y

	Close
	Y
	Y
	Y
	Y
	Y
	-
	-

	Patch
	-
	-
	Y
	Y
	Y
	-
	Y

	TTP
	-
	-
	Y
	Y
	Y
	-
	-

	HardProbe
	Y
	Y
	Y
	Y
	Y
	-
	-

xe "ScanCommand Members:Scan.NominalMode"Scan.NominalMode XE "NominalMode"
This property represents how to determine the nominals for this scan. Read/write of enumeration BSCANNMODE_ENUM.

The following are the allowable values:

BSCANNMODE_FINDCADNOMINAL: This mode would find the Nominal data from CAD after scanning. This mode is useful only when CAD surface data is available.

SCANNMODE_MASTERDATA: This mode keeps the data scanned the first time as Master data.

xe "ScanCommand Members:Scan.OperationMode"Scan.OperationMode XE "OperationMode"
This property represents mode of operation of the scan. Read/write of enumeration BSOPMODE_ENUM.

The following are the allowable values:

BSCANOPMODE_REGULARLEARN: When this mode is used, PC-DMIS will execute the scan as though it is learning it. All learned measured data will replace the new measured data. The nominal will be re-calculated depending on the Nominals mode.

BSCANOPMODE_DEFINEPATHFROMHITS: This mode is available only when using analog probe heads that can do continuous contact scanning. When this option is selected, PC-DMIS allows the controller to ‘define’ a scan. PC-DMIS gathers all hit locations from the editor and passes them onto the controller for scanning. The controller will then adjust the path allowing the probe to pass through all the points. The data is then reduced according to the increment provided and the new data will replace any old measured data This value cannot be used currently through Automation because there is no Method provided to define a path.

BSCANOPMODE_NORMALEXECUTION: If a DCC scan is executed, PC-DMIS will take hits at each of the learned locations in Stitch scanning mode, storing the newly measured data.

	Method
	Regular Learn
	Defined Path
	Normal

	Open
	Y
	-
	Y

	Close
	Y
	-
	Y

	Patch
	Y
	-
	Y

	TTP
	Y
	-
	Y

	HardProbe
	Y
	-
	Y

Methods:

xe "ScanCommand Members:Scan.GetBoundaryConditionParams"Scan.GetBoundaryConditionParams

Syntax

Return Value=expression. GetBoundaryConditionParams (nCrossings, dRadius, dHalfAngle)

expression: Required expression that evaluates to a PC-DMIS ScanCommand object.

nCrossing: Required Long variable that gets the number of crossings for this boundary condition. The scan would stop after the probe crosses (breaks) the Boundary Condition like a Sphere, Cylinder, Cone, or a Plane the given number of times.

dRadius: Required Double variable that gets the radius of the boundary condition. This is used by the Spherical and Cylindrical Boundary Conditions.

dHalfAngle: Required Double variable that gets the half-angle of the cone-type boundary condition, or gets zero if the boundary condition is not of cone type.

Return Value: This method returns a boolean value. Boolean returns true if the function succeeds, false if it fails.

Remarks
	Boundary Condition
	GetBoundaryConditionParams (nCrossings, dRadius, dHalfAngle)

	Plane
	Ncrossings

	Cone
	NCrossings, ,dHalfAngle

	Cylinder
	NCrossings, dRadius

	Sphere
	NCrossings, dRadius

xe "ScanCommand Members:Scan.GetFilterParams"Scan.GetFilterParams XE "GetFilterParams"
Syntax

Return Value=expression. GetFilterParams (dCutAxisLocation, nAxis, dMaxIncrement, dMinIncrement, dMaxAngle, dMinAngle)

Return Value: This method returns a boolean value. Boolean returns true if the function succeeds, false if it fails.

expression: Required expression that evaluates to a PC-DMIS ScanCommand object.

dCutAxisLocation: Used for Manual scans with Filter property set to BSF_BODYAXISDISTANCE.

nAxis: Required Long variable that gets the cut axis. Returns non-zero only for axis filters. For axis filters, 0 means the X axis, 1 means the Y-axis, and 2 means the Z-axis.

dMaxIncrement: Required Double variable that gets the maximum increment. For fixed-length filters, this is simply the fixed increment. This is the Time delta valus in case the filter is BSF_TIME_DELTA or BSF_VARIABLEDISTANCE for Manual scans.

dMinIncrement: Required Double variable that gets the minimum increment for Variable Distance Filters. This is the Drop Point distance when a Manul scan is being used with the filter set to BSF_VARIABLEDISTANCE.

dMaxAngle: Required Double variable that gets the maximum angle used in Variable Distance Filters.

dMinAngle: Required Double variable that gets the minimum angle used in Variable Distance Filters.

Remarks
	Filter
	GetFilterParams (dCutAxisLocation, nAxis, dMaxIncrement, dMinIncrement, dMaxAngle, dMinAngle)

	Distance
	,,dMaxIncrement

	BodyAxisDistance (DCC)
	,nAxis, dMaxIncrement

	BodyAxisDistance (Manual)
	NCutLocation,nAxis

	Time
	,,dMaxIncrement

	VariableDistance
	,,dMaxIncrement, dMinIncrement, dMaxAngle, dMinAngle

xe "ScanCommand Members:Scan.GetHitParams"Scan.GetHitParams XE "GetHitParams"
Syntax

Return Value=expression. GetHitParams (nInitSamples, nPermSamples, dSpacer, dIndent, dDepth)

Return Value: This method returns a boolean value. Boolean returns true if the function succeeds, false if it fails.

expression: Required expression that evaluates to a PC-DMIS ScanCommand object.

nInitSamples: Required Long variable that gets the number of initial sample hits for the hits in this scan. It always returns zero for basic hits and vector hits.

nPermSamples: Required Long variable that gets the number of permanent sample hits for the hits in this scan. It always returns zero for basic hits and vector hits.

dSpacer: Required Double variable that gets the spacing of the sample hits from the hit center. It always returns zero for basic hits and vector hits.

dIndent: Required Double variable that gets the indent of the sample hits from the hit center. It always returns zero for basic hits, vector hits, and surface.

dDepth: Required Double variable that gets the depth of the sample hits from the hit center. It always returns zero for basic hits, vector hits, and surface.

xe "ScanCommand Members:Scan.GetMethodPointData"Scan.GetMethodPointData XE "GetMethodPointData"
Syntax

Return Value=expression. GetMethodPointData (MethodStart, MethodEnd, MethodInitTouch, MethodEndTouch, MethodInitDir, MethodCutPlane)

Return Value: This method returns a boolean value. Boolean returns true if the function succeeds, false if it fails.

expression: Required expression that evaluates to a PC-DMIS ScanCommand object.

MethodStart: Required PointData object that gets the MethodStart property.

MethodEnd: Required PointData object that gets the MethodEnd property.

MethodInitTouch: Required PointData object that gets the MethodInitTouch property.

MethodEndTouch: Required PointData object that gets the MethodEndTouch property.

MethodInitDir: Required PointData object that gets the MethodInitDir property.

MethodCutPlane: Required PointData object that gets the MethodCutPlane property.

Remarks
If scan is a ScanCommand object, and MS, ME, MIT, MET, MID,and MCP are all Dimensioned as Object, the following are equivalent:

scan.GetMethodParams MS,ME,MIT,MET,MID,MCP

set MS = scan.MethodStart
set ME = scan.MethodEnd
set MIT = scan.MethodInitTouch
set MET = scan.MethodEndTouch
set MID = scan.MethodInitDir
set MCP = scan.MethodCutPlane

This method is provided as a shortcut to getting these commonly used properties all at once.

xe "ScanCommand Members:Scan.GetNomsParams"Scan.GetNomsParams XE "GetNomsParams"
Syntax

Return Value=expression. GetNomsParams (dFindNomsTolerance, dSurfaceThickness, dEdgeThickness)

Return Value: This method returns a boolean value. Boolean returns true if the function succeeds, false if it fails.

expression: Required expression that evaluates to a PC-DMIS ScanCommand object.

dFindNomsTolerance: Required Double variable that gets the Find Noms tolerance and is used only when the NominalMode property is BSCANNMODE_FINDCADNOMINAL.

dSurfaceThickness: Required Double variable that gets the surface thickness and is used only when the NominalMode property is BSCANNMODE_FINDCADNOMINAL.

dEdgeThickness: Required Double variable that gets the edge thickness and is used only when the NominalMode property is BSCANNMODE_FINDCADNOMINAL and when the Method property is BSCANMETH_EDGE.

xe "ScanCommand Members:Scan.GetParams"Scan.GetParams XE "GetParams"
Syntax

Return Value=expression. GetParams (Method, Filter, OperationMode, HitType, NominalMode, BoundaryCondition)

Return Value: This method returns a boolean value. Boolean returns true if the function succeeds, false if it fails.

expression: Required expression that evaluates to a PC-DMIS ScanCommand object.

Method: Required Long variable that gets the Method property.

Filter: Required Long variable that gets the Filter property.

OperationMode: Required Long variable that gets the OperationMode property.

HitType: Required Long variable that gets the HitType property.

NominalMode: Required Long variable that gets the NominalMode property.

BoundaryCondition: Required Long variable that gets the BoundaryCondition property.

Remarks
If scan is a ScanCommand object, and M, F, O, H, N,and B are all dimensioned as Object, the following are equivalent:

scan.GetParams M, F, O, H, N, B

M = scan.Method
F = scan.Filter
O = scan.OperationMode
H = scan.HitType
N = scan.NominalMode
B = scan.BoundaryCondition

This method is provided as a shortcut to getting these commonly used properties all at once.

Related Topics: Scan.Method Property \Relate "6_pcdbasic_automation.doc!210", "Scan.Method Property" \D2HTargetDefault
, Scan.Filter Property \Relate "6_pcdbasic_automation.doc!209", "Scan.Filter Property" \D2HTargetDefault
, Scan.OperationMode Property \Relate "6_pcdbasic_automation.doc!208", "Scan.OperationMode Property" \D2HTargetDefault
, Scan.HitType Property \Relate "6_pcdbasic_automation.doc!207", "Scan.HitType Property" \D2HTargetDefault
, Scan.NominalMode Property \Relate "6_pcdbasic_automation.doc!206", "Scan.NominalMode Property" \D2HTargetDefault
, Scan.BoundaryCondition Property \Relate "6_pcdbasic_automation.doc!205", "Scan.BoundaryCondition Property" \D2HTargetDefault

xe "ScanCommand Members:Scan.SetBoundaryConditionParams"Scan.SetBoundaryConditionParams XE "SetBoundaryConditionParams"
Syntax

Return Value=expression.SetBoundaryConditionParams (nCrossings, dRadius, dHalfAngle)

Return Value: This method returns a boolean value. Boolean returns true if the function succeeds, false if it fails.

expression: Required expression that evaluates to a PC-DMIS ScanCommand object.

nCrossing: Required Long that sets the number of crossings for this boundary condition.

dRadius: Required Double that sets the radius of the boundary condition.

dHalfAngle: Required Double that sets the half-angle of the cone-type boundary condition, or is ignored if the boundary condition is not of cone type.

Remarks
	Boundary Condition
	SetBoundaryConditionParams (nCrossings, dRadius, dHalfAngle)

	Plane
	Ncrossings

	Cone
	NCrossings,, dHalfAngle

	Cylinder
	NCrossings, dRadius

	Sphere
	NCrossings, dRadius

xe "ScanCommand Members:Scan.SetFilterParams"Scan.SetFilterParams XE "SetFilterParams"
Syntax

Return Value=expression.SetFilterParams (dCutAxisLocation, nAxis, dMaxIncrement, dMinIncrement, dMaxAngle, dMinAngle)

Return Value: This method returns a boolean value. Boolean returns true if the function succeeds, false if it fails.

expression: Required expression that evaluates to a PC-DMIS ScanCommand object.

dCutAxisLocation: Used for Manual scans with Filter property set to BSF_BODYAXISDISTANCE.

nAxis: Long variable that gets the cut axis. Returns non-zero only for axis filters. For axis filters, 0 means the X axis, 1 means the Y-axis, and 2 means the Z-axis.

dMaxIncrement: Double variable that gets the maximum increment. For fixed-length filters, this is simply the fixed increment. This is the Time delta valus in case the filter is BSF_TIME_DELTA or BSF_VARIABLEDISTANCE for Manual scans.

dMinIncrement: Double variable that gets the minimum increment for Variable Distance Filters. This is the Drop Point distance when a Manul scan is being used with the filter set to BSF_VARIABLEDISTANCE.

dMaxAngle: Double variable that gets the maximum angle used in Variable Distance Filters.

dMinAngle: Double variable that gets the minimum angle used in Variable Distance Filters.

Remarks
	Filter
	SetFilterParams (dCutAxisLocation, nAxis, dMaxIncrement, dMinIncrement, dMaxAngle, dMinAngle)

	Distance
	,,dMaxIncrement

	BodyAxisDistance
	,nAxis, dMaxIncrement

	VariableDistance
	,,dMaxIncrement, dMinIncrement, dMaxAngle, dMinAngle

xe "ScanCommand Members:Scan.SetHitParams"Scan.SetHitParams XE "SetHitParams"
Syntax

Return Value=expression.SetHitParams (nInitSamples, nPermSamples, dSpacer, dIndent, dDepth)

Return Value: This method returns a boolean value. Boolean returns true if the function succeeds, false if it fails.

expression: Required expression that evaluates to a PC-DMIS ScanCommand object.

nInitSamples: Required Long that sets the number of initial sample hits for the hits in this scan. It is ignored for basic hits and vector hits.

nPermSamples: Required Long that sets the number of permanent sample hits for the hits in this scan. It is ignored for basic hits and vector hits.

dSpacer: Required Double that sets the spacing of the sample hits from the hit center. It is ignored for basic hits and vector hits.

dIndent: Required Double that sets the indent of the sample hits from the hit center. It is ignored for basic hits, vector hits, and surface.

dDepth: Required Double that sets the depth of the sample hits from the hit center. It is ignored for basic hits, vector hits, and surface.

xe "ScanCommand Members:Scan.SetMethodPointData"Scan.SetMethodPointData XE "SetMethodPointData"
Syntax

Return Value=expression.SetMethodPointData (MethodStart, MethodEnd, MethodInitTouch, MethodEndTouch, MethodInitDir, MethodCutPlane)
Return Value: This method returns a boolean value. Boolean returns true if the function succeeds, false if it fails.

expression: Required expression that evaluates to a PC-DMIS ScanCommand object.

MethodStart: Required PointData object that sets the MethodStart property.

MethodEnd: Required PointData object that sets the MethodEnd property.

MethodInitTouch: Required PointData object that sets the MethodInitTouch property.

MethodEndTouch: Required PointData object that sets the MethodEndTouch property.

MethodInitDir: Required PointData object that sets the MethodInitDir property.

MethodCutPlane: Required PointData object that sets the MethodCutPlane property.

Remarks
If scan is a ScanCommand object, and MS, ME, MIT, MET, MID,and MCP are all dimensioned as Object, the following are equivalent:

scan.SetMethodParams MS,ME,MIT,MET,MID,MCP

set scan.MethodStart = MS
set scan.MethodEnd = ME
set scan.MethodInitTouch = MIT
set scan.MethodEndTouch = MET
set scan.MethodInitDir = MID
set scan.MethodCutPlane = MCP

This method is provided as a shortcut to setting these commonly used properties all at once.

Related Topics: Scan.MethodStart \Relate "6_pcdbasic_automation.doc!199", "Scan.MethodStart" \D2HTargetDefault
, Scan.MethodEnd \Relate "6_pcdbasic_automation.doc!200", "Scan.MethodEnd" \D2HTargetDefault
, Scan.MethodInitTouch \Relate "6_pcdbasic_automation.doc!201", "Scan.MethodInitTouch" \D2HTargetDefault
, Scan.MethodEndTouch \Relate "6_pcdbasic_automation.doc!202", "Scan.MethodEndTouch" \D2HTargetDefault
, Scan.MethodInitDir \Relate "6_pcdbasic_automation.doc!203", "Scan.MethodInitDir" \D2HTargetDefault
, Scan.MethodCutPlane \Relate "6_pcdbasic_automation.doc!204", "Scan.MethodCutPlane" \D2HTargetDefault

xe "ScanCommand Members:Scan.SetNomsParams"Scan.SetNomsParams XE "SetNomsParams"
Syntax

Return Value=expression.SetNomsParams (dFindNomsTolerance, dSurfaceThickness, dEdgeThickness)

Return Value: This method returns a boolean value. Boolean returns true if the function succeeds, false if it fails.

expression: Required expression that evaluates to a PC-DMIS ScanCommand object.

dFindNomsTolerance: Required Double that sets the Find Noms tolerance.

dSurfaceThickness: Required Double that sets the surface thickness.

dEdgeThickness: Required Double that sets the edge thickness.

Remarks
xe "ScanCommand Members:Scan.SetParams"Scan.SetParams XE "SetParams"
Syntax

Return Value=expression.SetParams (Method, Filter, OperationMode, HitType, NominalMode, BoundaryCondition)

Return Value: This method returns a boolean value. Boolean returns true if the function succeeds, false if it fails.

expression: Required expression that evaluates to a PC-DMIS ScanCommand object.

Method: Required Long that sets the Method property.

Filter: Required Long that sets the Filter property.

OperationMode: Required Long that sets the OperationMode property.

HitType: Required Long that sets the HitType property.

NominalMode: Required Long that sets the NominalMode property.

BoundaryCondition: Required Long that sets the BoundaryCondition property.

Remarks
If scan is a ScanCommand object, and M, F, O, H, N,and B are all dimensioned as Object, the following are equivalent:

scan.SetParams M, F, O, H, N, B

scan.Method = M
scan.Filter = F
scan.OperationMode = O
scan.HitType = H
scan.NominalMode = N
scan.BoundaryCondition = B

This method is provided as a shortcut to setting these commonly used properties all at once.

xe "ScanCommand Members:Scan.SetParams"Scan.CreateBasicScan XE "CreateBasicScan"
Syntax

Return Value=expression. CreateBasicScan()

Return Value: This method returns a boolean value. Boolean returns true if the function succeeds, false if it fails.

expression: Required expression that evaluates to a PC-DMIS ScanCommand object.

This method has to be called after calling other Properties/Methods. This method creates the necessary BasicScans needed by DCC and Manual scans and inserts them into the Part Program.
xe "Statistics Object Overview"

xe "Automation Objects:Statistics Object"Statistics Object Overview

The Statistics Automation object gives access to the properties and data members of the PC-DMIS Statistics command.

Properties:

xe "Statistics Members:Statistics.CalcMode"Statistics.CalcMode XE "CalcMode"
LONG value representing whether calculation mode inside of DataPage is turned off or on.

Read/Write Long

xe "Statistics Members:Statistics.MemoryPages"Statistics.MemoryPages XE "MemoryPages"
LONG value representing number of memory pages to be used by DataPage.

Read/Write Long
xe "Statistics Members:Statistics.Statistics.NameType"Statistics.NameType XE "NameType"
ENUM_STAT_NAME_TYPES enumeration value indicating whether the feature name or the dimension name should be sent to DataPage. If set to PCD_STAT_FEAT_NAME (1), the feature name is used. If set to PCD_STAT_DIM_NAME (0), the dimension name is used.

Read/Write ENUM_STAT_NAME_TYPES enumeration
xe "Statistics Members:Statistics.ReadLock"Statistics.ReadLock XE "ReadLock"
LONG value representing the number of seconds in timeout period that DataPage uses when trying to read the port lock.

Read/Write Long
xe "Statistics Members:Statistics.StatMode"Statistics.StatMode XE "StatMode"
ENUM_PCD_STAT_TYPES enumeration value representing the mode or function of the statistics command. Possible values include the following:

PCD_STATS_OFF = 0

PCD_STATS_ON = 1

PCD_STATS_TRANSFER = 2

PCD_STATS_UPDATE = 3

Read/Write ENUM_PCD_STAT_TYPES enumeration
xe "Statistics Members:Statistics.TransferDir"Statistics.TransferDir XE "TransferDir"
Syntax:

expression.TransferDir

Return Value: String value indicating the directory to which to move the stat file.

expression: Required expression that evaluates to a PC-DMIS Statistics object.

xe "Statistics Members:Statistics.WriteLock"Statistics.WriteLock XE "WriteLock"
LONG value representing number of seconds in timeout period that DataPage uses when trying to write to the port lock.

Read/Write Long
Methods:

xe "Statistics Members:Statistics.AddStatsDir"Statistics.AddStatsDir

Syntax:

expression.AddStatsDir (Dir)

Return Value: Boolean value indicating success or failure of call to method.

expression: Required expression that evaluates to a PC-DMIS Statistics object.

