
i

Table of Contents

Branching by Using Flow Control .. 3

Branching by Using Flow Control: Introduction ... 3

Using Control Pairs ... 3

If / End If .. 4

Else If / End Else If .. 5

Else / End Else .. 6

While / End While .. 8

Do / Until .. 9

Select / End Select .. 10

Case / End Case .. 13

Default Case / End Default Case ... 13

Using Generic Loops ... 14

Using Labels.. 17

Jumping to a Label Using GOTO ... 18

Branching on an Error ... 19

On Error Supported Interfaces ... 21

Branching with Subroutines ... 21

Creating a New Subroutine .. 22

Editing an Existing Subroutine ... 26

Understanding the Argument Edit Dialog Box.. 26

Calling a Subroutine .. 27

Understanding the Call Subroutine Dialog Box .. 30

Table of Contents

ii

Subroutine Examples ... 34

Code Sample of a Subroutine .. 37

Ending a Measurement Routine .. 39

3

Branching by Using
Flow Control

Branching by Using Flow Control: Introduction
Suppose you have a part with many features, but you just want to measure a few features over
and over to get a comprehensive statistical set of data for those features. Suppose you want to
jump to a particular part in your measurement routine dependent on a response from the user.
You can accomplish tasks such as these, and many others, by using flow control commands. By
setting up conditions for certain commands, you can control the flow of your measurement
routine.

This chapter will provide you with the information you need to accomplish such tasks. It explains
the syntax conditional statements, loops, and subroutines. It also provides many code samples.

Note: When looping or branching occurs in the code samples, indentation has been used for
clarity to show statements assigned to a certain condition. In the actual Edit window code, you
won't see any indentation.

The main topics covered in this chapter include the following:

• Using Control Pairs
• Using Generic Loops
• Using Labels
• Branching on an Error
• Branching with Subroutines
• Ending a Measurement Routine

Using Control Pairs

The Insert | Flow Control Command | Control Pairs submenu offers various paired commands
that work within the Edit window to govern or "control" the proper flow of the measurement
routine. To insert a control pair type command into the Edit window, simply type the command, or
choose a command from this submenu.

Important: When using a conditional branching statement to test for a the value of a YES / NO
comment, be aware that your test should look for an uppercase "YES" or "NO" value. A
lowercase "Yes" or "No" will not work. For information on comments, see the "Inserting
Programmer Comments" topic in the "Inserting Report Commands" chapter.

Branching by Using Flow Control

4

If / End If

The Insert | Flow Control Command | Control Pairs | If / End If menu option allows you to add a
conditional block to the measurement routine. The items between the IF and the END IF
commands will only execute if the expression for the IF command evaluates to true (nonzero).
Otherwise, flow of execution will jump to the first command after the END/IF command.

The Edit window command line for a IF / END IF statement reads:

IF/expression
END_IF/

To insert the If / End If commands:

1. Place the cursor in the desired location of the Edit window.
2. Select If / End If from the menu bar. The IF / END IF statement will appear in the Edit

window.

Code Sample of If / End If

Consider the following example that asks the user if he or she would like measure a point feature.

C1= COMMENT/YESNO,Would you like to measure the point feature, PNT1?

IF/C1.INPUT=="YES"

PNT1=FEAT/POINT,RECT

…

…

ENDMEAS/

END_IF/

Explanation of Sample Code

C1=COMMENT/YESNO
This line takes and stores the YES or NO response from the user.

IF/C1.INPUT=="YES"
This line is the expression. It tests to see if the input of comment 1 is a YES. If it's a YES then
the IF statement is TRUE and continues executing the statements after the IF statement, in
this case it measures the PNT1 feature. If NO it moves to the END_IF statement.

21_Branching by Using Flow Control

5

END_IF
This line ends the execution of commands inside the IF / END IF block of code. Any
command following this line is where PC-DMIS will go to if the user clicks No at the comment.

Else If / End Else If

The Insert | Flow Control Command | Control Pairs | Else If / End Else If menu option allows you
to add a conditional block to the measurement routine. The items between the ELSE IF and the
END ELSE IF commands will only execute if the expression for the ELSE IF command evaluates
to true (nonzero). The ELSE IF / END ELSE IF block must be positioned directly after an IF / END
IF block or another ELSE IF / END ELSE IF block. If all IF / ELSE IF expressions above the
current block have evaluated to false, then the expression will be evaluated. If the expression
evaluates to false (zero), then execution will jump to the next command following the END ELSE
IF command. If any of the IF / ELSE if expressions above the current block evaluate to true, all
subsequent ELSE IF / END ELSE IF blocks in this sequence will be skipped.

The Edit window command line for a ELSE IF / END ELSE IF statement reads:

ELSE_IF/expression
END_ELSE_IF/

To insert the ELSE IF / END ELSE IF commands:

1. Place the cursor in the desired location of the Edit window, after an existing IF/END IF
statement or ELSE IF/END ELSE IF statement.

2. Select Else If / End Else If from the menu bar. The ELSE IF / END ELSE IF statement
will appear in the Edit window.

Note: This type of block is only valid when positioned after an IF / END IF or ELSE IF / END
ELSE IF block. Invalidly positioned control pairs are shown in red text in the Edit window.

Code Sample of Else If / End Else If

Consider the following example that displays a message notifying the user when any one of the
X, Y, or Z values for a measured point exceeds defined tolerances:

PNT2=FEAT/POINT,RECT

…

…

ENDMEAS/

IF/PNT2.X<6.9 OR PNT2.X>7.1

COMMENT/OPER,"The measured X value of PNT2: " + PNT2.X + " is out of tolerance."

END_IF/

ELSE_IF/PNT2.Y<3.3 OR PNT2.Y>3.5

Branching by Using Flow Control

6

COMMENT/OPER,"The measured Y value for PNT2: " + PNT2.Y + " is out of tolerance."

END_ELSEIF/

ELSE_IF/PNT2.Z<.9 OR PNT2.Z>1.1

COMMENT/OPER,"The measured Z value for PNT2: " + PNT2.Z + " is out of tolerance."

END_ELSEIF/

Explanation of Sample Code
This code first tests the X value of the point. If the condition evaluates to false, then the code
tests for the Y value. If the condition for the Y value evaluates to false, then it tests for the Z
value.

If any of these conditions evaluates to true, PC-DMIS displays the comment associated with it
and skips the remaining conditional statements.

IF/PNT2.X7.1
This line is the expression. It tests to see if the measured X value is less than 6.9 or greater
than 7.1. If it exceeds either of these boundaries it executes the first comment.

END_IF
This line ends the execution of commands inside the IF / END IF block of code. Any
command following this line is where PC-DMIS will go to if the IF THEN condition evaluates
to false.

ELSE_IF/PNT2.Y3.5
This line is the expression for the first ELSE_IF command. It only gets executed if the IF /
END IF block above it returns false. It tests to see if the measured Y value is less than 3.3 or
greater than 3.5. If it exceeds either of these boundaries it executes the second comment.

END_ELSEIF/
This line ends the execution of commands inside the first ELSE IF / END ELSE IF block of
code.

