
i 

Table of Contents 

Using File Input / Output .................................................................................................... 3 

Using File Input / Output: Introduction ............................................................... 3 

Understanding Basic File I/O Concepts ............................................................. 4 

Using the File I/O Dialog Box ............................................................................ 5 

Opening a File for Reading or Writing ............................................................... 5 

Closing an Opened File after Reading or Writing .............................................. 7 

Reading a Character from a File ....................................................................... 8 

Reading a Line from a File .............................................................................. 10 

Reading a Block of Text from a File ................................................................ 15 

Reading Text up to a Delimiter ........................................................................ 17 

Writing a Character to a File ............................................................................ 19 

Writing a Line to a File ..................................................................................... 22 

Writing a Block of Text to a File ....................................................................... 23 

Positioning a File Pointer at the Beginning of a File ........................................ 25 

Saving a File Pointer's Current Position .......................................................... 27 

Recalling a Saved File Pointer's Position ........................................................ 29 

Copying a File ................................................................................................. 30 

Moving a File ................................................................................................... 32 

Deleting a File ................................................................................................. 34 

Checking for a File's Existence ....................................................................... 35 

Displaying a File Dialog Box ............................................................................ 36 

Checking for the End of a File or the End of a Line ......................................... 38 





3 

Using File Input / Output 
 

Using File Input / Output: Introduction 
This chapter explains how to input and output information to and from your measurement 
routines. The available menu options allow for opening files in read or write mode. Data can then 
be read from or written to these files. The File I / O commands allow data to be read in from 
external files that are to be used in a measurement routine . Also, measurement and tolerancing 
information can be written back out to files using these commands. You can also perform other 
file operations by using these commands. 

This chapter details these file I/O operations and includes functional examples for each of the 
various operations. These examples use items discussed in the "Branching by Using Flow 
Control" chapter and the "Using Expressions and Variables" chapter. 

Note: When looping or branching occurs in the code samples, indentation has been used for 
clarity to show statements assigned to a certain condition. In the actual Edit window code, you 
won't see any indentation. 

The main topics described in this topic include: 

• Understanding Basic File I/O Concepts 
• Using the File I/O Dialog Box 
• Opening a File for Reading or Writing 
• Closing an Opened File after Reading or Writing 
• Reading a Character from a File 
• Reading a Line from a File 
• Reading a Block of Text from a File 
• Reading Text up to a Delimiter 
• Writing a Character to a File 
• Writing a Line to a File 
• Writing a Block of Text to a File 
• Positioning a File Pointer at the Beginning of a File 
• Saving a File Pointer's Current Position 
• Recalling a Saved File Pointer's Position 
• Copying a File 
• Moving a File 
• Deleting a File 
• Checking for a File's Existence 
• Displaying a File Dialog Box 
• Checking for the End of a File or the End of a Line 

 



Using File Input / Output 

4 

Understanding Basic File I/O Concepts 
Checking for File Existence: 
For all the file I/O operations you will probably want to first check for the file's existence. This 
should probably be put in an IF / THEN loop so that if the check fails, you can notify the user. 
When writing to a file you must first create the file inside the windows environment. 

See "Checking for a File's Existence". 

Opening and Closing Files: 
For operations that read from or write to files you need to first open them to your system's 
processes. You do this by assigning the file to a variable called a file pointer. When opening a file, 
you can specify whether the file is opened for reading, writing (overwriting), or appending. Once 
opened, you can then read from or write to the file. When you're finished working with a file, you 
should close the file pointer; this closes the file and allows it to be accessed by other system 
processes. You cannot open files that are already opened by another process. 

See "Opening a File for Reading or Writing" and "Closing an Opened File after Reading or 
Writing". 

File Pointers and Positions: 
File pointers are variables that point to a file. They store an opened file's name and location and 
are then used to read from or write to that file. Once a file is opened and set to a file pointer, the 
pointer behaves like a cursor acts in a word processor. They indicate where you are currently 
reading from or writing to within the file. 

• If you're appending to a file, the file pointer is usually at the end of the file. 
• If you're reading a file or overwriting a file, the file pointer should usually start at the 

beginning of a file. 

Using Delimiters When Writing or Reading 
When writing data, consider using delimiters to separate pieces of data. This makes it easier to 
read the data back into a measurement routine. A delimiter can be any character or string of 
characters. For example, suppose you have a point, named PNT1 with the X,Y, and Z measured 
values of 2.5,4.3,6.1. You can easily write these values separated by a comma delimiter into a 
data file with code similar to the following: 

FILE/WRITELINE,FPTR,PNT1.X + "," + PNT1.Y + "," + PNT1.Z 

When reading data, you can separate the incoming data based on a specified delimiter and place 
the data into variables for later manipulation. For example, suppose you want to read in the same 
X, Y, and Z values listed above. The values should be in a single line of text like this: 2.5,4.3,6.1. 
You can separate the text at the comma and place those values into corresponding variables 
using a line of code similar to the following: 

V1=FILE/READLINE,FPTR,{ValX}+","+{ValY}+","+{ValZ} 

You can then use ValX, ValY, and ValZ as normal variables in your measurement routine. 
Resulting in: ValX = 2.5, ValY = 4.3, and ValZ = 6.1. 

 



Using File Input and Output 

5 

Using the File I/O Dialog Box 
All file I/O commands are initially inserted into the measurement routine by selecting the 
appropriate file I/O menu option (select Insert | File I/O Command from the menu). Once a 
command exists in the Edit window, you can then press F9 on the command to access its 
associated File I/O dialog box. 

 
A sample File I/O dialog box 

This dialog box simply provides a visual way to edit the current file I/O command. Alternately, you 
can modify a command inside the Edit window by using the techniques discussed in the “Using 
the Edit Window” chapter. 

You should not use this dialog box to insert new file I/O commands. That must be done by 
selecting the appropriate menu option or by typing the commands directly into the Edit window. 

Opening a File for Reading or Writing 
 

The Insert | File I/O Command | File Open menu option allows you to put a command in the Edit 
window that will open a disk file during execution of the measurement routine. 

Files can be opened simply to view information or to add and save information. 

The syntax of this command in the Edit window is: 

<filepointername> =File/Open,<filename>,<openmode> 

Descriptions for some of the components of this command are: 

<filepointername> 
This is the user chosen ID of the filepointer that is used to access the opened file. This ID 
is used to refer to the open file in other file I / O commands. 

<filename> 
This is the filename of the disk file to open. 