Dir: Required String representing the name of the directory to be added to the list of statistics directories.

xe "Statistics Members:Statistics.GetStatsDir"Statistics.GetStatsDir XE "GetStatsDir"
Syntax:

expression.GetStatsDir (Index)

Return Value: String representing the name of the directory at the specified index value. If index value is greater than the number of directories in the list, the string will be empty.

expression: Required expression that evaluates to a PC-DMIS Statistics object.

Index: Required Long representing the index of the directory name to be retrieved.

xe "Statistics Members:Statistics.RemoveStatsDir"Statistics.RemoveStatsDir XE "RemoveStatsDir"
Syntax:

expression.RemoveStatsDir (Index)

Return Value: Boolean value indicating success or failure of call to remove directory from the list of directories. If index is greater than the number of directories in the list, the call will fail.

expression: Required expression that evaluates to a PC-DMIS Statistics object.

Index: Required Long representing the line of text to be removed.

xe "Statistics Members:Statistics.SetStatsDir"Statistics.SetStatsDir XE "SetStatsDir"
Syntax:

expression.SetStatsDir (Index, Dir)

Return Value: Boolean value indicating success or failure of call to set name of the directory specified by Index. If the index value is greater than the number of directories, the call will fail.

expression: Required expression that evaluates to a PC-DMIS Statistics object.

Index: Required Long representing the directory name to change.

Dir: Required String which is the new name of the directory.

xe "Temperature Compensation Object Overview"

xe "Automation Objects:Temperature Compensation Object"Temperature Compensation Object Overview

The Temperature Compensation Automation object gives access to the properties of the PC-DMIS Temperature Compensation command. For additional information about Temperature Compensation, see "Compensating for Temperature" in the "Setting Your Preferences" chaptersection of the PC-DMIS Reference ManualPC-DMIS Help File.
Properties:

xe "Temperature Compensation Members:TempComp.HighThreshold"TempComp.HighThreshold XE "HighThreshold"
DOUBLE value representing the high temperature threshold.

Read/Write Double

xe "Temperature Compensation Members:TempComp.LowThreshold"TempComp.LowThreshold XE "LowThreshold"
DOUBLE value representing the low temperature threshold.

Read/Write Double

xe "Temperature Compensation Members:TempComp.Material Coefficient"TempComp.MaterialCoefficient XE "MaterialCoefficient"
DOUBLE value indicating the material coefficient.

Read/Write Double
xe "Temperature Compensation Members:TempComp.RefTemp"TempComp.RefTemp XE "RefTemp"
DOUBLE value representing the reference temperature.

Read/Write Double
xe "Temperature Compensation Members:TempComp.Sensors"TempComp.Sensors XE "Sensors"
STRING value representing the list of sensors—by number—to be used for temperature compensation. The format of the list is a series of consecutive sensor numbers. The series are specified using the hyphen between the first number and the last number of the series. Each non-consecutive sensor or group of sensors is separated by the comma (or the typical separator for the given locale).

Read/Write String
Example: The sensors 2, 4, 5, 6, 8, 10, 11, 12, 13 would be represented as “2,4-6,8,10-13”.

Methods:

xe "Temperature Compensation Members:TempComp.GetOrigin"TempComp.GetOrigin

Syntax:

expression.GetOrigin (X, Y, Z)

expression: Required expression that evaluates to a PC-DMIS TempComp object.

X: Required Long variable that receives the X value of the temperature compensation origin.

Y: Required Long variable that receives the Y value of the temperature compensation origin.

Z: Required Long variable that receives the Z value of the temperature compensation origin.

xe "Temperature Compensation Members:TempComp.SetOrigin"TempComp.SetOrigin XE "SetOrigin"
Syntax:

expression.SetOrigin (X, Y, Z)

expression: Required expression that evaluates to a PC-DMIS TempComp object.

X: Required Long that sets the X value of the temperature compensation origin.

Y: Required Long that sets the Y value of the temperature compensation origin.

Z: Required Long that sets the Z value of the temperature compensation origin.

xe "Tip Object Overview"

xe "Automation Objects:Tip Object"Tip Object Overview

The Tip object describes a single tip of a probe. All of its properties are read-only.

Properties:

xe "Tip Members:Tip.A"Tip.A XE "A"
Returns the A angle of the tip. Read-only Double.

xe "Tip Members:Tip.B"Tip.B XE "B"
Returns the B angle of the tip. Read-only Double.

xe "Tip Members:Tip.Date"Tip.Date XE "Date"
Returns the PC-DMIS representation of the most recent calibration date of the tip. Read-only String.

xe "Tip Members:Tip.Diam"Tip.Diam XE "Diam"
Returns the diameter of the tip. Read-only Double.

xe "Tip Members:Tip.ID"Tip.ID XE "ID"
Returns the ID string of the tip. Read-only String.

xe "Tip Members:Tip.IJK"Tip.IJK XE "IJK"
A PointData object that returns the vector along which the tip lies. Read-only.

Remarks
If there is a rotary table, the table rotation is taken into account.

xe "Tip Members:Tip.MeasDiam"Tip.MeasDiam XE "MeasDiam"
Returns or sets the measured diameter of the tip. Read/Write Double.

xe "Tip Members:Tip.MeasThickness"Tip.MeasThickness XE "MeasThickness"
Returns the measured thickness of the tip. Read-only Double.

xe "Tip Members:Tip.MeasXYZ"Tip.MeasXYZ XE "MeasXYZ"
Returns or sets the measured location of the tip. Read/Write PointData.

Related Topics: PointData Overview \Relate "6_pcdbasic_automation.doc!95", "PointData Overview" \D2HTargetDefault

xe "Tip Members:Tip.Parent"Tip.Parent XE "Parent"
Returns the Tips collection object that contains this tip. Read-only.

Related Topics: Tips Overview \Relate "6_pcdbasic_automation.doc!155", "Tips Overview" \D2HTargetDefault

xe "Tip Members:Tip.Selected"Tip.Selected XE "Selected"
Determines whether tip is selected for qualification. Read/Write Boolean

Remarks:

Use the "Probe.SelectAllTips" method of the probe object on page 335 to select all tips at once and the "Probe.ClearAllTips" method of the probe object on page 334 to clear all tips at once.

xe "Tip Members:Tip.Thickness"Tip.Thickness XE "Thickness"
Returns the nominal thickness of the tip. Read-only Double.

xe "Tip Members:Tip.Time"Tip.Time XE "Time"
Returns the PC-DMIS representation of the most recent calibration time of the tip. Read-only String.

xe "Tip Members:Tip.TipNum"Tip.TipNum XE "TipNum"
Returns the tip number in the list of tips. Read-only Long.

Remarks
This is PC-DMIS’s internal representation of tip number. It may be different from the number passed to Tips.Itemxe "Tips Members:Tips.Item" to retrieve the tip.

xe "Tip Members:Tip.Type"Tip.Type XE "Type"
Returns the type of the tip. Read-only Long.

Remarks
The following tip types are defined. They can be combined via bitwise operations.xe "Operations"

TIPBALL // Default
TIPDISK
TIPSHANK
TIPOPTIC
TIPANALOG
TIPANALOGBALL = TIPANALOG + BALL
TIPANALOGDISK = TIPANALOG + DISK
TIPANALOGSHANK = TIPANALOG + SHANK
TIPANALOGOPTIC = TIPANALOG + OPTIC
TIPFIXED
TIPFIXEDBALL = TIPFIXED + BALL
TIPFIXEDDISK = TIPFIXED + DISK
TIPFIXEDSHANK = TIPFIXED + SHANK
TIPFIXEDOPTIC = TIPFIXED + OPTIC
TIPSP600 // renishaw sp600 analog probe
TIPWBOPTIC // wolf and beck laser probe
TIPINFINITARM // renishaw infinite index arm
TIPSLAVE // tip belongs to slave arm

xe "Tip Members:Tip.WristOffset"Tip.WristOffset XE "WristOffset"
Returns the wrist offset of the tip. Read-only PointData.

Related Topics: PointData Overview \Relate "6_pcdbasic_automation.doc!86", "PointData Overview" \D2HWindow Main

xe "Tip Members:Tip.WristTipIJK"Tip.WristTipIJK XE "WristTipIJK"
Returns the wrist tip vector of the tip. Read-only PointData.

Related Topics: PointData Overview \Relate "6_pcdbasic_automation.doc!86", "PointData Overview" \D2HWindow Main

xe "Tip Members:Tip.XYZ"Tip.XYZ XE "XYZ"
Returns the location of the tip. Read-only PointData.

Related Topics: PointData Overview \Relate "6_pcdbasic_automation.doc!86", "PointData Overview" \D2HWindow Main

xe "Tips Object Overview"

xe "Automation Objects:Tips Object"Tips Object Overview

The Tips object is the collection of all Tip objects for a Probe object. The Probe object that the Tips stores Tip objects for is contained in the Parent property.

Properties:

xe "Tips Members:Tips.Application"Tips.Application XE "Application"
Represents the read-only PC-DMIS application. The Application object includes properties and methods that return top-level objects. For example, the ActivePartProgram property returns a PartProgram object.

Related Topics: Application Object Overview \Relate "6_pcdbasic_automation.doc!90", "Application Object Overview" \D2HWindow Main

xe "Tips Members:Tips.Count"Tips.Count XE "Count"
Represents the number of Tip objects in the parent Probe object. Read-only Integer.

xe "Tips Members:Tips.Parent"Tips.Parent XE "Parent"
Returns the parent Probe object. Read-only.

Probe Overview \Relate "6_pcdbasic_automation.doc!153", "Probe Overview" \D2HWindow Main

Methods:

xe "Tips Members:Tips.Add"Tips.Add

Syntax

expression.Add a, b
expression: Required expression that evaluates to a PC-DMIS Tips object.

a: Required Double that is the A parameter of the new tip.

b: Required Double that is the B parameter of the new tip.

This function adds a new tip position to this collection. The new tip is unqualified.

xe "Tips Members:Tips.Item"Tips.Item XE "Item"
Syntax 1

Return Value=expression.Item(NameOrNum)

Syntax 2

expression(NameOrNum)

Return Value: The Item function returns a Tip object.

expression: Required expression that evaluates to a Tips object.

NameOrNum: Required Variant that indicates which Tip object to return. It can be either a Long or a String. If it is a Long, it is the index number of the Tip object in the Tips collection. If it is a String, it is the ID of the Tip object.

Remarks
Since the Item method is the default, the function name can be omitted as in Syntax 2.

xe "Tips Members:Tips.Remove"Tips.Remove XE "Remove"
Syntax

expression.RemoveNum
expression: Required expression that evaluates to a Tips object.

Num: Required Long that indicates which Tip object to remove.

This function removes the indicated Tip object from this collection.

xe "Tool Object Overview"

xe "Automation Objects:Tool Object"Tool Object Overview

The Tool object represents a single probe calibration tool. Use Tools(index) where index is the index number or tool name to return a single Tool object.

Properties:

xe "Tool Members:Tool.Application"Tool.Application XE "Application"
Represents the read-only PC-DMIS application. The Application object includes properties and methods that return top-level objects. For example, the ActivePartProgram property returns a PartProgram object.

Related Topics: Application Object Overview \Relate "6_pcdbasic_automation.doc!90", "Application Object Overview" \D2HWindow Main

xe "Tool Members:Tool.Diam"Tool.Diam XE "Diam"
Returns the diameter of the tool. Read-only Double.

xe "Tool Members:Tool.ID"Tool.ID XE "ID"
Returns the ID of the tool. Read-only String.

xe "Tool Members:Tool.Parent"Tool.Parent XE "Parent"
Returns the parent Tools object. Read-only.

Related Topics: Tools Overview \Relate "6_pcdbasic_automation.doc!161", "Tools Overview" \D2HTargetDefault

xe "Tool Members:Tool.ShankIJK"Tool.ShankIJK XE "ShankIJK"
Returns the shank vector of the tool as a PointData. Read-only.

Related Topics: PointData Overview \Relate "6_pcdbasic_automation.doc!86", "PointData Overview" \D2HWindow Main

xe "Tool Members:Tool.ToolType"Tool.ToolType XE "ToolType"
Returns the type of the tool. Read-only Long.

Remarks
There is only one type of tool currently available, TOOLSPHERE.

xe "Tool Members:Tool.Width"Tool.Width XE "Width"
Returns the width of the tool. Read-only Double.

xe "Tool Members:Tool.XYZ"Tool.XYZ XE "XYZ"
Returns the location of the tool. Read-only PointData.

Related Topics: PointData Overview \Relate "6_pcdbasic_automation.doc!86", "PointData Overview" \D2HWindow Main

xe "Tools Object Overview"

xe "Automation Objects:Tools Object"Tools Object Overview

The Tools collection object contains the tools available to the parent PartProgram object. Use Tools(index) where index is the index number or tool name to return a single Tool object.

Properties:

xe "Tools Members:Tools.Application"Tools.Application XE "Application"
Represents the read-only PC-DMIS application. The Application object includes properties and methods that return top-level objects. For example, the ActivePartProgram property returns a PartProgram object.

Related Topics: Application Object Overview \Relate "6_pcdbasic_automation.doc!90", "Application Object Overview" \D2HWindow Main

xe "Tools Members:Tools.Count"Tools.Count XE "Count"
Represents the number of Tool objects in the parent PartProgram object. Read-only Integer.

xe "Tools Members:Tools.Parent"Tools.Parent XE "Parent"
Returns the parent PartProgram object. Read-only.

Related Topics: PartProgram Overview \Relate "6_pcdbasic_automation.doc!89", "PartProgram Overview" \D2HWindow Main

Methods:

xe "Tools Members:Tools.Add"Tools.Add

Syntax

Return Value=expression.Add(ID)

Return Value: Returns a Tool object.

expression: Required expression that evaluates to a PC-DMIS Tips object.

ID: Required String that is the name of the new tool.

This function adds a new tool to this collection. The new tool is unqualified.

Related Topics: Tool Overview \Relate "6_pcdbasic_automation.doc!149", "Tool Overview" \D2HTargetDefault

xe "Tools Members:Tools.Item"Tools.Item XE "Item"
Syntax 1

Return Value=expression.Item(NameOrNum)

Syntax 2

expression(NameOrNum)

Return Value: The Item function returns a Tool object.

expression: Required expression that evaluates to a Tools object.

NameOrNum: Required Variant that indicates which Tool object to return. It can be either a Long or a String. If it is a Long, it is the index number of the Tool object in the Tools collection. If it is a String, it is the ID of the Tool object.

Remarks
Since the Item method is the default, the function name can be omitted as in Syntax 2.

Related Topics: Tool Overview \Relate "6_pcdbasic_automation.doc!149", "Tool Overview" \D2HTargetDefault

xe "Tools Members:Tools.Remove"Tools.Remove XE "Remove"
Syntax

Return Value=expression.Remove(ID)

Return Value: This method returns a boolean value. Boolean returns true if the function succeeds, false if it fails.
expression: Required expression that evaluates to a Tools object.

ID: Required String that indicates which Tool object to remove.

This function removes the indicated Tool object from this collection.

Related Topics: Tool Overview \Relate "6_pcdbasic_automation.doc!149", "Tool Overview" \D2HTargetDefault

xe "Tracefield Object Overview"

xe "Automation Objects:Tracefield Object"Tracefield Object Overview

The Tracefield Automation object gives access to the name and value properties of the PC-DMIS Tracefield command. For additional information on this command see "Using Trace Field" in the "Tracking Statistical Data" chaptersection of the PC-DMIS Reference ManualPC-DMIS Help File.
Properties:

xe "Tracefield Members:Tracefield.Name"Tracefield.Name XE "Name"
STRING value representing the name of the tracefield.

Read/Write String

xe "Tracefield Members:Tracefield.Value"Tracefield.Value XE "Value"
STRING value representing the value for the tracefield.

Read/Write String
xe "Variable Object Overview"

xe "Automation Objects:Variable Object"Variable Object Overview

The properties \Relate "6_pcdbasic_automation.doc!252", "properties" \D2HTargetDefault
 of the Variable Object allows you to return and set a variable's:

· Type

· Long value

· Double value

· String value

· Point value

· Command value

The methods \Relate "6_pcdbasic_automation.doc!253", "methods" \D2HTargetDefault
 of of this object return an array's:

· Upper bound if variable is an array

· Lower bound if varialbe is an array

· Gets the array variable at a specific position

· Sets the array variable at a specified position

Properties:

xe "Variable Members:Variable.VariableType"Variable.VariableType XE "VariableType"
This returns / sets the current variable type. Read / write VARIABLE_TYPE_TYPES.

xe "Variable Members:Variable.LongValue"Variable.LongValue XE "LongValue"
This returns / sets the long value of the variable. Read / write Long.

xe "Variable Members:Variable.DoubleValue"Variable.DoubleValue XE "DoubleValue"
This returns / sets the double value of the variable. Read / write Double.

xe "Variable Members:Variable.StringValue"Variable.StringValue XE "StringValue"
This returns / sets the string value of the variable. Read / write String.

xe "Variable Members:Variable.PointValue"Variable.PointValue XE "PointValue"
This returns / sets the point value of the variable. Read / write.

xe "Variable Members:Variable.CommandValue"Variable.CommandValue XE "CommandValue"
This returns / sets the command value of the variable. Read / write.

Methods:

xe "Variable Members:Variable.GetArrayUpperBound"Variable.GetArrayUpperBound

Syntax

Return Value=expression.GetArrayUpperBound

Return Value: This returns the upper bound if the variable is an array. Otherwise it returns zero.

expression: required expression for object type Variable.

xe "Variable Members:Variable.GetArrayLowerBound"Variable.GetArrayLowerBound XE "GetArrayLowerBound"
Syntax

Return Value=expression.GetArrayLowerBound

Return Value: This returns the lower bound if the variable is an array. Otherwise it returns zero.

expression: required expression for object type Variable.

xe "Variable Members:Variable.GetArrayIndexValue"Variable.GetArrayIndexValue XE "GetArrayIndexValue"
Syntax

Return Value=expression.GetArrayIndexValue

Return Value: This returns the array variable at the specified index position.

expression: required expression for object type Variable.

xe "Variable Members:Variable.SetArrayIndexValue"Variable.SetArrayIndexValue XE "SetArrayIndexValue"
Syntax

Return Value=expression.SetArrayIndexValue (Index, Variable)

Return Value: This sets the array variable at the specified index position. Type Boolean.

expression: required expression for object type Variable.

Index: Long value specifying the index position.

Variable: Array variable to be set.

Chapter 7: Seq D2HDocument \h \r8 Old PC-DMIS Basic Functions

Introduction

xe "Old PC-DMIS Basic Functions"These PC-DMIS OldBasic functions were made available in early versions of PC-DMIS basic. They are provided here, listed in alphabetical order, for backwards compatibility.

Important Notes:
▪ Functions that return type Object are invalid.
▪ Only OldBasic classes support optional parameters.

Functions A

xe "AddBoundaryPoint"AddBoundaryPoint

AddBoundaryPoint x:=(Double), y:=(Double), z:=(Double)

This function is used to add the initial point, end point, and other boundary points in the case of patch scans. It should be called for each boundary point to be added. It should not be called more than num_bnd_pnts times (as specified in the call to StartScanxe "StartScan").

x,y,z: Coordinates of the boundary point.

xe "AddFeature"AddFeature

AddFeature ID:=(String), off1:=(Double), off2:=(Double), off3:=(Double)

ID: ID string of the featurexe "Feature" \r "D2HBFeature153" to add.

off1: X offset for an offset point. Single offset for this feature for an offset plane or line.

off2: Y offset for an offset point.

off3: Z offset for an offset point.

Note: This function is used for constructed features only. The parameters off1, off2, and off3 are only used in the case of offset points, planes or lines.

xe "AddLevelFeat"AddLevelFeat

AddLevelFeat ID:=(String)

ID: Name of levelxe "Level" feature to be added

This function is used in conjunction with the iteratexe "Iterate" \r "D2HBIterate153" alignment command

xe "AddOriginFeat"AddOriginFeat

AddOriginFeat ID:=(String)

ID: Name of origin feature to be added

This function is used in conjunction with the iterate alignment command

xe "AddRotateFeat"AddRotateFeat
AddRotateFeat ID:=(String)

ID: Name of rotation feature to be added

This function is used in conjunction with the iterate alignment command

Application

This property returns the owning application object.

xe "ArcSin"ArcSin

ArcSin x:=(Double)

Returns the arc sine of x in degrees.

xe "ArcCos"ArcCos

ArcCos x:=(Double)

Return the arc cosine of x in degrees.

