
i

Table of Contents

Using Expressions and Variables.. 1

Using Expressions and Variables: Introduction ... 1

Using Expressions in a Measurement Routine .. 1

Viewing Expression Values.. 2

Keeping Expression Values Only ... 2

Using Expressions with Branching ... 2

Using Expressions with File Input / Output .. 2

Creating Expressions with the Expression Builder .. 3

Using Variables with Expressions ... 8

Assigning Values to Variables by Using the Assignment Dialog Box 8

Understanding Expression Components ... 9

Literals ... 9

References .. 10

Variables .. 16

Structures .. 18

Pointers ... 20

Arrays .. 21

Operators for Expressions ... 28

Precedence.. 29

Functions ... 30

Functions List ... 30

Example of a Line Feature Created from a Scan Segment 61

Table of Contents

ii

Operand Coercion ... 62

ID Expressions ... 64

Accessing a Report's Object Properties .. 67

Accessing Information from a Constructed Scan Minimum Circle 69

1

Using Expressions and
Variables

Using Expressions and Variables: Introduction
An expression is a user-defined condition used with PC-DMIS's flow control commands. Using
flow control statements, you can then test these conditions in your measurement routine and if
the condition is met or not, you can determine what action PC-DMIS takes.

Expressions are an important to making PC-DMIS accomplish your specific tasks. Using
expressions in conjunction with flow control commands, you can unleash even more of PC-
DMIS's powerful functionality.

This chapter explains what how to create and use expressions inside PC-DMIS's Edit window.
When working with expressions, you should place PC-DMIS's Edit window into Command mode.
This will allow you to view the Edit window code directly.

The following major topics are covered in this chapter:

• Using Expressions in a Measurement Routine
• Creating Expressions with the Expression Builder
• Using Variables with Expressions
• Understanding Expression Components
• Accessing a Report's Object Properties
• Accessing Information from a Constructed Scan Minimum Circle

If you're looking for information on Reporting Expressions, see the "About Report Expressions" in
the "Reporting Measurement Results" chapter.

Using Expressions in a Measurement Routine

The PC-DMIS Edit window allows expressions in most of its editable fields. Editable fields are
usually those fields highlighted in yellow when you press TAB inside the Edit window while in
Command mode. Fields that change the type of the feature do not allow expressions.

Example: The box of an auto feature which specifies the type of the auto feature; i.e. Surface
point, Auto Circle, Auto Round Slot, etc.; does not allow expressions.

The subtopics under this topic offer a complete reference to available expressions.

Using Expressions and Variables

2

Viewing Expression Values
To see the value of an expression, position the mouse cursor over the expression and leave it in
position for at least one second. The expression will be evaluated and a small yellow pop up
window displaying the expression and its current value will appear just below the mouse cursor.

Keeping Expression Values Only
To immediately solve an expression in the Edit window, thus keeping only the value:

1. Select the expression text in the Edit window.
2. Precede the expression text with a ` (accent grave) character.

Example: Suppose you type the expression " `1/7 " in a numeric field. The expression will be
immediately solved and only the value (0.143) will be placed in the field.

Using Expressions with Branching
The flow control commands use expressions to determine flow of routine execution. Please refer
to the "Branching by Using Flow Control" chapter for information on when branching may or may
not occur.

Using Expressions with File Input / Output
Writing data to an external data file or reading data from an external data file often uses variables
and other expressions to effectively manage and store or display that data. Please refer to the
"Using File Input / Output" chapter for more information.

Using Expressions and Variables

3

Creating Expressions with the Expression Builder

Expression Builder dialog box

PC-DMIS allows you to create and add expressions into the Edit window by simply typing them in
or by using the friendlier interface of the Expression Builder dialog box. The Edit | Expression
menu option displays the Expression Builder dialog box.

This dialog box allows you to create an expression and insert it into an editable field. Pressing the
F2 key while the cursor is on a field that allows expressions will also bring up the Expression
Builder dialog box.

The Expressions Builder dialog lists all of the types of operators and functions available for
expressions.

Creating an Expression by Typing

To create an expression by typing it directly to the Edit window:

1. Open the Edit window (View | Edit Window).
2. Place the Edit window into command mode.
3. Press TAB to move your cursor to an editable field where you want to insert the

expression. Fields with a yellow highlight are considered "editable".
4. Type the expression.

Creating an Expression with the Expression Builder

Note: You must be in Command mode for the Expression option to be enabled.

To enter an expression by using the Expression Builder dialog box (Edit | Expression):

1. Open the Edit window (View | Edit Window).

Using Expressions and Variables

4

2. Place the Edit window into command mode (View | Command Mode).
3. Move the cursor to an editable field where you want to insert the expression.
4. Press the F2 key while the cursor is on a field that allows expressions. The Expression

Builder dialog box will appear. The Expression Builder dialog box lists all of the types
of operators, operands, and functions. The following can be referenced through this
dialog box:

• Available expression types
• Variables
• Features
• Dimensions
• Alignments
• Comments

5. Select the expression element type from the first drop-down list. Depending on your
selection, other combo boxes will appear.

6. Select the desired ID from the ID drop-down list.
7. Select an extension from the Extension drop-down list.
8. Select another extension from the Second Extension drop-down list. If the expression is

usable, the Add button becomes available.
9. Click the Add button. The expression appears in an edit box.
10. Click the OK button. The expression now appears where your cursor is in the Edit

window.

Note: You can also open the Expression Builder dialog box from these other dialog boxes:

• The If Expression dialog box - Select Insert | Flow Control Command | If Goto. Click
on the Expression button.

• The Assignment dialog box - Select Insert | Assignment. Click the Assign To or
Assign From button.

Once the expression is created, PC-DMIS automatically inserts the expression at the next legal
position in the Edit window.

Checking the Expression for Correctness

When your cursor leaves the field where you added the expression, PC-DMIS attempts to check
the expression for correctness. If there is a problem with the expression, an error message
indicating an invalid number may appear, or the expression text may turn red. Also, expressions
that refer to non-existent objects will show up in red text.

Since the test of expression correctness occurs at the time you leave a field, a field that turned
red due to a reference of a nonexistent object, (ex. CIRCLE1.X), will remain red even if the new
object, (ex. CIRCLE1), is added. The field remains red until the expression is re-tested for
correctness.

To re-test the expression for correctness:

Using Expressions and Variables

5

1. Move your cursor to the field of the expression.
2. Press the F2 key. The Expression Builder dialog box opens again. Any changes to your

expression appear in the edit box.
3. Press the ENTER key to close the dialog box.

Expression Element Type

The Expression Element Type drop-down list in the Expression Builder dialog box (Edit |
Expression) lists the various expression element types available to be placed into expressions.
These include:

• Functions
• Operators
• Alignments
• Comments
• Dimensions
• Features
• Variables

ID

The ID drop-down list of the Expression Builder dialog box (Edit | Expression) lists the set of
items available based on the expression element type selected in the Expression Element Type
drop-down list.

For Example:

• When Functions & Operators is chosen from the Expression Element Type drop-
down list the ID drop-down list contains a list of the available functions and operators.

• When Features is chosen in the Expression Element Type drop-down list, the ID drop-
down list displays the IDs of the features in the measurement routine.

Extension

The Extension drop-down list in the Expression Builder dialog box (Edit | Expression) becomes
available when the item chosen in ID drop-down list requires the addition of an extension in order
to form a usable expression element. The Extension drop-down list displays available extensions
based on the item selected in the ID drop-down list.

Example: Suppose you select a feature from the ID drop-down list. The list of possible
extensions that can be used to reference data of that feature (such as "X", "Y", "Z", "Diam",
"Length", etc.) are then listed in the Extension drop-down list.

Using Expressions and Variables

6

Possible extensions include these measured or theoretical data types:

Measured:

• All – All the values of the feature are assigned to the variable. See the example below.
• X – Measured X values of the hits
• Y – Measured Y values of the hits
• Z – Measured Z values of the hits
• XYZ – Measured XYZ values of the hits
• I – Measured I values of the hits
• J – Measured J values of the hits
• K – Measured K values of the hits
• IJK – Measured IJK values of the hits

Theoretical:

• TX – Theoretical X values of the hits
• TY – Theoretical Y values of the hits
• TZ – Theoretical Z values of the hits
• TXYZ – Theoretical XYZ values of the hits
• TI – Theoretical I values of the hits
• TJ – Theoretical J values of the hits
• TK – Theoretical K values of the hits
• TIJK – Theoretical IJK values of the hits

Example:

F1=GENERIC/POINT,DEPENDENT,CARTESIAN,$

NOM/XYZ,<8,9,10>,$

MEAS/XYZ,<7.98,8.98,9.98>,$

NOM/IJK,<1,0,0>,$

MEAS/IJK,<1,0,0>

ASSIGN/MYFEATURE = F1.ALL

ASSIGN/V1 = MYFEATURE.X

ASSIGN/V2 = MYFEATURE.TX

V1 contains the value of 7.98

V2 contains the value of 8

Second Extension

The Second Extension drop-down list becomes available only if the item chosen in the
Extension drop-down list requires the addition of a second extension in order to form a usable
expression element.

Using Expressions and Variables

7

Example: Suppose you are referencing the nominal value of the X location axis of a dimension
named "D1".

You would:

1. Choose D1 from the ID drop-down list.
2. Select X from the Extension drop-down list.
3. Select Nom from the Second Extension drop-down list.

Add Button

Whenever you select a usable or complete expression element using the drop-down lists, the
Add button becomes available. This button displays the text to be added to the expression.

For example, if the following were chosen:

• Dimensions from the Expression Element Type list
• D1 from the ID list
• X from the Extension list
• Nom from the Second Extension list

Then the Add button becomes enabled and would have the following text: Add D1.X.NOM.

Upon clicking the Add button, the text then appears in the edit box at the bottom of the dialog
box.

Note: When you click the OK button, the text from the edit box is added to the Edit window, to the
expression field where your cursor is. If you select an item from the Edit window's expression
field, and the text to be added contains parenthesis, then the selected item would be placed
inside of the parenthesis of the added text.

Edit box

At the bottom of the Expression Builder dialog box (Edit | Expression) is an edit box showing
the current expression. The expression can be typed directly to this box, or you can use the Add
button.

Description Area

The Expression Builder dialog box (Edit | Expression) also contains a Description area which
gives information about items selected from the drop-down lists. A field next to the Add button
also shows the current value of the expression.

Using Expressions and Variables

8

Note: Invalid expressions have a value of 0.

Using Variables with Expressions

Variables are objects that hold values. Variables refer to integer, real, string, or point operands.
Variables are essential to using expressions. A variable has a name and a value. The name is
used to access the value of the variable. The name is constant, the value can be changed. You
assign a value to a variable by using the ASSIGN/ command.

For example, the statement ASSIGN/V1 = 2 creates a variable with a name of V1 and a value
of 2. ASSIGN/V2 = V1 + 2 accesses the value of V1. If V1 still had a value of 2 when this
assign statement was executed, V2 would then have a value of 4.

For more information on variables, see "Variables".

Assigning Values to Variables by Using the Assignment
Dialog Box

Assignment dialog box

The Insert | Assignment menu option displays the Assignment dialog box. This dialog box is
used to assign a value to a variable or data element of a measurement routine feature,
dimension, or alignment. Use of the assignment command requires a basic understanding of PC-
DMIS expressions.

Assign To button - This button is used to designate the variable that is receiving the value
calculated in the Assign From box. Information chosen using the Assign To button is
placed in the Assign To box. This value can be the name of a variable, or a reference to a
data element of a feature, dimension, or alignment.

The result of solving the mathematical expression for a value is what is meant by the term
"evaluated".

Assign From button - This button is used to place the value being assigned into the
Assign From box. If this box contains an expression, the expression is evaluated at
execution time and the result or value of the calculation is assigned to the object specified
in the Assign To box.

Insert button - This button is used to insert an assignment command into the
measurement routine while keeping the Assignment dialog box open. A series of
assignment commands can be inserted without closing the dialog box.

Using Expressions and Variables

9

Understanding Expression Components

Expressions have these types of operands :

• Integers
• Real Numbers
• Strings
• Points
• Feature Pointers
• Arrays
• Functions

These are discussed in detail below.

Operand Types

The operands may exist in the form of:

• Literals
• References
• Variables
• Structures
• Pointers
• Arrays

Literals
*Integers: 1, -6, 209

Reals: 1, -6, 2.4, -0.1, 345.6789

Strings: "Hello World", "47", "CIRCLE 1"

Points: A literal representation is not available for points. However, points can be made from
other literals using the MPOINT function: For example, MPOINT(0,0,1), MPOINT(2.2, 3.1,
4.0).

Pointer: The name of a feature enclosed in French brackets: {CIR1}, {LIN2}, {F3}

Using Expressions and Variables

10

Arrays: A literal representation is not available for arrays. However, arrays can be created from
other literals using the ARRAY function: For example, ARRAY(3, 5, 6), ARRAY("Hello",
2.3, 9). These functions create 3 element arrays with the integer elements 3, 5, and 6 in the
first example and the string element "Hello", double element 2.3, and integer element 9 in the
second example.

Functions: A literal representation is not available for functions. Functions are defined using the
FUNCTION keyword and accessed via variable ids. For example, ASSIGN/Add2 =
FUNCTION((X), X+2) defines a function that takes one argument and adds 2 to it. The variable
Add2 is assigned the function. The function can be called using the variable Add2 as follows.
ASSIGN/Result = Add2(5). Result is assigned the value 7.

Note: Numeric Literals are interpreted as real numbers unless the operator or function implies the
use of integers. For example, the expression 10 / 8 evaluates to 1.25 instead of 1. Note also that
discrete division is also possible via the operand coercion operators. The expression INT(10) /
INT(8) does evaluate to 1.

References

References refer to data members of other objects in a measurement routine. References use the
ID of an object in the measurement routine followed by a dot and an extension that refers to the
data member of the object.

Example: If CIRCLE1 were the name of a measured circle in the measurement routine,
CIRCLE1.X would refer to the measured value of the X component of CIRCLE1. All references
are evaluated in part coordinates relative to the current alignment.

References of Type Double

The following reference expressions are available:

Valid Extensions for Feature References of Type Double by Example
Format: <Feature Id>.<Extension> -> CIRCLE1.X

CIRCLE1.X Measured X Value of CIRCLE1
CIRCLE1.Y Measured Y Value of CIRCLE1
CIRCLE1.Z Measured Z Value of CIRCLE1

CIRCLE1.TX Theoretical (Nominal) X Value of CIRCLE1
CIRCLE1.TY Theoretical (Nominal) Y Value of CIRCLE1
CIRCLE1.TZ Theoretical (Nominal) Z Value of CIRCLE1

LINE1.SX Measured X Value of the Startpoint of LINE1
LINE1.SY
LINE1.SZ

Using Expressions and Variables

11

LINE1.TSX Theoretical X Value of the Startpoint of LINE1
LINE1.TSY
LINE1.TSZ

LINE1.EX Measured X Value of the Endpoint of LINE1
LINE1.EY
LINE1.EZ

LINE1.TEX Theoretical X Value of the Endpoint of LINE1
LINE1.TEY
LINE1.TEZ

POINT.I Measured I Component of Vector for POINT
POINT.J
POINT.K

POINT.TI Theoretical I Component of Vector for POINT
POINT.TJ
POINT.TK

FEAT1.TYP The type of the feature (i.e. circle, slot, cone). This can be used to change the type
of a generic feature (Assign/ Gen1.TYP = Feat1.TYP).