<openmode> 
This is the mode the file should be opened in. Files can be opened in the following modes: 
Read, Write, or Append. 



Using File Input / Output 

6 

To access the dialog box associated with this File I / O command: 

1. Open the Edit window. 
2. Place your cursor on the File Open command. 
3. Press F9. 

 
 

Sample Code for File Open 

Note: The sample code below should be entered inside the Edit window's Command Mode, not 
inside the File I/O dialog box. 

This code opens a file named TEST.TXT for reading, writing, and appending and stores the file 
name to a file pointer named FPTR. 

FPTR=FILE/OPEN,C:\PCDMISW\TEST.TXT,READ 

FPTR=FILE/OPEN,C:\PCDMISW\TEST.TXT,WRITE 

FPTR=FILE/OPEN,C:\PCDMISW\TEST.TXT,APPEND



Using File Input and Output 

7 

 

Be aware that you can use an input comment to take the full pathway as an input and use it in a 
FILE/OPEN command. You can also do the same thing by using the FILE/DIALOG command. 
Consider these examples: 

C1=COMMENT/INPUT,Type the full pathway and name of the file. 

V1=FILE/DIALOG, CHOOSE A FILE TO OPEN 

FPTR=FILE/OPEN,C1.INPUT,READ 

FPTR=FILE/OPEN,V1,READ 

See "Displaying a File Dialog Box". 

Closing an Opened File after Reading or Writing 
 

The Insert | File I/O Command | File Close menu option allows you to insert a command in the 
Edit window that will close an opened file when the measurement routine is executed. Closing 
files frees up resources used when files are open and commits any changes that have been 
made to the file to disk. 

The syntax of this command in the Edit window is: 

File/Close, <filepointername>,<closemode> 

Descriptions for some of the components of this command are: 

<filepointername> 
This is the ID used to identify the file and is created when the file is opened. 

<closemode> 
This parameter has two options, KEEP or DELETE. Using KEEP, PC-DMIS simply closes 
the file defined in the file pointer. Using DELETE, PC-DMIS closes the file and then deletes 
it. 

To access the dialog box associated with this File I / O command: 

1. Open the Edit window. 
2. Placing your cursor on the File Close command. 
3. Press F9. 



Using File Input / Output 

8 

 
 

Sample Code for File Close 

Note: The sample code below should be entered inside the Edit window's Command Mode, not 
inside the File I/O dialog box. 

This code simply closes the file assigned to the file pointer, FPTR: 

FILE/CLOSE,FPTR,KEEP 

This code, which uses the DELETE parameter, closes and deletes the file assigned to FPTR: 

FILE/CLOSE,FPTR,DELETE 

  

Reading a Character from a File 
 

The Insert | File I/O Command | Reading Commands | Read Character menu option places a 
command in the Edit window which reads a single character from the file specified by the 
filepointername field (see syntax below) and assigns that character to the variable specified in the 
variable name field. 

The syntax of this command in the Edit window is: 

<varname> = File/ReadCharacter,<filepointername> 

Descriptions for some of the components of this command are: 

<filepointername> 
This is the ID used to open the file. 

<varname> 
This is the name of the variable that will hold that character. 

To access the dialog box associated with this File I / O command: 

1. Open the Edit window. 
2. Placing your cursor on the Read Character command. 



Using File Input and Output 

9 

3. Press F9. 

 
  

 

Sample Code for Read Character 

Note: The sample code below should be entered inside the Edit window's Command Mode, not 
inside the File I/O dialog box. 

Consider this example that reads in a line from a data file one character at a time until it 
encounters a space. 

V1=FILE/EXISTS,test.txt 

IF/V1<>0 

COMMENT/OPER,Able to read from data file. Click OK to continue. 

ASSIGN/V3 = "" 

FPTR=FILE/OPEN,D:\Program Files\pcdmis35\test.txt,READ 

DO/ 

V2=FILE/READ_CHARACTER,FPTR 

ASSIGN/V3 = V3+V2 

UNTIL/V2 == " " 

FILE/CLOSE,FPTR 

COMMENT/OPER,"The first word from a line of text from the file is: " + V3 

END_IF/ 

ELSE/ 

COMMENT/OPER,Wasn't able to read from data file. Routine will now quit. 

GOTO/END 

END_ELSE/ 

END=LABEL/ 

ROUTINE/END 

Code Explanation 

V1=FILE/EXISTS 
This line checks to see if the specified file exists. The file must be placed in the directory 
where PC-DMIS resides for this code to work, otherwise the line containing the file must also 



Using File Input / Output 

10 

contain the full pathway for the file. V1 receives the result of the file check. It's a non-zero 
value if it exists; 0 otherwise. 

IF/V1<>0 
This line takes the value of V1 and checks to see if it evaluates to a non-zero value. If so, 
then a comment appears signifying that it's ready to begin the read process. If equal to zero 
then the measurement routine ends. 

ASSIGN/V3 = "" 
This line creates an empty string and assigns it to V3. The code uses this variable to build a 
string from the individual read in characters.  If you don't create the empty string, then V3 has 
its default value of 0. 

FPTR=FILE/OPEN 
This line opens the specified file for reading and assigns it to the default file pointer FPTR. 

DO 
This line begins a DO / UNTIL loop. It bounds the FILE/READ_CHARACTER code so that 
characters are continually read in one at a time. The loop exits whenever it reads in a 
character space. 

V2=FILE/READ_CHARACTER,FPTR 
This line reads in a character from the open file tied to the file pointer, FPTR. The character is 
stored in the variable, V2. 

ASSIGN/V3 = V3+V2 
This line uses the empty V3 variable, concatenates the string V3 with V2, and then reassigns 
the value to V3. So, with subsequent runs of the DO/UNTIL loop, V3 will get one more 
character added to it. 

UNTIL/V2 == " " 
This line ends the DO / UNTIL loop once the FILE/READ_CHARACTER code encounters a 
space character from the opened file. 

FILE/CLOSE,FPTR 
This line closes the opened data file, thereby allowing it to be accessed by other system 
processes. The rest of the code finishes running and displays the first word from the data file 
in an operator comment. 

  

Reading a Line from a File 
 

The Insert | File I/O Command | Reading Commands | Read Line menu option places a 
command in the Edit window that reads a line from the specified file during execution. This 
command sets the variable specified by the variable ID to 1 (true) or 0 (false) to indicate success 
(true) or failure (false) of the call. The expression required by this command can be used to 
delimit the line read in and to automatically fill up variables and references with data read in from 
the file. Information is read in from the input file up to the next carriage return character. 