Functions B

xe "BestFit2D"BestFit2D
BestFit2D num_inputs:= (Integer), workplane:xe "Workplane" \r "D2HBWorkplane154"= (Integer)

num_inputs: The number of features to use to create the best fit alignment. There must be a corresponding number of calls to Feature before the call to EndAlign.xe "EndAlign"
workplane:The workplane of the 2D alignment. Must be PCD_TOP, PCD_BOTTOM, PCD_FRONT, PCD_BACK, PCD_LEFT, or PCD_RIGHT.

xe "BestFit3D"BestFit3D

BestFit3D num_inputs:= (Integer)

num_inputs: The number of features to use to create the best fit alignment. There must be a corresponding number of calls to Feature before the call to EndAlign.

Functions C

xe "Calibrate"Calibrate

Calibrate sphere:=(String), tool:=(String)[, moved:=(Integer)]

sphere: Id of measured sphere used in calibration.

tool: Id of tool object used in calibration.

moved: Toggle indicating whether first hitxe "Hit Function" \r "D2HBHit155" should be taken manually or not. Can be either PCD_NO or PCD_YES.

xe "CatchMotionError"CatchMotionError

CatchMotionError tog:=(Integer), catch_error:=(Integer)

tog: PCD_CATCH_IN_INTEGER: All subsequent motion errors will cause the integer passed by reference as the catch_error parameter to be set to a non-zero value.

PCD_TRIGGER_ERROR: All subsequent motion errors will generate runtime error 1001. These error may be caught using the On Error statement.

PCD_OFF: Turns off error catching. The basic script will no longer be notified when motion errors occur.

catch_error: A reference to the integer that will be set to a non-zero value if a CMM error occurs. When error catching is turned on, this integer is automatically initialized to zero. Only used when tog is set to PCD_CATCH_IN_INTEGER.

xe "Check"Check

Check distance:= (Double)

distance: The new check distance.

xe "ClearPlane"ClearPlane

ClearPlane plane1:= (Integer), val1:= (Double), plane2:= (Integer), val2:= (Double)

plane1: Clearance plane. Must be one of the following values:

PCD_TOP, PCD_BOTTOM, PCD_LEFT, PCD_RIGHT, PCD_FRONT, PCD_BACK

val1: The height of the workplane.

plane2: Pass through plane. Must be one of the values listed in the description of plane1.

val2: The height of the pass through plane.

xe "CloseCommConnection"CloseCommConnection

CloseCommConnection port:=(Integer)

Closes the port opened with the OpenCommConnection
 \Relate "7_pcdbasic_OldBasicFunctions.doc!254", "OpenCommConnection" \D2HTargetDefault command.

port: The comm port to close.

xe "Column132"Column132

Column132 tog:=(Integer)

Turns on or off 132 column mode.xe "Mode"
tog: PCD_ON or PCD_OFF

xe "Comment"Comment

Comment ctype:=(Integer), comment:=(String)

ctype: PCD_REPORT, PCD_OPERATOR, or PCD_INPUT.

comment: The comment string.

xe "CreatID"CreateID

CreateID ID:=(String), ftype:=(Integer)

ID: Reference to a string to hold the newly created ID.

ftype: MEAS_POINT, MEAS_CIRCLE, MEAS_SPHERE, MEAS_LINE, MEAS_CONE, MEAS_CYLINDER, MEAS_PLANE, MEAS_SET, READ_POINT, CONST_ORIG_POINT, CONST_OFF_POINT, CONST_PROJ_POINT, CONST_MID_POINT, CONST_DROP_POINT, CONST_PIERCE_POINT, CONST_INT_POINT, CONST_CAST_POINT, CONST_CORNER_POINT, CONST_BFRE_CIRCLE, CONST_BF_CIRCLE, CONST_PROJ_CIRCLE, CONST_REV_CIRCLE, CONST_CONE_CIRCLE, CONST_CAST_CIRCLE, CONST_INT_CIRCLE, CONST_BFRE_SPHERE, CONST_BF_SPHERE, CONST_PROJ_SPHERE, CONST_REV_SPHERE, CONST_CAST_SPHERE,CONST_BFRE_LINE, CONST_BF_LINE, CONST_PROJ_LINE, CONST_REV_LINE, CONST_MID_LINE, CONST_CAST_LINE, CONST_INT_LINE, CONST_OFF_LINE, CONST_ALN_LINE, CONST_PRTO_LINE, CONST_PLTO_LINE, CONST_BFRE_CONE, CONST_BF_CONE,CONST_PROJ_CONE, CONST_REV_CONE,CONST_CAST_CONE,CONST_BFRE_CYLINDER, CONST_BF_CYLINDER, CONST_PROJ_CYLINDER,CONST_REV_CYLINDER, CONST_CAST_CYLINDER, CONST_BFRE_PLANE, CONST_BF_PLANE, CONST_REV_PLANE, CONST_MID_PLANE, CONST_CAST_PLANE, CONST_OFF_PLANE, CONST_ALN_PLANE, CONST_PRTO_PLANE, CONST_PLTO_PLANE,CONST_HIPNT_PLANE, CONST_SET, AUTO_VECTOR_HIT, AUTO_SURFACE_HIT, AUTO_EDGE_HIT, AUTO_ANGLE_HIT, AUTO_CORNER_HIT, AUTO_CIRCLE, AUTO_SPHERE, AUTO_CYLINDER, AUTO_ROUND_SLOT, AUTO_SQUARE_SLOT, AUTO_ELLIPSE, PCD_CURVE, DIM_LOCATION, DIM_STRAIGHTNESS, DIM_ROUNDNESS,xe "Roundness" DIM_FLATNESS,xe "Flatness" DIM_PERPENDICULARITY, DIM_PARALLELISM, DIM_PROFILE, DIM_3D_DISTANCE, DIM_2D_DISTANCE, DIM_3D_ANGLE, DIM_2D_ANGLE, DIM_RUNOUT,xe "Runout" DIM_CONCENTRICITY, DIM_ANGULARITY, DIM_KEYIN, DIM_TRUE_POSITION, PCD_ALIGNMENT

Functions D

xe "DefaultAxes"DefaultAxes

DefaultAxes

This command is used only for location and true position dimensions. If present, the default dimension axes are created. Calls to SetNomsxe "SetNoms" with other axes passed as the dtype parameter will have no effect if this command is used.

xe "DefaultHits"DefaultHits

DefaultHits

This command is used within a Startfeature…EndFeaturexe "StartFeature"

xe "EndFeature" \r "D2HBEndFeature156" block and is used to cause the hits specified in the hits parameter of the StartFeature command to be automatically generated.

xe "DimFormat"DimFormat

DimFormat flags:=(Integer), heading1:=(Integer), heading2:=(Integer), heading3:=(Integer), heading4:=(Integer), heading5:=(Integer), heading6:=(Integer)

flags: PCD_HEADINGS, PCD_SYMBOLS. (Optional)

heading1: PCD_DEV, PCD_MAXMIN, PCD_MEAS, PCD_NOM, PCD_OUTTOL, PCD_TOL. (Optional)

heading2: PCD_DEV, PCD_MAXMIN, PCD_MEAS, PCD_NOM, PCD_OUTTOL, PCD_TOL. (Optional)

heading3: PCD_DEV, PCD_MAXMIN, PCD_MEAS, PCD_NOM, PCD_OUTTOL, PCD_TOL. (Optional)

heading4: PCD_DEV, PCD_MAXMIN, PCD_MEAS, PCD_NOM, PCD_OUTTOL, PCD_TOL. (Optional)

heading5: PCD_DEV, PCD_MAXMIN, PCD_MEAS, PCD_NOM, PCD_OUTTOL, PCD_TOL. (Optional)

heading6: PCD_DEV, PCD_MAXMIN, PCD_MEAS, PCD_NOM, PCD_OUTTOL, PCD_TOL. (Optional)

Functions E

xe "EndAlign"EndAlign

EndAlign

This function must be called to end an alignment block.

xe "EndDim"EndDim

EndDim

EndDim takes no parameters, but must be called to finish off the dimension block.

EndFeature

EndFeature

This function ends a measured, constructed, or auto featurexe "Feature" \r "D2HBFeature157" block. It must always be present as the last function call in a feature block.

xe "EndGetFeatPoint"EndGetFeatPoint

EndGetFeatPoint

Use this command to release the memory allocated for use by the StartGetFeatPointxe "StartGetFeatPoint" and GetFeatPointxe "GetFeatPoint" commands.

xe "EndScan"EndScan

EndScan

Call this when all of the other scan functions needed have been called.

The scan object is inserted in the command list with a call to this function.

xe "EquateAlign"EquateAlign

EquateAlign align1:=(String), align2:=(String)

Creates Equate alignment object

Align1: Name of alignment 1

Align2: Name of alignment 2

Functions F

Feature

Feature ID:=(String), pnt_tol:=(Double)

ID: ID string of the feature to add as an input for a best fit or iterative alignment.

pnt_tol: The point tolerance of the feature. Only used with best fit alignments.

This function must only be called after a call to BestFit2D,xe "BestFit2D" BestFit3D,xe "BestFit3D" or Iteratexe "Iterate"
xe "Flatness"Flatness

SHORT Flatness ID:=(String), out_zone:=(Double)

Return value: Non-zero if successfull. Zero if the object with the given ID string cannot be found.

ID: The string ID of the object to query.

out_zone: A reference to a double to hold the output zone.

Note: This function was added for the tutor translator, and should be used with caution.

Functions G

xe "GapOnly"GapOnly

GapOnly tog:=(Integer)

tog: PCD_ON, PCD_OFF

xe "GetDimData" \r "D2HBGetDimData158"GetDimData

GetDimData ID:= (String), buffer:= (DimData), dtype:= (Integer)

ID: The ID string of the dimension to access.
buffer: A record variable of type DimData in which to put the retrieved values. See below for a description of the DimData structure.

dtype: The type of data to retrieve for location or true position dimensions. Not needed for any other dimension type.

For location: PCD_X, PCD_Y, PCD_Z, PCD_D, PCD_R, PCD_A, PCD_T, PCD_PA, PCD_PR, PCD_V, PCD_L

For true position: PCD_X, PCD_Y, PCD_Z, PCD_DD, PCD_DF, PCD_PA, PCD_PR, PCD_TP

The definition of the DimData record type is as follows:

Type DimData

Nom As Double
Plus As Double
Minus As Double
Meas As Double
Max As Double
Min As Double
Dev As Double
Out As Double
Dev_Angle As Double
Bonus As Double

End Type

Note: The GetDimData function may not be called mid block.

Note: The GetDimData function should only be called on dimensions. It is up to the user to make sure that the ID string passed in does not belong to a feature or an alignment. For retrieving data from features, use GetFeatData.xe "GetFeatData" \r "D2HBGetFeatData159"
xe "GetDimOutTol"GetDimOutTol

GetDimOutTol

Returns the number of features that are out of tolerance at the time that this command is executed

GetFeatData

GetFeatData ID:= (String), buffer:= (FeatData), dtype:= (Integer), xyz:=(Integer), ijk:= (Integer)

ID: The ID string of the feature to access.

buffer: A record variable of type FeatData in which to put the retrieved values. See below for a description of the FeatData structure.

dtype: The type of data to retrieve. Must be either PCD_MEAS or PCD_THEO.

xyz: Type of data to put in xyz. Allowed values are: PCD_CENTROID, PCD_BALLCENTER, PCD_STARTPOINT, PCD_ENDPOINT, PCD_MIDPOINT

ijk: Type of data to put in ijk. Allowed values are: PCD_VECTOR, PCD_SLOTVECTOR, PCD_SURFACEVECTOR, PCD_STARTPOINT, PCD_ENDPOINT, PCD_MIDPOINT

The definition of the FeatData record type is as follows:

Type FeatData

X As Double
Y As Double
Z As Double
I As Double
J As Double
K As Double
Diam As Double
Length As Double
Angle As Double
Small_Diam As Double
Start_Angle As Double
End_Angle As Double
Start_Angle2 As Double
End_Angle2 As Double
F As Double
TP As Double
P1 As Double
P2 As Double
ID As String

End Type

Note: The GetFeatData function may not be called mid block.

Note: The GetFeatData function should only be called on measured, constructed, and auto features. It is up to the user to make sure that the ID string passed in does not belong to a dimension or an alignment. For retrieving data from dimensions, use GetDimData.

xe "GetFeatID"GetFeatID

Integer GetFeatID index:=(Integer), ID:=(String), type:=(Integer)

Index: The count backwards that should be used to find the next item with an id.

ID: This string is filled in with the id of the nth object back from the current point when n is specified by index

Type: type of object to be considered. PCD_FEATURE, PCD_ALIGNMENT, PCD_DIMENSION

xe "GetFeatPoint"GetFeatPoint

Integer GetFeatPoint buffer:= (PointData), index:= (Integer)

This function is called after a call to StartGetFeatPointxe "StartGetFeatPoint" to retrieve the actual points.

Return value: The number of points available from the object.

buffer: A record variable of type PointData in which to put the retrieved point.

index: The 1 based index of the point to retrieve.

The definition of the PointData record type is as follows:

Type PointData

X As Double
Y As Double
Z As Double

End Type

xe "GetFeature"GetFeature

Integer GetFeature ID:=(String)

Return value: The feature type of the object, or 0 if unsuccessful. Possible feature types are the following: PCD_F_POINT, PCD_F_CIRCLE, PCD_F_SPHERE, PCD_F_LINE, PCD_F_CONE, PCD_F_CYLINDER, PCD_F_PLANE, PCD_F_CURVE, PCD_F_SLOT, PCD_F_SET, PCD_F_ELLIPSE, PCD_F_SURFACE

ID: The string ID of the object to query.

Note: This function was added for the tutor translator, and should be used with caution.

xe "GetPH9Status"GetPH9Status

SHORT GetPH9Status

Return value: Returns 1 if the probe has a PH9 and 0 if no PH9 is available.

xe "GetProbeOffsets"GetProbeOffsets

GetProbeOffsets buffer:= (PointData)

buffer: A record of type pointdata that receives the values of the current xyz offset from the probe base.

xe "GetProbeRadius"GetProbeRadius

Double GetProbeRadius

Returns the current probe radius

xe "GetProgramOption"GetProgramOption

Integer GetProgramOption opt:=(Integer)

Return value: returns 1 if the option is on and 0 if the option is off

Opt: The option’s status that is being checked. PCD_AUTOTIPSELECT, PCD_AUTOPREHIT, PCD_ISONLINE, PCD_AUTOPROJREFPLANE, PCD_ISARMTYPECMM, PCD_HASINDEXPH9, PCD_HASINDEXROTTABLE, PCD_DISPSPEEDS, PCD_HASMANPH9, PCD_HASPHS, PCD_HASMANROTTABLE, PCD_HASROTTABLE, PCD_HASPH9, PCD_ENDKEY, PCD_EXTSHEETMETAL, PCD_FLYMODE, PCD_TABLEAVOIDANCE, PCD_USEDIMCOLORS
xe "GetProgramValue"GetProgramValue

Double GetProgramValue opt:=(Integer)

Return value: returns the current value of the given option

Opt: The option’s value that is being retrieved. PCD_ROTTABLEANGLE, PCD_PROBERADIUS, PCD_DIMPLACES, PCD_FLYRADIUS, PCD_AUTOTRIGDISTANCE, PCD_TABLETOL, PCD_MANRETRACT, PCD_MEASSCALE, PCD_PH9WARNDELTA, PCD_VALISYSERRTIMEOUT

xe "GetTopMachineSpeed"GetTopMachineSpeed

DOUBLE GetTopMachineSpeed

Return value: Returns the top machine speed of the CMM.

xe "GetType"GetType

SHORT GetType ID:=(String)

Return value: The type of the object, or 0 if unsuccessful. Possible types are any of the types passed to StartFeaturexe "StartFeature" or StartDim.xe "StartDim"
ID: The string ID of the object to query.

Note: This function was added for the tutor translator, and should be used with caution.

xe "GetUnits"GetUnits

SHORT GetUnits

Return value: The units of the current part program. A value of 1 is returned when units are in inches and 0 when units are in millimeters.

Functions H

xe "Hit Function"Hit

Hit x:=(Double), y:=(Double), z:=(Double), i:=(Double), j:=(Double), k:=(Double)

x,y,z, i,j,k: Theoretical x,y,z and approach vector of hit.

Note: This function is used for measured features only. It may be omitted on measured circles, cones, cylinders, spheres and points as these features generate default hits. However, if circular moves are required between each hit, the hit function should be provided as a place holder. The parameters may be eliminated, in which case the default hit x, y, z and i, j, k are used.

Functions I

xe "IgnoreMotionError"IgnoreMotionError

IgnoreMotionError tog:=(Integer)

tog: TRUE or FALSE. TRUE indicates that we wish to begin ignoring CMM motion errors. FALSE means we wish to stop ignoring CMM motion errors.

xe "Iterate"Iterate

Iterate num_inputs:= (Integer), pnt_tol:= (Double), flags:= (Integer)

num_inputs: The number of features to use to create the iterative alignment. Must be no more than six. There must be a corresponding number of calls to Featurexe "Feature" before the call to EndAlign.xe "EndAlign"
pnt_tol: The point tolerance.

flags: Any Ored combination of the following: PCD_BODY_AX, PCD_AV_ERROR, PCD_MEAS_ALL, PCD MEAS ALL ALWAYS.

Functions L

xe "Level"Level

Level axis:= (Integer), feat:= (String)

axis: Axis to level. PCD_ZPLUS, PCD_ZMINUS, PCD_XPLUS, PCD_XMINUS, PCD_YPLUS, PCD_YMINUS

feat: ID string of the feature to level to.

xe "LoadProbe"LoadProbe

LoadProbe probe:= (String)

probe: The probe to load.

Functions M

xe "MaxMineAve"MaxMineAve

SHORT MaxMinAve ID:=(String), in_vector:=(PointData), out_max:=(Double), out_min:=(Double), out_ave:=(Double)

Return value: Non-zero if successfull. Zero if the object with the given ID string cannot be found.

ID: The string ID of the object to query.

in_vector: Input vector.

out_max: A reference to a double to hold the output maximum.

out_min: A reference to a double to hold the output minimum.

out_ave: A reference to a double to hold the output average.

Note: This function was added for the tutor translator, and should be used with caution.

xe "Mode"Mode

Mode mode:= (Integer)

mode: PCD_DCC, PCD_MANUAL

xe "Move"Move

Move tog:= (Integer), x:= (Double), y:= (Double), z:= (Double), direction:=(Integer)

tog: PCD_CLEARPLANE,xe "ClearPlane" PCD_INCREMENT, PCD_CIRCULAR, PCD_POINT, PCD_ROTAB

x,y,z: Point or increment x,y,z if tog is PCD_INCREMENT or PCD_POINT.

x is angle if tog is PCD_ROTAB.

direction: PCD_CLOCKWISE, PCD_COUNTERCLOCKWISE, PCD_SHORTEST. Used only for PCD_ROTAB.

xe "MoveSpeed"MoveSpeed

Movespeed percent:= (Double)

percent: Move speed of the probe as a percentage of the maximum probe speed.

Functions O

xe "OpenCommConnection"OpenCommConnection

Integer OpenCommConnection port:=(Integer), baud:=(Integer), parity:=(Integer), data:=(Integer), stop:=(Integer), flow:=(Integer)

Opens a connection to the specified comm port.

RETURN VALUE: 0 if successfull, -1 on error.

port: The comm port to open. Required.

baud: The baud rate at which to communicate with the port. Must be one of the following values: PCD_BAUD_110, PCD_BAUD_300, PCD_BAUD_600, PCD_BAUD_1200, PCD_BAUD_2400, PCD_BAUD_4800, PCD_BAUD_9600, PCD_BAUD_14400, PCD_BAUD_19200, PCD_BAUD_38400, PCD_BAUD_56000, PCD_BAUD_128000, PCD_BAUD_256000. Optional. Default is PCD_BAUD_9600.

parity: PCD_NOPARITY, PCD_EVENPARITY, PCD_ODDPARITY, PCD_MARKPARITY, PCD_SPACEPARITY. Optional. Default is PCD_NOPARITY.

data: Data bits. PCD_DATA8 or PCD_DATA7. Optional. Default is PCD_DATA8.

stop: Stop bits. PCD_ONESTOPBIT, PCD_ONE5STOPBITS, PCD_TWOSTOPBITS. Optional. Default is PCD_ONESTOPBIT.

flow: Flow control. PCD_DTRDSR, PCD_RTSCTS, PCD_XONXOFF. Optional. Default is PCD_RTSCTS.

Functions P

Parent

This read-only property returns the owning part program object.

xe "Prehit"Prehit

Prehit distance:= (Double)

distance: New prehit distance.

xe "ProbeComp"ProbeComp

ProbeComp tog:= (Integer)

tog: PCD_ON, PCD_OFF. Turns probe compensation on or off.

xe "PutFeatData"PutFeatData

PutFeatData ID:= (String), buffer:= (FeatData), dtype:= (Integer),

xyz:= (Integer), ijk:= (Integer)

Parameters, allowed values, and limitations are identical to those of GetFeatData.xe "GetFeatData" The data currently in buffer is stored in the featurexe "Feature" \r "D2HBFeature165" identified by the ID string.