ELSE_IF/PNT2.Z1.1
This line is the expression for the second ELSE IF command. It only gets executed if the
ELSE IF / END ELSE IF block above it returns false. It tests to see if the measured Z value is
less than .9 or greater than 1.1. If it exceeds either of these boundaries it executes the third
comment.

END_ELSEIF/
This line ends the execution of commands inside the second ELSE IF / END ELSE IF block
of code.

Else / End Else

The Insert | Flow Control Command | Control Pairs | Else / End Else menu option allows you to
add a conditional block to the measurement routine. The items between the ELSE and the END
ELSE commands will execute only if all other if / end if and else if / end else if blocks above the
else block have failed (All evaluated to zero). ELSE / END ELSE blocks must be located at the
end of a set of IF / END IF or ELSE IF / END ELSE IF blocks in order to be valid.

21_Branching by Using Flow Control

7

The Edit window command line for a ELSE / END ELSE statement reads:

ELSE/
END_ELSE/

To insert Else / End Else commands:

1. Place the cursor in the desired location of the Edit window. Note that Else / END ELSE
blocks must be positioned after a IF / END IF or ELSE IF / END ELSE IF blocks.

2. Select Else / End Else from the menu bar. The ELSE / END ELSE statement will appear
in the Edit window.

Code Sample of Else / End Else

Consider the following example that asks the user if he or she would like measure a point feature.

C1= COMMENT/YESNO,Would you like to measure the point feature, PNT1? Clicking No measures
the next feature.

IF/C1.INPUT=="YES"

PNT1=FEAT/POINT,RECT

…

…

ENDMEAS/

END_IF/

ELSE

PNT2=FEAT/POINT,RECT

…

…

ENDMEAS/

END_ELSE

Explanation of Sample Code

C1=COMMENT/YESNO
This line takes and stores the YES or NO response from the user.

IF/C1.INPUT=="YES"
This line is the expression. It tests to see if the input of comment 1 is a YES. If it's a YES then
the IF statement is TRUE and continues executing the statements after the IF statement, in
this case it measures the PNT1 feature. If NO it moves to the END_IF statement.

END_IF
This line ends the execution of commands inside the IF / END IF block of code. Any
command following this line is where PC-DMIS will go to if the user clicks No at the comment.

Branching by Using Flow Control

8

ELSE
If the above IF / END IF block evaluates to false then command lines falling after this line and
before the END_ELSE line will be executed. In this case, PNT2 gets executed.

END_ELSE
This line ends the execution of commands inside the ELSE / END_ELSE block of code.

While / End While

The Insert | Flow Control Command | Control Pairs | While / End While menu option allows you to
add a conditional loop to the measurement routine. The items between the WHILE and the END
WHILE command will continue to execute in a loop until the condition (or expression) keeping
the loop activated is no longer met, meaning the expression for the while loop evaluates to
FALSE (i.e. zero). The WHILE command can be added anywhere in the measurement routine.
The expression is tested at the start of each loop.

The Edit window command line for a WHILE / END WHILE statement reads:

WHILE/expression
END_WHILE/

To insert a While / End While option:

1. Place the cursor in the desired location of the Edit window.
2. Select While / End While from the menu bar. The WHILE / END WHILE statement will

appear in the Edit window.

Code Sample of While / End While

Consider the following example that measures a feature an amount specified by the
measurement routine user.

C1=COMMENT/INPUT,How many times would you like to measure PNT1? Please type an integer
only.

ASSIGN/COUNT = 0

WHILE/COUNT < C1.INPUT

PNT2=FEAT/POINT,RECT

…

…

…

ENDMEAS/

ASSIGN/COUNT = COUNT + 1

COMMENT/OPER,"Measured " + COUNT + " out of " + C1.INPUT + " times."

21_Branching by Using Flow Control

9

END_WHILE/

Explanation of Sample Code
C1=COMMENT/INPUT
This line takes and stores the integer input from the user into the variable C1.INPUT.

ASSIGN/COUNT = 0

This line initializes COUNT, a user-defined variable, and gives it an initial value of 0. The code
uses this variable to count the number of times PC-DMIS measures the feature inside the loop.

WHILE/COUNT < C1.INPUT

This line is the expression. It tests to if the value of COUNT (initially set to 0) is less than the
integer selected by the user. If this tests true, then the statements in following WHILE/ and before
END_WHILE/ are executed

ASSIGN/COUNT = COUNT + 1

This line increments the COUNT variable by one so that it eventually exits the loop when it fails the
condition test.

COMMENT/OPER,"Measured " + COUNT + " out of " + C1.INPUT + " times."
This line displays a message showing the number of times, out of the total, that the loop is
running.

END_WHILE

This line ends the execution of commands inside the WHILE / END WHILE block as long as the
condition is false. Other wise when PC-DMIS encounters this command it loops back to the
WHILE statement.

Do / Until

The Insert | Flow Control Command | Control Pairs | Do / Until menu option allows you to add a
conditional loop to the measurement routine. The items between the DO and the UNTIL
commands will continue to execute in a loop until the expression of the UNTIL command
evaluates to TRUE (nonzero). The DO/ UNTIL commands can be added anywhere in the
measurement routine. The expression is tested at the end of each loop.

The Edit window command line for a DO / UNTIL statement reads:

DO/
UNTIL/ expression

To insert DO / UNTIL commands:

1. Place the cursor in the desired location of the Edit window.
2. Select Do / Until from the menu bar. The DO / UNTIL statements will appear in the Edit

window.

Branching by Using Flow Control

10

Code Sample of Do / Until

Consider the following example that measures a feature an amount specified by the
measurement routine user. This is similar to the example given under the While / End While topic,
except that PC-DMIS tests for the condition at the end of the loop instead of at the beginning.

C1= COMMENT/INPUT,Type the number of times PC-DMIS should measure the PNT1
feature:(type an integer only)

ASSIGN/COUNT = 0

DO/

PNT1=FEAT/POINT,RECT

…

…

ENDMEAS/

ASSIGN/COUNT = COUNT + 1

COMMENT/OPER,"Measured " + COUNT + " out of " + C1.INPUT + " times."

UNTIL/COUNT == C1.INPUT

Explanation of Sample Code
C1=COMMENT/INPUT

This line takes and stores the integer input from the user into the variable C1.INPUT.

ASSIGN/COUNT = 0

This line initializes COUNT, a user-defined variable, and gives it an initial value of 0. The code
uses this variable to count the number of times PC-DMIS measures the feature inside the loop.

DO/

Begins the DO / UNTIL loop. All statements are executed at least once and measurement
routine flow exits out of the loop once the expression evaluates to false.

ASSIGN/COUNT = COUNT + 1

This line increments the COUNT variable by one so that it eventually exits the loop when it fails the
condition test.

COMMENT/OPER,"Measured " + COUNT + " out of " + C1.INPUT + " times."
This line displays a message showing the number of times, out of the total, that the loop is
running.

UNTIL/COUNT == C1.INPUT

This line ends the execution of commands inside the DO / UNTIL loop as long as the condition
evaluates to false. Otherwise, when PC-DMIS encounters this command it loops back to the DO
statement.