Using File Input and Output 

11 

The syntax of this command in the Edit window is: 

<varname> = File/ReadLine,<filepointername>,<expr> 

Descriptions for some of the components of this command are: 

<varname> 
This is the name of the variable that will hold the result indicating success or failure of the 
ReadLine command. It returns "OK" or "EOF". 

<filepointername> 
This is the name specified for the file pointer when the file was opened. 

<expr> 
This is the destination variable(s) for the input data. Input data can be delimited by text to 
allow for ease in parsing incoming lines of data. Variables and feature references should 
be surrounded by curly brackets. 

To access the dialog box associated with this File I / O command: 

1. Open the Edit window. 
2. Placing your cursor on the Read Line command. 
3. Press F9. 

 
  

 

Sample Code for Read Line 

Note: The sample code below should be entered inside the Edit window's Command Mode, not 
inside the File I/O dialog box. 

Consider this example that reads in a line from a data file one line at a time until the 
FILE/READ_LINE command encounters an empty line. The measurement routine then displays 
the resulting block of text and quits. 

V1=FILE/EXISTS,test.txt 

IF/V1<>0 

COMMENT/OPER,Able to read from data file. Click OK to continue. 

ASSIGN/V3 = "" 



Using File Input / Output 

12 

FPTR=FILE/OPEN,D:\Program Files\pcdmis35\test.txt,READ 

DO/ 

V2=FILE/READLINE,FPTR,{LINE} 

ASSIGN/V3 = V3 + LINE 

COMMENT/OPER,"The current value of variable V3 is: 

,V3 

UNTIL/V2 == "EOF" 

FILE/CLOSE,FPTR 

COMMENT/OPER,"The block of text reads as follows: " 

,V3 

END_IF/ 

ELSE/ 

COMMENT/OPER,Wasn't able to read from data file. Routine will now quit. 

GOTO/END 

END_ELSE/ 

END=LABEL/ 

ROUTINE/END 

Code Explanation 
Much of this code is similar to that explained in "Sample Code for Read Character". Only code 
unique to this example is listed here. 

DO 
This line begins a DO / UNTIL loop. It bounds the FILE/READ_LINE code so that the lines 
are continually read in one at a time. The loop exits when it reaches the end of the file. 

V2=FILE/READLINE,FPTR,{LINE} 
This line reads in all the text until it encounters a carriage return. Instead of storing the text in 
V2, like FILE/READ_CHARACTER would, however, this code acts differently. 

• V2 in this case returns two values: either "OK" or "EOF". "OK" if there's still a line to read 
in. "EOF" if the end of the file is reached. 

• The {LINE} code is a user entered variable that stores the actual text. It is enclosed in 
curly brackets to tell PC-DMIS it's a variable and not a part of any delimiting text. Without 
the curly brackets, PC-DMIS would look for a string of characters in the file called "LINE" 
and would return only the text after "LINE" and before the carriage return. 

ASSIGN/V3 = V3+LINE 
This line uses the empty V3 variable and concatenates the string V3 with LINE, and then 
reassigns the concatenated value to V3. So, with subsequent runs of the DO/UNTIL loop, V3 
will get one more line added to it. 

UNTIL/V2 == "EOF" 
This line tests for the condition of the DO / UNTIL loop. Once the FILE/READLINE code 
encounters the end of file, the loop exits. Once the routine flow exits the loop, the rest of the 
code finishes running and displays the entire block of code inside an operator comment. 

Other Examples: Result = File/ReadLine,F1, "Part ID :"   + {V1} - This causes 
any text appearing in the read in line after the text "Part ID:" to be assigned to V1. The line is read 



Using File Input and Output 

13 

in from the file opened using F1 as the file pointer name. The result of the read (success or 
failure) would be stored in the variable Result. 

File/ReadLine,F1, "Location:"+{VARX}+ ","+{VARY}+ ","+{VARZ}+ ","+{VARI}+ ","+{VARJ}+ 
","+{VARK} 

ASSIGN/CIR1.XYZ = MPOINT(VARX, VARY, VARZ) 

ASSIGN/CIR1.IJK = MPOINT(VARI, VARJ, VARK) 

The above three command lines read in comma delimited text after the string "Location:" and 
store the values in the X, Y, Z, and I, J, K values of CIR1. 

File/ReadLine,F1, "Value # " + loopvar + " : " + {var2} - This causes var2 to 
be filled with the text appearing after the colon. The loopvar variable in this example is not 
surrounded by curly brackets and as a result contributes to the delimiting text. 

Sample Code Dealing with Numbers Containing Preceding Zeros 

If the file you are reading contains lines of numbers, you will notice that PC-DMIS ignores 
preceding zero characters. For example, if your line contained a value of 005450, it would read 
this value strictly as a number and return the value of 5450, ignoring the two preceding zeros. 
You may or may not want this.   

Suppose you have a text file created by an external barcode reader software and it contains 
these two lines of data: 

290291143;582750;0010 

291143;5827;0010 

You could use some simple code like this to get the number values in-between the semi-colons: 

ASSIGN/FIRST_VALUE=0 

ASSIGN/SECOND_VALUE=0 

ASSIGN/THIRD_VALUE=0 

ASSIGN/LINENUM=1 

FPTR=FILE/OPEN,D:\TEMP\CODES.TXT,READ 

DO/ 

INLINE=FILE/READLINE,FPTR,{FIRST_VALUE}+";"+{SECOND_VALUE}+";"+{THIRD_VALUE} 

COMMENT/OPER,NO,"LINE NUMBER: " + LINENUM 

,"First Value: " + FIRST_VALUE 

,"Second Value: " + SECOND_VALUE 

,"Third Value: " + THIRD_VALUE 

UNTIL/INLINE == "EOF" 

FILE/CLOSE,FPTR,KEEP 

While this will successfully parse the lines of text and return the number values, it will also 
remove any preceding zeros for any values it returns. So, the THIRD_VALUE variable would 
contain a value of 10, instead of 0010. 