FEAT1.ALL Refers to all elements of the feature. This is valuable for copying information to a
generic feature. (Assign/ Gen1.ALL = Feat1.ALL)

Surface Vector

EDGE.SURFI

EDGE.SURFJ

EDGE.SURFK

EDGE.TSURFI

EDGE.TSURFJ

EDGE.TSURFK

Angle Vector

CIR.ANGI

CIR.ANGJ

CIR.ANGK

CIR.TANGI

CIR.TANGJ

Using Expressions and Variables

12

CIR.TANGK

Radius

CIRCLE1.R

CIRCLE1.TR

CIRCLE1.RAD

CIRCLE1.TRAD

CIRCLE1.RADIUS

CIRCLE1.PR – Polar Radius

CIRCLE1.TPR – Theoretical Polar Radius

CIRCLE1.TRADIUS (Only the First Characters are significant)

Diameter

CIRCLE1.D

CIRCLE1.TD

CIRCLE1.DIAM

CIRCLE1.TDIAM

CIRCLE1.DIAMETER

CIRCLE1.TDIAMETER (Only the first characters are significant)

Angle

CONE.A

CONE.TA

CONE.ANG

CONE.TANG

CONE.ANGLE

CONE.TANGLE

CONE.PA – Polar Angle

Using Expressions and Variables

13

CONE.TPA – Theoretical Polar Angle (Only the first characters are significant)

Length

LINE.L

LINE.TL

LINE.LEN

LINE.TLEN

LINE.LENGTH

LINE.TLENGTH (Only the first characters are significant)

Height

CYLINDER.PH – Polar Height

CYLINDER.TPH – Theoretical Polar Height

Radius, Angle, Height

POINT.RAH – Point with Measured Radius, Angle, and Height

POINT.TRAH – Point with Theoretical Radius, Angle, and Height

Area

BLOB1.AREA - Returns the measured Area value for a Blob feature.

BLOB1.TAREA - Returns the Theoretical Area value for a Blob feature.

For example, ASSIGN/V1=BLOB1.AREA returns the measured area value of the BLOB1
feature and assigns it to the V1 variable.

Currently, only the Blob feature works with these area extensions. For information on the
Blob feature, see the "Vision Blob" topic in the "PC-DMIS Vision" documentation.

Valid Extensions for Dimension Reference of Type Double by Example
Format: <Dimension ID>.<AXIS>.<Dimension Element> -> DIM1.X.NOM

DIM1.X.NOM The Nominal Value for X Axis Location of DIM1

DIM1.X.MEAS The Measured Value for the X Axis Location of DIM1

DIM1.X.MAX The Max Deviation for X Axis Location of DIM1

DIM1.X.MIN The Min Deviation for X Axis Location of DIM1

DIM1.X.PTOL The Plus Tolerance Value for the X Axis Location of DIM1

Using Expressions and Variables

14

DIM1.X.MTOL The Minus Tolerance Value for the X Axis Location of DIM1

DIM1.X.DEV The Deviation on the X Axis Location of DIM1

DIM1.X.OUTTOL The Out of Tolerance value on the X Axis Location of DIM1

DIM1.Y.NOM The Nominal Value for the Y Axis Location of DIM1

DIM1.Z.DEV The Deviation on the Z Axis Location of DIM1

DIM3.PA.MEAS The Measured Value for the Polar Angle Location of DIM3

DIM4.M.PTOL The Plus Tolerance Value for the M Axis of DIM4

DIM4.PTOL The Plus Tolerance Value for the M Axis of DIM4 (See *Note under
"Valid Axes " below).

DIM5.BTOL The Bonus Tolerance Value where DIM5 is a Position.

Valid Axes:
X, Y, Z, D, R, A, T, V, L, PR, PA, M, PD, RS, RT, S, H, DD, DF, TP

Note: * Dimensions that have only one axis by definition (such as roundness, concentricity, and
so on) can omit the axis qualifier. If the axis qualifier is used, note that all of these types of
dimensions (that have only one axis) use the M Axis qualifier with the exception of 2D and 3D
angle dimensions, which use the A Axis qualifier.

Valid Extensions for Alignment References of Type Double by Example:
Format: <Alignment ID>.<Alignment Axis or Origin>.<Alignment Axis or Origin Component> ->
A1.ORIGIN.X

A1.ORIGIN.X X Component of alignment A1's measured origin

A2.ORIGIN.Y Y Component of alignment A2's measured origin

A1.ORIGIN.Z Z Component of alignment A1's measured origin

A1.XAXIS.I I Component of alignment A1's measured X axis

A1.YAXIS.J J Component of alignment A1's measured Y axis

A1.ZAXIS.K K Component of alignment A1's measured Z axis

A1.CORIGIN.X X Component of alignment A1's origin based on theoretical (C is for CAD)
data

A1.CXAXIS.J J Component of alignment A1's X axis based on theoretical (C is for CAD)
data

References of Type Point

The following reference expressions are available:

Valid Extensions for Feature References of Type Point by Example
Format: <Feature ID>.<Extension> -> CIRCLE1.XYZ

Using Expressions and Variables

15

CIRCLE1.XYZ Measured centroid of CIRCLE1

CIRCLE1.TXYZ Theoretical centroid of CIRCLE1

LINE1.SXYZ Measured start point of LINE1

LINE1.TSXYZ Theoretical start point of LINE1

LINE1.EXYZ Measured end point of LINE1

LINE1.TEXYZ Theoretical end point of LINE1

CIRCLE1.IJK Measured Vector of CIRCLE1

CIRCLE1.TIJK Theoretical Vector of CIRCLE1

EDGE.SURFIJK Measured Surface Vector of EDGE

EDGE.TSURFIJK Theoretical Surface Vector of EDGE

AUTOCIR1.ANGIJK Measured Angle Vector of AUTOCIR1

AUTOCIR1.TANGIJK Theoretical Angle Vector of AUTOCIR1

Valid Extensions for Alignment Reference of Type Point by Example
Format: <Alignment ID>.<Alignment Axis or Origin> -> A1.XAXIS

A1.ORIGIN Measured origin of alignment A1

A1.XAXIS Measured X axis of alignment A1

A1.YAXIS Measured Y axis of alignment A1

A1.ZAXIS Measured Z axis of alignment A1

A1.CORIGIN Theoretical origin of alignment A1

A1.CXAXIS Theoretical X axis of alignment A1

A1.CYAXIS Theoretical Y axis of alignment A1

A1.CZAXIS Theoretical Z axis of alignment A1

Using Expressions and Variables

16

References of Type String

References to comments are the only object types that are of type string. Only INPUT comments
or YES/NO comments can be referred to via references. These comment types have an ID which
can be used to identify the comment.

Format: <Comment ID>.INPUT -> C1.INPUT

C1.INPUT - The input value (from the operator) for comment C1

YES/NO comment types set the input to the appropriate yes or no string based on the current
language of PC-DMIS. In the English version of PC-DMIS if the operator presses the yes button,
the string is set to "YES", if the operator presses the no button, the string is set to "NO". When
comparing strings to test for "YES" or "NO", the comparison is case sensitive. Thus, comparing
against "yes" or "no" will always fail even if the YES/NO comment input is set to "YES" or "NO".

Variables
Variables can be of any of the seven operand types: integer, real, string, point, feature pointer,
array, or function. Variables come into existence and receive their value and type via the ASSIGN
statement. The variable ID can be any alphanumeric string that does not begin with a numeric
character. Underscores can also be used in the variable id provided that the underscore is not the
first character.

Variable values are saved between execution runs. This means if routine execution stops and re-
starts, the values the variables have when execution stops will be the same values when
execution starts again.

Note: If the Edit window is active, PC-DMIS will indicate the current value of the variable
whenever the cursor is placed in the field. During execution, variable values will change based on
flow of execution. Position the mouse pointer over the desired variable to find out its current
value.

ASSIGN/ V1 = 2.2+2
Variable V1 is a real number with the value of 4.2

ASSIGN/ VAR1 = CIRCLE1.X
Variable VAR1 is a real number with a value equal to the measured value of CIRCLE1.X at
the time of assignment.

ASSIGN/ MYVAR = LINE1.XYZ
Variable MYVAR is a point with the same value of the measured centroid of LINE1 at the
time of assignment.

ASSIGN/ SVAR = "Hello World"
Variable SVAR is a string with the value "Hello World"

In these examples, variables are being assigned values. Once a variable has been assigned a
value, the variable can be used as an operand in any expression field.

Using Expressions and Variables

17

Example of V1 being used in a numeric field:
ASSIGN/V1 = 1/3
PREHIT / V1

Here, V1 is used as the prehit value of the prehit command.

Note: Since expressions can be used in most editable fields, the following expression is also
legal and has the same effect: PREHIT / 1/3.

The components of variables of type point can be referred to individually using the dot extension
notation used for references.

ASSIGN/ V1 = MPOINT(3, 4, 5)
V1 is of type point with value of 3, 4, 5

ASSIGN/ XVAR = V1.X
XVAR is of type double with the value of 3

ASSIGN/ YVAR = V1.Y
YVAR is of type double with the value of 4

ASSIGN/ IVAR = V1.I
IVAR is of type double with the value of 3

ASSIGN/ REDUNVAR = V1.XYZ
REDUNVAR is of type point with the value of 3, 4, 5

The following extensions are equivalent to each other. Both are provided to clarify the meaning of
an expression in a measurement routine.

Given that V1 is of type point.

V1.X is the same as V1.I
V1.Y is the same as V1.J
V1.Z is the same as V1.K

V1.XYZ is the same as V1.IJK and V1 without any extension.

If a variable of type string has a string value equal to the name of the id of a feature, dimension,
or alignment, the variable can be used as a reference object.

Example:
ASSIGN/ V1 = "CIRCLE1"

The following operands are possible and valid provided a feature with the name CIRCLE1 exists.

V1.X - The measured X value of CIRCLE1
V1.TX - The theoretical X value of CIRCLE1
V1.Diameter - The measured diameter of CIRCLE1
V1.Radius - The measured radius of CIRCLE1

Using Expressions and Variables

18

This type of indirection available on string variables is only available to one level of indirection.
The following will not work.

ASSIGN/ V1 = "CIRCLE1"
ASSIGN/ V2 = "V1"

V2.X - This will evaluate to 0 instead of the current measured value of CIRCLE1.X.

Note: The reference V2.X will not be flagged as an error with red text even though an
expression above it sets its type to a string. The reason it cannot be flagged as an error is
because the flow of execution of the measurement routine is not known until execute time.

However, if you use curly brackets the following does work:

ASSIGN/ V1 = {CIRCLE1}
ASSIGN/ V2 = {V1}

V2.X - This will give you the value of CIRCLE1.X.

Consider the following example:

ASSIGN/ V1 = "CIRCLE1"
ASSIGN/ V2 = "V1"
IF / CIRCLE1.X > CIRCLE1.TX, GOTO, L2
L1 = LABEL /
ASSIGN/ V3 = V2.X
GOTO / LABEL, L3
L2 = LABEL /
ASSIGN/ V2 = MPOINT(2, 5, 7)
GOTO / LABEL, L1
L3 = LABEL /

If during routine execution the value of CIRCLE1.X is greater than the value of CIRCLE1.TX, then
the expression V2.X will be valid and will evaluate to 2. Otherwise, the expression V2.X will
evaluate to 0 since the value of V2 at the time of the ASSIGN for V3 is the string "V1". It is the
responsibility of the part programmer to ensure that expressions will do as expected in these
cases.

Additional note on the Assign Statement: Almost all of the feature references can be used on
the left-hand side of the assignment statement to put a value into a measured or theoretical data
member of a feature. The only exception is the single I, J, K components of vectors. To assign to
vectors, the complete vector must be assigned at once using an expression that evaluates to a
point. Vector data is normalized as it is input into the feature’s vector data members.

Example:
ASSIGN/ CIRCLE1.I = 2 - illegal
ASSIGN/ CIRCLE1.IJK = MPOINT(2, 0, 0)-legal (vector is normalized to 1, 0, 0)

For information on using variables within dimensions, see the "Dimensioning Variables" topic in
the "Using Legacy Dimensions" chapter.

Structures

You can use a variable type called structures to place extensions on a variable to identify sub-
element of that variable. Consider this example:

Using Expressions and Variables

19

Example:
ASSIGN/V1.HEIGHT = 6
ASSIGN/V1.WIDTH = 4.3
ASSIGN/V1.MODE = "CIRCULAR"
ASSIGN/V1.POINT = MPOINT(100.3, 37.5, 63.1)

In this example:

• V1 is the structure.
• HEIGHT, WIDTH, MODE, and POINT are sub-elements of the structure.

Rules for Structures

• Like Variables, Structures do not need to be declared.
• Sub-elements of a structure can be any of these variable types:

o Integer
o Double
o Point
o Feature Pointer
o Function
o Array
o Structure

For example, it is possible to have structure elements that are arrays and array elements that are
structures. This makes the following example expressions valid:

Example
ASSIGN/CAR.LEFTSIDE.DOOR[2].QUADRANT[3].JOINT[5].HIT [4] = MPOINT(558.89, 910.12, 42.45)

COMMENT/OPER,"Current Z Position: " + CAR.LEFTSIDE.DOOR[2].QUADRANT[3].JOINT[5].HIT[4].Z

ASSIGN/CURRENTJOINT = LEFTSIDE.DOOR[2].QUADRANT[3].JOINT[5]

COMMENT/OPER,"Next Hit: " + CURRENTJOINT.HIT[4]

Structures with Variables of Type Point

If a variable is of type point, the user can still use the .X, .Y, .Z, .I, .J, and .K extensions to get at
individual items of the point. The user can also use any of the extensions from this example in
their structures without being forced to use them as point elements .

Example:
ASSIGN/V1.X = "Some string"
ASSIGN/V1.Y = ARRAY(1,3,5,9,7)
ASSIGN/V1.Z = MPOINT(3,5,7)

COMMENT/REPT,V1.X Output is "Some string"

COMMENT/REPT,V1.Y[2] Output is 3, the second element of the array.

Using Expressions and Variables

20

COMMENT/REPT,V1.Z.Y Output is 5, the Y value of the MPOINT.