Select / End Select

21_Branching by Using Flow Control

11

The Insert | Flow Control Command | Control Pairs | Select / End Select menu option allow
for the addition of a conditional block that is used in conjunction with the CASE / END CASE and
Default Case / End Default Case pairs. The expression for the Select command provides data
that is compared against the expression in the Case statements. If the two expressions evaluate
to the same thing, then the statements within the Case / End Case Block will execute. The
SELECT / END SELECT block surrounds the sets of CASE / END CASE and DEFAULT CASE /
END DEFAULT CASE blocks.

The Edit window command line for a SELECT / END SELECT statement reads:

SELECT/expression
END_SELECT/

To insert the Select / End Select commands:

1. Place the cursor in the desired location of the Edit window.
2. Choose Select / End Select from the menu bar. The SELECT / END SELECT

statements will appear in the Edit window.

Code Sample of Select / End Select

The pairs, SELECT / END_SELECT, CASE / END_CASE, DEFAULT CASE / END_DEFAULT
CASE, all work together evaluate multiple conditions providing a wide range of alternatives.

Suppose you have five circles, labeled CIR1 through CIR5, and you want the operator to be able
to measure a circle by simply pressing a key on the keyboard. You could use code similar to the
following:

Entire Code
DO/

C1=COMMENT/INPUT,Type a number to measure that circle:

,FOR CIR1 - Type 1

,FOR CIR2 - Type 2

,FOR CIR3 - Type 3

,FOR CIR4 - Type 4

,FOR CIR5 - Type 5

,Any other character exits the loop

SELECT/C1.INPUT

CASE/1

CIR1=FEAT/CIRCLE

…

…

ENDMEAS/

END_CASE

Branching by Using Flow Control

12

CASE/2

CIR2=FEAT/CIRCLE

…

…

ENDMEAS/

END_CASE

CASE/3

CIR3=FEAT/CIRCLE

…

…

ENDMEAS/

END_CASE

CASE/4

CIR4=FEAT/CIRCLE

…

…

ENDMEAS/

END_CASE

CASE/5

CIR5=FEAT/CIRCLE

…

…

ENDMEAS/

END_CASE

DEFAULT CASE

COMMENT/OPER,Now exiting loop.

END_DEFAULT CASE

END_SELECT

UNTIL C1.INPUT < 1 OR C1.INPUT > 5

Explanation of Sample Code
SELECT/C1.INPUT
This line of code takes a number or string value (in this case a number) typed by the user and
determines which CASE/END_CASE block will execute from the input. Notice that
SELECT/END_SELECT pair surrounds the entire list of code. All CASE/END_CASE and DEFAULT
CASE/END_DEFAULT CASE pairs must reside within these two lines.

END_SELECT

This marks the end of the code held inside the SELECT/END SELECT pair.

CASE/1 through CASE/5

Depending on the value of C1.INPUT, one of the CASE code blocks executes. For example, if
C1.INPUT evaluates to 1, the CASE 1 block of code executes, measuring CIR1. If it evaluates to
2, then the CASE 2 block of code executes, measuring CIR2, and so forth.

END_CASE
These lines end the specific case blocks of code.

21_Branching by Using Flow Control

13

DEFAULT CASE

If the value of the C1.INPUT doesn’t match any of the defined CASE statements (if the value isn’t
a number one through five) then the DEFAULT CASE code block executes. In this case it displays
a message letting you know that you are exiting the loop.

Notice how the DO / UNTIL loop surrounds the entire code sample. This allows the user to
continue to choose from the menu created from the COMMENT/INPUT line until the user selects a
character not recognized by the CASE statements.

Case / End Case
The Insert | Flow Control Command | Control Pairs | Case / End Case menu option allows you to
add a conditional block to the measurement routine. The items between the CASE and the END
CASE commands will execute if the expression for the case statement evaluates to a value equal
to the expression of the corresponding SELECT command. Otherwise, the block of statements
will be skipped. The CASE / END CASE statement block must be located directly after a SELECT
command or an END CASE command of a previous CASE / END CASE block. Also, PC-DMIS
cannot compare multiple expressions on a single case statement.

The Edit window command line for a CASE / END CASE statement reads:

CASE/expression
END_CASE/

To insert the Case / End Case option:

1. Place the cursor in the desired location of the Edit window. Note the positional
requirements stated above.

2. Select Case / End Case from the menu bar. The CASE / End CASE statements will
appear in the Edit window.

Default Case / End Default Case
The Insert | Flow Control Command | Control Pairs | Default Case / End Default Case menu
option allows you to add a conditional block to the measurement routine. The items between the
DEFAULT CASE and the END DEFAULT CASE commands will execute if all other expressions
in previous CASE / END CASE blocks within the corresponding SELECT / END SELECT block
evaluated to false. Only one DEFAULT CASE / END DEFAULT CASE block is allowed within a
SELECT/ END SELECT block. The DEFAULT CASE / END DEFAULT CASE block must be
located after all CASE / END CASE blocks within the SELECT / END SELECT block.

The Edit window command line for a DEFAULT CASE / END DEFAULT CASE statement
reads:

DEFAULT CASE/
END_DEFAULT_CASE/

Branching by Using Flow Control

14

To insert DEFAULT CASE/ END DEFAULT CASE commands:

1. Place the cursor in the desired location of the Edit window noting positional limitations as
stated above.

2. Select Default Case / End Default Case from the menu bar. The DEFAULT CASE /
END DEFAULT CASE statements will appear in the Edit window.

Using Generic Loops

Loop Parameters dialog box

The Insert | Flow Control Command | Looping menu option displays the Loop Parameters
dialog box. You can use this dialog box to create a LOOP command that repeats the
measurement routine (or portions of the measurement routine) with or without any of the offsets.
The LOOP command can be added anywhere in the measurement routine, although this function
is most useful at the beginning and end of the routine.

Start Number - This box tells PC-DMIS the starting position number in a series of parts.

Example: You have 10 parts, and you want to start with position number 5, you would
enter 10 for the total number of parts and 5 for the starting position.

End Number - This box tells PC-DMIS how many times to loop through the measurement
routine. This number is usually the same as the number of parts that the fixture holds (or patterns
on the part) in the x (y or z) direction. PC-DMIS also asks for the starting part (pattern) number.

Example: You have 10 parts in the x (y or z) direction, and you want to start with position
number 5. For the End Number box, type 10. For in the Start Number box, type 5.

Skip Number - In a loop, PC-DMIS repeats a measurement routine the indicated number of
times. The Skip Number box allows you to skip a specified increment. Note that you cannot skip

21_Branching by Using Flow Control

15

the first increment using this box, but you can change the Start Number to 2 and effectively skip
over it that way.

Example: You can set the parameter to skip every third increment of the loop. If the
number three is indicated, PC-DMIS measures the first and second part and then skip to
the fourth part.

Offset - The offset area contains these boxes:

X Axis, Y Axis, Z Axis - These boxes set up the x, y, or z offset between parts, or
patterns on the same part. These offset the part by the entered distance each time the loop
runs. The first offset is based on the part's origin.

Angle - This box sets up the angular offset between parts, or patterns on the same part. The
first offset is based on the part's origin. PC-DMIS offsets the part by the angle value each
time the loop runs.