To keep the preceding zero values, you would need to treat the whole line as a string and instead 
use the INDEX, LEFT, and MID string functions to locate the positions of semi-colons in a line of 
text and obtain the number values: 



Using File Input / Output 

14 

FPTR=FILE/OPEN,D:\TEMP\CODES.TXT,READ 

ASSIGN/LINENUM=1 

DO/ 

LINESTATUS=FILE/READLINE,FPTR,{LINESTR} 

ASSIGN/LINESTR=STR(LINESTR) 

ASSIGN/FIRST_INDEX=INDEX (LINESTR,";") 

ASSIGN/FIRST_VALUE=STR(LEFT(LINESTR,FIRST_INDEX-1)) 

ASSIGN/REMAINSTR=STR(MID(LINESTR,(FIRST_INDEX))) 

ASSIGN/SECOND_INDEX=INDEX (REMAINSTR,";") 

ASSIGN/SECOND_VALUE=STR(LEFT(REMAINSTR,SECOND_INDEX-1)) 

ASSIGN/THIRD_VALUE=STR(MID(REMAINSTR,SECOND_INDEX)) 

COMMENT/OPER,NO,"LINE NUMBER: " + LINENUM 

,"First Value:  " + FIRST_VALUE 

,"Second Value: " + SECOND_VALUE 

,"Third Value:  " + THIRD_VALUE 

ASSIGN/LINENUM=LINENUM+1 

UNTIL/LINESTATUS == "EOF" 

FILE/CLOSE,FPTR,KEEP 

Explanation of Code 
Much of this code is similar to what is explained above. Only code explanations unique to the 
mentioned string functions are listed here. 

ASSIGN/FIRST_INDEX=INDEX (LINESTR,";") 
This line locates the position of the first semi-colon in the line and assigns that to the 
FIRST_INDEX variable. 

ASSIGN/FIRST_VALUE=STR(LEFT(LINESTR,FIRST_INDEX-1)) 
This line assigns the FIRST_VALUE variable the string of characters up to, but not including, 
the first semi-colon in the LINESTR variable. LINESTR contains the entire line of text. 

ASSIGN/REMAINSTR=STR(MID(LINESTR,(FIRST_INDEX))) 
This line assigns the REMAINSTR variable (standing for "remaining string") the string of left 
over characters starting from the FIRST_INDEX position (the position of the first semi-colon) 
until the end of the line. 

ASSIGN/SECOND_INDEX=INDEX(REMAINSTR,";") 
This searches inside the REMAINSTR variable for another semi-colon (the second semi 
colon in the line) and assigns the position to the SECOND_INDEX variable. 

ASSIGN/SECOND_VALUE=STR(LEFT(REMAINSTR,SECOND_INDEX-1)) 
This line assigns the SECOND_VALUE variable the string of characters up to, but not 
including, the first semi colon in the REMAINSTR variable (the second semi-colon in the entire 
line). 

ASSIGN/THIRD_VALUE=STR(MID(REMAINSTR,SECOND_INDEX)) 
This line assigns the THIRD_VALUE variable the string of characters starting from the 
SECOND_INDEX position, until the end of the line. 



Using File Input and Output 

15 

Reading a Block of Text from a File 
 

The Insert | File I/O Command | Reading Commands | Read Block menu option places a 
command in the Edit window that will read in a block of characters from an open file at execution 
time. The amount of characters read in is indicated by the size parameter. 

The syntax of this command in the Edit window is: 

<varname>=File/Read_Block,<fptrname>,<size> 

Descriptions for some of the components of this command are: 

<varname> 
This is a variable id for the variable that receives the value indicating success or failure of 
the read block operation. 

<fptrname> 
This is the name specified for the file pointer when the file was opened. 

<size> 
This is the number of characters to read. 

To access the dialog box associated with this File I / O command: 

1. Open the Edit window. 
2. Placing your cursor on the Read Block command. 
3. Press F9. 

 
  

 

Sample Code for Read Block 

Note: The sample code below should be entered inside the Edit window's Command Mode, not 
inside the File I/O dialog box. 

Suppose you have various external data files that contain miscellaneous part data and the first 
few characters of each file designate what the file is for. You can use the File/Read_Block 



Using File Input / Output 

16 

command to read only those first few characters before deciding to read in and process every 
line. Consider this code: 

C3=COMMENT/INPUT,Please type the name of the 

,file code to search for. 

ASSIGN/BLOCKSIZE = LEN(C3.INPUT) 

ASSIGN/FILECODE = C3.INPUT 

DO/ 

C1=COMMENT/INPUT,Please type the full pathway, 

,filename, and extension to the 

,file you want to process. 

,Type [Q] to quit. 

IF/C1.INPUT== "Q" OR C1.INPUT=="q" 

COMMENT/OPER,You've chosen to quit. Routine now ending. 

GOTO/END 

END_IF/ 

V1=FILE/EXISTS,C1.INPUT 

IF/V1<>0 

COMMENT/OPER,"Data file [" + C1.INPUT + "] exists. Click OK to continue." 

FPTR=FILE/OPEN,C1.INPUT,READ 

V2=FILE/READ_BLOCK,FPTR,BLOCKSIZE 

FILE/CLOSE,FPTR 

IF/V2<>FILECODE 

COMMENT/OPER,"The file's code of [" + V2 + "] doesn't match" 

,"the FILECODE of [" + FILECODE + "]." 

END_IF/ 

UNTIL/V2==FILECODE 

COMMENT/OPER,"File [" + C1.INPUT + "] is a match." 

,"The file's code of [" + V2 + "] matches" 

,"the FILECODE of [" + FILECODE + "]." 

COMMENT/OPER,Routine then processes the file. 

END_IF/ 

ELSE/ 

COMMENT/OPER,"Data file [" + C1.INPUT + "] doesn't exist. Please retry using an 
existing data file." 

GOTO/END 

END_ELSE/ 

END=LABEL/ 

ROUTINE/END 

Code Explanation 
Some of this code is similar to that explained in "Sample Code for Read Character" or in "Sample 
Code for Read Line". 

Only explanations unique to this example are given here. 



Using File Input and Output 

17 

ASSIGN/BLOCKSIZE = LEN(C3.INPUT) 
This line uses creates a user defined variable named BLOCKSIZE that contains an integer 
equal to the number of characters found in C3.INPUT. This will be used as the size of the 
block of characters to read in. 

ASSIGN/FILECODE = C3.INPUT 
This line creates the FILECODE variable and gives it the value of C3.INPUT. 

C1=COMMENT/INPUT 
This comment stores the full pathway entered by the user into the C1.INPUT variable. 

V1=FILE/EXISTS,C1.INPUT 
This line checks for the existence of the file name defined in the C1 comment. 