By combining structures with the function capability of the PC-DMIS expression language, it is
possible to have dynamic structure references as shown here:

(example continued)
ASSIGN/DYNAMICSTRUCT = FUNCTION((X,Y), X.Y)
C1 =COMMENT/INPUT,Please enter in item
ASSIGN/TESTSTR = C1.INPUT
ASSIGN/FRONT = LEFT(TESTSTR, INDEX(TESTSTR, ".")-1)
ASSIGN/BACK = MID(TESTSTR, INDEX(TESTSTR, "."))
ASSIGN/RESULT = DYNAMICSTRUCT(FRONT, BACK)

This portion of the example asks you to input a variable reference, splits the reference at the first
'.', and then assigns RESULT to be equal to that reference by using the function
DYNAMICSTRUCT.

So, if from you had typed V1.Y[4] for the C1.INPUT variable, RESULT would end up with the
value of 9 (the fourth element of the array assigned to V1.Y).

The learn time evaluation of expressions has been enhanced to accurately show all elements of a
structure or an array.

Pointers
Pointers are also known as "Feature Pointers ". See the Glossary term "Feature Pointers" for
more information.

Pointers provide a way to reference a feature via a variable or to pass objects using the call sub
command. Pointers are similar to indirection via string names. However, the advantage of using
pointers is with subroutines. Pointers, unlike strings, when passed in as arguments of a
subroutine, allow for direct modification of the object pointed to by the subroutine. Pointers are
not used in complex expressions. If it is used in a complex expression, the pointer will evaluate to
zero.

Consider the following examples.

Pointer Use Example:

• ASSIGN/ V1 = {CIR1}

V1 is now a pointer that points to CIR1.

• ASSIGN/ DIST = DOUBLE(V1.XYZ)

Dist = distance of CIR1 from origin.

You can also put an expression between curly brackets in order to obtain a feature pointer. Now
the following examples are all legal ways to get the pointer to feature CIR1:

• ASSIGN/FEATCOUNT = 1

ASSIGN/V1={"CIR" + FEATCOUNT}

Using Expressions and Variables

21

Assigns expression "CIR1" to V1.

• ASSIGN/V2="CIR1"

ASSIGN/V3={V2}

Assigns expression "CIR1" from variable V2 to variable V3.

• C1=COMMENT/INPUT, Please type a feature name.

ASSIGN/V4={C1.INPUT}

This takes the feature name of C1.INPUT and places it into variable, V4.

Subroutine Example:
In the calling routine:

CS1 = CALLSUB/SUB.PRG,CHANGEX, {CIR1}

In the subroutine:

GEN1 = GENERIC/FEATURE
SUBROUTINE/CHANGEX, ARG1 = {GEN1}

(When CIR1 is passed in it takes the place of GEN1)

ARG1.X = 5

(Sets the measured X value of CIR1 to 5)

END/SUBROUTINE

Complex Expression Example:
ASSIGN/ V1 = {CIR1} + 2

{CIR1} evaluates to zero and so entire expression evaluates to 2.

Arrays

Three types of arrays are available: Feature arrays, hit arrays, and variable Arrays.

Important: Even though multi-dimensional arrays are displayed as multi-dimensional in the
software, you can really only use them as single dimensional arrays until you precede the arrays
with an ARRAY INDICES command (see the "Array Indices Object:" topic).

Feature Arrays

When a feature is measured more than once during routine execution, a feature array is
automatically created. The number of elements in the feature array is equal to the number of
times the feature has been executed.

Using Expressions and Variables

22

Example: If a measured circle object were located in a while loop that executed five times, then
an array of five measured circles would exist. If the id of the measured circle were "Circle1", then
an array expression could be used to access individual instances of the measured circle object.
Square brackets are used to indicate the instance desired.

Assign/V1 = Circle1[3].X
V1 is assigned the measured X value of the third instance of Circle1.

Note: When a feature array exists for a given feature, but array notation is not used in a
reference to that feature, the most recent instance is used. From the above example, the
reference Circle1.X would be the same as Circle1[5].X, since the fifth instance would be
the most recent instance of the object.

Expressions can be used within the square brackets of an array expression. Circle1[3].X and
Circle1[2+1].X would therefore be equivalent. The following example uses a loop to print out
the measured centroid of the five circles from the examples above.

Example:
Assign/V1 = 1
While/V1 < 6
Comment/Rept, "Centroid of instance #" + V1 + " of Circle1: " + Circle1[V1].XYZ
Assign/V1 = V1 + 1
End/While

Possible output from the above example:

Centroid of instance #1 of Circle1: 3.4, 2.6, 1.43

Centroid of instance #2 of Circle1: 4.4, 3.6, 2.43

Centroid of instance #3 of Circle1: 5.4, 4.6, 3.43

Centroid of instance #4 of Circle1: 6.4, 5.6, 4.43

Centroid of instance #5 of Circle1: 7.5, 6.6, 5.43

Arrays also exist on dimensions and alignments that have been executed multiple times in a
given execution run. Thus, Dim1[2].Nom and Align1[4].Origin would be available given
that the Dimension "Dim1" has executed at least twice and the alignment "Align1" has executed
at least four times.

If a feature array reference is out of bounds (for example, the user asks for Circle1[2.5] or >
Circle1["Hello, World"]) the upper or lower bound item is returned. If Circle1 had 3
instances then Circle1[4] and above would return the value for Circle1[3] and Circle[0]
and below would return the value for Circle1[1]. All expressions between square brackets are
coerced to integer, thus 2.5 would become 2 and "Hello World" would become 0.

Array Indices Object

By default, feature arrays are always one-dimensional arrays. If it is more convenient to treat a
feature array as a multi-dimensional array, this can be done by using the array indices object.

Using Expressions and Variables

23

The array indices object allows you to specify upper and lower bounds for multiple array
dimensions.

• By setting the upper and lower bounds of the first dimension a two dimensional array is
created where the first dimension is bound and the second dimension is unbound.

• By setting the upper and lower bounds of the first two dimensions of an array, a three
dimensional array is created. The last dimension is always unbound.

Example:
Feature F1 is located inside a nested WHILE loop. The inner WHILE loop executes five times and
the outer WHILE loop executes three times. At completion of execution, F1 has been executed 15
times and so 15 instances of F1 exist.

Consider the following example measurement routine segment:

ARRAY_INDICES/1..5,..
ASSIGN/V1 = 1
WHILE/V1<=3
ASSIGN/V2 = 1
WHILE/V2<=5
F1=FEAT/POINT,RECT
THEO/V2,V1,0,0,0,1
ACTL/1,1,0,0,0,1
MEAS/POINT,1
HIT/BASIC,V2,V1,0,0,0,1,1,1,0
ENDMEAS/
ASSIGN/V2 = V2+1
COMMENT/REPT,"Location of F1[" + V2 + "," + V1 + "] :" + F1[V2,V1].XYZ
END_WHILE/
ASSIGN/V1 = V1+1
END_WHILE/

This code segment creates a 3 X 5 grid of 15 measured points.

The array indices command has limited the first dimension of the feature array to be between 1
and 5 inclusively. Thus on the inspection report, instead of appearing as F1[1] – F1[15], the
objects will appear as F1[1, 1] – F1[5, 3], more consistent with the layout of the features. Notice
that the comment also refers to the feature array using a two dimensional array syntax.

To insert an array_indices object in a measurement routine:

1. Using the keyboard, type "Array" on an empty line in the Edit window.
2. Press the Tab key on your keyboard.

Note: If the Display Brackets for Feature Arrays check box has been cleared, the feature will
not appear with the bracketed name. See "Display Brackets for Feature Arrays" in the "Setting
Your Preferences" chapter.

Hit Arrays

The hits of a given feature are available as an array and can be accessed via expressions using
array syntax of the form <FeatID>.Hit[<Array Expression>].<Extension> or the form
<FeatID>.RawHit[<Array Expression>].<Extension>. Hit returns probe compensated data when

Using Expressions and Variables

24

probe compensation is on. RawHit always return uncompensated data. Valid extensions are X, Y,
Z, I, J, K, TX, TY, TZ, TI, TJ, TK, XYZ, TXYZ, IJK, and TIJK

Circle1.Hit[1].XYZ
The measured centroid (probe compensated) of hit 1 of "Circle1".

Circle1.Hit[2].IJK
The measured vector of hit 2 of "Circle1"

Hit data is available for all objects that have hits, whether the actual hits are displayed in the edit
window or not. Thus, hits can be obtained for scans and auto features.

The following topics describe some additional array functions that are useful for finding the
minimum or maximum points in a scan:

Assigning a Range of Hits to an Array
You can also assign a range of hits to an array by using this syntax:

<Feature Id>.<Hittype>[<Startnum>..<Endnum>].<Extension>

where

<Feature Id> is the name of the feature

<Hittype> can be either the word "HIT" for compensated data or "RAWHIT" for
uncompensated data. If probe compensation if turned off, the returns values are always
uncompensated.

<Startnum> is an expression that identifies the first index value of the range of hits

<Endnum> is an expression that identifies the second index value of the range of hits

<Extension> identifies the type of data. Possible extensions include these measured or
theoretical data types:

Measured:

• X – Measured X values of the hits
• Y – Measured Y values of the hits
• Z – Measured Z values of the hits
• XYZ – Measured XYZ values of the hits
• I – Measured I values of the hits
• J – Measured J values of the hits
• K – Measured K values of the hits
• IJK – Measured IJK values of the hits

Theoretical:

• TX – Theoretical X values of the hits
• TY – Theoretical Y values of the hits

Using Expressions and Variables

25

• TZ – Theoretical Z values of the hits
• TXYZ – Theoretical XYZ values of the hits
• TI – Theoretical I values of the hits
• TJ – Theoretical J values of the hits
• TK – Theoretical K values of the hits
• TIJK – Theoretical IJK values of the hits

For example,

ASSIGN/V1 = SCAN1.HIT[1..10].X
V1 is assigned to an array of 10 values which are the measured X values from the first 10
hits of SCAN1.

ASSIGN/V2 = SCAN1.HIT[1..SCAN1.NUMHITS].XYZ
V2 is assigned to an array of points from each of the centroids of the hits in the scan.

Sorting Arrays
PC-DMIS allows you to sort arrays in either ascending or descending order. The following two
expressions take an array and return a sorted array:

To sort in ascending order use:
SORTUP(<array>)

To sort in descending order use:
SORTDOWN(<array>)

For example,

ASSIGN/V1 = ARRAY(5,8,3,9,2,6,1,7)
V1 is assigned the array of "5,8,3,9,2,6,1,7"

ASSIGN/V2 = SORTUP(V1)
V2 will hold the array values sorted in ascending order: "1,2,3,5,6,7,8,9"

ASSIGN/V3 = SORTDOWN(V1)
V3 will hold the array values sorted in descending order: "9,8,7,6,5,3,2,1"

Returning the Greatest or Least Index Values from an Array:
You can input an array into a function and return the index number of the element that has the
greatest or the least value by using these functions:

To return the index value of the element with the greatest value, use:

MAXINDEX(<array>)

To return the index value of the element with the least value, use:

MININDEX(<array>)

For example,

Using Expressions and Variables

26

ASSIGN/V1 = ARRAY(5,8,3,9,2,6,1,7)
V1 is assigned the array of "5,8,3,9,2,6,1,7"

ASSIGN/V2 = MAXINDEX(V1)
V2 will hold the array's index value of 4. The actual value of that array element is 9

ASSIGN/V3 = MININDEX(V1)
V3 will hold the array's index value of 7. The actual value of that array element is 1

You can then use returned index values to get the actual array element value.

Returning Sorted Index Values from an Array
You can input an array into a function, sort the array's values in ascending or descending order
and then return the index values by using these functions:

To return the array's index positions in order of their values sorted from greatest to least
use:
MAXINDICES(<array>)

To return the array's index positions in order of their values sorted from least to greatest
use:
MININDICES(<array>)

For example,

ASSIGN/V1 = ARRAY(4,8,2,9,5,7)
V1 is assigned the array of "4,8,2,9,5,7"

ASSIGN/V2 = MAXINDICES(V1)
V2 will hold an array with these values: "4,2,6,5,1,3"

ASSIGN/V3 = MININDICES(V1)
V3 will hold an array with these values: "3,1,5,6,2,4"

Example of Using Array Functions to Find the Minimum and Maximum Points in a Scan
The main purpose of the hit array functions discussed above is to give you an easy way to find
the minimum and maximum points in a scan.

To dimension the point from SCAN1 that has the greatest measured X value, you could use this
expression:

ASSIGN/MAXPTINDEX = MAXINDEX(SCAN1.HIT[1..SCAN1.NUMHITS].X)

D1 = LOCATION OF FEATURE SCAN1.HIT[MAXPTINDEX]

To find the three highest points in the Z axis of SCAN2, you could use this expression:

ASSIGN/MI = MAXINDICES(SCAN2.HIT[1..SCAN2.NUMHITS].Z)

ASSIGN/THREEPOINTS = ARRAY(SCAN2.HIT[MI[1]].XYZ, SCAN2.HIT[MI[2]].XYZ,
SCAN2.HIT[MI[3]].XYZ)

Using Expressions and Variables

27

Variable Arrays

Variable arrays do not need to be declared. Variable arrays come into existence via the assign
statement when the expression on the right hand side of the assign statement evaluates to an
array or when the left hand side of the assign statement refers to an element in a variable array.

Assign/V1 = Array(3, 4, 5, 6, 7)
Create 5 element array and assigns it to V1

Assign/V2 = V1[3]
Assigns V2 the value of the third element in array V1: 5

Assign/V1[4] = 23
Assigns 4th element of array V1 to 23

Arrays are created and allocated dynamically. Thus an array can be created by using an array
reference on the left hand side of an assign statement.

Assign/V3[5] = 8
Dynamically creates array with 5th element set equal to 8

When referencing an array element that has never received a value, the array expression will
evaluate to 0.

Assign/V3[5] = 8

Assign/V4 = V3[5]
V4 is set equal to the value 8

Assign/V5 = V3[6]
If the sixth element of V3 has never been set, V5 is set equal to 0.

Like other array types, expressions can be used within the square brackets.

Assign/V3[5] = 8

Assign/V4 = V3[2+3]
V4 is set equal to the value 8

Variable arrays can have multiple dimensions.

Assign/V6 = Array(Array(4, 7, 2), Array(9, 2, 6))
V6 is set to a 2 by 3 dimensional array where V6[1, 1] equals 4, V6[1, 2] equals 7, V6[1, 3]
equals 2, V6[2, 1] equals 9, V6[2,2] equals 2, and V6[2,3] equals 6.

Assign/V7 = V6[2,1]
V7 is set to the value 9

Variable arrays can have negative indexes:

Assign/V8[-3] = 5
The –3rd index of array V8 is set to 5.