Note: If you have an alignment command inside a loop and the loop is using offsets, you
must define all axes for that alignment. Additionally, the alignment inside the loop must use
features measured inside the loop.

Loop IDs - This check box determines whether or not PC-DMIS increment the feature IDs (within
the loop) as a value in square brackets that coincides with the loop increment.

Example: CIR1 will become CIR1[1] on the first loop, CIR1[2] on the second loop, and so
on.

Feature IDs in Statistical Databases
If you select the Loop IDs check box and are sending statistical data to a database, in
some cases, PC-DMIS may not display these loop IDs in the database.

Consider the following:

If you have a STATS/ON command and a STATS/UPDATE command inside a loop
block, then loop IDs are not displayed inside the database.

If you have a STATS/ON command outside a loop block and a STATS/UPDATE
command inside a loop block, then loop IDs are not displayed inside the database.

If you have a STATS/ON command outside a loop block and a STATS/UPDATE
command outside a loop block, then loop IDs are displayed inside the database.

If you have a STATS/ON command inside a loop block and a STATS/UPDATE
command outside a loop block, then loop IDs are displayed inside the database.

Variable ID - This box allows you to define the variable name used to track the loop's current
iteration (or current loop within the number of specified loops). During the measurement routine's
execution, this variable is equal to the current iteration number of the loop.

Branching by Using Flow Control

16

End Loop - This button completes the looping process. The command LOOP/START must be
followed by the command LOOP/END in the Edit window.

Uses for Looping

There are three main uses for the looping option:

• You have a multiple part fixture that holds a grid of parts. The fixture should use
consistent spacing between the rows. The translation / rotation offsets allow you to index
from one part to the next in the grid of parts.

• You have a fixture that holds one part and you want to swap in a new part before each
loop of the routine. A COMMENT command is helpful to stop the CMM when the part is
being replaced with a new one. The command can be at the beginning or end of the loop.

• You want to use the LOOP option to rotate the measurement routine to measure a
different portion of the same part. For example, you could create a measurement routine
to measure a complicated hole pattern that was duplicated 10 times on the part. Your
measurement routine would only need to measure one of the hole patterns. The LOOP
option could be used to offset this measurement routine to measure the other 9
occurrences of the pattern.

Note: If you're using an alignment inside of a loop, PC-DMIS allows you to use the active
alignment in the ALIGNMENT/START command line instead of always recalling a previously
stored alignment. See the "Using an Alignment Inside Loops" topic in the "Creating and Using
Alignments" chapter.

Creating a Loop

1. Select Insert | Flow Control Command | Looping from the menu bar to display the
Looping Parameters dialog box.

2. Make any necessary changes to the boxes.
3. Select parameters as needed (such as Number of Parts, Start Number, Skip

Number, Offsets Angle).
4. Place the cursor in a location in the Edit window where you want to begin the loop.
5. Click the OK button.

The Edit window command line for looping reads:

VARNAME = LOOP/START, ID = Y/N, NUMBER = 0, START = 1, SKIP = ,
OFFSET: XAXIS = 0, YAXIS = 0, ZAXIS = 0, ANGLE = 0

Note: To complete the looping procedure, you must finish with a LOOP/END command. PC-DMIS
loops any Edit window commands encompassed by the LOOP/START and LOOP/END

21_Branching by Using Flow Control

17

commands. You can insert this command in one of these ways: In the Edit window, type
LOOP/END, select the Insert | Flow Control Command | End Loop menu item, or from the
Looping Parameters dialog box, click the End Loop button.

Using Labels

You can use a LABEL command with a GOTO or an IF_GOTO command to control where the
execution flow gets sent based on certain conditions. The label name cannot have spaces and
must not exceed 230 characters. PC-DMIS displays the label name using all capital letters.

To create a LABEL command, do one of the following:

Type the Command
1. Position the cursor on a blank line in the Edit window.
2. Type LABEL and then press the Tab key.
3. In the highlighted field, type a new label name.

or

Choose the Command
1. Position the cursor in the Edit window.
2. From the menu bar, select Insert | Flow Control Command | Label to access the Edit

Label Name dialog box.
3. In the New label name box, type the name for the label.

Edit Label Name dialog box

4. Click OK to insert the label name in the next possible location in the Edit window.

The LABEL command in the Edit window's Command mode reads:
ID = LABEL/

Where ID represents the specified label name.

For information on using the GOTO command with labels, see the "Jumping to a Label Using
GOTO" topic.

For information on using the IF_GOTO command with labels, see the "Jumping to a Label Based
on Conditions" topic.

Branching by Using Flow Control

18

Jumping to a Label Using GOTO
You can tell your measurement routine to jump to a specific label by creating a GOTO command.

To create a GOTO command, do one of the following:

Type the Command
1. Position the cursor on a blank line in the Edit window.
2. Type GOTO and then press the Tab key.
3. Type the label name to jump to.

or

Choose the Command
1. Position the cursor in the Edit window.
2. From the menu bar, select Insert | Flow Control Command | Goto to access the GoTo

dialog box.

GoTo dialog box

3. If labels already exist in the measurement routine, they appear in the Current labels box.
4. From Current labels, select the desired label, or in the GoTo Label box, type a label

name directly.
5. Click OK to insert the GOTO command in the next possible location in the Edit window.

The GOTO command in the Edit window's Command mode reads:
GOTO/label_ID

Where label_ID represents the name of the specified label. The label name cannot have spaces
and must not exceed 230 characters.

21_Branching by Using Flow Control

19

Note: If the label has not yet been created, the label name appears highlighted in red in the Edit
window's Command mode and that GOTO command is ignored during execution.

If Expression dialog box

With the Insert | Flow Control Command | If Goto option, you can use the If Expression dialog
box to create IF GOTO statements within your measurement routine. When the measurement
routine is executed and PC-DMIS encounters an IF GOTO statement, the routine flow moves to
the label identification if the specified expression evaluates to a non-zero value.

The Edit window command line for an IF_GOTO statement reads:

IF_GOTO/expression, GOTO=Label

Expression - If you click Expression, the expression builder opens. With the expression builder
you can create a variety of different expressions that you may need within your measurement
routine. Once you create the expression it appears in the Expression box. For information on
creating expressions, see the "Using Expressions and Variables" chapter.

Label - If you click Label, the Goto dialog box opens. From the Goto dialog box, you can choose
what label you want the routine flow to move to when the defined expression is met. The chosen
label appears in the Label box. Or if you know the label name, you can type it in the box. For
more information on labels, see "Jumping to a Label".

Branching on an Error

On Error dialog box

Branching by Using Flow Control

20

The Insert | Flow Control Command | On Error command opens the On Error dialog box. You
can use this dialog box to tell PC-DMIS what action to take when a machine Error occurs.

Error Type - PC-DMIS tracks these error conditions:

• Unexpected Probe Hit
• Missed Probe Hit
• Reflector Not Found (used with the Tracker in PC-DMIS Portable)
• Laser Error (see the "Handling Laser Probe Errors Using ONERROR" if you're using a

Laser configuration)

Error Mode - For each of these error conditions, these possible actions can be taken

• GoTo Label - The measurement routine flow moves to a defined label. See "Using
Labels".