DO/ 
This line begins a DO / UNTIL loop. It bounds the block of code that allows the user to specify 
a file to read from. It will continue looping until the text assigned to FILECODE variable 
matches the text read from the file. 

V2=FILE/READ_BLOCK,FPTR,BLOCKSIZE 
This line reads the amount of characters equal to the integer contained in the BLOCKSIZE 
variable. The text is then stored in V2 variable. 

IF/V2FILECODE 
This line begins an IF / END IF code block that tests to see if the text in the V2 variable 
matches the text stored in the FILECODE variable. If it does match, then the routine continues 
running. Otherwise it displays a message saying the two codes don't match. 

UNTIL/V2==FILECODE 
 This line checks the condition of the DO / UNTIL loop to see if the text in the V2  variable 
matches the text in the FILECODE variable. If the statement evaluates to false, the DO loop 
runs again, allowing the user to choose a different file name. If the statement evaluates to 
true, then the loop exits and the routine displays a message saying it matches. PC-DMIS 
could then continue to read each line of data from the specified data file. 

Reading Text up to a Delimiter 
 

The Insert | File I/O Command | Reading Commands | Read Up To menu option places a 
command in the Edit window that reads all text ‘up to’ one of the given delimiters from the 
specified file during execution. Any text read by this command is placed in the specified 
destination variable. The command stops reading text when PC-DMIS encounters the following: 

• Defined delimiters 
• Carriage returns 
• Line feed characters 

If the end of the file is reached, the destination variable will be set to "EOF" (End of File). 

The syntax of this command in the Edit window is: 



Using File Input / Output 

18 

<varname> = FILE/READ_UPTO,<fptrname>,<delimiters> 

Descriptions for some of the components of this command are: 

<varname> 
This is the name of the destination variable. 

<fptrname> 
This is the name specified for the file pointer when the file was opened. 

<delimiters> 
This is a string which contains zero or more delimiter characters. 

To access the dialog box associated with this File I / O command: 

1. Select the Edit Window to open the Edit window. 
2. Place your cursor on the FILE/READ command. 
3. Press F9. The File I/O dialog box opens. 

 

Once the dialog box appears: 

1. Type the variable name that will receive the read in information into the Variable ID box. 
2. Type the file pointer name into the File Pointer ID box. 
3. Type the delimiter into the Text box (be sure and use quotation marks around your 

chosen delimiter). 
4. Click OK. 

  
 

Sample Code for Read Up To 

Note: The sample code below should be entered inside the Edit window's Command Mode, not 
inside the File I/O dialog box. 

Example: Suppose you have text file named "sample.txt" in your c:\temp directory which contains 
this information on the first line. 

root:x:0:0:root:/root:/bin/bash 



Using File Input and Output 

19 

To use the Read Up To command on this file: 

1. Insert a FILE/OPEN command in the Edit window. 
2. Use a File Pointer Name of your choice to name your File Open command. This example 

uses "sample" as the file pointer name. 

The File Open command should look something like this: 

SAMPLE     =FILE/OPEN,C:\TEMP\SAMPLE.TXT,READ 

Now, using PC-DMIS Read Up To commands, define some variables that call different segments 
of data. This example uses the following variables looking for a ":" (without the quotation marks) 
as the delimiter. 

USERNAME   =FILE/READ_UPTO,SAMPLE,: 

PASSWORD   =FILE/READ_UPTO,SAMPLE,: 

USER       =FILE/READ_UPTO,SAMPLE,: 

Thus, when PC-DMIS executes these lines, it sets 

username = root 

password = x 

user = 0 

To display this on screen during execution you can use an operator comment such as the one 
shown here: 

COMMENT/OPER,The following text is read in from sample.txt 

,Username: 

,USERNAME 

,Password: 

,PASSWORD 

,User: 

,USER 

Writing a Character to a File 
 

The Insert | File I/O Command | Writing Commands | Write Character menu option inserts a 
command into the Edit window that will cause a single character to be output to a disk file upon 
execution. 

The syntax of this command in the Edit window is: 

File/Write_Character,<fptrname>,<expr> 

Descriptions for some of the components of this command are: 

<fptrname> 
This is the name of the file pointer specified when the file was opened. 



Using File Input / Output 

20 

<expr> 
This is the character to be written to file. If the expression evaluates to more than one 
character, only the first character is written. 

To access the dialog box associated with this File I / O command: 

1. Open the Edit window. 
2. Placing your cursor on the Write Character command. 
3. Press F9. 

 
  

 

Sample Code for Write Character 

Note: The sample code below should be entered inside the Edit window's Command Mode, not 
inside the File I/O dialog box. 

Consider this code that writes a string provided by the user to a data file one character at a time. 

C1=COMMENT/INPUT,Type the name of the file to write 

,to (include the complete path). 

FPTR=FILE/OPEN,C1.INPUT,WRITE 

C2=COMMENT/INPUT,Type something to send to the file. 

,This will send the string one character 

,at a time. 

ASSIGN/COUNT = 0 

ASSIGN/LENGTH = LEN(C2.INPUT) 

DO/ 

ASSIGN/WRITETHIS = MID(C2.INPUT,COUNT,1) 

FILE/WRITE_CHARACTER,FPTR,WRITETHIS 

ASSIGN/COUNT = COUNT + 1 

UNTIL/COUNT == LENGTH 

Code Explanation 
Some of this code is similar to that explained in "Sample Code for Read Character" or in "Sample 
Code for Read Line". 



Using File Input and Output 

21 

Only explanations unique to this example are given here. 

FPTR=FILE/OPEN,C1.INPUT,WRITE 
This line opens the file specified in the C1 comment for writing, and assigns it to the file 
pointer, FPTR. All data in this file will get overwritten as long as the file pointer begins at the 
start of the data file. 

ASSIGN/COUNT = 0 
This line assigns a user defined variable COUNT a value of zero. This is used for looping 
purposes to print the string one character at a time. 

ASSIGN/LENGTH = LEN(C2.INPUT) 
This line uses the LEN( ) function to return the length of a string. This function takes one 
parameter, the string. It counts the number of characters in the string (including spaces) and 
returns an integer value of that amount. In this case the user defined variable, LENGTH holds 
this value. 

DO/ 
This line begins a DO / UNTIL loop. Code between the DO and the UNTIL statements will be 
executed until the loop's condition evaluates to true. 