Using Expressions and Variables

28

Array assignment will overwrite previous values:

Assign/V8 = "Hello"
The variable V8 is equal to the string "Hello"

Assign/V8[2] = 5
V8 is no longer of type string, but of type array, the second element of which has a value of
5.

Assign/V8 = 9
V8 is no longer an array, but an integer of value 9.

Arrays can be made up of multiple types:

Assign/V9 = Array("Hello", 3, 2.9, {FEAT1})
Creates array V9 with 4 elements. The first element is a string, the second element is an
integer, the third element is a real number, and the fourth element is a pointer to FEAT1.

Arrays can be increased in size to include more elements:

ASSIGN/V10=ARRAY(3,1,5)

ASSIGN/V10[LEN(V1)+1]=7
The first statement creates an initial array V10 with 3 elements (3,1, and 5). The second
statement then grows the array in V10 by one element, and gives the final element a value
of 7.

Operators for Expressions
The following basic operators are available inside PC-DMIS:

+ Addition: <Expression> + <Expression>
Adds the two expressions together. In the case of strings, strings are concatenated.

- Subtraction: <Expression> - <Expression>
Subtracts the second expression from the first expression.

* Multiplication: <Expression> * <Expression>
Multiplies the two expressions.

/ Division: <Expression> / <Expression>
Divides first expression by the second expression.

^ Exponentiation: <Expression> ^ <Expression>
Raises the first expression to the power of the second expression.

% Modulo: <Expression> % <Expression>
Returns the remainder of one expression divided by the other.

Using Expressions and Variables

29

- Additive Inverse -<Expression>
Returns the additive inverse of the expression.

! Logical Not: !<Expression>
Returns the logical not of the expression.

== Equal To: <Expression> == <Expression>
Evaluates to 1 if expressions are equal. Otherwise, it evaluates to 0. (Two equal signs are
used to distinguish from the assignment operator = in the assignment statement).

<> Not Equal To: <Expression> <> <Expression>
Evaluates to 1 if expression are not equal. Otherwise, it evaluates to 0.

> Greater Than: <Expression> > <Expression>
Evaluates to 1 if first expression is greater than second expression. Otherwise, it evaluates to
0.

>= Greater Than or Equal To: <Expression> >= <Expression>
Evaluates to 1 if the first expression is greater than or equal to the second expression.
Otherwise, it evaluates to 0.

< Less Than: <Expression> < <Expression>
Evaluates to 1 if first expression is less than the second expression. Otherwise, it evaluates
to 0.

<= Less Than or Equal To: <Expression> <= <Expression>
Evaluates to 1 if the first expression is less than or equal to the second expression.
Otherwise, it evaluates to 0.

AND Logical And: <Expression> AND <Expression>
Evaluates to 1 if both expressions does not evaluate to 0. Otherwise, it evaluates to 0.

OR Logical Or: <Expression> OR <Expression> Evaluates to 1 if either expressions does
not evaluate to 0. Otherwise, it evaluates to 0.

() Parenthesis: (<Expression>)
Gives evaluation to precedence to expression inside of parenthesis.

Precedence
Expressions are evaluated with the precedence shown below (listed from highest precedence to
lowest precedence).

Highest Precedence

• Operands
• (unary minus), !, (), functions (such as ABS, COS, STR, LEN, CROSS, and so on.)
• ^

Using Expressions and Variables

30

• *, /, %
• +, -
• ==, <>, <, <=, >, >=
• AND
• OR

Lowest Precedence

Functions

Functions are PC-DMIS specific expressions or user-defined expressions that usually take
parameters and then return results. The parameters are substituted into the expression before
the expression is evaluated.

Functions List
The following alphabetical list contains all the functions available to PC-DMIS's expression
language.

• ABS (mathematical)
• ACOS (mathematical)
• ANGLEBETWEEN (point)
• ARCSEGMENTENDINDEX (miscellaneous)
• ARCSEGMENTSTARTINDEX (miscellaneous)
• ARRAY (array)
• ASIN (mathematical)
• ATAN (mathematical)
• CHR (string)
• COS (mathematical)
• CROSS (point)
• DEG2RAD (mathematical)
• DELTA (point)
• DIST2D (pointer)
• DIST3D (pointer)
• DOT (point)
• ELEMENT (string)
• EOF (miscellaneous)
• EOL (miscellaneous)
• EQUAL (array)
• EQUAL (string)
• EXP (mathematical)
• FORMAT (string)
• FUNCTION (function)
• GETCOMMAND (pointer)

Using Expressions and Variables

31

• GETSETTING (string)
• GETTEXT (string)
• IF (miscellaneous)
• INDEX (string)
• ISIOCHANNELSET (miscellaneous)
• LEFT (string)
• LEN (array)
• LEN (pointer)
• LEN (string)
• LINESEGMENTENDINDEX (miscellaneous)
• LINESEGMENTSTARTINDEX (miscellaneous)
• LN (mathematical)
• LOG (mathematical)
• LOWERCASE (string)
• MAX (array)
• MID (string)
• MIN (array)
• MPOINT (point)
• ORD (string)
• PCDMISAPPLICATIONPATH (string)
• PCDMISUSERHIDDENDATAPATH (string)
• PCDMISUSERVISIBLEDATAPATH (string)
• PCDMISSYSTEMHIDDENDATAPATH (string)
• PCDMISSYSTEMVISIBLEDATAPATH (string)
• PCDMISSYSTEMREPORTINGPATH (string)
• PROBEDATA (miscellaneous)
• QUALTOOLDATA (miscellaneous)
• RAD2DEG (mathematical)
• RIGHT (string)
• ROUND (mathematical)
• SIN (mathematical)
• SQRT (mathematical)
• SYSTEMDATE (string)
• SYSTEMTIME (string)
• SYSTIME (string)
• TAN (mathematical)
• TUTORELEMENT (miscellaneous)
• UNIT (point)
• UPPERCASE (string)

String Functions

The following functions are used with text strings.

Using Expressions and Variables

32

CHR

CHR
Character Conversion: CHR(<Integer>)

Returns a string, which consists of the character corresponding to the ASCII decimal
value.

ELAPSEDEXECUTIONTIME

ELAPSEDEXECUTIONTIME
Formatted Elapsed Execution Time: ELAPSEDEXECUTIONTIME()

This function returns the time that has elapsed since the measurement routine or mini
routine started to execute. The elapsed execution time is the time of executing the DCC
portion of the execution; it does not add time for pauses due to attention required by the
user. (For example, the execution may pause when a comment is executed, a message
appears, or an error appears and the execution stops.) The time is returned in "hh:mm:ss"
format.

You can record the elapsed execution time at any point in the measurement routine or mini
routine by assigning the function to a variable, such as:

ASSIGN/V1=ELAPSEDEXECUTIONTIME()

ELEMENT

ELEMENT
Delimited substring location: ELEMENT(<Integer>, <String1>, <String2>)

Returns the nth substring (element) from string2 using string1 as the delimiting text that
divides the elements in string2. For example, if string2 is "6, 12, 8, 4, 5" and string1 is ",";
then the 5 elements that can be individually retrieved with the element command are "6",
"12", "8", "4", and "5".

EQUAL

EQUAL
Case-insensitive string comparison: EQUAL(<String>, <String>)

Compares two strings (ignoring case) to determine if they are identical. Returns an integer
set to 1 if the strings are the same, and 0 if they are not.

FORMAT

FORMAT
Format: FORMAT(<String>,<Integer,double,or point>)

This function takes two expressions and returns a formatted string, similar to using the
sprintf function inside C++.

• Expression 1 should be a string type and contains one or three format specifiers.
If it is a different type, the expression evaluator attempts to coerce it to a string.

Using Expressions and Variables

33

The string should contain one format specifier if Expression 2 is an integer or
double types and three format specifiers (see paragraphs below) if Expression 2
is a point type.

• Expression 2 is expected to be of type integer, double, or point. If a different type
is used, the value of the expression is 0.

Format Specifier for FORMAT Function:
The format specifier should have the same syntax as a format specifier used in the sprintf
function used in the C++ programming language.

A format specifier consists of optional and required fields, and has the following syntax:

%[flags] [width] [.precision] type

Each field of the format specifier is either a single character or a number signifying a
particular format option. The simplest format specifier uses only the percent sign and a
type character (for example, %d). If a percent sign is followed by a character that has no
meaning as a format field, the character is copied to STDOUT. For example, to print a
percent-sign character, use %%.

The optional flag, width, and precision fields, which appear before the type character,
control other aspects of the formatting. These are described below:

flags
These optional characters control output justification and the printing of signs, blanks,
decimal points, and octal / hexadecimal prefixes. More than one flag can appear in a
format specifier.

Here are the possible flags:

–
Meaning: Left align the result within the given field width.
Default: Right align.

+
Meaning: Prefix the output value with a sign (+ or –) if the output value is of a
signed type.
Default: Sign appears only for negative signed values (–).

0
Meaning: If width is prefixed with 0, zeros are added until the minimum width is
reached. If 0 and – appear, the 0 is ignored. If 0 is specified with an integer format
(i, u, x, X, o, d) the 0 is ignored.
Default: No padding.

blank (' ')
Meaning: Prefix the output value with a blank if the output value is signed and
positive; the blank is ignored if both the blank and + flags appear.
Default: No blank appears.

Meaning 1: When used with the o, x, or X type, the # flag prefixes any nonzero

Using Expressions and Variables

34

output value with 0, 0x, or 0X, respectively.
Default 1: No prefix appears.

Meaning 2: When used with the e, E, or f type, the # flag forces the output value
to contain a decimal point in all cases.
Default 2: Decimal point appears only if digits follow it.

Meaning 3: When used with the g or G format, the # flag forces the output value
to contain a decimal point in all cases and prevents the truncation of trailing zeros.

Default 3: Decimal point appears only if digits follow it. Trailing zeros are
truncated.
Note: Ignored when used with d, i, or u.

width
This second optional field, or argument, controls the minimum number of characters
printed. It is a non-negative decimal integer.

• If the number of characters in the output value is less than the specified
width, blanks are added to the left or the right of the values — depending
on whether the – flag (for left alignment) is specified — until the minimum
width is reached.

• If the width is prefixed with 0, zeros are added until the minimum width is
reached (not useful for left-aligned numbers).

• The width specification never causes a value to be truncated. If the
number of characters in the output value is greater than the specified
width, or if the width is not given, all characters of the value are printed
(subject to the precision specification listed below).

precision
This third optional field, or argument, specifies the number of characters to be printed,
the number of decimal places, or the number of significant digits. Unlike the width
specification, the precision specification can cause either truncation of the output value
or rounding of a floating-point value. It is a non-negative decimal integer, preceded by
a period (.)

type
This required character determines whether the associated argument is an integer, a
double, or a point. The list of available types includes:

d - signed decimal integer

i - signed decimal integer

o - unsigned octal integer

u - unsigned decimal integer

x - unsigned hexadecimal integer, using "abcdef"

X - unsigned hexadecimal integer, using "ABCDEF"

Using Expressions and Variables

35

e - double in exponential form [-]d.dddd e [sign]ddd

E - same as e except uses E to introduce exponent

f - double with the form [-]dddd.dddd

g - formats to either the e or f format depending on which is more compact

G - same as g except and E is used when introducing the exponent

FORMAT Example:
This example shows several statements using the FORMAT function inside a
measurement routine:

ASSIGN/V1 = PROBEDATA("OFFSET")
V1 becomes type point representing the Offsets of
the current probe. Using the values from the
measurement routine used for this example, V1
becomes: <-1.8898, 1.8898, 5.704>

ASSIGN/V3 = FORMAT("%.5f, %.5f,
%.5f", V1)

V3 becomes type string. The string is formatted
using the point object of variable V1. V3 now has: -
1.88976, 1.88976, 5.70403

ASSIGN/V4 = 1.123456789 V4 becomes type double.

ASSIGN/V5 = FORMAT("%.5f ", V4) +
FORMAT("%.6f ", V4) + FORMAT("%.7f
", V4) + FORMAT("%.8f", V4)

V5 becomes type string with this value: 1.12346
1.123457 1.1234568 1.12345679

ASSIGN/V6A = "The value of V4 is: "
+ FORMAT("%.8f", V4)

V6A becomes type string with value of: The value
of V4 is: 1.12345679

ASSIGN/V6B = FORMAT("The value of
V4 is: %.8f", V4)

The expression result remains the same for same
as V6A above.

ASSIGN/V7 = 4444 V7 becomes type double since all numbers are
assumed double unless coerced to an integer.

ASSIGN/V8 = FORMAT("%o", INT(V7)) V8 becomes type string with this value: 10534

ASSIGN/V9 = FORMAT("%u", INT(-1)) V9 becomes type string with this value:
4294967295

ASSIGN/V10 = FORMAT("%x",
INT(2143)) V10 becomes type string with this value: 85f

ASSIGN/V11 = FORMAT("%X",
INT(9567)) V11 becomes type string with this value: 255F

ASSIGN/V12 = FORMAT("%e",
0.0005432)

V12 becomes type string with this value:
 5.432000e-004

ASSIGN/V13 = FORMAT("%E", 145.3421) V13 becomes type string with this value:
1.453421E+002

Using Expressions and Variables

36

ASSIGN/V14 = FORMAT(",%6d,",
INT(1)) V14 becomes type string with this value: , 1,

ASSIGN/V15 = FORMAT(",%-6d,",
INT(1)) V15 becomes type string with this value: ,1 ,

GETSETTING

GETSETTING
This allows you to return various settings of PC-DMIS depending on the string parameter
inserted.

GETSETTING(<String>)

You can use these string parameters:

• "DCC Mode" – Returns a 1 if PC-DMIS is in DCC Mode, 0 otherwise.
• "Manual Mode" – Returns a 1 if PC-DMIS is in Manual Mode, 0 otherwise.
• "Current Alignment" – Returns a string of the current alignment.
• "Current Workplane" – Returns a string of the current workplane.
• "Workplane Value" – Returns a numerical value of the current workplane.
• "PreHit" – Returns he current prehit value as a double precision number.
• "Retract" – Returns the current retract value as a double precision number.
• "Check" – Returns the current check value as a double precision number.
• "Touch Speed" – Returns the current Touch Speed value as a double precision

number.
• "Move Speed" – Returns the current Move Speed value as a double precision

number.
• "Fly Mode" – Returns a 1 if PC-DMIS uses the Fly Mode, 0 otherwise.
• "Ph9 present" – Returns a 1 if the Ph9/Ph10 is present, 0 otherwise.
• "Manual CMM" – Returns 1 if the CMM is a manual CMM, 0 otherwise.
• "LangStr(<Number or ID>)" – Returns a string from PC-DMIS's resources in the

current language from a resource ID number or from one of these IDs:
"Yes", "No", "Oper", "Rept", "Input", "Doc", "YesNo", "Readout", "Internal",
"External", "Rect ", "Polr ", "Out", "In", "Least_Sqr", "Min_Sep", "Max_Insc",
"Min_CircSc", "Fixed_Rad", "Workplane", "Xaxis", "YAxis", "ZAxis", "Xplus",
"Xminus", "YPlus", "YMinus", "ZPlus", "ZMinus", "Point", "Plane", "Line", "Circle",
"Sphere", "Cylinder", "Round_Slot", "Square_slot", "Cone", or "None".