• Set Variable - Set a variable's value to one.
• Off - PC-DMIS does nothing.
• Skip Command - The measurement routine flow skips over the current command and

moves to the next marked command in the measurement routine.

By default, all measurement routines start with the action for both types of errors set to Off (Do
nothing). The action mode for each error type can be changed throughout the measurement
routine.

Label ID - Lets you type a reference to a label that doesn't exist yet.

Current Labels - Lists all the labels in the measurement routine.

Example: If during execution, PC-DMIS encounters an ON ERROR/ Unexpected Hit / Jump
To Label command, any unexpected hits that occur after that point in the measurement routine
causes execution to jump to the specified label. The action to 'Set a Variable’s value to one
causes the variable to be set as soon as the specified error type occurs. This value of the variable
can then be tested using an IF statement to cause execution to jump to a new point in the
measurement routine.

To use the On Error command
1. Select Insert | Flow Control Command | On Error to open the On Error dialog box.
2. From the Error Type list, select the error type as the condition for branching.
3. From the Error Mode area, select one of the options to define what action should take

place when that condition is met.
4. Click the OK button to add the ONERROR command. The Cancel button closes the On

Error dialog box without applying any changes.

The Edit window command line for the On Error command reads:

ONERROR/<type>,<mode>

Where <type> is the type of error and <mode> is the error mode to be taken.

21_Branching by Using Flow Control

21

On Error Supported Interfaces
Not all interfaces support the On Error command. Consult the following table to see if your
interface is supported.

• If your interface is listed, a small black box indicates what error type is supported by that
interface.

• If your interface isn't listed, then it's not able to use the On Error command.

Supported Interfaces Unexpected Probe
Hit

Missed Probe
Hit

Reflector Not
Found

B&S Standard ■ ■ -

Dea ■ -

Elm ■ ■ -

Federal/Renault ■ ■ -

Johansson ■ ■ -

Leica Tracker ■

Leitz ■ ■ -

LK Direct (also known as
LKRS232) ■ ■ -

LK Driver ■ ■ -

Metrolog ■ ■ -

Mitutoyo Bright ■ ■ -

Mitutoyo ■ ■ -

Mora ■ ■ -

Omnitech ■ ■ -

Renishaw ■ ■ -

Sharpe ■ ■ -

Sheffield ■ ■ -

Wenzel ■ ■ -

Zeiss ■ ■ -

Branching with Subroutines

Branching by Using Flow Control

22

Subroutines are blocks of code in your measurement routine or in an external measurement
routine that are usually referenced repeatedly, allowing for more concise programming. PC-DMIS
allows you to pass information to "arguments" (or local variables) in the subroutine. The types of
arguments that can be passed into a subroutine are numeric values, variables, text strings, and
feature names.

Hint: Subroutine command blocks are enclosed within SUBROUTINE and ENDSUB commands.

Once you have created a subroutine in your measurement routine you can "call" it from your
current measurement routine or from another measurement routine, causing the measurement
routine execution flow to go into the specified subroutine, executing commands contained within
the subroutine command block. Measurement routine flow will then return to the statement
immediately following the calling statement.

Hint: Subroutines are called by using the CALLSUB command.

External Subroutines
External subroutines, or subroutines located in a measurement routine outside of the calling
measurement routine, do not have access to features, variables, or alignments from the calling
measurement routine. The subroutine would still have access to items within its own
measurement routine. The external measurement routine and the calling measurement routine
must use the same units of measurement.

Nesting Subroutines
You can nest subroutines within other subroutines. The only limitation to the number of
arguments and nested subroutines is the amount of available memory.

Creating a New Subroutine

Creating a Subroutine by Typing SUBROUTINE
You can insert this command by typing SUBROUTINE in the Edit window's Command mode, and
then pressing TAB. Once the command is inserted, you will need to specify the subroutine's
name and any arguments it has. See the subroutine syntax and example below for this
information.

Type the ENDSUB command and press TAB to end the command block. Any Edit window
commands placed within this command block will be considered part of the subroutine and will be
executed when the subroutine is called.

Creating a Subroutine by Using the Subroutine Menu Item
1. Select Insert | Flow Control Command | Subroutine from the submenu. This displays

the Subroutine Creation dialog box. For information on this dialog box, see the
"Understanding the Subroutine Creation Dialog Box" topic.

21_Branching by Using Flow Control

23

Subroutine Creation dialog box

2. Give the subroutine a name by typing it in the Name box. The name is limited to 180 or

fewer characters. If you enter 181 or more characters a "Line too long" error message
appears.

When you click the OK button, the name is automatically shortened to the first 180
characters, and the Subroutine Creation dialog box closes.

3. If your subroutine uses arguments (place holders for information passed into the
subroutine), add them one by one by clicking the Add Argument button. The Argument
Edit dialog box appears. For information on this dialog box, see the "Understanding the
Argument Edit Dialog Box" topic.

Argument Edit dialog box

4. Give your argument a name by typing it in the Name box.
5. Give your argument a default value by typing it in the Value box. The subroutine will use

the default value if no values are passed into the subroutine from the CALLSUB
statement. Valid argument values can be numeric values, variables, text strings, and
feature names.

6. If you want to give the argument a description, type it in the Description box.
7. Click OK in the Argument Edit dialog box to create the argument.
8. Repeat steps 3 through 7 for each argument you want in your subroutine.

Branching by Using Flow Control

24

9. Click the OK button in the Subroutine Creation dialog box to finish creating your
subroutine. This subroutine will appear inside the Edit window with any defined
arguments.

10. End your subroutine by selecting the Insert | Flow Control Command | End Sub menu
option. This places an ENDSUB/ command in the Edit window, completing the
subroutine's command block. Any other measurement routine commands you want in
your subroutine must be added inside the subroutine's command block, before the
ENDSUB command.

Syntax for a Subroutine Command Block
The Edit window command line syntax for a sample subroutine command block would read:

SUBROUTINE/<Name>,
<A1> = <Arg1> : <Description>,
<A2> = <Arg2> : <Description>,
=
<Commands>
ENDSUB/

SUBROUTINE/ is the command used to start the subroutine command block.

<Name>= The name of the subroutine. The name is limited to 256 or fewer characters. If you
enter 257 or more characters, the name is automatically shortened to 256 characters.

<A1>= The first argument (or local variable) used in the subroutine. This variable generally
cannot be accessed outside of the subroutine.

<A2>= Second argument used in the subroutine. This variable generally cannot be accessed
outside of the subroutine. Additional arguments can be added as needed.

<Arg1> = The default value for the first argument.

<Arg2>= The default value for the second argument.

<Description> = The description for the argument.

<Commands> = Other Edit window commands can be inserted as needed after the
arguments and before the ENDSUB command.

ENDSUB/ is the command used to end the subroutine command block.