Functions R

xe "ReadCommBlock"ReadCommBlock

Integer ReadCommBlock port:=(Integer), buffer:=(String), count:=(Integer)

Reads characters from the comm port specified.

RETURN VALUE: 0 if successfull, -1 on error.

port: The comm port from which to read. Required.

buffer: The string in which to put the read characters. Required.

count: The maximum number of characters to read from the port. Required.

xe "RecallIn"RecallIn

RecallIn recallID:= (String)

recallIn: String ID of internal alignment to recall.

Note: This function does not need to be called within an alignment block.

xe "RecallEx"RecallEx

RecallEx recallID:= (String)

recallID: String ID of external alignment to recall.

Note: This function does not need to be called within an alignment block.

xe "Retract"Retract

Retract distance:= (Double)

distance: New retract distance.

xe "RetroOnly"RetroOnly

RetroOnly tog:=(Integer)

tog: PCD_ON, PCD_OFF

xe "Rotate" \r "D2HBRotate166"Rotate

Rotate axis1:= (Integer), feat:= (String), axis2:= (Integer)

axis1: Axis to rotate. PCD_ZPLUS, PCD_ZMINUS, PCD_XPLUS, PCD_XMINUS, PCD_YPLUS, PCD_YMINUS

feat: ID string of the feature to rotate to.

axis2: Axis to rotate about. PCD_ZPLUS, PCD_ZMINUS, PCD_XPLUS, PCD_XMINUS, PCD_YPLUS, PCD_YMINUS

xe "RotateCircle"RotateCircle

RotateCircle feat1:= (String), feat2:= (String), axis1:= (Integer), axis2:= (Integer)

feat1: ID string of circle.

feat2: ID string of second circle.

axis1: Axis to rotate. PCD_ZPLUS, PCD_ZMINUS, PCD_XPLUS, PCD_XMINUS, PCD_YPLUS, PCD_YMINUS

axis2: Axis to rotate about. PCD_ZPLUS, PCD_ZMINUS, PCD_XPLUS, PCD_XMINUS, PCD_YPLUS, PCD_YMINUS

xe "RotateOffset"RotateOffset

RotateOffset offset:= (Double), axis:= (Integer)

offset: Offset value.

axis: Axis to rotate about. PCD_ZPLUS, PCD_ZMINUS, PCD_XPLUS, PCD_XMINUS, PCD_YPLUS, PCD_YMINUS

xe "Roundness"Roundness

SHORT Roundness ID:=(String), out_zone:=(Double)

Return value: Non-zero if successfull. Zero if the object with the given ID string cannot be found.

ID: The string ID of the object to query.

out_zone: A reference to a double to hold the output zone.

Note: This function was added for the tutor translator, and should be used with caution.

xe "Runout"Runout

SHORT Runout ID:=(String), in_datumxyz:=(PointData), in_datumijk:=(PointData), out_zone:=(Double)

Return value: Non-zero if successfull. Zero if the object with the given ID string cannot be found.

ID: The string ID of the object to query.

in_datumxyz: Input xyz.

in_datumijk: input ijk.

out_zone: A reference to a double to hold the output zone.

Note: This function was added for the tutor translator, and should be used with caution.

Functions S

xe "SaveAlign"SaveAlign

SaveAlign alignID:=(String), fname:=(String)

alignID: ID string of the alignment to save.

fname: File in which to save the alignment.

xe "SetAutoParams"SetAutoParams

SetAutoParams init_hits:=(Integer), perm_hits:=(Integer), depth:=(Double), height:=(Double), wdth:=(Double), radius:=(Double), spacer:=(Double), indent:=(Double), thickness:=(Double), major:=(Double), minor:=(Double)

init_hits: sample hits for initial execution

perm_hits: sample hits for subsequent executions

depth: sheet metal measuring depth

height: height of stud for a sheet metal circle, sheet metal cylinder or sheet metal ellipse; or the long length of a slot

width: short width of a slot

radius: corner radius of a square slot

spacer: distance from the nominal featurexe "Feature" or nominal feature edge where sample hits are taken.

indent: like spacer but in a different direction. Used in edge points, corner points, and angle points

thickness: thickness of the sheetmetal

major: major axis of ellipse

minor: minor axis of ellipse

Note: This function is used for auto features only.

xe "SetAutoVector"SetAutoVector

SetAutoVector index:=(Integer), i:=(Double), j:=(Double), k:=(Double)

index: Which vector to set. Can be any of the following: PCD_VECTOR1, PCD_VECTOR2, PCD_VECTOR3, PCD_PUNCH_VECTOR, PCD_PIN_VECTOR, PCD_ANGLE_VECTOR, PCD_REPORT_VECTOR, PCD_EDGE_REPORT_VECTOR, PCD_SURF_REPORT_VECTOR, PCD_MEASURE_VECTOR, PCD_UPDATE_VECTOR, PCD_VECTOR1 is normally not needed as the first ijk values are set with a call to SetTheos.xe "SetTheos"
i,j,k: The parameters of the vector.

Note: This function is used for auto features only.

xe "SetNoms"SetNoms

SetNoms nom:=(Double), plus_tol:=(Double), minus_tol:=(Double), dtype:=(Integer), multiplier:=(Double)

nom: Double value indicating nominal. May be omitted when no nominal is needed.

plus_tol: Double value indicating plus tolerance.

minus_tol: Double value indicating minus tolerance. May be omitted when no minus tolerance is needed.

dtype: For Location only: PCD_X, PCD_Y, PCD_Z, PCD_D, PCD_R, PCD_A, PCD_T, PCD_PA, PCD_PR, PCD_V, PCD_L, PCD_PX, PCD_PY, PCD_PZ, PCD_PD, PCD_PT

For True Position only: PCD_X, PCD_Y, PCD_Z, PCD_DD, PCD_DF, PCD_PA, PCD_PR, PCD_TP

IMPORTANT: This parameter should be omitted for all other dimension types.

multiplier: Arrow multiplier for dimension. Optional. Defaults to 1.0.

When the DefaultAxesxe "DefaultAxes" command is not used for dimensions of type location and true position, an axis corresponding to the dtype parameter is added for every call to SetNoms.

xe "SetPrintOptions"SetPrintOptions

SetPrintOptions location:=(Integer), draft:=(Integer), filemode:=(Integer), nextnum:=(Integer)

Location: location of output. Can be PCD_OFF, PCD_PRINTER, or PCD_FILE

Draft: modexe "Mode" of output to printer. PCD_ON or PCD_OFF

Filemode: naming mode for output file. PCD_APPEND, PCD_NEWFILE, PCD_OVERWRITE, PCD_AUTO

NextNum: used with PCD_AUTO mode naming scheme for output file

xe "SetProgramOption"SetProgramOption

SetProgramOption opt:=(Integer), tog:=(Integer)

Opt: Program option to set: PCD_AUTOTIPSELECT, PCD_AUTOPREHIT, PCD_AUTOPROJREFPLANE, PCD_DISPSPEEDS, PCD_ENDKEY, PCD_EXTSHEETMETAL, PCD_FLYMODE, PCD_TABLEAVOIDANCE, PCD_USEDIMCOLORS

Tog: Specifies whether option should be turned on or off. PCD_ON or PCD_OFF

xe "SetProgramValue"SetProgramValue

SetProgramValue opt:=(Integer), val:=(Double)

Opt: Program value to set: PCD_PROBERADIUS, PCD_DIMPLACES, PCD_FLYRADIUS, PCD_AUTOTRIGDISTANCE, PCD_TABLETOL, PCD_MANRETRACT, PCD_MEASSCALE, PCD_PH9WARNDELTA, PCD_VALISYSERRTIMEOUT

Val: New value for program value being set.

xe "SetReportOptions"SetReportOptions
SetReportOptions opt:=(Integer)

Opt: Any of the combined flags can be used to turn on or off the reporting object types: PCD_FEATURES, PCD_ALIGNMENTS, PCD_MOVES, PCD_COMMENTS,xe "Comments " PCD_DIMENSIONS, PCD_HITS, PCD_OUTTOL_ONLY

xe "SetRmeasMode"SetRmeasMode
SetRmeasMode mode:=(Integer)

Mode: The mode to be used for auto features using the RMEAS functionality. PCD_RELATIVE or PCD_ABSOLUTE

xe "SetSlaveMode"SetSlaveMode
SetSlaveMode tog:=(Integer)

Tog: Turns slave mode off or on for all subsequent created commands. PCD_ON or PCD_OFF

xe "SetScanHitParams"SetScanHitParams

SetScanHitParams htype:=(Integer), init_hits:=(Integer), perm_hits:=(Integer), spacer:=(Double), depth:=(Double), indent:=(Double), flags:=(Integer)

Note: This function is only used for DCC scans and should not be called for manual scans.

htype: Type of hits to use. PCD_VECTORHIT, PCD_SURFACEHIT, PCD_EDGEHIT, PCD_ANGLEHIT.

init_hits: Number of init sample hits to use. Optional.

perm_hits: Number of permanent hits. Optional.

spacer: Spacer value. Optional.

depth: Depth value. Optional.

indent: Indent value. Optional.

flags: For now, just PCD_EXTERIOR or PCD_INTERIOR. Default is PCD_EXTERIOR. Optional.

xe "SetScanHitVectors"SetScanHitVectors
SetScanHitVectors vector:=(Integer), i:=(Double), j:=(Double), k:=(Double)

Note: This function is only used for DCC scans.

vector: Hitxe "Hit Function" vector to set. PCD_TOP_SURFACE, PCD_SIDE_SURFACE, PCD_BOUNDARY_PLANE.

i,j,k: Values to set.

xe "SetScanParams"SetScanParams

SetScanParams incr:=(Double), axis:=(Integer), max_incr:=(Double), min_incr:=(Double), max_angle:=(Double), in_angle:=(Double), delta:=(Double), distance:=(Double), incr2:=(Double), axis2:=(Integer), surf_thickness:=(Double)

incr: Increment value for LINE, BODY, and CUTAXIS scan techniques. Optional.

axis: Axis for BODY and CUTAXIS scan techniques. PCD_XAXIS, PCD_YAXIS, PCD_ZAXIS. Optional.

max_incr, min_incr, max_angle, min_angle: For VARIABLE scan techniques. Optional.

delta: Distance delta for FIXED_DELTA scans, time delta for VARIABLE_DELTA and TIME_DELTA scans. Optional.

distance: Drop point distance for VARIABLE_DELTA scan, distance for CUTAXIS scan. Optional.

incr2: Increment value in second direction for a patch scan. Optional.

axis2: Second axis value for a patch scan (BODY scan technique only). Optional.

surf_thickness: Surface thickness used to offset centroid calculation if necessary. Optional.

xe "SetScanVectors"SetScanVectors

SetScanVectors vector:=(Integer), i:=(Double), j:=(Double), k:=(Double)

vector: Vector to set. PCD_CUTVECTOR, PCD_INITTOUCH, PCD_INITDIR, PCD_ROWEND_APPROACH.

i,j,k: Values to set.

xe "SetTheos"SetTheos

SetTheos x:=(Double), y:=(Double), z:=(Double), i:=(Double), j:=(Double), k:=(Double), diam:=(Double), length:=(Double), angle:=(Double), small_diam:=(Double), start_angle:=(Double), end_angle:=(Double), start_angle2:=(Double), end_angle2:=(Double)

Note: A call to SetTheos is mandatory for all measured features.

x,y,z, i,j,k: On a bound line, (i,j,k) is the ending point.

diam: Diameter of a circle, cylinder, or sphere. Big diameter of a cone.

length: Length of a cylinder.

angle: Angle of a cone.

small_diam: Small diameter of a cone.

start_angle, end_angle: Starting and ending angles for circles, cylinders, and spheres.

start_angle2, end_angle2: Second starting and ending angles for spheres.

xe "ShowXYZWindow"ShowXYZWindow

ShowXYZWindow show:=(Integer)

Show: Show or hides the probe position window. PCD_ON or PCD_OFF

xe "Sleep"Sleep

Sleep seconds:=(Single)

Pauses execution for the specified number of seconds after the previous featurexe "Feature" \r "D2HBFeature171" has finished executing.

Note: Sleep calls the Waitxe "Wait" function to ensure that the sleeping does not begin before all previous features have been executed.

seconds: The number of seconds to pause. Any precision beyond milliseconds is ignored.

xe "StartAlign"StartAlign

StartAlign ID:= (String), recallID:= (String)

ID: ID string of the alignment to create.

recallID: ID string of the alignment to recall.

xe "StartDim"StartDim

StartDim dtype:=(Integer), ID:=(String), feat1:=(String), feat2:=(String), feat3:=(String), axis:=(Integer), length:=(Double), angle:=(Double), flags:=(Integer)

dtype: DIM_LOCATION, DIM_STRAIGHTNESS, DIM_ROUNDNESS,xe "Roundness" DIM_FLATNESS,xe "Flatness" DIM_PERPENDICULARITY, DIM_PARALLELISM, DIM_PROFILE, DIM_3D_DISTANCE, DIM_2D_DISTANCE, DIM_3D_ANGLE, DIM_2D_ANGLE, DIM_RUNOUT,xe "Runout" DIM_CONCENTRICITY, DIM_ANGULARITY, DIM_KEYIN, DIM_TRUE_POSITION

ID: ID string of the dimension to create

feat1: ID string of the Of Feature or From Feature

feat2: ID string of the To Feature

feat3: ID string of the third feature, if any

axis: PCD_XAXIS, PCD_YAXIS, PCD_ZAXIS. Only needed for dimensions using an axis or workplane.xe "Workplane"
length: Extended length for angularity, profile, perpendicularity, or parallelism.

angle: Angle for angularity.

flags: PCD_ADD_RADIUS, PCD_SUB_RADIUS, PCD_NO_RADIUS, PCD_PAR_TO, PCD_PERP_TO. Some of these values may be Ored together.

Example: PCD_ADD_RADIUS Or PCD_PAR_TO) True Position dimensions can take one of the following flags as well:

PCD_RFS_RFS, PCD_RFS_MMC, PCD_RFS_LMC, PCD_MMC_RFS, PCD_MMC_MMC, PCD_MMC_LMC, PCD_LMC_RFS, PCD_LMC_MMC, PCD_LMC_LMC.

The datum computation type comes first. For example, PCD_RFS_LMC specifies RFS for the datum and LMC for the feature.

xe "StartFeature"StartFeature

StartFeature ftype:=(Integer), ID:=(string), hits:=(Integer), inputs:=(Integer), flags:=(Long)

ftype: MEAS_POINT, MEAS_CIRCLE, MEAS_SPHERE, MEAS_LINE, MEAS_CONE, MEAS_CYLINDER, MEAS_PLANE, MEAS_SET, READ_POINT,CONST_ORIG_POINT, CONST_OFF_POINT, CONST_PROJ_POINT, CONST_MID_POINT, CONST_DROP_POINT, CONST_PIERCE_POINT, CONST_INT_POINT, CONST_CAST_POINT, CONST_CORNER_POINT, CONST_BFRE_CIRCLE, CONST_BF_CIRCLE, CONST_PROJ_CIRCLE, CONST_REV_CIRCLE, CONST_CONE_CIRCLE, CONST_CAST_CIRCLE, CONST_INT_CIRCLE, CONST_BFRE_SPHERE, CONST_BF_SPHERE, CONST_PROJ_SPHERE, CONST_REV_SPHERE, CONST_CAST_SPHERE, CONST_BFRE_LINE, CONST_BF_LINE, CONST_PROJ_LINE, CONST_REV_LINE, CONST_MID_LINE, CONST_CAST_LINE, CONST_INT_LINE, CONST_OFF_LINE, CONST_ALN_LINE, CONST_PRTO_LINE, CONST_PLTO_LINE, CONST_BFRE_CONE, CONST_BF_CONE, CONST_PROJ_CONE, CONST_REV_CONE, CONST_CAST_CONE, CONST_BFRE_CYLINDER, CONST_BF_CYLINDER, CONST_PROJ_CYLINDER, CONST_REV_CYLINDER, CONST_CAST_CYLINDER, CONST_BFRE_PLANE, CONST_BF_PLANE, CONST_REV_PLANE, CONST_MID_PLANE, CONST_CAST_PLANE, CONST_OFF_PLANE, CONST_ALN_PLANE, CONST_PRTO_PLANE, CONST_PLTO_PLANE,CONST_HIPNT_PLANE, CONST_SET, AUTO_VECTOR_HIT,xe "Hit Function" \r "D2HBHit173" AUTO_SURFACE_HIT, AUTO_EDGE_HIT, AUTO_ANGLE_HIT, AUTO_CORNER_HIT, AUTO_CIRCLE, AUTO_SPHERE, AUTO_CYLINDER, AUTO_ROUND_SLOT, AUTO_SQUARE_SLOT, AUTO_ELLIPSE, PCD_CURVE

ID: ID string of the feature

hits: Measured and auto features only. The number of hits to take to measure the feature.

inputs: Constructed features only. The number of features that will be used in the construction. There must be a corresponding number of calls to AddFeaturexe "AddFeature" before the EndFeaturexe "EndFeature" statement.

flags: Any of the following flags Ored together:

PCD_POLR: Values are reported in cylindrical coordinates. Should not be ored with PCD_RECT.

PCD_RECT: Values are in rectangular coordinates. Should not be ored with PCD_POLR. Default.

PCD_BND: Bound line. Should not be ored with PCD_UNBND.

PCD_UNBND: Unbound line. Should not be ored with PCD_BND. Default.

PCD_IN: Inside circle, sphere, cone, or cylinder. Should not be ored with PCD_OUT.

PCD_OUT: Outside circle, sphere, cone, or cylinder. Should not be ored with PCD_IN. Default.

PCD_LENGTH: Cone reports its length as opposed to angle. Do not or with PCD_ANGLE. Default.

PCD_ANGLE: Cone reports its angle as opposed to length. Do not or with PCD_LENGTH.

PCD_EXTERIOR: Exterior angle hit. Only used for auto angle hits. Do not or with PCD_INTERIOR. Default.

PCD_INTERIOR: Interior angle hit. Only used for auto angle hits. Do not or with PCD_EXTERIOR.

PCD_LINE_3D: 3D line. Used only for best fit lines. Default is a 2D line.

PCD_RECALC_NOMS: Indicates that the theoretical values should be recalculated based on the theoretical hit values.

workplanexe "Workplane" axis: A workplane/axis flag is only used with alignment lines and planes. Possible flag values are the following: PCD_FRONT, PCD_BACK, PCD_LEFT, PCD_RIGHT, PCD_TOP, PCD_BOTTOM, PCD_ZPLUS, PCD_ZMINUS, PCD_XPLUS, PCD_XMINUS, PCD_YPLUS, PCD_YMINUS, PCD_ZAXIS, PCD_XAXIS, PCD_YAXIS.

PCD_MEASURE_SURFACE: Sets measure order. For auto edge points only. Default.

PCD_MEASURE_EDGE: Sets measure order. For auto edge points only.

PCD_MEASURE_BOTH: Sets measure order. For auto edge points only.

PCD_HEM: For auto edge points only. Should not be ored with PCD_TRIM.

PCD_TRIM: For auto edge points only. Should not be ored with PCD_HEM. Default.

PCD_PIN: For auto circles, cylinders, ellipses, and slots. Do not or with PCD_NORM.

PCD_NORM: For auto circles, cylinders, ellipses, and slots. Do not or with PCD_PIN. Default.

PCD_READPOS: Turn read position on. For auto circles, cylinders, ellipses, and slots. Defaults to off.

PCD_AUTOMOVE: Causes movexe "Move" points to be automatically generated for auto features.

PCD_FINDHOLE: For Auto Circles. Automatic finding of holes.

PCD_MEASURE_WIDTH: Flag for Auto Square Slots

xe "StartGetFeatPoint" \r "D2HBStartGetFeat174"StartGetFeatPoint

Integer StartGetFeatPoint ID:= (String), dtype:= (Integer), xyz:= (Integer)

This function is used to retrieve the hit or input data from constructed, measured, and auto features, as well as the hit data for scans. To retrieve the actual points, subsequent calls to GetFeatPointxe "GetFeatPoint" must be made. When all of the needed point values have been retrieved, a call to EndGetFeatPointxe "EndGetFeatPoint" must be made to free the memory allocated for the points.

Return value: The number of points retrieved from the object.