If the value you use is a positive number, PC-DMIS pulls the string from its
resource.dll file. If you use a negative number, PC-DMIS pulls the string from its
strings.dll file (the strings table).

• "Extended Sheet Metal" – Returns a 1 if the Show Extended Sheet Metal
Options check box is selected inside the SetUp Options dialog box, 0
otherwise.

• "LastHitMove(X)" – Returns the X value of the most recent HIT /BASIC or
MOVE/POINT command. PC-DMIS must be in DCC mode for this to work.

Using Expressions and Variables

37

• "LastHitMove(Y)" – Returns the Y value of the most recent HIT/BASIC or
MOVE/POINT command. PC-DMIS must be in DCC mode for this to work.

• "LastHitMove(Z)" – Returns the Z value of the most recent HIT/BASIC or
MOVE/POINT command. PC-DMIS must be in DCC mode for this to work.

To determine whether PC-DMIS is in MANUAL or DCC mode, consider this example of
using the GETSETTING function:

Examples:

ASSIGN/DCCMODEVAR = GETSETTING("DCC Mode") - This gives the variable
DCCMODEVAR the value of 1 if PC-DMIS is in DCC Mode, otherwise 0.

ASSIGN/MANMODEVAR = GETSETTING("Manual Mode") - This gives the variable
MANMODEVAR the value of 1 if PC-DMIS is in Manual Mode, otherwise 0.

To determine the current workplane, consider this example:

Examples:

ASSIGN/WORKPLANE_ID = GETSETTING("Current Workplane") - This gives the
variable WORKPLANE_ID the string value of the current workplane (ZPLUS, ZMINUS
etc.).

ASSIGN/WORKPLANE_VALUE = GETSETTING("Workplane Value") - This gives the
variable WORKPLANE_VALUE a numerical value representing the workplane. The
workplanes have these values associated with them: ZPLUS = 0, ZMINUS = 3, XPLUS =
1, XMINUS = 4, YPLUS = 2, or YMINUS = 5.

GETTEXT

GETTEXT
Returns the current text from the specified data field: GETTEXT(<String or
Integer>, <Integer>, <Pointer>)

This function has three fields.

First Field—Data Field Number or Description
The first field can be either a string description of the data field, indicated by item (A) in the
image below or the data field number, indicated in item (C) in the image below.

Note: Item (B) in the image below is not used in this function, but is sometimes used in
automation or in report expressions.

To obtain these values:

1. Place PC-DMIS in Command Mode. Right-click anywhere in the Edit window. A
shortcut menu appears.

2. From the shortcut menu, select Change Pop-up Display and then Data Type
Information.

Using Expressions and Variables

38

3. Position the mouse over a data field in the Edit window. The type description, type
number, and type index for that data item display.

Note: The type description may be different for different languages. If your measurement
routine is executed on a version of PC-DMIS running in a different language, use the type
number instead.

Sample Data Type Information Showing (A) Type Description, (B) Type String Identifier,
(C) Type Number, and (D) Type Index

Second Field—Type Index
The second field is the type index, indicated as (D) in the above image. This field is usually
zero unless you have more instances of the same type of field in the same command such
as multiple DIRECTORY fields shown in the above image. The correct value for this field
can be obtained in the same manner as described for the first field.

Third Field—Command Pointer
The third field is a command pointer. It points to the command containing the field from
which the text is being obtained. This field can be specified either by using command
pointer notation (i.e., {F15}) or by using the GETCOMMAND expression as shown in this
example.

Examples:

ASSIGN/V1 = GETTEXT("Best Fit Math Type", 0, {F15}) - This command
assigns V1 the current value of the best fit math type toggle of feature F15.

ASSIGN/V2 = GETCOMMAND("Comment", "TOP", 1) - V2 is assigned a pointer to the
first comment from the top of the measurement routine.

ASSIGN/V3 = GETTEXT("Comment Type", 1, V2) - V3 is assigned the value of the
Comment Type toggle field. If the first comment in the measurement routine is a comment
to be displayed to the operator, the value of V3 will be the string "OPER".

See the "Pointer Functions" for information on the GETCOMMAND expression used for
setting a pointer to a command.

GETPROGRAMINFO

Using Expressions and Variables

39

GETPROGRAMINFO
Returns the measurement routine's information based on the parameters passed in:
GETPROGRAMINFO(<String>, <Optional String>)

This function has at most two strings as parameters. For most items you only need the first
parameter. The string fields are not case sensitive.

First Field—String
The first field is a string input detailing what information to return.

DATE - Returns the current date

TIME - Returns the current time

PARTNAME - Returns the part name as defined in the measurement routine
header

PARTPATH - Returns the full pathway to the measurement routine file

REVISION - Returns the revision number as defined in the heading

DRAWING - Like REVISION, this also returns the revision number as defined in the
heading

SERIALNUM - Returns the serial number as defined in the header

STATSCOUNT - Returns the current stats count

SEQNUM - Like STATSCOUNT, this also returns the current stats count number

SHRINK - Returns the global scale factor

NUMMEAS - Returns the number of dimensions executed

NUMOOT - Returns the number of out of tolerance dimensions executed

ELAPSEDTIME - Returns the time that has passed since the beginning of the
execution

FILENAME - Returns the measurement routine's file name (.prg)

REPORTNAME - Returns the current output file name

TEMP - Returns the temperature for the optional second input string. See "Second
Field—Optional String" below.

PRGVERSION - Returns a string value of the PC-DMIS version number of the
measurement routine file. You can save a measurement routine file to be
compatible with a specific version. For more information, see "Save As" in the
"Using Basic File Options" chapter.

Using Expressions and Variables

40

PRGSCHEMA - Returns an integer of the PC-DMIS schema number of the
measurement routine file. This is an internal value used by PC-DMIS used to
indicate the commands and options that are serialized.

PCDMISVERSION - Returns a string value of the actual installed version of the PC-
DMIS software.

Second Field—Optional String
The second field is an optional string input. It's only needed if TEMP is used in the in the
first input field. The possible strings below come from the Temperature Compensation
command. For more information, see "Compensating For Temperature" in the "Setting
Your Preferences" chapter.

TEMPP - Returns the temperature for the part sensor

TEMPX - Returns the temperature for the X axis sensor

TEMPY - Returns the temperature for the Y axis sensor

TEMPZ - Returns the temperature for the Z axis sensor

REF_TEMP - Returns the reference temperature

HIGH_THRESHOLD - Returns the high threshold temperature

LOW_THRESHOLD - Returns the low threshold temperature

Example

$$ NO, This code sample displays the number of total dimensions and the number of
out-of-tolerance dimensions.

ASSIGN/V1 = GETPROGRAMINFO("NUMMEAS")

ASSIGN/V2 = GETPROGRAMINFO("NUMOOT")

COMMENT/REPT

"Total Dimensions: " + V1

"Total Out of Tolerance: " + V2

$$ NO, This code sample returns the temperature on the Z sensor axis.

ASSIGN/V3 = GETPROGRAMINFO("TEMP", "TEMPZ")

COMMENT/REPT

"Temperature on the Z axis: " + V3

Using Expressions and Variables

41

INDEX

INDEX
Substring Location: INDEX(<String>, <String>)

Returns the location of the second string within the first string. The first letter of string is 1.
A return value of zero indicates that the sub string is not found in the string.

For an example of this function, see the "Sample Code for Read Line" topic in the "Using
File Input / Output" chapter.

LASTEXECUTIONTIME

LASTEXECUTIONTIME
Formatted Last Execution Time: LASTEXECUTIONTIME()

This function returns the last execution time that PC-DMIS recorded and stored in the
<name of measurement routine>.MiniRoutines.xml file. The last execution time appears in
the Execution dialog box. The time is returned in "hh:mm:ss" format.

LEFT

LEFT
Left n characters of string: LEFT(<String>, <String>)

Returns a string consisting of the n leftmost characters specified by the second expression
from the string specified in the first expression. First expression coerced to type string,
second expression coerced to type integer.

For an example of this function, see the "Sample Code for Read Line" topic in the "Using
File Input / Output" chapter.

LEN

LEN
Length of string: LEN(<String>)

Returns the number of characters of the string.

LOWERCASE

LOWERCASE
Create lowercase string: LOWERCASE(<String>)

Returns a string that is the lowercase equivalent of string.

MID

MID
Middle n characters of a string: MID(<String>, <Integer>, <Optional Integer>)

Using Expressions and Variables

42

Returns a substring consisting of the characters of the string specified in the first
parameter starting at the position specified by the second parameter for a length of n
characters as specified by the third parameter. If the third parameter is not supplied, the
rest of the string is returned.

For an example of this function, see the "Sample Code for Read Line" topic in the "Using
File Input / Output" chapter.

ORD

ORD
Ordinal Conversion: ORD(<String>)

Returns the integer ASCII value of first letter of the string (0-255).

PCDMISAPPLICATIONPATH

PCDMISAPPLICATIONPATH
Full pathway display: PCDMISAPPLICATIONPPATH()

Returns the string value containing the full pathway to the application directory where PC-
DMIS is installed. This directory contains the main executable and other necessary
program files to run PC-DMIS.

PCDMISUSERHIDDENDATAPATH

PCDMISUSERHIDDENDATAPATH
Full pathway display: PCDMISUSERHIDDENDATAPATH()

Returns the string value containing the full pathway of the hidden user data directory used
by PC-DMIS. See "Understanding File Locations" for the files contained in this directory.

PCDMISUSERVISIBLEDATAPATH

PCDMISUSERVISIBLEDATAPATH
Full pathway display: PCDMISUSERHIDDENDATAPATH()

Returns the string value containing the full pathway of the visible user data directory used
by PC-DMIS. See "Understanding File Locations" for the files contained in this directory.

PCDMISSYSTEMHIDDENDATAPATH

PCDMISSYSTEMHIDDENDATAPATH
Full pathway display: PCDMISSYSTEMHIDDENDATAPATH()

Returns the string value containing the full pathway of the hidden system data directory
used by PC-DMIS. See "Understanding File Locations" for the files contained in this
directory.

PCDMISSYSTEMVISIBLEDATAPATH

Using Expressions and Variables

43

PCDMISSYSTEMVISIBLEDATAPATH
Full pathway display: PCDMISSYSTEMVISIBLEDATAPATH()

Returns the string value containing the full pathway of the visible system data directory
used by PC-DMIS. See "Understanding File Locations" for the files contained in this
directory.

PCDMISSYSTEMREPORTINGPATH

PCDMISSYSTEMREPORTINGPATH
Full pathway display: PCDMISSYSTEMREPORTINGPATH()

Returns the string value containing the full pathway to the Reporting directory used by PC-
DMIS. This directory contains the report and label templates used by the Report window.

RIGHT

RIGHT
Right n characters of string: RIGHT(<String>, <Integer>)

Returns a string consisting of the n rightmost characters specified by integer from the
string.

SYSTEMDATE

SYSTEMDATE
System Date: SYSTEMDATE(<Date Format String>)

Returns the date formatted string with the current date details filled in. For example, the
command SYSTEMDATE("MM’/’dd’/’yy") returns the string "02/12/14" if the current date is
February 12, 2014.

Use the following string elements to create the date string. Elements must be in the same
case as shown below (MM instead of mm). Non-date characters (such as spaces) that
appear between date format string elements appear in the output string in the same
location as the input string. Characters in the input string delimited by single quotes appear
in the same location in the output string without the single quotes.

d - Day of the month as digits. No leading-zero for single-digit dates.

dd - Day of the month as digits. Leading zero used for single-digit dates.

ddd - Three letter abbreviation for the day of the week.

dddd - Full name for the current day of the week.

M - Month as digits with no leading zeros for single-digit months.

MM - Month as digits with leading zero for single-digit months.

MMM - Month as three-letter abbreviation.

Using Expressions and Variables

44

MMMM - Full name of Month.

y - Year as digits with no leading zeros for single-digit years.

yy - Year as digits with leading zero for single-digit years.

yyyy - Year represented by four digits.

SYSTEMTIME

SYSTEMTIME
Formatted System Time: SYSTEMTIME(<Time Format String>)

Returns the time formatted string with the current time details filled in. For example, the
command SYSTEMTIME("hh:mm:ss tt") returns the time in a formatted string, like this
"11:29:40 PM".

Use the following string elements to create the time string. Elements must be in the same
case as shown below (tt instead of TT). Non-time characters (such as spaces) appearing
between time format string elements will appear in the output string in the same location as
the input string. Characters in the input string delimited by single quotes will appear in the
same location in the output string without the single quotes.

h - Hours with no leading zero for single-digit hours; 12-hour clock

hh - Hours with leading zero for single-digit hours; 12-hour clock

H - Hours with no leading zero for single-digit hours; 24-hour clock

HH - Hours with leading zero for single-digit hours; 24-hour clock

m - Minutes with no leading zero for single-digit minutes

mm - Minutes with leading zero for single-digit minutes

s - Seconds with no leading zero for single-digit seconds

ss - Seconds with leading zero for single-digit seconds

t - One character time marker string, such as A or P

tt - Multi-character time marker string, such as AM or PM

SYSTIME

SYSTIME
System Time: SYSTIME()

Returns a string with the current system time. This function differs from the SYSTEMTIME
function described above. It automatically returns the day, date, and time, followed by the
year.

Using Expressions and Variables

45

Example: "Wed February 12 13:50:21 2014"

Note: The returned string, showing the current system time, is adjusted to local time zone
settings.

UPPERCASE

UPPERCASE
Creates uppercase string: UPPERCASE(<String>)

Returns a string that is the uppercase equivalent of string.

Mathematical Functions

ABS

ABS Absolute Value: ABS(<Double>)
Returns absolute value of input.

EXP

EXP Exponential: EXP(<Double>)
Returns the exponential of the expression.

LOG

LOG Log Base 10: LOG(<Double>)
Returns the log base 10 of the expression.

LN

LN Natural Log: LN(<Double>)
Returns the natural logarithm of the expression.

ROUND

ROUND Rounding: ROUND(<Double>)
Returns the input rounded to the nearest integer.

SQRT

SQRT Square Root: SQRT(<Double>)
Returns the square root of the input.

Trigonometry Functions

Important: Each of the trigonometry functions by default takes and returns radians. If you want
values in degrees, use the RAD2DEG function described below.

Using Expressions and Variables

46

ACOS

ACOS ArcCosine: ACOS(<Double>)
Returns the arc cosine of the expression. For example, ACOS(5.0) returns 0. In general,
ACOS(<expression>) returns the arc cosine of the value of the expression.