ASSIGN/WRITETHIS = MID(C2.INPUT,COUNT,1) 
This line creates a user defined variable called WRITETHIS and uses the MID( ) function to 
return a substring character from the C2.INPUT string and give it to WRITETHIS. 

MID( ) takes three parameters. 

• Parameter 1: is the string from which to get values. In this case C2.INPUT is 
used. 

• Parameter 2: is the position in the string to take the character from. The first 
character in a string would be position 0, the second position 1, the third position 
2 and so forth. In this case, the variable COUNT is used. 

• Parameter 3: is how many characters starting from the position of the second 
parameter to grab. In this case, the value of 1 is used (the sample only writes 
one character at a time, so there's no reason to get more). 

FILE/WRITE_CHARACTER,FPTR,WRITETHIS 
This line writes the character stored in the WRITETHIS variable to the file specified by the file 
pointer, FPTR. 

ASSIGN/COUNT = COUNT + 1 
This line takes the current COUNT value, increments it by one, and then places the new 
value back into COUNT. 

UNTIL/COUNT == LENGTH 
This line tests the condition of the DO / UNTIL loop. In this case, the loop will keep 
incrementing the COUNT variable until it has the same value as the LENGTH variable. Then 
the loop will exit, ending the routine. 



Using File Input / Output 

22 

Writing a Line to a File 
 

The Insert | File I/O Command | Writing Commands | Write Line menu option inserts a 
command into the Edit window that will cause a line of text to be output to a disk file upon 
execution. Use expression syntax to output variables and measurement routine information to file. 
A carriage return is automatically appended to the text written out. 

The syntax of this command in the Edit window is: 

File/WriteLine,<fptrname>,<expr> 

Descriptions for some of the components of this command are: 

<fptrname> 
This is the name of the file reference specified when the file was opened. 

<expr> 
This is the text to be written to file. Expressions can be used in this field. 

To access the dialog box associated with this File I / O command: 

1. Open the Edit window. 
2. Placing your cursor on the Write Line command. 
3. Press F9. 

 
 

Sample Code for Write Line 

Note: The sample code below should be entered inside the Edit window's Command Mode, not 
inside the File I/O dialog box. 

Suppose you want to export some measured XYZ values to a data file. The following code allows 
you to input a feature label and a data file and send the X,Y, and Z data for that feature to a data 
file. 

C1=COMMENT/INPUT,Type the label of the feature. 

,to use. 



Using File Input and Output 

23 

C2=COMMENT/INPUT,Type the name of the file to write 

,to (include the complete path). 

FPTR=FILE/OPEN,C2.INPUT,APPEND 

ASSIGN/FEATNAME = C1.INPUT 

ASSIGN/ALLVALS = FEATNAME.X + "," + FEATNAME.Y + "," + FEATNAME.Z 

COMMENT/OPER,"Text to write is: " + ALLVALS 

FILE/WRITELINE,FPTR,ALLVALS 

FILE/CLOSE,FPTR 

Code Explanation 
Some of this code is similar to that explained in "Sample Code for Read Character" or in "Sample 
Code for Read Line". 

Only explanations unique to this example are given here. 

FPTR=FILE/OPEN,C2.INPUT,APPEND 
This line opens the file specified in the C2 comment for appending, and assigns it to the file 
pointer, FPTR. If instead, you change APPEND to WRITE, then existing content in the data file 
will get overwritten. 

ASSIGN/FEATNAME = C1.INPUT 
This line assigns the string of the feature label from C1.INPUT to the user defined variable, 
FEATNAME. 

ASSIGN/ALLVALS=FEATNAME.X+","+FEATNAME.Y+","+ FEATNAME.Z 
This line gives the user defined variable ALLVALS the value of 
FEATNAME.X,FEATNAME.Y,FEATNAME.Z, in other words it now holds the X, Y, and Z 
values of the feature label typed into the C1 input comment. 

FILE/WRITELINE,FPTR,ALLVALS 
This line writes the values contained in ALLVALS to the file specified by the file pointer, FPTR. 

Writing a Block of Text to a File 
 

The Insert | File I/O Command | Writing Commands | Write Block menu option inserts a 
command into the Edit window that will cause a block of text to be output to a disk file upon 
execution. Use expression syntax to output the variables and measurement routine information to 
file. Unlike the write line command, write block does not append a carriage return at the end. 

The syntax of this command in the Edit window is: 

File/WriteBlock,<fptrname>,<expr> 

Descriptions for some of the components of this command are: 

<fptrname> 
This is the name of the file reference specified when the file was opened. 

<expr> 
This is the text to be written to file. Expressions can be used in this field. 



Using File Input / Output 

24 

Carriage Return and Line Feed: Unlike the write line command, write block does not append a 
carriage return at the end. However, if you need to place text on a new line inside your text block, 
you can insert a carriage return and line feed manually by using the CHR(10) code outside of 
your quoted string, as shown here in this example: 

FILE/WRITEBLOCK,FPTR, "CHR(10) inserts text... " + CHR(10) + " ...on a 
new line." 

This would yield this result inside your output file: 

CHR(10) inserts text... 

...on a new line. 

Notice that if CHR(10) is inside the quotation marks the actual text of CHR(10) gets sent to the 
file. 

To access the dialog box associated with this File I / O command: 

1. Open the Edit window. 
2. Place your cursor on the Write Block command. 
3. Press F9. 

 
 

Sample Code for Write Block 

Note: The sample code below should be entered inside the Edit window's Command Mode, not 
inside the File I/O dialog box. 

The following code writes whatever the user inputs into an input comment, appending a colon to 
be used as a delimiter. 

C1=COMMENT/INPUT,Type any string. PC-DMIS will append a colon (for delimiter 
purposes) and write the string to a file of your choice 

C2=COMMENT/INPUT,Type the name of the file to write 

,to (include the complete path). 

FPTR=FILE/OPEN,C2.INPUT,APPEND 

ASSIGN/WRITETHIS = C1.INPUT + ":" 



Using File Input and Output 

25 

COMMENT/OPER,"Text to write is: " + WRITETHIS 

FILE/WRITELINE,FPTR,WRITETHIS 

FILE/CLOSE,FPTR 

Code Explanation 
Some of this code is similar to that explained in "Sample Code for Read Character" or in "Sample 
Code for Read Line". 

Only explanations unique to this example are given here. 

FPTR=FILE/OPEN,C2.INPUT,APPEND 
This line opens the file specified in the C2 comment for appending, and assigns it to the file 
pointer, FPTR. 