ID: The ID string of the feature to access.

dtype: The type of data to retrieve. Must be either PCD_MEAS or PCD_THEO.

xyz: Type of data to put in xyz. Allowed values are: PCD_BALLCENTER, PCD_CENTROID, PCD_VECTOR

Note: The StartGetFeatPoint function may not be called mid block.

xe "StartScan"StartScan

StartScan ID:=(String), mode:xe "Mode"=(Integer), stype:=(Integer), dir1:=(Integer), dir2:=(Integer), technique:=(Integer), num_bnd_pnts:=(Integer), flags:=(Integer)

ID: ID string of the scan.

mode: Mode of the scan. Must be PCD_DCC or PCD_MANUAL.

stype: Type of scan. For DCC scans, stype must be PCD_LINEAR_OPEN, PCD_LINEAR_CLOSED, PCD_SECTION, PCD_PERIMETER, or PCD_PATCH. For manual scans, stype must be PCD_MANUALTTP or PCD_HPROBE.

dir1: Only used for DCC scans. PCD_LINE, PCD_BODY, PCD_VARIABLE. Optional.

dir2: Only used for DCC patch scans. PCD_LINE, PCD_BODY. Optional.

technique: Only used for manual scans. PCD_FIXED_DELTA, PCD_VARIABLE_DELTA, PCD_TIME_DELTA, PCD_CUTAXIS. Optional.

num_bnd_pnts: Number of points defining the boundary for the scan. Only used for DCC patch scans. Optional.

flags: Special scan flags. PCD_SINGLEPOINT, PCD_MASTERMODE, PCD_RELEARNMODE, PCD_AUTOCLEARPLANE, PCD_HITNOTDISPLAYED. Any of these values may be Ored together. Optional.

xe "Straitness"Straitness

SHORT Straitness ID:=(String), Put_zone:=(Double)

Return value: Non-zero if successfull. Zero if the object with the given ID string cannot be found.

ID: The string ID of the object to query.

out_zone: A reference to a double to hold the output zone.

Note: This function was added for the tutor translator, and should be used with caution.

xe "Stats"Stats

Stats tog:=(Integer), dbase_dir:=(String), read_lock:=(Integer), write_lock:=(Integer), mem_page:=(Integer), flags:=(Integer)

tog: Indicates whether stats is on or off. PCD_ON or PCD_OFF.

dbase_dir: Database directory. Optional.

read_lock: Optional.

write_lock: Optional.

mem_page: Optional.

flags: PCD_USE_FEAT_NAME, PCD_USE_DIM_NAME, PCD_DO_CONTROL_CALCS. Optional.

Functions T

xe "Tip"Tip

Tip tip:= (String)

tip: The tip to load.

xe "Touchspeed"Touchspeed

Touchspeed percent:= (Double)

percent: Touchspeed of the probe as a percentage of the maximum probe speed.

xe "Trace"Trace

Trace field:=(String)

field: Name of the field to trace.

xe "Translate"Translate

Translate axis:= (Integer), feat:= (String)

axis: Axis to translate. PCD_ZAXIS, PCD_XAXIS, PCD_YAXIS

feat: ID string of featurexe "Feature" to translate to.

xe "TranslateOffset"TranslateOffset

TranslateOffset offset:= (Double), axis:= (Integer)

offset: Value of offset.

axis: PCD_ZAXIS, PCD_XAXIS, PCD_YAXIS

Functions W

xe "Wait"Wait

Wait

Waits until all preceding commands have been executed. The basic script creates commands and places them on the execute list more rapidly than the commands are executed. In a script it is often useful to pop up a dialog box for input after a certain series of commands has been executed. The script commands may complete long before the actual commands have been executed. The Wait command is useful to prevent the dialog box from popping up prematurely.

xe "Workplane"Workplane

Integer Workplane plane:= (Integer)

Return value: The previous workplane.

plane: PCD_TOP, PCD_BOTTOM, PCD_FRONT, PCD_BACK, PCD_LEFT, PCD_RIGHT.

Optional. If not provided, the current workplane is returned but no new workplane is set.

xe "WriteCommBlock"WriteCommBlock

Integer WriteCommBlock port:=(Integer), buffer:=(String), count:=(Integer)

Writes characters to the specified comm port.

RETURN VALUE: 0 if successfull, -1 on error.

port: The comm port to write to. Required.

buffer: The string to write to the port. Required.

count: The number of characters to write to the port. Optional. Defaults to the length of the buffer string.

Integer CloseCommConnection port:=(Integer)

Closes the connection to the specified comm port.

RETURN VALUE: 0 if successfull, -1 on error.

port: The comm port to close. Required.

Index

A
A 356

AboutAxis 182

Abs Function 51

Accessing an object 39

CreateObject Function 39

GetObject Function 39

Activate 39

Active Tip Members
ActiveTip.Angle 181

ActiveTip.GetShankVector 181

ActiveTip.SetShankVector 181

ActiveTip.TipID 181

ActiveComponent 332

ActiveConnection 333

ActiveMachine 318

ActivePartProgram 189

AddBoundaryPoint 365

AddFeature 365, 385

AddIndexSet 197

AddLevelFeat 186, 366

AddOriginFeat 187, 366

AddRotateFeat 187, 366

AddSkipNum 302

AlignCommand Members

AlignCommand.AboutAxis 182

AlignCommand.AddBestFitFeat 186

AlignCommand.AddLevelFeat 186

AlignCommand.AddOriginFeat 187

AlignCommand.AddRotateFeat 187

AlignCommand.Angle 182

AlignCommand.AverageError 182

AlignCommand.Axis 182

AlignCommand.BFOffset 183

AlignCommand.CadToPartMatrix 183

AlignCommand.CalculateMatrices 187

AlignCommand.ExternalFileID 183

AlignCommand.ExternalID 183

AlignCommand.FeatID 183

AlignCommand.FeatID2 183

AlignCommand.FindCad 183

AlignCommand.ID 184

AlignCommand.InitID 184

AlignCommand.IterativeLevelAxis 184

AlignCommand.IterativeOriginAxis 184

AlignCommand.IterativeRotateAxis 184

AlignCommand.MachineToPartMatrix 184

AlignCommand.MeasAllFeat 184

AlignCommand.MeasAllFeatAlways 184

AlignCommand.NumInputs 185

AlignCommand.Offset 185

AlignCommand.Parent 185

AlignCommand.PointTolerance 185

AlignCommand.RepierceCad 185

AlignCommand.UseBodyAxis 185

AlignCommand.Workplane 186

AlignCommand Object Overview 181

AlignmentCommand 222

AlignWorkPlane 272

Angle 181, 182, 251, 315

ANGLE 296

AngleOffset 299

AppActivate Statement 52

Application 39, 219, 220, 222, 242, 249, 267, 270, 309, 310, 318, 329, 333, 336, 358, 359, 360