ASIN

ASIN ArcSine: ASIN(<Double>)
Returns the arc sine of the input.

ATAN

ATAN ArcTangent: ATAN(<Double>)
Returns the arc tangent of the input.

COS

COS Cosine: COS(<Double>)
Returns the cosine of the input.

DEG2RAD

DEG2RAD Degrees to Radians: DEG2RAD(<Double>)
Returns the input divided by 360 and multiplied by 2π. Converts from degrees to radians.

RAD2DEG

RAD2DEG Radians to Degrees: RAD2DEG(<Double>)
Returns the input multiplied by 360 and divided by 2π. Converts from radians to degrees.

SIN

SIN Sine: SIN(<Double>)
Returns the sine of the input.

TAN

TAN Tangent: TAN(<Double>)
Returns the tangent of the input.

Note: Functions where the input is out of range (like ACOS, ASIN, LOG, LN, SQRT and so on,
that would cause the computer to crash) return 0.

Point Functions

ANGLEBETWEEN

ANGLEBETWEEN

Using Expressions and Variables

47

Angle Between: ANGLEBETWEEN(<vector>, <vector>)

Returns the angle between the two vectors in degrees. The two parameters must be
expressions that evaluate to a vector type. To get the vector from a feature, for example, you
will need to use the feature ID followed by the .IJK extension. See the example below:

Example:

F1 =GENERIC/POINT,DEPENDENT,CARTESIAN,$

 NOM/XYZ,<3,3,3>,$

 MEAS/XYZ,<3,3,3>,$

 NOM/IJK,<1,0,0>,$

 MEAS/IJK,<1,0,0>

F2 =GENERIC/POINT,DEPENDENT,CARTESIAN,$

 NOM/XYZ,<10,10,10>,$

 MEAS/XYZ,<10,10,10>,$

 NOM/IJK,<0,0,1>,$

 MEAS/IJK,<0,0,1>

 ASSIGN/V1=F1.IJK

 ASSIGN/V2=F2.IJK

 ASSIGN/V3=ANGLEBETWEEN(V1,V2)

 COMMENT/OPER,NO,FULL SCREEN=NO,AUTO-CONTINUE=NO,

 "The angle between " + V1 + " and " + V2 + " is: " + V3

CROSS

CROSS
Cross Product: CROSS(<Point>, <Point>)

Return value is of type point and is the cross product of first and second expressions .

DELTA

DELTA
Vector Offset: DELTA(<Point>, <Point>, <Double>)

The function takes the first expression (point) and calculates a new point in the direction of
the second expression (vector) at an offset of the third expression. For example,
DELTA(MPOINT(0,0,0), MPOINT(1,0,0), 10) returns the point 10,0,0.

DOT

DOT
Dot Product: DOT(<Point>, <Point>)

Returns the dot product of the two points (vectors).

UNIT

UNIT
Unit Vector: UNIT(<Point>)

Using Expressions and Variables

48

Returns the point divided by its length. For example, UNIT(MPOINT(0,0,0)) returns the
point 0,0,1.

MPOINT

MPOINT
Point Coercion: MPOINT(<Expression1>, <Expression2>, <Expression3>)

Coerces the three expressions to a type Point.

Example:
ASSIGN/V1 = MPOINT(2.5,3.6,4)

V1.X has a value of 2.5
V1.Y has a value of 3.6
V1.Z has a value of 4.0

See "Point Coercion".

Pointer Functions

DIST2D

DIST2D
2d Distance: DIST2D(<FEAT1>, <FEAT2>, <FEAT3>)

Note: The features must be inside curly braces.

This calculates the distance between the first two arguments in the command (Feat1 and
Feat2), perpendicular to the third argument (Feat3).

• If the third argument is a plane, the distance between the first two arguments is
calculated perpendicular to the plane.

• If the third argument is a line or cylinder, the distance between the first two
arguments is calculated perpendicular to the third argument in the active
workplane.

For example, if you have the XY plane as your third argument, it will have a Z+ vector (0,0,1)
and the distance reported will only be in the Z axis.

Example
 ASSIGN/V3=DIST2D({CIR1},{CIR2},{PLN1})

 COMMENT/OPER,NO,FULL SCREEN=NO,AUTO-CONTINUE=NO,

 V3

DIST3D

DIST3D
3D Distance: DIST3D(<FEAT1>, <FEAT2>)

Using Expressions and Variables

49

Calculates the 3D distance between Feat1 and Feat2.

Note: The features must be inside curly braces.

Example
ASSIGN/V3=DIST3D({CIR1},{CIR2})

 COMMENT/OPER,NO,FULL SCREEN=NO,AUTO-CONTINUE=NO,

 V3

GETCOMMAND

GETCOMMAND
Obtains a pointer to the command specified by the parameters: GETCOMMAND(<Integer
or String>, <String>, <Integer>

First Parameter-Command Info Field
The first parameter is the command info field. It specifies the command type for which to
search. The following can be passed in:

• A command description string. See (A) in the graphic below.
• A command type number. See (B) in the graphic below.
• The unique number identifier. See (C) in the graphic below.

If the unique id of the command is passed in, no other arguments are necessary.

To obtain the command description string, the command type number, and the command’s
unique number identifier:

1. Right-click in the Edit window
2. Choose Change Pop-up Display | Command Information (PC-DMIS must be

in Command Mode).
3. Position the mouse over the desired command. The command description, type

number, and unique number identifier for that command will be displayed in the
pop-up.

Sample Command Information Showing (A) Command Description String, (B) Command
Type Number, and (C) Unique Number Identifier (UID).

Second Parameter - Search Direction

Using Expressions and Variables

50

The second parameter is the search direction. Legal values include:

Value Description

UP This value signifies the search should start at the current command and proceed
upwards

DOWN This value signifies the search should start at the current command and proceed
downwards.

TOP This value signifies that the search should begin at the beginning of the
measurement routine in a downwards direction

BOTTOM This value signifies that the search should begin with the last object in the
measurement routine in an upwards direction

Third Parameter - Which Instance to Find
The third parameter indicates which instance of the command should be found if multiple
instances of the same command are in the measurement routine.

Example: If the measurement routine has two instances of a STATS/ON command and
you would like to obtain a pointer to the second instance from the top, "2" would be passed
in as the third parameter and "TOP" would be passed in as the second parameter as
shown here.

ASSIGN/V1 = GETCOMMAND("Statistics", "TOP", 2)

The GETCOMMAND function can be used to supply the third parameter to the GETTEXT
string function. See "String Functions" for information on GETTEXT.

LEN

LEN
Pointer loop count: LEN(<POINTER>)

Returns the number of times a pointer has been in a loop. For example, if feature CIR1 is in a
loop that iterates 10 times, you can store how many times CIR1 has been measured in a
variable, by using an ASSIGN statement like this: ASSIGN/V1=LEN({CIR1})

Array Functions

ARRAY

ARRAY: Create Array: ARRAY(<EXPRESSION1>, <EXPRESSION2>, <EXPRESSION3>,
…)
Creates an array object with array elements indicated by expression parameters. The array
elements are numbered with a base index of 1.

EQUAL

Using Expressions and Variables

51

EQUAL: Element by Element Array Comparison: EQUAL(<ARRAY>, <ARRAY>)
Compares the two arrays element by element to determine if the arrays hold the same
elements. If the two arrays are not the same size or if any of the elements in one array do not
match the corresponding element in the other array, the function returns 0. Otherwise, the
function returns 1.

LEN

LEN: Array element count: LEN(<ARRAY>)
Returns the number of elements in the array.

MAX

MAX: Largest array element: MAX(<ARRAY>)
Returns the largest element in the array. Items in the array are compared numerically or
alphabetically.

MIN

MIN: Smallest array element: MIN(<ARRAY>)
Returns the smallest element in the array. Items in the array are compared numerically or
alphabetically.

Miscellaneous Functions

ARCSEGMENTENDINDEX

ARCSEGMENTENDINDEX
This returns the index number of the ending point of a specified arc segment from a
scan: ARCSEGMENTENDINDEX(<ID>, <index>,<tol1>,<tol2>)

<ID> - The first parameter is a string value of the ID of the scan on which this function pulls
out the index number of the ending point for the arc. This can either be the ID in quotation
marks or any expression that when coerced to type string ends up being the ID of a scan.

<index> - The second parameter is the index number for the arc from which you want to get
the ending point number. This is a one based value. For example, the arc index number
would be 3 if you want the ending point number for the third arc in the scan.

<tol1> - The third parameter is the general feature tolerance. It is a maximum form error
used to break up the scan into lines and arcs.

<tol2> - The fourth parameter is the refine tolerance. Generally, this tighter tolerance is used
to drop points from either end of the feature until the form error of the segment is within this
tolerance.

Once you have the Start and End indices for an arc, you can use these points inside a
constructed feature to construct a separate arc feature. See "Example of a Line Feature
Created from a Scan Segment" for a similar example.

Using Expressions and Variables

52

ARCSEGMENTSTARTINDEX

ARCSEGMENTSTARTINDEX
This returns the index number of the starting point of a specified arc segment from a scan:
ARCSEGMENTSTARTINDEX(<ID>, <index>,<tol1>,<tol2>).

<ID> - The first parameter is a string value of the ID of the scan on which this function pulls
out the index number of the start point for the arc. This can either be the ID in quotation
marks or any expression that when coerced to type string ends up being the ID of a scan.

<index> - The second parameter is the index number for the arc from which you want to get
the start point number. This is a one based value. For example, the arc index number would
be 3 if you want the start point number for the third arc in the scan.

<tol1> - The third parameter is the general feature tolerance. It is a maximum form error used
to break up the scan into lines and arcs.

<tol2> - The fourth parameter is the refine tolerance. Generally, this tighter tolerance is used
to drop points from either end of the feature until the form error of the segment is within this
tolerance.

There are two additional parameters, which control whether an identified arc segment in a
scan is acceptable. These can only be changed with the PC-DMIS Settings Editor. Any arc
segment with a radius less than MinimumArcSegmentRadiusInMM is rejected. The default
value for this parameter is 2 mm. Similarly, any arc segment with a radius greater than
MaximumArcSegmentRadiusInMM is rejected. The default value for this parameter is 2000
mm (it should not be necessary to change this value).

Once you have the Start and End indices for an arc, you can use these points inside a
constructed feature to construct a separate arc feature. See "Example of a Line Feature
Created from a Scan Segment" for a similar example.

EOF and EOL

EOF and EOL
For information on these functions, see "Checking for the End of a File or the End of a Line"
in the "Using File Input / Output" chapter.

FUNCTION

FUNCTION
Creates a function: FUNCTION((<PARAM1>, <PARAM2>…), <EXPRESSION>)

Creates a function that takes the number of parameters indicated by the parameter list and
substitutes those parameters into the expression.

• The first item when using the FUNCTION keyword is the parameter list.
• This list consists of parameter names separated by commas.
• The parameter list is also surrounded by parenthesis.
• The second item is the expression.
• The expression will contain the parameter names where the parameters should

be substituted when the function is called.

Using Expressions and Variables

53

See the "Generic Function Example" topic for an example.

GETROTABDATA

GETROTABDATA
This returns the data from the current rotary table: GETROTABDATA(<Parameter>)

<Parameter> - This can be either "Center" or "Angle".

"Center" - Returns the table's XYZ center.

"Angle" - Returns the table's current angle.

Examples:

ASSIGN/V1 =
GETROTABDATA("CENTER")

V1 is set to the rotary table's XYZ center
value.

ASSIGN/V2 =
GETROTABDATA("ANGLE")

V2 is set to the rotary table's current angle
value.

IF

IF
Conditional expression evaluation: IF(<EXPRESSION1>, <EXPRESSION2>,
<EXPRESSION3>)

If expression1 evaluates to true (non-zero) then this function returns the value of
expression2; otherwise, this function returns the value of expression3.

ISIOCHANNELSET

ISIOCHANNELSET
This expression takes two parameters. The first parameter indicates which I/O channel will be
checked (the range of numbers that is available is based on the machine being used). The
second parameter determines whether the software will query the Arm1 or Arm2 machine. If
the second parameter is set to 1 (one) it will query the Arm2 controller. If the second
parameter is not present (or is set to zero), then the IO Channel will query the Arm1
controller. The Arm1 controller is your only option if you are not in multiple arm mode.

Note: If an invalid probe data type, tip id, probe file name, or channel number is supplied,
the expression will evaluate to 0.

Example:

ASSIGN/V4 =
ISIOCHANNELSET(3,0)

V4 will equal 1 (evaluate to true) when the channel
is set, otherwise it will equal 0 (evaluate to false).

LINESEGMENTENDINDEX

Using Expressions and Variables

54

LINESEGMENTENDINDEX
This returns the index number of the ending point of a specified line segment from a scan:
LINESEGMENTENDINDEX(<ID>, <index>,<tol1>,<tol2>).

<ID> - The first parameter is a string value of the ID of the scan on which this function pulls
out the index number of the ending point for the line segment. This can either be the ID in
quotation marks or any expression that when coerced to type string ends up being the ID of a
scan.

<index> - The second parameter is the index number for the line segment from which you
want to get the end point number. This is a one based value. For example, the line segment
index number would be 3 if you want the end point number for the third line in the scan.

<tol1> - The third parameter is the general feature tolerance. It is a maximum form error used
to break up the scan into lines and arcs.

<tol2> - The fourth parameter is the refine tolerance. Generally, this tighter tolerance is used
to drop points from either end of the feature until the form error of the segment is within this
tolerance.

Once you have the Start and End indices for a line segment, you can use these points inside
a constructed feature to construct a separate line feature. See "Example of a Line Feature
Created from a Scan Segment" for an example.

LINESEGMENTSTARTINDEX

LINESEGMENTSTARTINDEX
This returns the index number of the starting point of a specified line segment from a scan:
LINESEGMENTSTARTINDEX(<ID>, <index>,<tol1>,<tol2>).

<ID> - The first parameter is a string value of the ID of the scan on which this function pulls
out the index number of the start point for the line segment. This can either be the ID in
quotation marks or any expression that when coerced to type string ends up being the ID of a
scan.

<index> - The second parameter is the index number for the line segment from which you
want to get the start point number. This is a one based value. For example, the line segment
index number would be 3 if you want the start point number for the third line in the scan.

<tol1> - The third parameter is the general feature tolerance. It is a maximum form error used
to break up the scan into lines and arcs.

<tol2> - The fourth parameter is the refine tolerance. Generally, this tighter tolerance is used
to drop points from either end of the feature until the form error of the segment is within this
tolerance.

There is an additional parameter, which controls whether an identified line segment in a scan
is acceptable. This can only be changed with the PC-DMIS Settings Editor. Any line segment
of length less than MinimumLineSegmentLengthInMM is rejected. The default value for
this parameter is 2 mm.