Example Subroutine Command Block
For example, a finished subroutine that takes operator data and displays it to the report might
look like this:

SUBROUTINE/GET_OPERATOR_INFO,

 OPNAME = <Operator> : OPERATOR NAME,

 SHIFT = <Shift> : SHIFT TIME,

21_Branching by Using Flow Control

25

=

COMMENT/REPT,OPNAME

COMMENT/REPT,SHIFT

ENDSUB/

Understanding the Subroutine Creation Dialog Box

To access the Subroutine Creation dialog box, select Insert | Flow Control
Command | Subroutine.

Subroutine Creation dialog box

The following options are available in the Subroutine Creation dialog box:

Name - This box defines your subroutine. This is the name you will use when calling the
subroutine later, so if you have multiple subroutines in a single measurement routine, each name
must be unique.

The name is limited to 180 or fewer characters. If you enter 181 or more characters in the
Name box, a "Line too long error" message appears.

When you click the OK button, the name is automatically shortened to the first 180
characters, and the Subroutine Creation dialog box closes.

Number of arguments - This list shows the arguments for the subroutine you are creating.
Arguments appear in this area in this form:

<NAME> = <VALUE> : <DESCRIPTION>

For example, if one of your arguments was named "Diameter" with a default value of 3,
your argument in this list may appear as:

DIAMETER = 3 : The hole's diameter

Branching by Using Flow Control

26

PC-DMIS uses the default value whenever another value is not passed from the CALLSUB
command.

To edit an argument, double-click on the argument you want to change. The Argument
Edit dialog box opens, allowing you to make the changes. See "Understanding the
Argument Edit Dialog Box" for information on this dialog box.

Add Argument - This button adds new arguments to your subroutine. Click on this button to
open the Argument Edit dialog box appears. See "Understanding the Argument Edit Dialog Box"
for information on this dialog box.

Delete Argument - This button allows you to delete arguments from your subroutine. Select the
argument from the list, and then click the Delete Argument button to remove it.

Editing an Existing Subroutine
To edit an existing subroutine you can always use the Edit window's Command mode and edit
the subroutine directly. Alternately, you can access the Subroutine Creation dialog box by
placing your cursor on the subroutine in the Edit window and pressing F9. This brings up the
Subroutine Creation dialog box. For information on this dialog box, see the "Understanding the
Subroutine Creation Dialog Box" topic.

Understanding the Argument Edit Dialog Box

Argument Edit dialog box

The Argument Edit dialog box appears whenever you choose to create or edit an argument
within either the Subroutine Creation dialog box (Insert | Flow Control Command |
Subroutine) or the Call Subroutine (Insert | Flow Control Command | Call Sub) dialog box.

The Argument Edit dialog box can be used in these two contexts:

• To define a subroutine's arguments and their default values in a SUBROUTINE command
block.

• To define the values that will be passed into the subroutine from a CALLSUB command.

21_Branching by Using Flow Control

27

The following options are available in the Argument Edit dialog box:

Name - This box defines the name for the argument you are creating or editing.

Value - This box defines the value of the argument.

If creating or editing the SUBROUTINE command, this is the default value used if no value
is passed into the subroutine by the CALLSUB statement.

If creating or editing the CALLSUB command, this is the value passed into the subroutine.

Valid values can be:

• Numeric
• Variable
• Text String - Text strings must be enclosed in double quotation marks.
• Feature Name - The feature name must be bounded by curly brackets, for

example {F1}.

Description - Defines the description of the argument for the subroutine. This description will
appear next to the argument in the Edit window's SUBROUTINE command block.

Calling a Subroutine

To call a subroutine you need to insert a CALLSUB command into your measurement routine to
call an existing subroutine from the current measurement routine or a subroutine from an external
measurement routine.

Calling a Subroutine by Typing CALLSUB
You can insert this command by typing CALLSUB in the Edit window and then pressing the Tab
key on your keyboard where you want the command to appear in the Edit window. Once the
command is inserted, you will need to specify the subroutine's name, its location if it is in an
external measurement routine, as well as any values to pass to available arguments. See
"Passing Arguments into a Subroutine" for examples of passing arguments.

Calling a Subroutine Using the Call Sub Menu Item
1. Select the Insert | Flow Control Command | Call Sub option from the submenu. The

Call Subroutine dialog box opens. See "Understanding the Call Subroutine Dialog Box"
for information on this dialog box.

Branching by Using Flow Control

28

Call Subroutine dialog box

2. Click the Select Subroutine button. The Select Subroutine dialog box opens.

Select Subroutine dialog box

3. Select either the User directory check box or the Current directory check box, or both.
If the measurement routine the subroutine is from resides in the directory specified to be
searched for subroutines, select the User directory check box. If it is from the current
directory, select the Current directory check box. PC-DMIS lists all the measurement
routines available for selection.

4. Select the measurement routine that contains the subroutine you want. You will see all
subroutines associated with the selected measurement routine appear in the Subroutine
name box.

21_Branching by Using Flow Control

29

5. Select the subroutine you want to call.
6. Click the OK button. The subroutine information you are going to call will appear in the

Name and File boxes of the Call Subroutine dialog box.
7. If you want to pass information into the subroutine, click the Add Argument button, and

use the Argument Edit dialog box to define arguments and values to pass. See
"Understanding the Argument Edit Dialog Box" for information on this dialog box. See
"Passing Arguments into a Subroutine" for examples of passing arguments.

8. Click the OK button again. The CALLSUB command will appear in the selected location
of the Edit window.

Syntax for the CALLSUB Command
The Edit window command line syntax for calling a subroutine is this:

CS1 =CALLSUB/<Name>, <File>:<Arg1>,<Arg2>,

CS1 = the label ID given to the CALLSUB command.

<Name> = the name of the subroutine to be called.

<File> = the full path way to the measurement routine that contains the subroutine to call. If
this field is blank, PC-DMIS will look in the current measurement routine for the subroutine.

<Arg1> = the value to be passed to the first argument in the subroutine. If this field is blank,
the default value defined for the first argument in the subroutine will be used instead.

<Arg2> = the value to be passed to the second argument in the subroutine. If this field is
blank, the default value defined for the second argument in the subroutine will be used
instead. This syntax sample shows only two arguments. Other arguments can be passed if
needed to your subroutine

Note: In your CALLSUB command you should keep a set of pointers to all of the objects made for
the subroutine so that you can easily refer to them afterwards using the subroutine's ID. For more
information on pointers, see "Pointers" in the "Using Expressions and Variables" chapter.

Example CALLSUB Command
CS1 =CALLSUB/GET_OPERATOR_INFO,D:\MEASROUTINES\V42SUBROUTINETEST.PRG:V1,V2,,

This example CALLSUB command, CS1, calls a subroutine named GET_OPERATOR_INFO
located within the measurement routine V42SUBROUTINETEXT.PRG located in the
D:\MEASROUTINES\ directory.

It passes two values - in this case the variables V1 and V2 - into the subroutine.

Branching by Using Flow Control

30

Understanding the Call Subroutine Dialog Box

Call Subroutine dialog box

The following describes the options available in the Call Subroutine dialog box.

Name box

The Name box contains the name of the subroutine you have selected after using
the Select Subroutine... button.

The name is limited to 180 or fewer characters. If you enter 181 or more characters
in the Name box, a "Line too long error" message appears.

When you click the OK button, the name is automatically shortened to the first 180
characters, and the Call Subroutine dialog box closes.