Application Events Object Overview 193

Application Members

Application.ActivePartProgram 189

Application.ApplicationEvents 189

Application.ApplicationSettings 189

Application.Caption 189

Application.CurrentUserDirectory 189

Application.DefaultFilePath 189

Application.DefaultProbeFile 189

Application.FullName 189

Application.Height 189

Application.Help 191

Application.Left 189

Application.Machines 190

Application.MajorVersion 190

Application.Maximize 191

Application.Minimize 191

Application.MinorVersion 190

Application.Name 190

Application.OperatorMode 190

Application.PartPrograms 190

Application.Path 190

Application.Post 191

Application.Quit 192

Application.RemotePanelMode 190

Application.Restore 192

Application.SetActive 192

Application.SpawnNewInstance 192

Application.StatusBar 190

Application.Top 190

Application.UserExit 191

Application.VersionString 191

Application.Visible 191

Application.WaitUntilReady 192

Application.Width 191

Application Object Events Members

ApplicationObjectEvents.OnAddObject 193

ApplicationObjectEvents.OnClosePartProgram 193

ApplicationObjectEvents.OnConnectSlave 193

ApplicationObjectEvents.OnDisconnectSlave 193

ApplicationObjectEvents.OnEndExecution 194

ApplicationObjectEvents.OnObjectAboutToExecute 194

ApplicationObjectEvents.OnObjectAboutToExecute2 194

ApplicationObjectEvents.OnObjectExecuted 194

ApplicationObjectEvents.OnObjectExecuted2 195

ApplicationObjectEvents.OnOpenPartProgram 195

ApplicationObjectEvents.OnOpenRemotePanelDialog 195

ApplicationObjectEvents.OnSavePartProgram 196

ApplicationObjectEvents.OnStartExecution 196

ApplicationObjectEvents.OnUpdateStatusMessage 196

Application Object Overview 187

Application Settings Members

ApplicationSettings.WarningDefault19 197

ApplicationSettings.WarningDefault48 197

ApplicationSettings.WarningDefault60 197

ApplicationSettings.WarnNoSavePrg 197

ApplicationSettings.WarnOKPh9 197

ApplicationSettings.WarnOKRotPh9 197

ApplicationSettings.WarnOverwritingAlignment 197

Application Settings Object Overview 196

ApplicationEvents 189

ApplicationSettings 189

ArcCos 366

ArcSin 366

Array Index Members

ArrayIndex.AddIndexSet 197

ArrayIndex.GetLowerBound 197

ArrayIndex.GetUpperBound 198

ArrayIndex.RemoveIndexSet 198

ArrayIndex.SetLowerBound 198

ArrayIndex.SetUpperBound 198

Array Index Object Overview 197

ArrayIndexCommand 222

Arrays 22

ArrowMultiplier 252

Asc Function 53

Atn Function 53

Attach Members

Attach.AttachedAlign 199

Attach.Execute 199

Attach.ID 199

Attach.LocalAlign 199

Attach.PartName 199

Attach Object Overview 199

AttachCommand 223

AttachedAlign 199

AutoAdjustPH9 328

AutoCircularMove 272

AutoClearPlane 200, 272

AutoLabelPosition 329

Automation Object

QualificationSettings Object 337

ScanCommand Object 340

Automation Objects

accessing 175

AlignCommand Object 181

Application Events Object 193

Application Object 187

Application Settings Object 196

Array Index Object 197

Attach Object 199

Autotrigger Object 199

BasicScanCommand Object 200

CadWindow Object 219

CadWindows Object 220

Calibration Object 221

Command Object 222

command subobjects heirarchy chart 179

Commands Object 242

Comment Object 245

ControlPoint Object 247

DataType Object 248

DataTypes Object 249

DimData Object 250

Dimension Format Object 256

Dimension Information Object 258

DimensionCommand Object 251

Display Metafile Object 262

DmisDialog Object 263

DmisMatrix Object 263

EditWindow Object 267

ExternalCommand Object 271

FeatCommand Object 272

FeatData Object 295

File IO Object 297

FlowControlCommand Object 298

heirarchy charts 178

introduction of 173

Leapfrog Object 306

Leitz Motion Object 307

Load Machine Object 308

Load Probes Object 309

Machine Object 309

Machines Object 310

main overfiew heirarchy chart 178

MasterSlaveDlg Object 311

ModalCommand Object 313

MoveCommand Object 315

Opt Motion Object 316

OptProbe Object 317

PartProgram Object 318

PartProgram Settings Object 328

PartPrograms Object 329

PointData Object 331

Probe Object 332

probe subobjects heirarchy chart 179

Probes Object 335

Statistics Object 353

Temperature Compensation Object 355

Tip Object 356

Tips Object 358

Tool Object 359

Tools Object 360

Tracefield Object 361

Variable Object 361

AutoMove 273

AutoMoveDistance 273

AutoPH9 273

AutoReadPos 273

Autotrigger Members

Autotrigger.Autotriggeron 200

Autotrigger.Beepingon 200

Autotrigger.Radius 200

Autotrigger Object Overview 199

Autotriggeron 200

AverageError 182

Axis 182, 252

AxisLetter 252

B
B 356

Basic Help 8

Basic Scan Object Combinations 215

Basic Script Toolbar 3

BasicScanCommand 223

BasicScanCommand Members

BasicScan.AddControlPoint 205

BasicScan.AutoClearPlane 200

BasicScan.BoundaryCondition 200

BasicScan.BoundaryConditionAxisV 201

BasicScan.BoundaryConditionCenter 201

BasicScan.BoundaryConditionEndApproach 201

BasicScan.BoundaryConditionPlaneV 201

BasicScan.BoundaryPointCount 202

BasicScan.CreateBasicScan 206

BasicScan.DisplayHits 202

BasicScan.Filter 202

BasicScan.GetBoundaryConditionParams 206

BasicScan.GetBoundaryPoint 206

BasicScan.GetControlPoint 207

BasicScan.GetFilterParams 207

BasicScan.GetHitParams 208

BasicScan.GetMethodParams 208

BasicScan.GetMethodPointData 209

BasicScan.GetNomsParams 209

BasicScan.GetParams 210

BasicScan.HitType 203

BasicScan.Method 203

BasicScan.MethodCutPlane 204

BasicScan.MethodEnd 204

BasicScan.MethodEndTouch 204

BasicScan.MethodInitDir 204

BasicScan.MethodInitTopSurf 204

BasicScan.MethodInitTouch 204

BasicScan.MethodStart 204

BasicScan.NominalMode 204

BasicScan.OperationMode 204

BasicScan.RemoveControlPoint 210

BasicScan.SetBoundaryConditionParams 211

BasicScan.SetBoundaryPoint 211

BasicScan.SetControlPoint 212

BasicScan.SetFilterParams 212

BasicScan.SetHitParams 212

BasicScan.SetMethodParams 213

BasicScan.SetMethodPointData 214

BasicScan.SetNomsParams 214

BasicScan.SetParams 214

BasicScan.SinglePoint 205

BasicScanCommand Object Overview 200

Beep Statement 54

Beepingon 200

Best Fit Alignment 183

BestFit2D 366, 370

BestFit3D 367, 370

BestFitMathType 273

BFOffset 183

Bonus 251, 252

Bound 273

BoundaryCondition 200, 340

BoundaryConditionAxisV 201, 341

BoundaryConditionCenter 201, 341

BoundaryConditionEndApproach 201, 341

BoundaryConditionPlaneV 201, 341

BoundaryPointCount 202

BoxLength 274

BoxWidth 273

BufferSize 297

C
CadModel Members

CadModel.HighLightElement 217

CadModel.UnHighLightElement 218

CadToPartMatrix 183

CadWindow Members

CadWindow.Application 219

CadWindow.Height 219

CadWindow.Left 219

CadWindow.Parent 219

CadWindow.Print 220

CadWindow.SelectCADObject 220

CadWindow.Top 219

CadWindow.Visible 219

CadWindow.Width 219

CadWindow Object Overview 219

CadWindows 319

CadWindows Members

CadWindows.Application 220

CadWindows.Count 221

CadWindows.Item 221

CadWindows.Parent 221

CadWindows Object Overview 220

CalcMode 353

CalculateMatrices 187

CalculateNominals 284

Calibrate 367

Calibration Members

Calibration.Moved 221

Calibration.SphereID 221

Calibration.ToolID 222

Calibration Object Overview 221

CalibrationCommand 223

Call Statement 55

Calling Procedures in DLLs 19

CancelChanges 336

Caption 189

CatchMotionError 367

CBool Function 55

CDate Function 56

CDbl Function 57

ChDir 46, 48, 57

ChDrive 46

ChDrive Statement 58

Check 5, 15, 21, 28, 30–32, 36, 54–56, 59, 73, 75, 85, 140, 367

Check Boxes 28

CheckBox 59

Choose Function 60

Chr, Function 60

Cint Function 61

CircularRadiusIn 274

CircularRadiusOut 274

Class 41

ClearAllBreakPoints 243

ClearExecutionBlock 325

ClearMarked 244

ClearPlane 313, 367, 376

CLng Function 61

Close 321

Close Statement 62

CloseAll 330

CloseCommConnection 368

Column132 368

Command 272

Command List 284

Command Members

Command.ActiveTipCommand 222

Command.AlignmentCommand 222

Command.Application 222

Command.ArrayIndex 222

Command.AttachCommand 223

Command.BasicScanCommand 223

Command.CalibrationCommand 223

Command.ClearAllBreakPoints 243

Command.CommentCommand 223

Command.CopyMeastoNom 223

Command.Count 224

Command.Dialog 234

Command.Dialog2 235

Command.DimensionCommand 224

Command.DimFormat 225

Command.DimInfoCommand 225

Command.DisplayMetaFileCommand 225

Command.Execute 234

Command.ExternalCommand 225

Command.Feature 225

Command.FeatureCommand 226

Command.FileIOCommand 227

Command.FlowControlCommand 227

Command.GetExpression 235

Command.GetText 235

Command.GetToggleString 236

Command.GetUniqueID 237

Command.HasBreakPoint 228

Command.ID 228

Command.IsActiveTip 228

Command.IsAlignment 228

Command.IsArrayIndex 229

Command.IsAttach 229

Command.IsBasicScan 229

Command.IsCalibration 229

Command.IsComment 229

Command.IsConstructedFeature 229

Command.IsDCCFeature 229

Command.IsDimension 229

Command.IsDimFormat 229

Command.IsDimInfo 230

Command.IsDisplayMetaFile 230

Command.IsExpressionValid 237

Command.IsExternalCommand 230

Command.IsFeature 230

Command.IsFileIOCommand 230

Command.IsFlowControl 230

Command.IsHit 230

Command.IsLeapFrog 230

Command.IsLeitzMotion 231

Command.IsLoadMachine 231

Command.IsLoadProbe 231

Command.IsMeasuredFeature 231

Command.IsModal 231

Command.IsMove 231

Command.IsOptionProbe 231

Command.IsOptMotion 231

Command.IsScan 232

Command.IsStatistic 231

Command.IsTempComp 232

Command.IsTraceField 232

Command.Item 237

Command.LeapfrogCommand 232

Command.LeitzMotion 232

Command.LoadMachineCommand 232

Command.LoadProbeCommand 232

Command.Mark 237

Command.Marked 232

Command.ModalCommand 232

Command.MoveCommand 233

Command.Next 238

Command.OptionProbeCommand 233

Command.OptMotion 233

Command.Parent 233

Command.Prev 238

Command.PutText 238

Command.ReDraw 239

Command.Remove 239

Command.RemoveExpression 239

Command.ScanCommand 233

Command.SetExpression 240

Command.SetToggleString 241

Command.ShowIDOnCad 233

Command.SlaveArm 234

Command.SolveExpression 241

Command.StatisticCommand 234

Command.TempCompCommand 234

Command.TraceFieldCommand 234

Command.Type 234

Command.TypeDescription 234

Command Object Overview 222

Commands 319

Commands Members

Commands.Add 234, 242

Commands.Application 242

Commands.ClearMarked 244

Commands.Count 242

Commands.CurrentCommand 242

Commands.FindByUniqueID 244

Commands.GetCommandText 244

Commands.InsertionPointAfter 244

Commands.Item 245

Commands.LastCommand 242

Commands.MarkAll 245

Commands.Parent 242

Commands Object Overview 242

CommandValue 362

Comment 11, 140, 245, 262, 368

Comment Members

Comment.AddLine 246

Comment.Comment 245

Comment.CommentType 246

Comment.GetLine 246

Comment.ID 246

Comment.Input 246

Comment.RemoveLine 246

Comment.SetLine 247

Comment Object Overview 245

CommentCommand 223

Comments 11

Comments 11

Comments 40

Comments 382

CommentType 246

ComponentCount 333

ComponentDescription 334

ConnectedToMaster 319

ConnectedToSlave 319

ConnectionCount 333

ConnectionDescription 334

Const Statement 63

Constant Names 12

Contents 33, 34–36, 95

Control Structures 11, 14

ControlPoint Members

ControlPoint.Crossings 248

ControlPoint.I 247

ControlPoint.J 248

ControlPoint.K 248

ControlPoint.PointDensity 247

ControlPoint.Radius 248

ControlPoint.Type 248

ControlPoint.X 248

ControlPoint.Y 248

ControlPoint.Z 248

ControlPoint Object Overview 247

Copy 4, 263

CopyMeastoNom 223

CornerRadius 274

Cos 64

Count 221, 224, 242, 249, 271, 310, 329, 336, 358, 360

CountHits 284

Create

dialogs 6

forms 6

CreateBasicScan 206, 352

CreateObject 65

CreateReplaceMap 337

CreatID 368

Crossings 247

CSng Function 67

CStr Function 67

CurDir Function 68

CurrentCommand 242

CurrentUserDirectory 189

Cut 4, 9

CVar Function 69

Cypress Enable Scripting Language Elements 11

D
Data Types 47

DataType Members

DataType.Application 249

DataType.Count 249

DataType.Description 249

DataType.Parent 249

DataType.Type 249

DataType.Value 249

DataType Object Overview 248

DataTypes Members

DataTypes.Application 249

DataTypes.Count 249

DataTypes.GetDataTypeInfo 250

DataTypes.Item 249

DataTypes.Parent 249

DataTypes Object Overview 249

Date 356

Date Function 69

DateSerial 71

DateValue 72

Day Function 72

DCCFindNomsMode 274

DCCMeasureInMasterMode 274

Declare Statement 73

DefaultAxes 369, 381

DefaultFilePath 189

DefaultHits 369

DefaultMachineName 189

DefaultProbeFile 189

Delete 4

Depth 274

Description 249

Design

dialog 6

Dev 251

DevAngle 251, 252

Deviation 252, 275

Dialog 234, 335

create 6

designer 6

editor 6

Dialog Dialog Function 74

Dialog Support 26

Dialog2 235

Diam 356, 359

DIAM 296

Digits 313

Dim Statement 77

DimData Members

DimData.Bonus 251

DimData.Dev 251

DimData.DevAngle 251

DimData.Max 251

DimData.Meas 251

DimData.Min 251

DimData.Minus 251

DimData.Nom 251

DimData.Out 251

DimData.Plus 251

DimData Object Overview 250

Dimension Format Members

DimFormat.GetHeading Type 257

DimFormat.SetHeadingType 257

DimFormat.ShowDevSymbols 256

DimFormat.ShowDimensionText 256

DimFormat.ShowDimensionTextOptions 256

DimFormat.ShowHeadings 257

DimFormat.ShowStdDev 257

Dimension Format Object Overview 256

Dimension Information Members

DimInfo.DimensionID 258

DimInfo.GetFieldFormat 258

DimInfo.GetLocationAxis 259

DimInfo.GetTruePosAxis 260

DimInfo.SetFieldFormat 260

DimInfo.SetLocationAxis 261

DimInfo.SetTruePosAxis 262

DimInfo.ShowDimensionID 258

DimInfo.ShowFeatID 258

Dimension Information Object Overview 258

DimensionCommand 224

DimensionCommand Members

DimensionCommand.Angle 251

DimensionCommand.ArrowMultiplier 252

DimensionCommand.Axis 252

DimensionCommand.AxisLetter 252

DimensionCommand.Bonus 252

DimensionCommand.DevAngle 252

DimensionCommand.Deviation 252

DimensionCommand.Evaluate 256

DimensionCommand.Feat1 253

DimensionCommand.Feat2 253

DimensionCommand.Feat3 253

DimensionCommand.GraphicalAnalysis 252

DimensionCommand.ID 252

DimensionCommand.Length 253

DimensionCommand.Max 254

DimensionCommand.Measured 254

DimensionCommand.Min 254

DimensionCommand.Minus 254

DimensionCommand.Nominal 253

DimensionCommand.OutputMode 254

DimensionCommand.OutTol 254

DimensionCommand.ParallelPerpindicular 254

DimensionCommand.Parent 255

DimensionCommand.Plus 254

DimensionCommand.Profile 254

DimensionCommand.RadiusType 255

DimensionCommand.TextualAnalysis 255

DimensionCommand.TruePositionModifier 255

DimensionCommand.TruePosUseAxis 255

DimensionCommand.UnitType 256

DimensionCommand Object Overview 251

DimensionID 258

DimFormat 369

DimFormatCommand 225

DimInfoCommand 225

Dir$ Function 77

Direction 315

Display Metafile Members

DispMetafile.Comment 262

Display Metafile Object Overview 262

DisplayConeAngle 275

DisplayHits 202

DisplayMetaFileCommand 225

Distance 313

Distance2 313

DlgControlId Function 35

DlgEnable Statement 79

DlgFocus Statement, DlgFocus() Function 35

DlgListBoxArray, DlgListBoxArray() 36

DlgSetPicture 36

DlgText Statement 80

DlgValue, DlgValue() 36

DlgVisible Statement 81

Dmis Matrix Object Overview 263

DmisDialog Members

DmisDialog.Visible 263

DmisDialog Object Overview 263

DmisMatrix Members

DmisMatrix.Copy 263

DmisMatrix.Inverse 263

DmisMatrix.IsIdentity 263

DmisMatrix.Item 264

DmisMatrix.Multiply 264

DmisMatrix.Normalize 264

DmisMatrix.OffsetAxis 263

DmisMatrix.PrimaryAxis 263

DmisMatrix.Reset 264

DmisMatrix.RotateByAngle 265

DmisMatrix.RotateToPoint 265

DmisMatrix.RotateToVector 265

DmisMatrix.SecondaryAxis 264

DmisMatrix.SetMatrix 265

DmisMatrix.TertiaryAxis 264

DmisMatrix.TransformDataBack 266

DmisMatrix.TransformDataForward 266

DmisOut 321