ASSIGN/WRITETHIS = C1.INPUT + ":" 
This line appends a colon to the text contained in C1.INPUT and assigns the new string to 
the user defined variable, WRITETHIS. 

FILE/WRITELINE,FPTR,WRITETHIS 
This line writes the values contained in WRITETHIS to the file specified by the file pointer, 
FPTR. You can later read-in text from the file by using the colon as a delimiter. 

Positioning a File Pointer at the Beginning of a 
File 

 

The Insert | File I/O Command | Position Commands | Rewind To Start menu option inserts a 
command into the Edit window that will position the file pointer to the beginning of the file stream. 

The syntax of this command in the Edit window is: 

File/Rewind,<fptrname> 

Descriptions for some of the components of this command are: 

<fptrname> 
This is the name of the file pointer to reposition at the beginning of the file. 

To access the dialog box associated with this File I / O command: 

1. Open the Edit window. 
2. Placing your cursor on the Rewind to Start command. 
3. Press F9. 



Using File Input / Output 

26 

 
  

 

Sample Code for Rewind to Start 

Note: The sample code below should be entered inside the Edit window's Command Mode, not 
inside the File I/O dialog box. 

Consider this example that reads in data from an external file one line at a time. After each line, 
you have the option of starting over and reading from the beginning of the file. This illustrates the 
use of the FILE/REWIND command. 

C1=COMMENT/INPUT,Please type a file to read from. 

,(include the full path) 

V1=FILE/EXISTS,C1.INPUT 

IF/V1<>0 

DO/ 

FPTR=FILE/OPEN,C1.INPUT,READ 

C2=COMMENT/YESNO,Do you want to read from the beginning? 

IF/C2.INPUT == "YES" 

FILE/REWIND,FPTR 

END_IF/ 

V2=FILE/READLINE,FPTR,{LINE} 

COMMENT/OPER,"The current line is: " + LINE 

UNTIL/V2=="EOF" 

END_IF/ 

FILE/CLOSE,FPTR 

COMMENT/OPER,Routine quitting. 

Code Explanation 
Some of this code is similar to that explained in "Sample Code for Read Character" or in "Sample 
Code for Read Line". 

Only explanations unique to this example are given here. 



Using File Input and Output 

27 

C2=COMMENT/YESNO 
This line asks if you want to start reading the file from the beginning. It stores the YES/NO 
response into the variable, C2.INPUT. 

IF/C2.INPUT == "YES" 
This line begins an IF / END IF block. It tests the condition of C2.INPUT having the value of 
YES. If the condition is true, then PC-DMIS executes the lines following the IF statement. If 
the condition is false, then PC-DMIS executes the code following the END_IF statement. 

FILE/REWIND,FPTR 
This line rewinds the file pointer to the beginning of the data file. 

END_IF/ 
This line quits the IF / END IF code block. 

Saving a File Pointer's Current Position 
 

The Insert | File I/O Command | Position Commands | Save File Position menu option inserts 
a command into the Edit window that saves the current position of a file pointer within the file 
stream. The saved position can later be recalled using the recall file position command. 

The syntax of this command in the Edit window is: 

File/SavePosition,<fptrname> 

Descriptions for some of the components of this command are: 

<fptrname> 
This is the name of the file pointer whose file position is saved. 

To access the dialog box associated with this File I / O command: 

1. Open the Edit window. 
2. Placing your cursor on the Save File Position command. 
3. Press F9. 

 
  

 



Using File Input / Output 

28 

Sample Code for Save File Position 

Note: The sample code below should be entered inside the Edit window's Command Mode, not 
inside the File I/O dialog box. 

Consider this example that reads in data from an external file one line at a time. After each line, 
you have the option of saving the file position for later recall. This illustrates the use of the 
FILE/SAVE_POSITION command. 

C1=COMMENT/INPUT,Please type a file to read from. 

,(include the full path) 

V1=FILE/EXISTS,C1.INPUT 

IF/V1<>0 

DO/ 

FPTR=FILE/OPEN,C1.INPUT,READ 

C2=COMMENT/YESNO,Do you want to save the file position and recall it later? The 
loop will quit. 

IF/C2.INPUT == "YES" 

FILE/SAVE_POSITION,FPTR 

GOTO/QUITLOOP 

END_IF/ 

V2=FILE/READLINE,FPTR,{LINE} 

COMMENT/OPER,"The current line is: " + LINE 

UNTIL/V2=="EOF" 

END_IF/ 

FILE/CLOSE,FPTR 

QUITLOOP=LABEL/ 

COMMENT/OPER,You've stopped reading. 

ROUTINE/END 

Code Explanation 
This code is similar to that explained in "Sample Code for Rewind to Start". 

Only explanations unique to this example are given here. 

C2=COMMENT/YESNO 
This line asks if you want to store the current file position and exit the loop. It stores the 
YES/NO response into the variable, C2.INPUT. 

FILE/SAVE_POSITION,FPTR 
This line stores the file pointer's position in the file stream. 

As long as you open the same file with same file pointer name in the same measurement routine, 
you can recall a stored file position and continue reading where you left off. To continue this 
example, see the "Sample Code for Recall File Position" topic. 



Using File Input and Output 

29 

Recalling a Saved File Pointer's Position 
 

The Insert | File I/O Command | Position Commands | Recall File Position inserts a 
command into the Edit window that will recall a previously saved file position. Use the save file 
position command to save a position within an open file. 

The syntax of this command in the Edit window is: 

File/RecallPosition, <fptrname> 

Descriptions for some of the components of this command are: 

<fptrname> 
This is the name of the file pointer whose position is being recalled. 

To access the dialog box associated with this File I / O command: 

1. Open the Edit window. 
2. Placing your cursor on the Recall File Position command. 
3. Press F9. 

 
  

 

Sample Code for Recall File Position 

Note: The sample code below should be entered inside the Edit window's Command Mode, not 
inside the File I/O dialog box. 

This example opens a previously closed file, uses a previous file pointer, and recalls the stored 
file pointer's saved position. It then reads in data from that position. This code illustrates the use 
of the FILE/RECALL_POSITION command, and it continues the code sample given in the 
"Sample Code for Save File Position" topic. 

COMMENT/OPER,The routine will now recall the stored file position. 

FPTR=FILE/OPEN,C1.INPUT,READ 

FILE/REWIND,FPTR 



Using File Input / Output 

30 

COMMENT/OPER,To test, file has been rewound. 