Using Expressions and Variables

55

Once you have the Start and End indices for a line segment, you can use these points inside
a constructed feature to construct a separate line feature. See "Example of a Line Feature
Created from a Scan Segment" for an example.

PROBEDATA

PROBEDATA
Returns data about the current or specified probe
: PROBEDATA(<OPTPROBEDATATYPE>, <OPTTIPID>, <OPTPROBEFILENAME>)

This function takes up to three optional parameters. You only need to provide commas
between parameters if you use more than one parameter. You do not need to use commas
between empty parameters. For example, to obtain the current probe's diameter you would
simply use ASSIGN/V1 = PROBEDATA("DIAM").

OPTPROBEDATATYPE - Optional parameter which specifies what probe data the
expression should return. If this parameter is not supplied, the current tip ID is returned. This
parameter is of type string. Any expression that evaluates to a valid string expression can be
put in the first expression slot. Valid string expressions (not case sensitive) for the first
parameter include the following. These are string expressions and should be inside double
quotation marks:

"Offset" - Measured tip X,Y,Z offset. Returns type point.

"Vector" - Tip Vector. Returns type point.

"A" - Tip A Angle. Returns type double.

"B" - Tip B Angle. Returns type double.

"Diam" or "Diameter" - Measured tip diameter. The first four letters are required
"Diam", but could include more letters up to the full name of "Diameter". Returns type
double.

"Thick" or "Thickness" - Measured tip thickness. The first five letters are required
"Thick", but could include more letters up to the full name of "Thickness". Returns type
double.

"Date" - Date the tip was last qualified. Returns type string.

"Time" - Time the tip was last qualified. Returns type string.

"ID" - Tip ID. Default parameter. Returns type string.

"PrbRdv" - The probes radial deviation. Returns type double.

"Standarddeviation" - The probes standard deviation. Returns type double.

"C" - The C angle of a CW43 light probe head. Returns type integer.

Note: Adding a "T" in front of "Offset", "Diameter", or "Thickness" returns the theoretical
information (for example, TOFFSET, TDIAMETER, and TTHICKNESS).

Using Expressions and Variables

56

OPTTIPID - This optional parameter specifies the tip to be used when obtaining the probe
data specified in the first expression. If not supplied, the current tip is used. This parameter
should be type string.

OPTPROBEFILENAME - This optional parameter specifies the probe filename to be used in
obtaining the probe data. If not supplied, the current probe file is used.

Examples:

ASSIGN/V1 = PROBEDATA() V1 is set to current tip id (i.e.
"T1A0B0")

ASSIGN/V2 =
PROBEDATA("TOFFSET",
"T1A45B0")

V2 is set to the theoretical probe
offset for the tip T1A45B0

ASSIGN/V3 = PROBEDATA("Date",
"T1A90B90", "MYPROB")

V3 is set to a string representing the
date tip T1A90B90of the probe file
MYPROB was last qualified.

TUTORELEMENT

TUTORELEMENT: This function takes one argument, either a number or a string (a string
would be the ID of a feature).

This function works with the variable type, Structures. See "Structures" for explanations of
structure and sub-elements.

Examples:

ASSIGN/E = TUTORELEMENT(1) Creates a single Tutor Element Structure

ASSIGN/WM = TUTORELEMENT(n) For any number over 1, creates an array of n
Tutor Element Structures

ASSIGN/CIR1E =
TUTORELEMENT("CIR1")

Copies Data from feature CIR1 into the Tutor
Element Structures.

The TutorElement structure currently has the following sub-elements:

Sub-Element Description

ID String of the Feature's ID

TYPE INTEGER (FTYPE)

X, Y, Z X, Y, and Z coordinate values

PR Polar Radius

Using Expressions and Variables

57

PA Polar Angle

CX I

CY J

CZ K

DM Diameter 1

DM2 Diameter 2

DS Distance from the origin

A Angle

AXY Angle in the XY plane

AYZ Angle in the YZ plane

AZX Angle in the ZX plane

F Form Error

SDEV Standard Deviation

TP Position

QUALTOOLDATA

QUALTOOLDATA: This function returns data about the current or specified calibration
tool. It has this syntax:

QUALTOOLDATA(<TOOLINFO>, <TOOLID>, <FACENUMBER>)

This function takes up to three parameters. It needs at least one parameter to return any
data:

The first parameter, <TOOLINFO>, is a string that specifies the type of information to
return about the calibration tool. If you don't pass this parameter, this function returns
the name of the current or specified calibration tool.

• "DIAM" - This returns the diameter of the tool as a double value.
• "ID" - This returns the name of the tool as a string value.
• "LENGTH" - This acts the same as "DIAM". It also returns the diameter of the

tool as a double value.
• "OVERRIDEIJK" - This returns the search override IJK vector as a point

value.
• "POLYDIAM" - This returns the diameter of the specified polyhedral face as

a double value.
• "POLYIJK" - This returns the IJK vector of the specified polyhedral face as a

point value.
• "POLYXYZ" - This returns the XYZ center of the specified polyhedral face as

a point value.
• "SHANKIJK" - This returns the IJK vector of the shank as a point value.
• "TYPE" - This returns the type of tool as an integer value (0 for a sphere, 1

for an Arm2 sphere, 2 for a polyhedral, 3 for an Arm2 polyhedral).

Using Expressions and Variables

58

• "WIDTH" - This parameter is no longer used.
• "XYZ" - This returns the XYZ location of the tool as a point value.

The second parameter, <TOOLID>, is a string that specifies the name for the
calibration tool for which the user would like to receive information. If you don't pass
this parameter, PC-DMIS assumes you want information from the current calibration
tool. The string is not case sensitive.

The third parameter, <FACENUMBER>, you only need when working with a
polyhedral calibration tool and only when the first parameter is "POLYXYZ",
"POLYIJK", or "POLYDIAM". This is an integer value that specifies the face of the
polyhedral tool to use in order to obtain data.

Examples:

ASSIGN/VDIAM =
QUALTOOLDATA("DIAM","SPHERE_1_IN")

Gives the variable VDIAM the
diameter of the tool SPHERE_1_IN.

ASSIGN/VID = QUALTOOLDATA("ID") Gives the variable VID the current
tool's name.

ASSIGN/VTYPE = QUALTOOLDATA("TYPE") Gives the variable VTYPE the
current tool's type.

ASSIGN/VPOLYDIAM =
QUALTOOLDATA("POLYDIAM","POLYTEST",3)

Gives the variable VPOLYDIAM the
diameter of face 3 on the polyhedral
tool, POLYTEST.

Function Examples

Below are some different examples of functions that may help you in creating and using your own
functions:

• Generic Function Example
• Functions Passed as Variables Example
• Function with Multiple Parameters Example
• Functions Creating Other Functions Example
• Functions As Members of an Array Example
• Functions Defined Recursively Example

Generic Function Example

Assign/MYFUNC = FUNCTION((X,Y,Z), X*3 + Y*2 + Z)
Creates a user-defined function and assigns it to the variable MYFUNC. The function takes three
parameters, X,Y, and Z.

Using Expressions and Variables

59

X is multiplied by 3.

Y is multiplied by 2.

Z simply holds the passed value.

The total of X + Y + Z is what gets returned.

Assign/V1 = MYFUNC(7,2,5)
Assigns V1 the value 30 by evaluating the parameters passed into the function MYFUNC(7,2,5).
7 is the parameter and is substituted where X occurs in the expression portion of the function
definition. Thus, X*3 becomes 7*3, or 21.

2 is substituted where Y occurs, thus Y*2 becomes 2*2, or 4.

5 is substituted where Z occurs.

The values are then all added together (21 + 4 + 5) and passed to V1.

Functions Passed as Variables Example

Functions can be passed as variables. The following example builds on the Generic Function
Example above:

Assign/NEWFUNC = MYFUNC
Sets the variable NEWFUNC to have the same function that MYFUNC has.

Assign/V3 = NEWFUNC(12,2,3)
Assigns V3 to have the value 43 from the evaluated expressions within the function (36 + 4 + 3).

Function with Multiple Parameters Example

Functions can have multiple parameters:

Assign/ADDANDDOUBLE = FUNCTION((A,B), 2*(A+B))
Creates a function and assigns it to the function ADDANDDOUBLE. The function takes two
parameters, adds them together and then multiplies the result by 2.

Assign/V2 = ADDANDDOUBLE(4, 5)
Assigns V2 the value 18. The parameters 4 and 5 are substituted into the expression portion of
the function, thus becoming 2*(4+5).

Using Expressions and Variables

60

Functions Creating Other Functions Example

Functions can create other functions.

Assign/COMPOSE = FUNCTION((F, G), FUNCTION((X), G(F(X))))
Assigns COMPOSE to be a function that takes two functions as parameters and creates a new
function using the two functions.

Assign/ADD2 = FUNCTION((X), X+2)
Assigns ADD2 to be a function that adds two to the parameter passed in.

Assign/ADD3 = FUNCTION((X), X+3)
Assigns ADD3 to be a function that adds three to the parameter passed in.

Assign/ADD5 = COMPOSE(ADD2, ADD3)
Assigns ADD5 to be a function composed of the functions ADD2 and ADD3.

Assign/V5 = ADD5(3)
Assigns V5 to have the value V8.

Functions As Members of an Array Example

Functions can be members of an array.

Assign/ANARRAY = ARRAY(3, FACTORIAL, "Hello World", ADD5)
Assigns ANARRAY to be an array of 4 elements : a number (3), a function (FACTORIAL), a
string, ("Hello World"), and a function (Add5).

Assign/V6 = ANARRAY[2](4)
The second element of ANARRAY is the function FACTORIAL. The parameter 4 is passed in to
this function and the result of 24 is assigned to V6.

Assign/V7 = ANARRAY[2](ANARRAY[4] (ANARRAY[1]))
From the inside out: The first element of ANARRAY (3) is passed to the function of the fourth
array element (Add5). The result, 8, is passed to the function of the second array element
(FACTORIAL) and assigned to V7. V7 receives a value of 40320.

Functions Defined Recursively Example

Functions can be defined recursively, meaning they can be defined to call themselves.

Assign/FACTORIAL = FUNCTION((X), IF(X<=1, 1, X*FACTORIAL(X-1))
Creates a function called factorial that takes one parameter. If the parameter is less than or equal
to 1 it evaluates to 1, otherwise it evaluates to X multiplied by the FACTORIAL of X-1.

Assign/V4 = FACTORIAL(5)
Assigns V4 the value of 120 (5*4*3*2*1).

Using Expressions and Variables

61

Example of a Line Feature Created from a Scan Segment
This topic provides an example of how to use PC-DMIS expression language, specifically the line
segment functions, to export start and end point numbers for line segments within a scan and
then to create your own line feature by using the extracted points within a constructed feature.
You can use the same principles covered in this example to create an arc segment from a scan
as well.

Suppose your measurement routine has a scan feature named SCN1 that looks like this:

SCN1=FEAT/SCAN,LINEAROPEN,SHOW HITS=NO,SHOWALLPARAMS=YES

EXEC MODE=RELEARN, NOMS MODE=FIND NOMS,CLEARPLANE=NO,SINGLE POINT=NO,THICKNESS=0

FINDNOMS=5,SELECTEDONLY=NO,USEBESTFIT=NO,PROBECOMP=YES,AVOIDANCE
MOVE=NO,DISTANCE=0,CAD Compensation=NO

DIR1=VARIABLE,

HITTYPE=VECTOR

INITVEC=0,-1,0

DIRVEC=1,0,0

CUTVEC=0,0,1

ENDVEC=0,-1,0

PLANEVEC=-1,0,0

POINT1=100,0,-5

POINT2=70,0,-5

MEAS/SCAN

BASICSCAN/LINE,SHOW HITS=NO,SHOWALLPARAMS=YES

<100,0,-5>,<70,0,-5>,CutVec=0,0,1,DirVec=1,0,0

InitVec=0,-1,0,EndVec=0,-1,0,THICKNESS=0

FILTER/NULLFILTER,

EXEC MODE=RELEARN

BOUNDARY/PLANE,<70,0,-5>,PlaneVec=-1,0,0,Crossings=2

HITTYPE/VECTOR

NOMS MODE=FINDNOMS,5

ENDSCAN

ENDMEAS/

To create a line from this scan you will need to use the LINESEGMENTSTARTINDEX and
LINESEGMENTENDINDEX functions to pull out the data, like this:

ASSIGN/LINESTARTINDEX = LINESEGMENTSTARTINDEX("SCN1", 1, 0.4,0.1)

ASSIGN/LINEENDINDEX = LINESEGMENTENDINDEX("SCN1", 1, 0.4, 0.1)

This tells PC-DMIS to go to the scan named "SCN1", and from its first line segment pull out the
starting and ending index values that fall within the defined tolerances. It then assigns those index
values to variables named LINESTARTINDEX and LINEENDINDEX.

Once you have the start and ending index values for the line segment assigned to variables, you
can use those variables within a constructed line, like this:

LIN4=FEAT/LINE,RECT,UNBND

THEO/100.225,0,-5.011,1,0,0

Using Expressions and Variables

62

ACTL/100.225,-0.005,-5.011,1,-0.0000388,0

CONSTR/LINE,BF,2D,SCN1.HIT[LINESTARTINDEX..LINEENDINDEX],,

OUTLIER_REMOVAL/OFF,3

FILTER/OFF,WAVELENGTH=0

Notice that in the highlighted code from the line feature above, PC-DMIS uses the starting and
ending numbers you pulled out of the scan to create the feature:
SCN1.HIT[LINESTARTINDEX..LINEENDINDEX]

Operand Coercion

Operands can be coerced to other types using any of the coercion operators:

Integer Coercion

INT(<Expression>) - Coerces value of expression to type integer.

INT(4) Evaluates to 4

INT(4.5) Evaluates to 4

INT("Hello World") Evaluates to 0

INT("2") Evaluates to 2

INT("2.2") Evaluates 2

INT("3 Blind Mice") Evaluates to 3

INT("The 3 Blind
Mice") Evaluates to 0

INT("3, 4, 5") Evaluates to 3

INT(MPOINT(0, 0, 1)) Evaluates to the distance of the point from the origin,
in this case 1

INT(MPOINT(3, 4, 5)) Distance evaluates to 7.0711, this expression
evaluates to 7

Using Expressions and Variables

63

Double Coercion

DOUBLE(<Expression>) - Coerces value of expression to type double

DOUBLE(4) Evaluates to 4.0

DOUBLE(4.5) Evaluates to 4.5

DOUBLE("A String") Evaluates to 0.0

DOUBLE("3.5") Evaluates to 3.5

DOUBLE("3.5 inches") Evaluates to 3.5

DOUBLE("The circle measures 3.5 inches in diameter ") Evaluates to 0.0

DOUBLE(MPOINT(0,0,1)) Evaluates to 1.0

DOUBLE(MPOINT(3,4,5)) Evaluates to 7.0711

String Coercion

STR(<Expression>) - Coerces value of expression to type string

STR(4) Evaluates to "4"

STR(4.5) Evaluates to "4.5"

STR("Hello World") Evaluates to "Hello World"

STR(MPOINT(3,4,5)) Evaluates to "3, 4, 5"

Point Coercion

MPOINT(<Expression1>, <Expression2>, <Expression3>) - Coerces values of expressions to
type point after coercing each expression to type double.