21_Branching by Using Flow Control

31

File box

The File box contains the directory pathway to the subroutine file you have called.

Values box

The Values box contains a list of the values of each argument associated with the
subroutine. These values will get passed into the subroutine when the subroutine is
executed.

To change these values, double-click on the value you want to change. The
Argument Edit dialog box appears. See "Understanding the Argument Edit Dialog
Box" for information on this dialog box.

Select Subroutine button

The Select Subroutine button displays the Select Subroutine dialog box

Select Subroutine dialog box

Branching by Using Flow Control

32

This dialog box allows you to call previously-created subroutines by searching in the
user directory or the current directory. See "Calling a Subroutine" for information on
the Select Subroutine dialog box.

Add Argument button

This button defines a value to pass to the arguments for the subroutine.

Delete Argument button

This button allows you to delete arguments from the Values box. Select the value
displayed, and then click the Delete Argument button. The argument associated
with that value is then deleted.

To add a new argument using the Call Subroutine Dialog box:

To add a new argument into your CALLSUB command to pass into the subroutine:

1. Inside the Call Subroutine dialog box, click the Add Arg button to open the Argument
Edit dialog box.

2. Click in the Value box.
3. In the Value box, type the value for the argument.
4. Click OK.

To edit existing arguments using the Call Subroutine Dialog box:

To edit an existing argument inside your CALLSUB command:

1. In the Call Subroutine dialog box, double-click on the value of the argument you want to
change. A value box appears and shows the default value for the called subroutine.

2. Type a new value.
3. Click the OK button.

21_Branching by Using Flow Control

33

For additional information on how to edit or create new arguments for a subroutine, see "Creating
a New Subroutine" and "Editing an Existing Subroutine".

To delete arguments from a Call Subroutine command:

1. Place the cursor on the CALLSUB command.
2. Press F9 to access the Call Subroutine dialog box.
3. From the list of arguments, select one or more arguments.
4. Click the Delete Arg button.
5. Click OK.

You can also delete an argument in the Edit window text directly. To do this,

1. Place PC-DMIS in Command mode.
2. Place the cursor on the CALLSUB command, and press TAB until you highlight the

desired argument.
3. Type the letters "del" to delete the argument. Note that pressing Delete or Backspace

doesn't truly delete the argument, they merely change the argument to an empty
argument.

Using CALLSUB Statements in Multiple Arm Mode

If you assign a CALLSUB statement to Arm1; all of the commands in the subroutine are
assigned to Arm1 when the subroutine is called.

If you assign a CALLSUB statement to Arm2; all of the commands in the subroutine are
assigned to Arm2 when the subroutine is called.

If you mark a CALLSUB statement for both arms, PC-DMIS leaves the subroutine markings as
they were originally set.

If a subroutine contains a MOVE/SYNC command in it, and you assign the CALLSUB
statement to Arm1 or Arm2, at execution time PC-DMIS displays an error indicating that this
is invalid and the subroutine is not called.

For information on assigning a command to execute for a specific arm, see the "Assigning a
Command to an Arm" topic in the "Using Multiple Arm Mode" chapter.

Branching by Using Flow Control

34

Subroutine Examples
Consider the information in the following topics for some examples of passing arguments and
subroutines in general.

• Passing Arguments into a Subroutine
• Code Sample of a Subroutine

Passing Arguments into a Subroutine

The types of arguments that can be passed into a subroutine are numeric values, variables, text
strings, and feature names. To pass values into arguments, type the value within the Value box
of the Argument Edit dialog box, or directly into an inserted CALLSUB command in Command
mode.

For details on how to do this, see "Creating a New Subroutine" and "Understanding the Argument
Edit Dialog Box".

Passing Variables into a Subroutine
Arguments that can pass data back are variables. When you use a variable as an argument to a
subroutine, any changes that occur to the corresponding variable in the subroutine are passed
back and become the value of the variable that was passed in.

Example of Passing Variables:

This example shows how a variable's value, used as an argument to a subroutine, is
modified and passed back from a subroutine:

The variable V1 is assigned the value 6:

ASSIGN/ V1 = 6.

A subroutine call passes V1 as the first argument:

CS1 =CALLSUB/MYSUB,:V1,,,

The subroutine is defined as follows:

SUBROUTINE/MYSUB,

 A1 = 0 : FIRST ARGUMENT,

 =

ASSIGN/ A1 = A1 + 1

ENDSUB/

21_Branching by Using Flow Control

35

A1 is the name for the first argument so when the call is made, A1 will have the same
value that V1 did at the time of the call, 6.

The subroutine contains this one statement:

ASSIGN/ A1 = A1 + 1.

This increments the value of A1 to 7.

Then subroutine ends with the ENDSUB/ command.

Flow of execution returns to the statement directly following the CALLSUB command. As
execution jumps back, any variables that were used as arguments, V1 in this case, are
updated to the value of the corresponding variables in the subroutine, A1 in this case. So,
V1 now has a value of 7. The value was passed back from the subroutine.

Passing Number Values into a Subroutine
Arguments can also take numeric characters.

Example of Passing Number Values:

This example shows how to pass number values into a subroutine. It passes up to two
numbers and then adds them together.

CS1 =CALLSUB/SUM_NUMBERS,:,,,

CS2 =CALLSUB/SUM_NUMBERS,:5,10,,

 SUBROUTINE/SUM_NUMBERS,

 NUM1 = 1 : FIRST NUMBER,

 NUM2 = 1 : SECOND NUMBER,

 =

 COMMENT/OPER,NO,"The sum of the first number, " + NUM1 + ", plus the
second number, " + NUM2 + ", is: "

 ,NUM1 + NUM2

 ENDSUB/

In the first CALLSUB command (CS1) no number values are passed into the subroutine.
The default numbers, 1 for NUM1 and 1 for NUM2 are used instead, and the generated
sum would be 2.

In the second CALLSUB command (CS2) two number values are passed, 5 and 10. So
NUM1 would be 5 and NUM2 would be 10, with a generated sum of 15.

Passing Text Strings into a Subroutine
Arguments can also take a text string. To pass a text string, make sure the alphanumeric
characters are placed within double quotation marks.

Branching by Using Flow Control

36

Example of Passing Text Strings:

This example shows how to pass string values into a subroutine. It passes two string
values into the two parameters and then displays them in the report:

CS1 =CALLSUB/GET_OPERATOR_INFO,:"BOB JONES","MORNING",,

...

SUBROUTINE/GET_OPERATOR_INFO,

 OPNAME = <Operator> : OPERATOR NAME,

 SHIFT = <Shift> : SHIFT TIME,

COMMENT/REPT,OPNAME

COMMENT/REPT,SHIFT

ENDSUB/

The first argument, OPNAME, receives the passed value of "BOB JONES" and the second
argument, SHIFT, receives "MORNING". The COMMENT commands then send the
passed strings to the inspection report.

Passing Feature Names into a Subroutine
Feature names are passed within curly brackets, for example: {F1} would be used to call the
feature designated as F1 into the Edit window. Also, when you pass the feature name, the
subroutine has full access to that feature.