Do...Loop Statement 81

DoubleValue 362

E
EdgeMeasureOrder 275

EdgeThickness 275

Edit

dialog 6

Edit Menu 4

EditWindow 319

EditWindow Members

EditWindow.Application 267

EditWindow.CommandMode 268

EditWindow.Height 267

EditWindow.Left 267

EditWindow.Parent 267

EditWindow.Print 268

EditWindow.ReportMode 269

EditWindow.SetDMISOutputOptions 270

EditWindow.SetPrintOptions 269

EditWindow.SetPrintOptionsEx 269

EditWindow.ShowAlignments 267

EditWindow.ShowComments 267

EditWindow.ShowDimensions 267

EditWindow.ShowFeatures 267

EditWindow.ShowHeaderFooter 267

EditWindow.ShowHits 268

EditWindow.ShowMoves 268

EditWindow.ShowOutTolOnly 268

EditWindow.ShowTips 268

EditWindow.StatusBar 268

EditWindow.Top 268

EditWindow.Visible 268

EditWindow.Width 268

EditWindow Object Overview 267

Enable Scripting Language 11

End Statement 83

EndA 337

EndAlign 366, 369, 375

EndAngle 275, 337

EndAngle2 275, 296

EndB 337

EndDim 370

EndFeature 369–70, 385

EndGetFeatPoint 370, 386

EndScan 370

Eof 83

EquateAlign 370

Erase 84

ErrorMode 299

ErrorType 299

Evaluate 284

Execute 199, 205, 215, 310, 321

ExecutedCommands 319

ExecutedCommands Members
ExecutedCommands.Application 270

ExecutedCommands.Count 271

ExecutedCommands.FindByUniqueID 271

ExecutedCommands.Item 271

ExecutedCommands.Parent 271

ExecuteMode 337

ExecutionWasCancelled 319

Exit 4

Exit Statement 85

Exp 46, 85, 86

Export 192, 321

Expression 297, 299

ExternalCommand 225

ExternalCommand Members

ExtCommand.Command 272

ExternalCommand Object Overview 271

ExternalFileID 183

ExternalID 183

F
F 296

FailIfExists 297

Feat1 253

Feat2 253

Feat3 253

FeatCommand Members

FeatCommand.AddInputFeat 283

FeatCommand.AlignWorkPlane 272

FeatCommand.AutoCircularMove 272

FeatCommand.AutoClearPlane 272

FeatCommand.AutoMove 273

FeatCommand.AutoMoveDistance 273

FeatCommand.AutoPH9 273

FeatCommand.AutoReadPos 273

FeatCommand.BestFitMathType 273

FeatCommand.BoxLength 274

FeatCommand.BoxWidth 273

FeatCommand.CalculateNominals 284

FeatCommand.CirclularRadiusIn 274

FeatCommand.CirclularRadiusOut 274

FeatCommand.CornerRadius 274

FeatCommand.CountHits 284

FeatCommand.DCCFindNomsMode 274

FeatCommand.DCCMeasureInMasterMode 274

FeatCommand.Depth 274

FeatCommand.Deviation 275

FeatCommand.DisplayConeAngle 275

FeatCommand.EdgeMeasureOrder 275

FeatCommand.EdgeThickness 275

FeatCommand.EndAngle 275

FeatCommand.EndAngle2 275

FeatCommand.Evaluate 284

FeatCommand.FilterType 275

FeatCommand.FindHole 276

FeatCommand.GenerateHits 284

FeatCommand.GenericAlignMode 276

FeatCommand.GenericDisplayMode 276

FeatCommand.GenericType 276

FeatCommand.GetData 285

FeatCommand.GetHit 287

FeatCommand.GetInputFeat 286

FeatCommand.GetInputOffset 287

FeatCommand.GetPoint 288

FeatCommand.GetSurfaceVectors 288

FeatCommand.GetVector 289

FeatCommand.HighPointSearchMode 277

FeatCommand.ID 277

FeatCommand.Increment 277

FeatCommand.Indent 277

FeatCommand.Indent2 277

FeatCommand.Indent3 277

FeatCommand.InitHits 277

FeatCommand.Inner 278

FeatCommand.InteriorHit 278

FeatCommand.Line3D 278

FeatCommand.MeasAngle 278

FeatCommand.MeasDiam 278

FeatCommand.MeasHeight 279

FeatCommand.MeasLength 279

FeatCommand.MeasMajorAxis 279

FeatCommand.MeasMinorAxis 279

FeatCommand.MeasPinDiam 279

FeatCommand.MeasSmallLength 279

FeatCommand.MeasureSlotWidth 279

FeatCommand.NumHits 279

FeatCommand.NumHitsPerRow 280

FeatCommand.NumRows 280

FeatCommand.Parent 280

FeatCommand.PermHits 280

FeatCommand.Polar 280

FeatCommand.PutData 289

FeatCommand.PutPoint 290

FeatCommand.PutSurfaceVectors 291

FeatCommand.PutVector 291

FeatCommand.ReferenceID 281

FeatCommand.ReferenceType 281

FeatCommand.RMeasFeature 281

FeatCommand.SetHit 292

FeatCommand.SetHit2 293

FeatCommand.SetInputOffset 294

FeatCommand.Spacer 281

FeatCommand.StartAngle 281

FeatCommand.StartAngle2 282

FeatCommand.TheoAngle 282

FeatCommand.TheoDiam 282

FeatCommand.TheoHeight 282

FeatCommand.TheoLength 282, 283

FeatCommand.TheoMajorAxis 282

FeatCommand.TheoMinorAxis 282

FeatCommand.TheoPinDiam 283

FeatCommand.Thickness 283

FeatCommand.Tolerance 283

FeatCommand.UsePin 283

FeatCommand Object Overview 272

FeatData Members

FeatData.ANGLE 296

FeatData.DIAM 296

FeatData.EndAngle 296

FeatData.EndAngle2 296

FeatData.F 296

FeatData.I 295

FeatData.ID 297

FeatData.J 295

FeatData.K 296

FeatData.LENGTH 296

FeatData.P1 296

FeatData.P2 296

FeatData.SmallDiam 296

FeatData.StartAngle 296

FeatData.StartAngle2 296

FeatData.TP 296

FeatData.X 295

FeatData.Y 295

FeatData.Z 295

FeatData Object Overview 295

FeatID 183

FeatID2 183

Feature 133, 225, 365–66, 370–73, 375, 377–78, 380, 384–87, 388

FeatureCommand 226

File Input/Output 21

File IO Members

FileIO.BufferSize 297

FileIO.Expression 297

FileIO.FailIfExists 297

FileIO.FileIOType 297

FileIO.FileName1 298

FileIO.FileName2 298

FileIO.FileOpenType 298

FileIO.FilePointerID 298

FileIO.VariableID 298

File IO Object Overview 297

File Menu 3

FileCopy 46, 86

FileIOCommand 227

FileIOType 297

FileLen Function 87

FileName1 298

FileName2 298

FileOpenType 298

FilePointerID 298

Filter 202, 342

FilterType 275

Find 5, 183, 204, 210, 214

Find Next 5–6

FindByUniqueID 244, 271

FindCad 183

FindHole 276

Fix Function 87

Flatness 368, 370, 384

FlowControlCommand 227

FlowControlCommand Members

FlowControlCommand.AddArgument 301

FlowControlCommand.AddSkipNum 302

FlowControlCommand.AngleOffset 299

FlowControlCommand.ErrorMode 299

FlowControlCommand.ErrorType 299

FlowControlCommand.Expression 299

FlowControlCommand.FileName 299

FlowControlCommand.GetArgumentDescription 302

FlowControlCommand.GetArgumentExpression 302

FlowControlCommand.GetArgumentName 303

FlowControlCommand.GetEndNum 299

FlowControlCommand.GetLeftSideOfExpression 303

FlowControlCommand.GetRightSideOfExpression 303

FlowControlCommand.GetSkipNum 303

FlowControlCommand.ID 300

FlowControlCommand.IsExpressionValid 303

FlowControlCommand.IsValidLeftHandValue 304

FlowControlCommand.IsValidSubroutineArgumentName 304

FlowControlCommand.Label 300

FlowControlCommand.NumArguments 300

FlowControlCommand.RemoveArgument 304

FlowControlCommand.RemoveSkipNum 304

FlowControlCommand.ReportAutoPrint 300

FlowControlCommand.SetArgumentDescription 305

FlowControlCommand.SetArgumentExpression 305

FlowControlCommand.SetArgumentName 305

FlowControlCommand.SetLeftSideOfAssignment 306

FlowControlCommand.SetRightSideOfAssignment 306

FlowControlCommand.SkipCount 300

FlowControlCommand.StartNum 300

FlowControlCommand.SubName 300

FlowControlCommand.XAxisOffset 301

FlowControlCommand.YAxisOffset 301

FlowControlCommand.ZAxisOffset 301

FlowControlCommand Object Overview 298

For...Next Statement 88

Form

designer 6

Format Statement 89

FPanel 309

FPanel Members

FPanel.PanelSelector 306

FPanel.Parent 306

FreeFile Function 98

Full 307

FullName 189, 319, 333

Function Statement 99

G
GapOnly 371

GenerateHits 284

GenericAlignMode 276

GenericDisplayMode 276

GenericType 276

Get Object Function 100

GetArgumentDescription 302

GetArgumentExpression 302

GetArgumentName 303

GetArrayIndexValue 363

GetArrayLowerBound 362

GetBoundaryConditionParams 206

GetBoundaryPoint 206

GetCommandText 244

GetControlPoint 207

GetData 285

GetDataTypeInfo 250

GetDimData 371–72

GetDimOutTol 372

GetEndNum 299

GetExpression 235

GetFeatData 371–72, 377

GetFeatID 373

GetFeatPoint 370, 373, 386

GetFeature 373

GetFilterParams 207, 346

GetHit 287

GetHitParams 208, 347

GetInputFeat 286

GetInputOffset 287

GetLeftSideOfExpression 303

GetLine 246

GetLocationAxis 259

GetLowerBound 197

GetMethodParams 208

GetMethodPointData 209, 347

GetNomsParams 209, 348

GetParams 210, 348

GetPH9Status 373

GetPoint 288

GetProbeOffsets 373

GetProbeRadius 374

GetProgramOption 374

GetProgramValue 374

GetRightSideOfExpression 303

GetSkipNum 303

GetStatsDir 354

GetSurfaceVectors 288

GetText 235

GetToggleString 236

GetTopMachineSpeed 374

GetTruePosAxis 260

GetType 374

GetUniqueID 237

GetUnits 374

GetUpperBound 198

GetVariableValue 322

GetVector 289

Global Statement 101

GoTo Statement 101

GraphicalAnalysis 252

H
HasBreakPoint 228

Height 189, 219, 267

Help 8, 191

Hex, 102, 105

HighLightElement 217

HighPointSearchMode 277

HighThreshold 355

Hit Function 367–68, 375, 382, 385–86

HitType 203, 343

Hour Function 103

HTMLDialog 105

I
I 247, 295, 331

ID 184, 199, 228, 246, 252, 277, 297, 300, 356, 359

If...Then...Else Statement 16, 105

IgnoreMotionError 375

IJK 315, 356

Import 322

Increment 277

IncrementA 337

IncrementB 337

Indent 277

Indent2 277

Indent3 277

InitHits 277

InitID 184

Inner 278

Input 246

Input # Statement 107

Input, Function 107

InputBox Function 108

InsertionPointAfter 244

Installation 42

InStr 109

Int Function 110

InteriorHit 278

Inverse 263

IsActiveTip 228

IsAlignment 228

IsArray Function 110

IsArrayIndex 229

IsAttach 229

IsBasicScan 229

IsCalibration 229

IsComment 229

IsConstructedFeature 229

IsDate 110

IsDCCFeature 229

IsDimension 229

IsDimFormat 229

IsDimInfo 230

IsDisplayMetaFile 230

IsEmpty 111

IsExpressionValid 237, 303

IsExternalCommand 230

IsFeature 230

IsFileIOCommand 230

IsFlowControl 230

IsFPanel 309

IsHit 230

IsIdentity 263

IsLeapFrog 230

IsLeitzMotion 231

IsLoadMachine 231

IsLoadProbe 231

IsLocationAxis 253

IsMeasuredFeature 231

IsModal 231

IsMove 231

IsNull 112

IsNumeric 112

IsObject Function 113

IsOptionProbe 231

IsOptMotion 231

IsProbeAnalog 319

IsScan 232

IsStatistic 231

IsTempComp 232

IsTraceField 232

IsTruePosAxis 253

IsValidLeftHandValue 304

IsValidSubroutineArgumentName 304

Item 237, 245, 271, 330, 336, 358, 360

Iterate 366, 370, 375

IterativeLevelAxis 184

IterativeOriginAxis 184

IterativeRotateAxis 184

J
J 248, 295, 332

K
K 248, 296, 332

Kill Statement 114

L
Label 300

LastCommand 242

LBound Function 115

LCase, Function 115

Leapfrog Members

Leapfrog.LeapfrogFull 307

Leapfrog.LeapfrogNumhits 307

Leapfrog.LeapfrogType 307

Leapfrog Object Overview 306

LeapfrogCommand 232

LeapfrogType 307

Left 116, 189, 219, 267

Leitz Motion Members

LeitzMot.LowForce 307

LeitzMot.MaxForce 308

LeitzMot.PositionalAccuracy 308

LeitzMot.ProbeAccuracy 308

LeitzMot.ReturnData 308

LeitzMot.ReturnSpeed 308

LeitzMot.ScanPointDensity 308

LeitzMot.TriggerForce 308

LeitzMot.UpperForce 308

Leitz Motion Object Overview 307

LeitzMotionCommand 232

Len 117

Length 253

LENGTH 296

Let Statement 118

Level 63, 135, 366, 375

Line Input # Statement 118

Line3D 278

List Boxes, Combo Boxes and Drop-down List Boxes 27

Load Machine Members

LoadProbes.MachineName 308

Load Machine Object Overview 308

Load Probes Members

LoadProbes.Filename 309

Load Probes Object Overview 309

LoadLayout 322

LoadMachineCommand 232

LoadProbe 375

LoadProbeCommand 232

LocalAlign 199

LOF 119

Log 120

LongValue 362

LowForce 307, 317

LowThreshold 355

M
Machine Members

Machine.Application 309

Machine.Command 310

Machine.ErrorMsg 310

Machine.ExecuteHit 310

Machine.FPanel 309

Machine.IsFPanel 309

Machine.LearnHit 309

Machine.Name 309

Machine.Parent 309

Machine Object Overview 309

MachineName 308

Machines 190

Machines Members

Machines.Application 310

Machines.Count 310

Machines.Item 310

Machines.Parent 310

Machines Object Overview 310

MachineToPartMatrix 184

MajorVersion 190

Making Applications Work Together 42

Mark 237

MarkAll 245

Marked 232

MasQ Enable Dialog Designer 6

MasterSlaveDlg 323

MasterSlaveDlg Members

MasterSlaveDlg.Applications 311

MasterSlaveDlg.Calibrate 312

MasterSlaveDlg.DCC 311

MasterSlaveDlg.MasterProbe 311

MasterSlaveDlg.MasterTip 311

MasterSlaveDlg.MeasuringArm 311

MasterSlaveDlg.Parent 312

MasterSlaveDlg.Position 312

MasterSlaveDlg.SlaveProbe 312

MasterSlaveDlg.SlaveTip 312

MasterSlaveDlg.Tool 312

MasterSlaveDlg Object Overview 311

MaterialCoefficient 355

Max 251, 254

MaxForce 308, 317

Maximize 191

MaxMineAve 376

MaxTAcceleration 317

MaxTSpeed 317

MaxXAcceleration 317

MaxYAcceleration 317

MaxZAcceleration 317

Meas 251

MeasAllFeat 184

MeasAllFeatAlways 184

MeasAngle 278

MeasDiam 278, 357

MeasHeight 279

MeasLength 279

MeasMajorAxis 279

MeasMinorAxis 279

MeasPinDiam 279

MeasSmallLength 279

MeasThickness 357

Measured 254

MeasureSlotWidth 279

MeasXYZ 357

MemoryPages 353

MessageBox 323

Method 203, 343

MethodCutPlane 204, 344

MethodEnd 204, 344

MethodEndTouch 204, 344

MethodInitDir 204, 344

MethodInitTopSurf 204, 344

MethodInitTouch 204, 344

Methods 39

MethodStart 204, 344

Mid Function 121

Min 251, 254

Minimize 191

MinorVersion 190

Minus 251, 254

Minute Function 122

MkDir 123

ModalCommand 232

ModalCommand Members

ModalCommand.ClearPlane 313

ModalCommand.Digits 313

ModalCommand.Distance 313

ModalCommand.Distance2 313

ModalCommand.Mode 313

ModalCommand.Name 314

ModalCommand.On 314

ModalCommand.Parent 314

ModalCommand.PassPlane 314

ModalCommand.RmeasMode 314

ModalCommand.Speed 314

ModalCommand.WorkPlane 315

ModalCommand Object Overview 313

Mode 100, 131–33, 171, 313, 338, 368, 376, 381, 387

Month Function 124

Move 33, 376, 386

MoveCommand 233

MoveCommand Members

MoveCommand.Angle 315

MoveCommand.Direction 315

MoveCommand.IJK 315

MoveCommand.NewTip 316

MoveCommand.OldTip 316

MoveCommand.Parent 316

MoveCommand.XYZ 316

MoveCommand Object Overview 315

Moved 221

MovePositionalAccuracy 317

MoveSpeed 338, 376

MsgBox 124

Multiply 264

N
Name 190, 309, 314, 319, 333, 361

Name Statement 127

NameType 353

NewTip 316

Next 238

Nom 251

Nominal 253

NominalMode 204, 345

Normalize 264

Now Function 127

NumArguments 300

Numbers 11–13, 12, 23, 35, 90, 93–94, 125, 127, 150, 159, 164

Numhits 307

NumHits 279, 338

NumHitsPerRow 280

NumInputs 185

NumLevels 338

NumRows 280

O
Oct Function 127

Offset 185, 338

OffsetAxis 263

OK and Cancel Buttons 27

OKButton 128

Old BASIC Code

Convert 7

Old PC-DMIS Basic Functions 365

OldBasic 319

OldTip 316

OLE Automation 41, 42, 43

What is OLE Automation? 42, 43

OLE Fundamentals 41

OLE Object 41

On 314

On Error 129

OnAddObject 193, 326

OnClosePartProgram 193

OnConnectSlave 193

OnDisconnectSlave 193

OnEndExecution 194, 326

OnExecuteDialogErrorMsg 326

OnExecuteDialogStatusMsg 326

OnObjectAboutToExecute 194, 327

OnObjectAboutToExecute2 194, 327

OnObjectExecuted 194, 327

OnObjectExecuted2 195, 327

OnOpenPartProgram 195

OnOpenRemotePanelDialog 195

OnSavePartProgram 196

OnStartExecution 196

OnUpdateStatusMessage 196

OnWorkOffset 328

Open 3, 189, 191, 192, 310, 329, 330

Open Statement 132

OpenCommConnection 376

OperationMode 204, 345

Operations 357

OperatorMode 190

Operators 47

Opt Motion Members

OptMotion.MaxTAcceleration 317

OptMotion.MaxTSpeed 317

OptMotion.MaxXAcceleration 317

OptMotion.MaxYAcceleration 317

OptMotion.MaxZAcceleration 317

OptMotion.MovePositionalAccuracy 317

Opt Motion Object Overview 316

Opt Probe Members

OptProbe.LowForce 317

OptProbe.MaxForce 317

OptProbe.PositionalAccuracy 318

OptProbe.ProbeAccuracy 318

OptProbe.ReturnData 318

OptProbe.ReturnSpeed 318

OptProbe.ScanPointDensity 318

OptProbe.TriggerForce 318

OptProbe.UpperForce 318

Option Base Statement 134

Option Buttons and Group Boxes 30

Option Explicit 135

OptionProbeCommand 233

OptMotionCommand 233

OptProbe Object Overview 317

Other Data Types 13

Declaration of Variables 13

Scope of Varibles 13

Out 251

OutputMode 254

OutTol 254

P
P1 296

P2 296

PanelSelector 306

ParallelPerpindicular 254

Parent 185, 219, 221, 233, 242, 249, 255, 267, 271, 280, 306, 309, 310, 314, 316, 320, 329, 333, 336, 357, 358, 359, 360