MPOINT(1, 1, 1) Evaluates to point 1.0,1.0,1.0

MPOINT(1.1, 1.1, 1.1) Evaluates to point 1.1, 1.1, 1.1

MPOINT("1", "1", "1") Evaluates to point 1.0,1.0,1.0

Using Expressions and Variables

64

MPOINT(3, 4.5, "5.6") Evaluates to point 3.0, 4.5, 5.6

MPOINT(MPOINT(1, 0, 0),

MPOINT(0,1,0),

MPOINT(3,4,5))

Evaluates to 1.0, 1.0, 7.0711

Operand Coercion and Mixed Type Expressions

The expression evaluator automatically coerces variables in mixed type expressions. If the result
of an expression is not what is expected because of automatic coercion, use of the coercion
operators in some cases will yield the desired result. The following are examples of automatic
coercions in mixed type expressions.

"CIR" + 1
Evaluates to "CIR1"

"2" + 2
Evaluates to 4

"The Value of 2+2 is " + 2 + 2
Evaluates to "The Value of 2+2 is 22" (Since expressions are evaluated left to right)

"The Value of 2+2 is " + (2 + 2)
Evaluates to "The Value of 2+2 is 4"

LINE1.XYZ > 2
Evaluates to 1 if the distance of the centroid of LINE1 from the origin is greater than 2

LINE1.XYZ > LINE2.XYZ
Evaluates to 1 if the centroid of LINE1 is further from the origin than the centroid of LINE2

LINE1.XYZ = LINE2.XYZ
Evaluates to 1 if the centroids of LINE1 and LINE2 are the same (no coercion occurs in this case)

DOUBLE(LINE1.XYZ) = DOUBLE(LINE2.XYZ)
Evaluates to 1 if the centroids are the same distance from the origin

11% 3.1
Evaluates to 2 (% is the modulo operator designed to work with integers. It returns the remainder
from discrete division. 11%3 = 2.)

CIRCLE1.HIT [3.2].X
Evaluates to measured X value of third hit of Circle1. The argument 3.2 is automatically coerced
to an integer with a value of 3.

ID Expressions

Using Expressions and Variables

65

Many of the PC-DMIS commands use feature IDs as parameters. For example, constructed
features use IDs to indicate which features are to be used as inputs for the constructed feature.
ID expressions allow the user to refer to a specific instance of a feature, a group of similarly
named features, an instance of a feature inside a call to a subroutine, or a feature in an external
measurement routine.

Feature Array ID

Use a feature array id to refer to a specific instance of a feature or to a range of feature instances.
For example, if the feature "Circle1" were located in a while loop that looped five times, then five
instances of the circle would exist upon exiting the loop. To refer to an individual instance of the
five instances of "Circle1", use feature array syntax as described under "Feature Arrays:" where
"Circle1[1]" would refer to the first instance, "Circle1[2]" would refer to the second instance, etc.

To refer to a range of instances use the .. notation. "Circle1[1..3]" refers to the 1st through 3rd
instances of Circle1. "Circle1[3..5] refers to the 3rd through 5th instances of Circle1.
"Circle1[1..5]" would refer to the 1st through 5th instances of Circle1. When a range of feature is
referred to, the set is treated and behaves as a constructed set.

ID Wild Cards

Use ID Wild Cards to refer to a set of similarly named features. The two wild card characters
are "*" and "?". (See "Selecting Features Using Meta-character matching" in the "Editing the
CAD Display" chapter for additional information.)

The asterisk ‘*’ character is used to refer to 0 or more instances of any character. To refer to
the set of all feature that start with the letters "CIR", use the expression ID "CIR*". This syntax
will create a set of features that include all features with Ids that with "CIR", such as
"CIRCLE1", "CIRCLE2", "CIR3", or "CIR".

Note: If CIR3 has several executions only the most recent measurement is used. To get the
different instances of the executions, the following expression could be used: CIR?[1..3]

The question mark ‘?’ character is used to refer to a single instance of any character.

Example: The ID expression "MY???1" would create a set of features that are six characters
long, begin with "MY" and end with "1", such as "MYCIR1", "MYCON1", "MYLIN1", or "MYFT21".

IDs for features within subroutines, basic scripts, or external
routines

Subroutines can be located within the current measurement routine or in an external
measurement routine. When the subroutine is located in the same routine as the call to the
subroutine, the feature array ID syntax explained under "Feature Arrays:" can be used to refer to
individual instances of a feature created in the subroutine. However, when the subroutine is

Using Expressions and Variables

66

located in an external measurement routine, the following syntax can be used to refer to any
features created in the subroutine: "<Call Sub ID>:<FeatID>". For example, if a feature named
"F1" were located in an external subroutine that was called from a Call Sub command with the id
"CS1", then the ID expression "CS1:F1" could be used to refer to that feature.

Example: This example merely illustrates the use of the syntax CS1.F1 and is not intended to
use.

Routine 1: PLUS1.PRG

SUBROUTINE/PLUS1, A1 = 0, A2 = 0, A3 = 0
F1 =FEAT/POINT,RECT
THEO /A1+1,A2+1,A3+1,0,0,1
ACTL/3,1,1,0,0,1
MEAS/POINT,1
HIT /BASIC,A1+1,A2+1,A3+1,0,0,1,0,0,0
ENDMEAS/
ENDSUB/

Routine 2: TEST.PRG

CS1 =CALLSUB/PLUS1,D:\V30\WINDEBUG\PLUS1.PRG: 3,3,3,,
DIM D1= LOCATION OF POINT CS1:F1 UNITS=IN,$
GRAPH=OFF TEXT=OFF MULT=10.00 OUTPUT=BOTH
AX NOMINAL +TOL -TOL MEAS MAX MIN DEV OUTTOL
X 3.0000 0.0000 0.0000 3.0000 3.0000 3.0000 0.0000 0.0000
----#----
END OF DIMENSION D1

Basic scripts create and delete objects dynamically. Use the syntax "<Basic Script ID>:<Feat ID>"
to refer to a feature created by a basic script. For example, if a basic script with ID "BS1" creates
a feature with ID "F2", use the ID expression "BS1:F2" to refer to that feature.

External routines can be attached to PC-DMIS using the attach command. To refer to features in
the attached routine use the following syntax: "<Attach Routine ID>:<Feat ID>". To refer to
feature "F3" in the attached measurement routine with ID "GEAR1", use the expression,
"GEAR1:F3". (See "Attaching an External Measurement Routine" in the "Adding External
Elements" chapter for more information.)

ID Expression Combinations

Array ID Expressions, Wild Card ID Expressions, and external subroutine, basic script, and
external measurement routine ID Expressions can be used in combination. For example, to
refer to the third instance of all features that start with the letters "CIR" in an external
measurement routine attached with the ID "BOLTPAT" use the ID expression
"BOLTPAT:CIR*[3]".

Also, ID Expressions can be used in regular expressions. Thus, the measured centroid of the
above set of features could be assigned to variable with the following expression:

ASSIGN/V1 = BOLTPAT:CIR*[3].XYZ

Using Expressions and Variables

67

Also, ID Expressions can be used in regular expressions. Thus, the measured centroid of the
above set of features could be assigned to variable with the following expression:

ASSIGN/V1 = BOLTPAT:CIR*[3].XYZ

Accessing a Report's Object Properties
You can create your own custom report and label templates. PC-DMIS uses them to display
report data inside a Report window (see View | Report Window). You use template editors to
create the templates. The editors utilize a Visual Basic-like interface that you can use to insert,
relocate, and size special components called "objects".

Each object consists of "properties" that define how it appears and what information it holds.
Some of these properties are common to all other objects, some are common to only related
objects, and others are unique to that specific object.

The PC-DMIS Expression Language can query the currently loaded report and store property
values of a particular object in a variable. It can obtain values of type String, Integer, and Real by
using this syntax:

Property Query Syntax
Assign/V1 = Report.<Object Name>.<Property Name>

Report is a reference to the currently loaded report. <Object Name> is the object's unique name.
<Property Name> is a valid property name for that object.

Example
Suppose that your report template has a text object called "Text1" that you want to use in the final
report to display the operator's name. The actual string of characters that represent the operator's
name will be stored in the Text property of the object. By default, the text property (displayed text)
initially has the value of "Text1" (see the figure below). Because this is a user-assigned property,
this will change when you type in the name during execution.

Properties dialog box that shows a selected object and the property to query

To use the Expression Language code to query this Text object's "Text" property and obtain the
keyed-in data, you would use the following command:

Assign/V1 = Report.Text1.Text

In this code:

Using Expressions and Variables

68

"Report" tells the code to look at the report loaded in the Report window.

"Text1" tells it to look for the object named "Text1".

"Text" tells it to look for the "Text" property within that object. The value of the "Text"
property then gets passed into the V1 variable, which you could then further manipulate
or display using the PC-DMIS Expression Language.

Finding Properties
To find the properties that are associated with a particular object, access the Report template in
the Report template editor (File | Reporting | Edit | Report Template), select the object, and
then right-click on the object to display its property sheet.

Property sheet for a Text object

The property sheet contains two columns. The left column displays the property name. The right
column displays the current value. Be sure to use the exact property name in your expression
code.

Important: When you query property values, you may find that some properties return a
seemingly useless numerical value. Generally, this happens when the property has a set list of
available options. PC-DMIS returns an internal value for the selected property that does not relate
to the displayed property.

For example, the Text object has an Orientation property with these values:

• 0 - Horizontal
• 1 - Vertical up
• 2 - Vertical down

However, if you obtain the value using PC-DMIS expression language, the software will instead
return the following:

Using Expressions and Variables

69

• 0 (for Horizontal)
• 900 (for Vertical up)
• -900 (for Vertical down)

It may require some trial and error to determine what returned values correspond with the value
displayed on the property sheet.

Accessing Information from a Constructed Scan
Minimum Circle
Using PC-DMIS expressions you can pull information from a circle feature that is constructed with
a given radius at a minimum point along a linear scan. See the "Constructing a Circle at a Scan's
Minimum Point" topic in the "Constructing New Features from Existing Features" chapter for more
information.

When you construct a scan minimum circle feature, the circle ultimately uses a vector (termed the
down vector) to contact the scan line. It only contacts the line in two places called contact points
(CONTACTPOINT1 and CONTACTPOINT2). PC-DMIS can then use these points to determine
the angles from the down vector to these contact points (CONTACTANGLE1 and
CONTACTANGLE2). For example, consider this diagram:

A - The scan line to which the circle is constructed.
B - The final XYZ position of the circle's centroid.
C - The contact point to the left of the Down Vector. It is termed CONTACTPOINT1.
D - The contact point to the right of the Down Vector. It is termed CONTACTPOINT2.
E - The Down Vector.
F - The angle from the Down Vector to CONTACTPOINT1. It is termed CONTACTANGLE1.
G - The angle from the Down Vector to the CONTACTPOINT2. It is termed CONTACTANGLE2.

Using Expressions and Variables

70

The expressions detailed below will only function with this type of constructed circle feature. You
can also use CONTACTPOINT2 in the syntax below to return the equivalent information using the
second contact point instead.

ASSIGN/V1=CIR1.CONTACTPOINT1.XYZ
Returns the XYZ point information for the circle's first contact point with the line,
CONTACTPOINT1.

ASSIGN/V1=CIR1.CONTACTPOINT1.X
Returns the X information for CONTACTPOINT1.

ASSIGN/V1=CIR1.CONTACTPOINT1.Y
Returns the Y information for CONTACTPOINT1.

ASSIGN/V1=CIR1.CONTACTPOINT1.Z
Returns the Z information for CONTACTPOINT1.

ASSIGN/V1=CIR1.CONTACTPOINT1.IJK
Returns the IJK vector from CONTACTPOINT1 to the circle's centroid.

ASSIGN/V1=CIR1.CONTACTPOINT1.I
Returns the I value from the above CONTACTPOINT1 IJK vector.

ASSIGN/V1=CIR1.CONTACTPOINT1.J
Returns the J value from the above CONTACTPOINT1 IJK vector.

ASSIGN/V1=CIR1.CONTACTPOINT1.K
Returns the K value from the above CONTACTPOINT1 IJK vector.

ASSIGN/V1=CIR1.CONTACTANGLE1
Returns the angle from the Down Vector to CONTACTPOINT1.

ASSIGN/V1=CIR1.CONTACTANGLE2
Returns the angle from the Down Vector to CONTACTPOINT2.

ASSIGN/V1=CIR1.CONTACTANGLE
Returns the sum of the absolute values of CONTACTANGLE1 and CONTACTANGLE2. It should
be no greater than 180 degrees.

	Using Expressions and Variables
	Using Expressions and Variables: Introduction
	Using Expressions in a Measurement Routine
	Viewing Expression Values
	Keeping Expression Values Only
	Using Expressions with Branching
	Using Expressions with File Input / Output

	Creating Expressions with the Expression Builder
	Creating an Expression by Typing
	Creating an Expression with the Expression Builder
	Checking the Expression for Correctness
	Expression Element Type
	ID
	Extension
	Measured:
	Theoretical:

	Second Extension
	Add Button
	Edit box
	Description Area

	Using Variables with Expressions
	Assigning Values to Variables by Using the Assignment Dialog Box

	Understanding Expression Components
	Operand Types
	Literals
	References
	References of Type Double
	References of Type Point
	References of Type String

	Variables
	Structures
	Rules for Structures
	Structures with Variables of Type Point

	Pointers
	Arrays
	Feature Arrays
	Array Indices Object
	Hit Arrays
	Measured:
	Theoretical:

	Variable Arrays

	Operators for Expressions
	Precedence
	Functions
	Functions List
	String Functions
	Mathematical Functions
	Point Functions
	Pointer Functions
	Array Functions
	Miscellaneous Functions
	Function Examples
	Generic Function Example
	Functions Passed as Variables Example
	Function with Multiple Parameters Example
	Functions Creating Other Functions Example
	Functions As Members of an Array Example
	Functions Defined Recursively Example

	Example of a Line Feature Created from a Scan Segment
	Operand Coercion
	Integer Coercion
	Double Coercion
	String Coercion
	Point Coercion
	Operand Coercion and Mixed Type Expressions

	ID Expressions
	Feature Array ID
	ID Wild Cards
	IDs for features within subroutines, basic scripts, or external routines
	ID Expression Combinations

	Accessing a Report's Object Properties
	Accessing Information from a Constructed Scan Minimum Circle