Example of Passing Feature Names:

This example passes in the PNT1 feature name into the subroutine, giving your subroutine
complete access to the feature. If no value is passed then the default feature name of F1 is
used. This subroutine then queries you for a new value and changes the theoretical X
value for the feature.

CS1 =CALLSUB/CHANGE_THEO_X,:{PNT1},,

 SUBROUTINE/CHANGE_THEO_X,

 FEAT1 = {F1} : PASSED FEATURE NAME,

 =

C1 =COMMENT/INPUT,NO,"PASSED FEATURE:"

 ,FEAT1

 ,"The current theo X is: " + FEAT1.TX

 ,"Type a new theo X value:"

 ASSIGN/FEAT1.TX = C1.INPUT

 COMMENT/OPER,NO,"Feature updated to " + FEAT1.TX

 ENDSUB/

Because the subroutine has access to the passed feature, the statement
ASSIGN/FEAT1.TX = C1.INPUT modifies the theoretical X value of the actual PNT1
feature. PNT1 will now permanently have its theoretical X value changed.

21_Branching by Using Flow Control

37

Code Sample of a Subroutine
The following code sample allows the operator to have a choice of changing the theoretical X, Y,
and Z values of a feature after its measurement. Subsequent runs then use the updated
theoretical values.

PNT1 =GENERIC/POINT,DEPENDENT,CARTESIAN,$

 NOM/XYZ,<5,10,15>,$

 MEAS/XYZ,<7,12,17>,$

 NOM/IJK,<0,0,1>,$

 MEAS/IJK,<0,0,1>

C1 =COMMENT/YESNO,NO,FULL SCREEN=NO,AUTO-CONTINUE=NO,

 Do you want to change the theoretical values for PNT1?

 IF/C1.INPUT=="YES"

CS1 =CALLSUB/CHANGETHEO,:,

 END_IF/

 COMMENT/OPER,NO,FULL SCREEN=NO,AUTO-CONTINUE=NO,

 The XYZ theoretical and actual values for PNT1 are:

 "Theo X= " + PNT1.TX

 "Theo Y= " + PNT1.TY

 "Theo Z= " + PNT1.TZ

 "Actl X= " + PNT1.X

 "Actl Y= " + PNT1.Y

 "Actl Z= " + PNT1.Z

 ROUTINE/END

 SUBROUTINE/CHANGETHEO,

 POINT1 = {PNT1} : ,

 =

 DIMINFO/PNT1;ICON,DIMID,FEATID,VERT,HORIZ, ,$

 HEADINGS, ;MEAS, , , , , , , ,

C2 =COMMENT/INPUT,NO,FULL SCREEN=NO,

 Type the new X theo value for PNT1.

 "Its current value is " + PNT1.TX

 ASSIGN/PNT1.TX=C2.INPUT

C3 =COMMENT/INPUT,NO,FULL SCREEN=NO,

 Type the new Y theo value for PNT1.

 "Its current value is " + PNT1.TY

 ASSIGN/PNT1.TY=C3.INPUT

C4 =COMMENT/INPUT,NO,FULL SCREEN=NO,

 Type the new Z theo value for PNT1.

 "Its current value is " + PNT1.TZ

 ASSIGN/PNT1.TZ=C4.INPUT

 ENDSUB/

Branching by Using Flow Control

38

Explanation of Sample Code

C1=COMMENT/YESNO
This line takes and stores the YES or NO response from the user.

IF/C1.INPUT=="YES"
This line is the expression. It tests to see if the input of comment 1 is a YES. If it's a YES then
the IF statement is TRUE and continues executing the statements after the IF statement, in
this case it measures the PNT1 feature. If NO it moves to the END_IF statement.

CS1=CALLSUB/CHANGETHEO,:,
This line calls the subroutine named CHANGETHEO. The flow of the measurement routine
now jumps to the SUBROUTINE/CHANGETHEO line.

SUBROUTINE/CHANGETHEO
This line initializes the CHANGETHEO subroutine. Measurement routine flow continues with
the execution of code between this line and the ENDSUB/ line.

POINT1 = {PNT1} : ,
This is the only argument of the subroutine. It allows the subroutine to access information
from the PNT1 feature.

C2=COMMENT/INPUT, C3=COMMENT/INPUT, C4=COMMENT/INPUT
These input comments all take the new theoretical X, Y, and Z values from the user and store
them in C2.INPUT, C3.INPUT, and C4.INPUT respectively.

ASSIGN/PNT1.TX = C2.INPUT
This line takes the theoretical X value from C2.INPUT and assigns it to the PNT1.TX
variable. PNT1.TX is a PC-DMIS variable that holds the theoretical X value (denoted by
TX) for the point with the ID label of PNT1.

ASSIGN/PNT1.TY = C3.INPUT
This line takes the theoretical Y value from C3.INPUT and assigns it to the PNT1.TY
variable. PNT1.TY is a PC-DMIS variable that holds the theoretical Y value (denoted by
TY) for the point with the ID label of PNT1.

ASSIGN/PNT1.TZ = C4.INPUT
This line takes the theoretical Z value from C4.INPUT and assigns it to the PNT1.TZ variable.
PNT1.TZ is a PC-DMIS variable that holds the theoretical Z value (denoted by TZ) for the
point with the ID label of PNT1.

ENDSUB/
This line ends the subroutine, and measurement routine flow returns to the line immediately
following the subroutine call. In this case the END_IF/ statement. The measurement routine
flow then continues with the next operator comment which displays the theoretical and actual
X, Y, and Z values, and then the measurement routine ends with the ROUTINE/END
command.

21_Branching by Using Flow Control

39

Ending a Measurement Routine
The Insert | Flow Control Command | End Routine menu item inserts a ROUTINE/END
command into the Edit window. Whenever PC-DMIS encounters this command during routine
execution, it immediately stops measurement routine execution.

This command is useful when you want to end a measurement routine earlier than usual, based
on defined conditions.

	Branching by Using Flow Control
	Branching by Using Flow Control: Introduction
	Using Control Pairs
	If / End If
	Code Sample of If / End If

	Else If / End Else If
	Code Sample of Else If / End Else If

	Else / End Else
	Code Sample of Else / End Else

	While / End While
	Code Sample of While / End While

	Do / Until
	Code Sample of Do / Until

	Select / End Select
	Code Sample of Select / End Select

	Case / End Case
	Default Case / End Default Case

	Using Generic Loops
	Uses for Looping
	Creating a Loop

	Using Labels
	Jumping to a Label Using GOTO

	Branching on an Error
	On Error Supported Interfaces

	Branching with Subroutines
	Creating a New Subroutine
	Understanding the Subroutine Creation Dialog Box

	Editing an Existing Subroutine
	Understanding the Argument Edit Dialog Box
	Calling a Subroutine
	Understanding the Call Subroutine Dialog Box
	To add a new argument using the Call Subroutine Dialog box:
	To edit existing arguments using the Call Subroutine Dialog box:
	To delete arguments from a Call Subroutine command:
	Using CALLSUB Statements in Multiple Arm Mode

	Subroutine Examples
	Passing Arguments into a Subroutine

	Code Sample of a Subroutine

	Ending a Measurement Routine