PartName 199, 320

PartProgram Members

PartProgram.ActiveMachine 318

PartProgram.Application 318

PartProgram.AsyncExecute 321

PartProgram.CadWindows 319

PartProgram.ClearExecutionBlock 325

PartProgram.Close 321

PartProgram.Commands 319

PartProgram.ConnectedToMaster 319

PartProgram.ConnectedToSlave 319

PartProgram.DmisOut 321

PartProgram.EditWindow 319

PartProgram.Execute 321

PartProgram.ExecutedCommands 319

PartProgram.ExecutionWasCancelled 319

PartProgram.Export 321

PartProgram.FullName 319

PartProgram.GetVariableValue 322

PartProgram.Import 322

PartProgram.IsProbeAnalog 319

PartProgram.LoadLayout 322

PartProgram.MasterSlaveDlg 323

PartProgram.MessageBox 323

PartProgram.Name 319

PartProgram.OldBasic 319

PartProgram.OnAddObject 326

PartProgram.OnEndExecution 326

PartProgram.OnExecuteDialogErrorMsg 326

PartProgram.OnExecuteDialogStatusMsg 326

PartProgram.OnObjectAboutToExecute 327

PartProgram.OnObjectAboutToExecute2 327

PartProgram.OnObjectExecuted 327

PartProgram.OnObjectExecuted2 327

PartProgram.OnWorkOffset 328

PartProgram.Parent 320

PartProgram.PartName 320

PartProgram.Path 320

PartProgram.Probes 320

PartProgram.Quit 323

PartProgram.RefreshPart 324

PartProgram.RevisionNumber 320

PartProgram.RunJournalFile 325

PartProgram.Save 324

PartProgram.SaveAs 324

PartProgram.SerialNumber 320

PartProgram.SetExecutionBlock 324

PartProgram.SetVariableValue 325

PartProgram.Tools 320

PartProgram.Units 320

PartProgram.Visible 320

PartProgram.WaitUntilExecuted 325

PartProgram Object Overview 318

PartProgram Settings Members

PartProgramSettings.AutoAdjustPH9 328

PartProgramSettings.AutoLabelPosition 329

PartProgramSettings.WarnLoadProbe 329

PartProgram Settings Object Overview 328

PartPrograms 190

PartPrograms Object Members

PartPrograms.Add 329

PartPrograms.Application 329

PartPrograms.CloseAll 330

PartPrograms.Count 329

PartPrograms.Item 330

PartPrograms.Open 330

PartPrograms.Parent 329

PartPrograms.Remove 331

PartPrograms Object Overview 329

PassPlane 314

Paste 4

Path 190, 320, 333

PermHits 280

PHSAPriority 338

PHSTol 338

Plus 251, 254

PointData Members

PointData.I 331

PointData.J 332

PointData.K 332

PointData.X 331

PointData.Y 331

PointData.Z 331

PointData Object Overview 331

PointDensity 248

PointTolerance 185

PointValue 362

Polar 280

PositionalAccuracy 308, 318

Post 191

Prehit 338, 377

Prev 238

PrimaryAxis 263

Print 4, 220, 268

Print # Statement 136

Print Method 135

Print Preview 4

Probe Members

Probe.ActiveComponent 332

Probe.ActiveConnection 333

Probe.Application 333

Probe.ClearAllTips 334

Probe.ComponentCount 333

Probe.ComponentDescription 334

Probe.ConnectionCount 333

Probe.ConnectionDescription 334

Probe.Dialog 335

Probe.FullName 333

Probe.Name 333

Probe.Parent 333

Probe.Path 333

Probe.QualificationSettings 333

Probe.Qualify 335

Probe.Qualify2 335

Probe.SelectAllTips 335

Probe.Tips 334

Probe.UseWristMap 334

Probe Object Overview 332

ProbeAccuracy 308, 318

ProbeComp 377

Probes 320

Probes Members

Probes.Add 336

Probes.Application 336

Probes.CancelChanges 336

Probes.Count 336

Probes.Item 336

Probes.Parent 336

Probes.Visible 336

Probes Object Overview 335

Profile 254

Properties 39

PutData 289

PutFeatData 377

PutPoint 290

PutSurfaceVectors 291

PutText 238

PutVector 291

Q
QualificationSettings 333

QualificationSettings Members

QualificationSettings.CreateReplaceMap 337

QualificationSettings.EndA 337, 338

QualificationSettings.EndAngle 337

QualificationSettings.EndB 337, 338

QualificationSettings.ExecuteMode 337

QualificationSettings.GetTool 339

QualificationSettings.IncrementA 337

QualificationSettings.IncrementB 337

QualificationSettings.Mode 338

QualificationSettings.MoveSpeed 338

QualificationSettings.NumHits 338

QualificationSettings.NumLevels 338

QualificationSettings.Offset 338

QualificationSettings.PHSAPriority 338

QualificationSettings.PHSTol 338

QualificationSettings.Prehit 338

QualificationSettings.ShankCheck 338

QualificationSettings.ShankHits 338

QualificationSettings.StartAngle 338

QualificationSettings.Tool 339

QualificationSettings.ToolMoved 339

QualificationSettings.ToolOnRotaryTable 339

QualificationSettings.ToolOverideI 339

QualificationSettings.ToolOverideJ 339

QualificationSettings.ToolOverideK 339

QualificationSettings.TouchSpeed 339

QualificationSettings.UserDefinedCalibrationMode 339

QualificationSettings.UserDefinedCalibrationOrder 339

QualificationSettings Object Overview 337

Qualify 335

Qualify2 335

Quit 192, 323

R
Radius 200, 248

RadiusType 255

Randomize Statement 138

ReadCommBlock 378

ReadLock 353

RecallEx 378

RecallIn 378

ReDim Statement 139

ReDraw 239

ReferenceID 281

ReferenceType 281

RefreshPart 324

RefTemp 355

Rem Statement 140

RemotePanelMode 190

Remove 239, 331, 359, 361

RemoveArgument 304

RemoveControlPoint 210

RemoveExpression 239

RemoveIndexSet 198

RemoveInputFeat 292

RemoveLine 246

RemoveSkipNum 304

RemoveStatsDir 354

RepierceCad 185

Replace 5, 205

ReportAutoPrint 300

ReportMode 269

Reset 264

Restore 192

Retract 378

RetroOnly 378

ReturnData 308, 318

ReturnSpeed 308, 318

RevisionNumber 320

Right, Function 140

RmDir Statement 141

RMeasFeature 281

RmeasMode 314

Rnd 142

Rotate 378–79

RotateByAngle 265

RotateCircle 379

RotateOffset 379

RotateToPoint 265

RotateToVector 265

Roundness 368, 379, 384

Run 8

RunJournalFile 325

Runout 368, 379, 384

S
Save 324

SaveAlign 380

SaveAs 324

ScanCommand 233

ScanCommand Members

Scan.BoundaryCondition 340

Scan.BoundaryConditionAxisV 341

Scan.BoundaryConditionCenter 341

Scan.BoundaryConditionEndApproach 341

Scan.BoundaryConditionPlaneV 341

Scan.Filter 342

Scan.GetBoundaryConditionParams 345

Scan.GetFilterParams 346

Scan.GetHitParams 347

Scan.GetMethodPointData 347

Scan.GetNomsParams 348

Scan.GetParams 348

Scan.HitType 343

Scan.Method 343

Scan.MethodCutPlane 344

Scan.MethodEnd 344

Scan.MethodEndTouch 344

Scan.MethodInitDir 344

Scan.MethodInitTopSurf 344

Scan.MethodInitTouch 344

Scan.MethodStart 344

Scan.NominalMode 345

Scan.OperationMode 345

Scan.SetBoundaryConditionParams 349

Scan.SetFilterParams 350

Scan.SetHitParams 350

Scan.SetMethodPointData 351

Scan.SetNomsParams 351

Scan.SetParams 352

ScanCommand Object Overview 340

ScanPointDensity 308, 318

Scripting 11

Second Function 143

SecondaryAxis 264

Seek Function 145

Select All 5

SelectAllTips 335

SelectCADObject 220

Selected 357

SendKeys 148

Sensors 355

SerialNumber 320

Set Statement 148

SetActive 192

SetArgumentDescription 305

SetArgumentExpression 305

SetArgumentName 305

SetArrayIndexValue 363

SetAutoParams 380

SetAutoVector 380

SetBoundaryConditionParams 211, 349

SetBoundaryPoint 211

SetControlPoint 212

SetDMISOutputOptions 270

SetExecutionBlock 324

SetExpression 240

SetFieldFormat 260

SetFilterParams 212, 350

SetHeadingType 257

SetHit 292

SetHit2 293

SetHitParams 212, 350

SetInputFeat 294

SetInputOffset 294

SetLeftSideOfAssignment 306

SetLine 247

SetLocationAxis 261

SetLowerBound 198

SetMatrix 265

SetMethodParams 213

SetMethodPointData 214, 351

SetNoms 369, 381

SetNomsParams 214, 351

SetOrigin 356

SetParams 214, 352

SetPrintOptions 269, 381

SetPrintOptionsEx 269

SetProgramOption 381

SetProgramValue 381

SetReportOptions 382

SetRightSideOfAssignment 306

SetRmeasMode 382

SetScanHitParams 382

SetScanHitVectors 382

SetScanParams 383

SetScanVectors 383

SetShankVector 181

SetSlaveMode 382

SetStatsDir 354

SetTheos 380, 383

SetToggleString 241

SetTool 339

SetTruePosAxis 262

SetUpperBound 198

SetVariableValue 325

ShankCheck 338

ShankHits 338

ShankIJK 359

Shell 43, 150

ShowAlignments 267

ShowComments 267

ShowDevSymbols 256

ShowDimensionID 258

ShowDimensions 267

ShowDimensionText 256

ShowDimensionTextOptions 256

ShowFeatID 258

ShowFeatures 267

ShowHeaderFooter 267

ShowHeadings 257

ShowHits 268

ShowIDOnCad 233

ShowMoves 268

ShowOutTolOnly 268

ShowStdDev 257

ShowTips 268

ShowXYZWindow 384

Sin 151

SinglePoint 205

SkipCount 300

SlaveArm 234

Sleep 384

SmallDiam 296

SolveExpression 241

Space 151

Spacer 281

SpawnNewInstance 192

Speed 314

SphereID 221

Sqr 152

StartA 338

StartAlign 384

StartAngle 281, 296, 338

StartAngle2 282, 296

StartB 338

StartDim 374, 384

StartFeature 369, 374, 385

StartGetFeatPoint 370, 373, 386–87

StartNum 300

StartScan 365, 387

Statements and Functions Used in Dialog Functions 34

Static 153

StatisticCommand 234

Statistics Members

Statistics.AddStatsDir 354

Statistics.CalcMode 353

Statistics.GetStatsDir 354

Statistics.MemoryPages 353

Statistics.ReadLock 353

Statistics.RemoveStatsDir 354

Statistics.SetStatsDir 354

Statistics.Statistics.NameType 353

Statistics.StatMode 353

Statistics.TransferDir 353

Statistics.WriteLock 354

Statistics Object Overview 353

StatMode 353

Stats 387

StatusBar 190, 268

Stop 154

Str Function 155

Straitness 387

StrComp Function 155

String, Function 156

StringValue 362

Sub Statement 157

SubName 300

Subroutines and Functions 17

Naming conventions 17

T
TempCompCommand 234

Temperature Compensation Members

TempComp.GetOrigin 355

TempComp.HighThreshold 355

TempComp.LowThreshold 355

TempComp.Material Coefficient 355

TempComp.RefTemp 355

TempComp.Sensors 355

TempComp.SetOrigin 356

Temperature Compensation Object Overview 355

TertiaryAxis 264

Text 158

Text Boxes and Text 29

TextBox 159

TextualAnalysis 255

The Dialog Function 32

The Dialog Function Syntax 32

TheoAngle 282

TheoDiam 282

TheoHeight 282

TheoLength 282

TheoMajorAxis 282

TheoMinorAxis 282

TheoPinDiam 283

TheoSmallLength 283

Thickness 283, 357

Time 357

Time, Function 160

Timer Event 160

TimeSerial - Function 161

TimeValue - Function 162

Tip 388

Tip Members

Tip.A 356

Tip.B 356

Tip.Date 356

Tip.Diam 356

Tip.ID 356

Tip.IJK 356

Tip.MeasDiam 357

Tip.MeasThickness 357

Tip.MeasXYZ 357

Tip.Parent 357

Tip.Selected 357

Tip.Thickness 357

Tip.Time 357

Tip.TipNum 357

Tip.Type 357

Tip.WristOffset 358

Tip.WristTipIJK 358

Tip.XYZ 358

Tip Object Overview 356

TipID 181

TipNum 357

Tips 334

Tips Members

Tips.Add 358

Tips.Application 358

Tips.Count 358

Tips.Item 357, 358

Tips.Parent 358

Tips.Remove 359

Tips Object Overview 358

Tolerance 283

Tool Members

Tool.Application 359

Tool.Diam 359

Tool.ID 359

Tool.Parent 359

Tool.ShankIJK 359

Tool.ToolType 359

Tool.Width 360

Tool.XYZ 360

Tool Object Overview 359

ToolID 222

ToolMoved 339

ToolOnRotaryTable 339

ToolOverideI 339

ToolOverideJ 339

ToolOverideK 339

Tools 320

Tools Members

Tools.Add 360

Tools.Application 360

Tools.Count 360

Tools.Item 360

Tools.Parent 360

Tools.Remove 361

Tools Object Overview 360

ToolType 359

Top 190, 219, 268

Touchspeed 388

TouchSpeed 339

TP 296

Trace 388

Tracefield Members

Tracefield.Name 361

Tracefield.Value 361

Tracefield Object Overview 361

TraceFieldCommand 234

TransferDir 353

TransformDataBack 266

TransformDataForward 266

Translate 388

TranslateOffset 388

TriggerForce 308, 318

Trim, LTrim Rtrim Functions 162

TruePositionModifier 255

TruePosUseAxis 255

Type 234, 248, 249, 357

Type Statement 163

Type/Functions/Statements 45

TypeDescription 234

U
UBound Function 165

UCase, Function 166

Undo 4

UnHighLightElement 218

Units 320

UnitType 256

UpperForce 308, 318

UseBodyAxis 185

UsePin 283

User Defined Types 25, 164

UserDefinedCalibrationMode 339

UserDefinedCalibrationOrder 339

UserExit 191

UseWristMap 334

V
Val 167

Value 249, 361

Variable and Constant Names 12

Variable Members

Variable.CommandValue 362

Variable.DoubleValue 362

Variable.GetArrayIndexValue 363

Variable.GetArrayLowerBound 362

Variable.GetArrayUpperBound 362

Variable.LongValue 362

Variable.PointValue 362

Variable.SetArrayIndexValue 363

Variable.StringValue 362

Variable.VariableType 362

Variable Names 12

Variable Object Overview 361

Variable Types 12

Variants and Concatenation 12

VariableID 298

VariableType 362

Varialbe Types

Variant 12

VarType 167

VersionString 191

View 8, 220

Visible 191, 219, 263, 268, 320, 336

W
Wait 148, 384, 388

WaitUntilExecuted 325

WaitUntilReady 192

WarningDefault19 197

WarningDefault48 197

WarningDefault60 197

WarnLoadProbe 329

WarnNoSavePrg 197

WarnOKPh9 197

WarnOKRotPh9 197

WarnOverwritingAlignment 197

Weekday Function 168

What is an OLE Object? 39

While...Wend Statement 168

Width 191, 219, 268, 360

With Statement 169

Workplane 186, 366–67, 384, 386, 389

WorkPlane 315

WristOffset 358

WristTipIJK 358

Write # - Statement 171

WriteCommBlock 389

WriteLock 354

X
X 248, 295, 331

XAxisOffset 301

XYZ 316, 358, 360

Y
Y 248, 295, 331

YAxisOffset 301

Year 172

Z
Z 248, 295, 331

ZAxisOffset 301

�_D2HPrivate(-9,17)��Basic Script Editor

�_D2HPrivate(-9,62)��Cypress Enable Scripting Language Elements

�_D2HPrivate(-9,62)��Cypress Enable Scripting Language Elements

�_D2HPrivate(-9,161)��Language Reference A - Z

�_D2HPrivate(-9,426)��Automation

�_D2HPrivate(-9,1436)��Old PC-DMIS Basic Functions

�_D2HPrivate(-9, 33)��Basic Script Toolbar

�_D2HPrivate(-9, 5)��File Menu

�_D2HPrivate(-9, 13)��Edit Menu

�_D2HPrivate(-9, 27)��View Menu

�_D2HPrivate(-9, 28)��Run Menu

�_D2HPrivate(-9, 29)��Help Menu

� PAGE \# "'Page: '#'�'" ��Dialog Support

�_D2HPrivate(-9, 379)��VarType

�_D2HPrivate(-9, 258)��IsNumeric

�_D2HPrivate(-9, 280)��Mid Function

�_D2HPrivate(-9, 345)��Stop Statement

� PAGE \# "'Page: '#'�'" ��Language Reference A - Z

�_D2HCondition(2, 0, 0)��Functions, Statements, Reserved words - Quick Reference

�_D2HPrivate(-9,126)��Type/Functions/Statements

�_D2HPrivate(-9,127)��Data Types

�_D2HPrivate(-9,128)��Operators

�_D2HPrivate(-9,132)��Operator Precedence

�_D2HPrivate(-9,133)��Functions, Statements, Reserved words - Quick Reference

�_D2HPrivate(-9, 335)��Shell Function

�_D2HPrivate(-9, 331)��SendKeys Function

�_D2HPrivate(-9, 164)��Cos Function

�_D2HPrivate(-9, 355)��Tan Function

�_D2HPrivate(-9, 337)��Sin Function

�_D2HPrivate(-9, 171)��CurDir Function

�_D2HPrivate(-9, 148)��ChDrive Statement

�_D2HPrivate(-9,1523)��Dir Function

�_D2HPrivate(-9, 284)��MkDir

�_D2HPrivate(-9, 319)��RmDir Statement

�_D2HPrivate(-9, 146)��ChDir Statement

�_D2HPrivate(-9, 171)��CurDir Function

�_D2HPrivate(-9, 284)��MkDir

�_D2HPrivate(-9, 319)��RmDir Statement

�_D2HPrivate(-9, 179)��DateValue Function

�_D2HPrivate(-9, 365)��TimeSerial - Function

�_D2HPrivate(-9, 367)��TimeValue - Function

�_D2HPrivate(-9, 177)��DateSerial Function

�_D2HPrivate(-9, 365)��TimeSerial - Function

�_D2HPrivate(-9, 367)��TimeValue - Function

�_D2HPrivate(-9, 286)��Month Function

�_D2HPrivate(-9, 381)��Weekday Function

�_D2HPrivate(-9, 236)��Hour Function

�_D2HPrivate(-9, 323)��Second Function

�_D2HPrivate(-9, 138)��Call Statement

� PAGE \# "'Page: '#'�'" ��DlgVisible Statement	

� PAGE \# "'Page: '#'�'" ��DlgText Statement	

� PAGE \# "'Page: '#'�'" ��DlgEnable Statement

� PAGE \# "'Page: '#'�'" ��DlgVisible Statement	

� PAGE \# "'Page: '#'�'" ��DlgEnable Statement

� PAGE \# "'Page: '#'�'" ��DlgText Statement	

� PAGE \# "'Page: '#'�'" ��While...Wend Statement

� PAGE \# "'Page: '#'�'" ��Exit Statement

� PAGE \# "'Page: '#'�'" ��Function Statement

� PAGE \# "'Page: '#'�'" ��If...Then...Else Statement

� PAGE \# "'Page: '#'�'" ��Select Case Statement

� PAGE \# "'Page: '#'�'" ��Stop Statement

� PAGE \# "'Page: '#'�'" ��Open Statement

� PAGE \# "'Page: '#'�'" ��Dim Statement

� PAGE \# "'Page: '#'�'" ��End Statement

� PAGE \# "'Page: '#'�'" ��Stop Statement

� PAGE \# "'Page: '#'�'" ��Log

� PAGE \# "'Page: '#'�'" ��LOF

� PAGE \# "'Page: '#'�'" ��Int Function

� PAGE \# "'Page: '#'�'" ��Print # Statement

� PAGE \# "'Page: '#'�'" ��Open Statement

� PAGE \# "'Page: '#'�'" ��Close Statement

� PAGE \# "'Page: '#'�'" ��Write # - Statement

� PAGE \# "'Page: '#'�'" ��Dim Statement

� PAGE \# "'Page: '#'�'" ��End Statement

� PAGE \# "'Page: '#'�'" ��Exit Statement

� PAGE \# "'Page: '#'�'" ��Sub Statement

� PAGE \# "'Page: '#'�'" ��Open Statement

� PAGE \# "'Page: '#'�'" ��CreateObject Function

� PAGE \# "'Page: '#'�'" ��Dim Statement

� PAGE \# "'Page: '#'�'" ��Const Statement

� PAGE \# "'Page: '#'�'" ��Type Statement

� PAGE \# "'Page: '#'�'" ��Oct Function

� PAGE \# "'Page: '#'�'" ��Select Case Statement

� PAGE \# "'Page: '#'�'" ��Mid Function

� PAGE \# "'Page: '#'�'" ��Fix Function

� PAGE \# "'Page: '#'�'" ��IsEmpty

� PAGE \# "'Page: '#'�'" ��IsNumeric

� PAGE \# "'Page: '#'�'" ��VarType

� PAGE \# "'Page: '#'�'" ��IsObject Function

� PAGE \# "'Page: '#'�'" ��IsEmpty

� PAGE \# "'Page: '#'�'" ��IsNumeric

� PAGE \# "'Page: '#'�'" ��VarType

� PAGE \# "'Page: '#'�'" ��IsDate

� PAGE \# "'Page: '#'�'" ��IsNull

� PAGE \# "'Page: '#'�'" ��IsNumeric

� PAGE \# "'Page: '#'�'" ��VarType

� PAGE \# "'Page: '#'�'" ��IsDate

� PAGE \# "'Page: '#'�'" ��IsEmpty

� PAGE \# "'Page: '#'�'" ��IsNumeric

� PAGE \# "'Page: '#'�'" ��VarType

� PAGE \# "'Page: '#'�'" ��IsDate

� PAGE \# "'Page: '#'�'" ��IsEmpty

� PAGE \# "'Page: '#'�'" ��IsNull

� PAGE \# "'Page: '#'�'" ��VarType

� PAGE \# "'Page: '#'�'" ��IsEmpty

� PAGE \# "'Page: '#'�'" ��IsNumeric

� PAGE \# "'Page: '#'�'" ��VarType

� PAGE \# "'Page: '#'�'" ��IsObject Function

� PAGE \# "'Page: '#'�'" ��RmDir Statement

� PAGE \# "'Page: '#'�'" ��UBound Function

� PAGE \# "'Page: '#'�'" ��UCase Function

� PAGE \# "'Page: '#'�'" ��InStr

� PAGE \# "'Page: '#'�'" ��Open Statement

� PAGE \# "'Page: '#'�'" ��FileLen Function

� PAGE \# "'Page: '#'�'" ��Exp

� PAGE \# "'Page: '#'�'" ��Sin Function

� PAGE \# "'Page: '#'�'" ��Cos Function

� PAGE \# "'Page: '#'�'" ��Day Function

� PAGE \# "'Page: '#'�'" ��Hour Function

� PAGE \# "'Page: '#'�'" ��Weekday Function

� PAGE \# "'Page: '#'�'" ��Year Function

� PAGE \# "'Page: '#'�'" ��Input Function

� PAGE \# "'Page: '#'�'" ��Kill Statement

� PAGE \# "'Page: '#'�'" ��ChDir Statement

� PAGE \# "'Page: '#'�'" ��Hex

� PAGE \# "'Page: '#'�'" ��Dim Statement

� PAGE \# "'Page: '#'�'" ��Global Statement

� PAGE \# "'Page: '#'�'" ��LBound Function

� PAGE \# "'Page: '#'�'" ��Const Statement

� PAGE \# "'Page: '#'�'" ��Global Statement

� PAGE \# "'Page: '#'�'" ��Len

� PAGE \# "'Page: '#'�'" ��Left

� PAGE \# "'Page: '#'�'" ��Mid Function

� PAGE \# "'Page: '#'�'" ��ChDir Statement

� PAGE \# "'Page: '#'�'" ��CurDir Function

� PAGE \# "'Page: '#'�'" ��Day Function

� PAGE \# "'Page: '#'�'" ��Hour Function

� PAGE \# "'Page: '#'�'" ��Minute Function

� PAGE \# "'Page: '#'�'" ��Now Function

� PAGE \# "'Page: '#'�'" ��Open Statement

� PAGE \# "'Page: '#'�'" ��Open Statement

� PAGE \# "'Page: '#'�'" ��If...Then...Else Statement

� PAGE \# "'Page: '#'�'" ��Dim Statement

� PAGE \# "'Page: '#'�'" ��Global Statement

� PAGE \# "'Page: '#'�'" ��Static Statement

� PAGE \# "'Page: '#'�'" ��Dim Statement

� PAGE \# "'Page: '#'�'" ��Function Statement

� PAGE \# "'Page: '#'�'" ��Sub Statement

� PAGE \# "'Page: '#'�'" ��Format Function

� PAGE \# "'Page: '#'�'" ��Val

� PAGE \# "'Page: '#'�'" ��Space Function

� PAGE \# "'Page: '#'�'" ��Call Statement

� PAGE \# "'Page: '#'�'" ��Dim Statement

� PAGE \# "'Page: '#'�'" ��Function Statement

� PAGE \# "'Page: '#'�'" ��Atn Function

� PAGE \# "'Page: '#'�'" ��Cos Function

� PAGE \# "'Page: '#'�'" ��Sin Function

� PAGE \# "'Page: '#'�'" ��DateSerial Function

� PAGE \# "'Page: '#'�'" ��DateValue Function

� PAGE \# "'Page: '#'�'" ��Hour Function

� PAGE \# "'Page: '#'�'" ��Minute Function

� PAGE \# "'Page: '#'�'" ��Now Function

� PAGE \# "'Page: '#'�'" ��Second Function

� PAGE \# "'Page: '#'�'" ��TimeValue - Function

� PAGE \# "'Page: '#'�'" ��DateSerial Function

� PAGE \# "'Page: '#'�'" ��DateValue Function

� PAGE \# "'Page: '#'�'" ��Hour Function

� PAGE \# "'Page: '#'�'" ��Minute Function

� PAGE \# "'Page: '#'�'" ��Now Function

� PAGE \# "'Page: '#'�'" ��Second Function

� PAGE \# "'Page: '#'�'" ��TimeValue - Function

� PAGE \# "'Page: '#'�'" ��DateSerial Function

� PAGE \# "'Page: '#'�'" ��DateValue Function

� PAGE \# "'Page: '#'�'" ��Hour Function

� PAGE \# "'Page: '#'�'" ��Minute Function

� PAGE \# "'Page: '#'�'" ��Now Function

� PAGE \# "'Page: '#'�'" ��Second Function

� PAGE \# "'Page: '#'�'" ��TimeSerial - Function

� PAGE \# "'Page: '#'�'" ��Dim Statement

� PAGE \# "'Page: '#'�'" ��Global Statement

� PAGE \# "'Page: '#'�'" ��LBound Function

� PAGE \# "'Page: '#'�'" ��Option Base Statement

� PAGE \# "'Page: '#'�'" ��LCase, Function

� PAGE \# "'Page: '#'�'" ��IsNull

� PAGE \# "'Page: '#'�'" ��IsNumeric

� PAGE \# "'Page: '#'�'" ��Hour Function

� PAGE \# "'Page: '#'�'" ��Second Function

� PAGE \# "'Page: '#'�'" ��Minute Function

� PAGE \# "'Page: '#'�'" ��Day Function

� PAGE \# "'Page: '#'�'" ��Do...Loop Statement

� PAGE \# "'Page: '#'�'" ��While...Wend Statement

� PAGE \# "'Page: '#'�'" ��Do...Loop Statement

� PAGE \# "'Page: '#'�'" ��Open Statement

� PAGE \# "'Page: '#'�'" ��Print # Statement

� PAGE \# "'Page: '#'�'" ��Date Function

� PAGE \# "'Page: '#'�'" ��Day Function

� PAGE \# "'Page: '#'�'" ��Hour Function

� PAGE \# "'Page: '#'�'" ��Month Function

� PAGE \# "'Page: '#'�'" ��Minute Function

� PAGE \# "'Page: '#'�'" ��Now Function

� PAGE \# "'Page: '#'�'" ��Second Function

�_D2HPrivate(-9,1202)��PartProgram.GetVariableValue

�_D2HPrivate(-9,1214)��PartProgram.SetVariableValue

�_D2HPrivate(-9,729)��Command.PutText

�_D2HPrivate(-9,1633)��Application Object Events Object Overview

�_D2HPrivate(-9,1034)��Machine Object Overview

�_D2HPrivate(-9,1104)��PartProgram Object Overview

�_D2HPrivate(-9, 397)��Automation Object Heirarchy Charts

�_D2HPrivate(-9,401)��Using the Object Browser in Other Editors

�_D2HPrivate(-9, 592)��Command.BasicScanCommand

�_D2HPrivate(-9, 540)��BasicScan.SetBoundaryConditionParams

� PAGE \# "'Page: '#'�'" ��Commands.ClearAllBreakPoints

�_D2HPrivate(-9,1679)��PointData Object Overview

�ExternalCommand Object Overview

�_D2HPrivate(-9, 654)��Command.Type

�_D2HPrivate(-9, 965)��File IO Object Overview

�_D2HPrivate(-9, 654)��Command.Type

�_D2HPrivate(-9, 852)��FeatCommand Object Overview

�_D2HPrivate(-9, 976)��FlowControlCommand Object Overview

�_D2HPrivate(-9, 1014)��Leapfrog Object Overview

�_D2HPrivate(-9, 1014)��Leapfrog Object Overview

�_D2HPrivate(-9, 654)��Command.Type

�_D2HPrivate(-9, 1030)��Load Machine Object Overview

�_D2HPrivate(-9, 654)��Command.Type

�_D2HPrivate(-9, 1032)��Load Probes Object Overview

�_D2HPrivate(-9, 1062)��ModalCommand Object Overview

�_D2HPrivate(-9, 1076)��MoveCommand Object Overview

�_D2HPrivate(-9, 944)��FeatData Object Overview

�_D2HPrivate(-9, 1255)��Statistics Object Overview

�_D2HPrivate(-9, 1221)��ScanCommand Object Overview

�_D2HPrivate(-9, 1270)��Temperature Compensation Object Overview

�_D2HPrivate(-9, 1331)��Tracefield Object Overview

�_D2HPrivate(-9, 1014)��Leapfrog Object Overview

�_D2HPrivate(-9, 654)��Command.Type

�_D2HPrivate(-9, 1014)��Leapfrog Object Overview

�_D2HPrivate(-9, 654)��Command.Type

�_D2HPrivate(-9, 1030)��Load Machine Object Overview

�_D2HPrivate(-9, 654)��Command.Type

�_D2HPrivate(-9, 1030)��Load Machine Object Overview

�_D2HPrivate(-9, 654)��Command.Type

�_D2HPrivate(-9, 1062)��ModalCommand Object Overview

�_D2HPrivate(-9, 654)��Command.Type

�_D2HPrivate(-7, 1076, 1)��MoveCommand Object Overview

�_D2HPrivate(-9, 654)��Command.Type

�_D2HPrivate(-9, 944)��FeatData Object Overview

�_D2HPrivate(-9, 654)��Command.Type

�_D2HPrivate(-9, 1093)��OptProbe Object Overview

�_D2HPrivate(-9, 654)��Command.Type

�_D2HPrivate(-9, 1221)��ScanCommand Object Overview

�_D2HPrivate(-9, 654)��Command.Type

�_D2HPrivate(-9, 1221)��ScanCommand Object Overview

�_D2HPrivate(-9, 654)��Command.Type

�_D2HPrivate(-9, 1270)��Temperature Compensation Object Overview

�_D2HPrivate(-9, 654)��Command.Type

�_D2HPrivate(-9, 1331)��Tracefield Object Overview

�_D2HPrivate(-9, 654)��Command.Type

�_D2HPrivate(-9, 683)��Commands.Add

�_D2HPrivate(-9, 654)��Command.Type

�_D2HPrivate(-9, 659)��Command.Dialog2

�_D2HPrivate(-9, 658)��Command.Dialog

�_D2HPrivate(-9, 802)��DmisDialog Object Overview

�_D2HPrivate(-9, 673)��Command.SetExpression

�_D2HPrivate(-9, 672)��Command.RemoveExpression

�_D2HPrivate(-9, 661)��Command.GetText

�_D2HPrivate(-9, 669)��Command.PutText

�_D2HPrivate(-9, 660)��Command.GetExpression

�_D2HPrivate(-9, 668)��Command.Prev

�_D2HPrivate(-9, 667)��Command.Next

�Command.GetText

�Command.GetExpression

�Commands.Add

�Command.SetExpression

�Command.GetExpression

�Command.PutText

�_D2HPrivate(-9,669)��Command.FlowControlCommand

� PAGE \# "'Page: '#'�'" ��Command Object Overview

�_D2HCondition(2,0,0)��Commands.Add

�_D2HCondition(2,0,0)��Commands.Item

�_D2HCondition(2,0,0)��Commands.Count

�Command Object Overview

�Command.Remove

�_D2HCondition(2, 0, 0)��Command.Type

�_D2HCondition(2, 0, 0)��Command.Dialog2

�_D2HCondition(2, 0, 0)��FeatCommand.ReferenceType

�_D2HCondition(2,0,0)��DimensionCommand Members, DimensionCommand.Evaluate

�_D2HCondition(2, 0, 0)��FeatCommand.PutPoint

�_D2HCondition(2, 0, 0)��FeatCommand.PutSurfaceVectors

�FeatCommand.GetData

�FeatCommand.SetHit

�FeatCommand.AddInputFeat

�_D2HCondition(2, 0, 0)��Command.Type

�_D2HCondition(2, 0, 0)��Command.FlowControlCommand

�FPanel Object Overview

�Machine.IsFpanel

�_D2HCondition(2, 0, 0)��Command.Type

�_D2HCondition(2, 0, 0)��ModalCommand.Distance2

�_D2HCondition(2, 0, 0)��ModalCommand.PassPlane

�_D2HCondition(2, 0, 0)��Command.Type

�Command.Type

�_D2HCondition(2, 0, 0)��Command.Type

�Tip.ID

�_D2HCondition(2, 0, 0)��Tip.ID

�Command.Type

�_D2HCondition(2, 0, 0)��Command Object Overview

�_D2HPrivate(-9,1202)��PartProgram.GetVariableValue

�_D2HPrivate(-9,1214)��PartProgram.SetVariableValue

�_D2HPrivate(-9,729)��Command.PutText

�_D2HCondition(2,0,0)��PartProgram.Execute

�_D2HCondition(2,0,0)��PartProgram.AsyncExecute

�_D2HCondition(2,0,0)��PartProgram.ClearExecutionBlock

�_D2HCondition(2,0,0)��PartProgram.SetExecutionBlock

�_D2HPrivate(-9,1202)��PartProgram.GetVariableValue

�_D2HPrivate(-9,1214)��PartProgram.SetVariableValue

�_D2HPrivate(-9,729)��Command.PutText

�_D2HCondition(2, 0, 0)��FeatData Object Overview

�Scan.Method

�Scan.Filter

�_D2HCondition(2, 0, 0)��Scan.OperationMode

�Scan.HitType

�Scan.NominalMode

�Scan.BoundaryCondition

�Scan.MethodStart

�Scan.MethodEnd

�_D2HCondition(2, 0, 0)��Scan.MethodInitTouch

�Scan.MethodEndTouch

�Scan.MethodInitDir

�Scan.MethodCutPlane

�PointData Object Overview

�_D2HCondition(2, 0, 0)��Tips Object Overview

�_D2HCondition(2, 0, 0)��ModalCommand Object Overview

�ModalCommand Object Overview

�_D2HCondition(1, 0, 0)��ModalCommand Object Overview

�_D2HCondition(2, 0, 0)��Command.FlowControlCommand

�_D2HCondition(2, 0, 0)��Probe Object Overview

�_D2HCondition(2, 0, 0)��Command.FlowControlCommand

�_D2HCondition(2, 0, 0)��Tools Object Overview

�_D2HCondition(2, 0, 0)��ModalCommand Object Overview

�_D2HCondition(2, 0, 0)��ModalCommand Object Overview

�_D2HCondition(2, 0, 0)��Command.FlowControlCommand

�_D2HCondition(2, 0, 0)��FeatData Object Overview

�_D2HCondition(2, 0, 0)��Tool Object Overview

�_D2HCondition(2, 0, 0)��Tool Object Overview

�_D2HCondition(2, 0, 0)��Tool Object Overview

�_D2HCondition(2, 0, 0)��Properties:

�_D2HCondition(2, 0, 0)��Methods:

�_D2HPrivate(-9,1801)��OpenCommConnection

_1116696734.doc
Method

Method

Start

Method

End

Method

CutPlane

Method

InitDir

Method

InitTouch

Method

InitTopSurf

Method

EndTouch

Linear

Y

Y

Y

Y

Y

-

Y

Edge

Y

Y

-

Y

Y

Y

Y

Circle

Y

-

Y

-

Y

-

-

Cylinder

Y

-

Y

-

Y

-

-

Str Line

Y

Y

Y

-

-

-

-

Center

Y

Y

Y

-

Y

-