,The first line will be read in to test the rewind. 

V3=FILE/READLINE,FPTR,{LINE} 

COMMENT/OPER,The first line is: 

,LINE 

FILE/REWIND,FPTR 

FILE/RECALL_POSITION,FPTR 

COMMENT/OPER,Previously stored file position has been recalled. 

,Data on the line at the stored position will now print. 

V4=FILE/READLINE,FPTR,{STORED} 

COMMENT/OPER,The text at the stored position is: 

,STORED 

Code Explanation 
This code is similar to that explained in "Sample Code for Rewind to Start". 

Only explanations unique to this example are given here. 

FILE/RECALL_POSITION,FPTR 
This line recalls the stored file pointer position in the file stream for the file pointer designated 
as FPTR. 

V4=FILE/READLINE,FPTR,{STORED} 
This line reads in the next line after the stored file pointer position and assigns it to the user 
defined variable of STORED. This variable is then printed out in the next operator comment. 

Copying a File 
 

The Insert | File I/O Command | File Copy menu option inserts a command into the Edit window 
which will cause a file copy operation to occur upon execution. 

The syntax of this command in the Edit window is: 

File/Copy,<srcfilename>,<destfilename>,<replacemode> 

Descriptions for some of the components of this command are: 

<srcfilename> 
This is the name of the source file (file copied from) 

<destfilename> 
This is the name of the destination file (file copied to) 

<replacemode> 
This is the action to take if the destination file already exists. The two modes are overwrite 
and fail if destination exists. 

To access the dialog box associated with this File I / O command: 



Using File Input and Output 

31 

1. Open the Edit window. 
2. Placing your cursor on the File Copy command. 
3. Press F9. 

 
  

 

Sample Code for File Copy 

Note: The sample code below should be entered inside the Edit window's Command Mode, not 
inside the File I/O dialog box. 

The following code asks for a file name to copy and for a destination directory and file to copy to. 

C1=COMMENT/INPUT,Please type a file you want to copy. 

,(Include full file path) 

C2=COMMENT/INPUT,Please type a destination file name. 

,(Include full file path) 

V1=FILE/EXISTS,C1.INPUT 

IF/V1<>0 

COMMENT/OPER,File exists to copy. Copying commencing. 

FILE/COPY,C1.INPUT,C2.INPUT,FAIL_IF_DEST_EXISTS 

V2=FILE/EXISTS,C2.INPUT 

IF/V2==0 

COMMENT/OPER,"File doesn't exist at: " + C2.INPUT 

,Copy ending. 

ROUTINE/END 

END_IF/ 

ELSE/ 

COMMENT/OPER,File copy successful. 

ROUTINE/END 

END_ELSE/ 

END_IF/ 

COMMENT/OPER,File to copy doesn't exist. 

Code Explanation 



Using File Input / Output 

32 

Much of this code is similar to that explained in "Sample Code for Read Character" or in "Sample 
Code for Read Line". 

Only explanations unique to this example are given here. 

C1=COMMENT/INPUT 
This line takes the full pathway of the file to copy and places it into the C1.INPUT variable . 

C2=COMMENT/INPUT 
This line takes the full pathway of the destination file and places it into the C2.INPUT variable 

FILE/COPY,C1.INPUT,C2.INPUT,FAIL_IF_DEST_EXISTS 
This line copies the original file to a destination file. This command takes three parameters. 

• Parameter 1 is C1.INPUT. This is the full path to the file to copy. 
• Parameter 2 is C2.INPUT, or the full path to the destination file. 
• Parameter 3, in this case, aborts the FILE/COPY procedure if it encounters an 

existing file with the same destination filename. You can set this so that it 
overwrites existing files of the same name. 

Moving a File 
 

The Insert | File I/O Command | File Move menu option inserts a command into the Edit window 
which will cause a file move operation to occur upon execution. 

The syntax of this command in the Edit window is: 

File/Move,<oldfilename>,<newfilename> 

Descriptions for some of the components of this command are: 

<oldfilename> 
This is the location and name of the file. 

<newfilename> 
This is the new location and name of the file. 

To access the dialog box associated with this File I / O command: 

1. Open the Edit window. 
2. Placing your cursor on the File Move command. 
3. Press F9. 



Using File Input and Output 

33 

 
  

 

Sample Code for File Move 

Note: The sample code below should be entered inside the Edit window's Command Mode, not 
inside the File I/O dialog box. 

The following code asks for a file name to move and a location directory and file name to move to 
and then performs the file move operation. 

C1=COMMENT/INPUT,Please type a file you want to move. 

,(Include full file path) 

C2=COMMENT/INPUT,Please type a destination file name. 

,(Include full file path) 

V1=FILE/EXISTS,C1.INPUT 

IF/V1<>0 

COMMENT/OPER,File exists to move. File move commencing. 

FILE/MOVE,C1.INPUT,C2.INPUT 

V2=FILE/EXISTS,C2.INPUT 

IF/V2==0 

COMMENT/OPER,"File doesn't exist at: " + C2.INPUT 

,The MOVE didn't function properly. 

ROUTINE/END 

END_IF/ 

ELSE/ 

COMMENT/OPER,File MOVE successful. 

ROUTINE/END 

END_ELSE/ 

END_IF/ 

COMMENT/OPER,Original file doesn't exist. Try again. 

Code Explanation 
Much of this code is similar to that explained in "Sample Code for File ". 

Only explanations unique to this example are given here. 



Using File Input / Output 

34 

FILE/MOVE,C1.INPUT,C2.INPUT 
This line copies the original file to a destination file. This command takes two parameters. 

• Parameter 1 is C1.INPUT. This is the full path to the file to move. 
• Parameter 2 is C2.INPUT, or the full path to the destination file. 

Deleting a File 
 

The Insert | File I/O Command | File Delete menu option inserts a command into the Edit 
window which will cause a file to be deleted when the command is executed. 

The syntax of this command in the Edit window is: 

File/Delete,<filename> 

Descriptions for some of the components of this command are: 

<filename> 
This is the name of the file to be deleted. 

To access the dialog box associated with this File I / O command: 

1. Open the Edit window. 
2. Placing your cursor on the File Delete command. 
3. Press F9. 

 
  

 

Sample Code for File Delete 

Note: The sample code below should be entered inside the Edit window's Command Mode, not 
inside the File I/O dialog box. 

The following code asks for a file name and then deletes the file. 

C1=COMMENT/INPUT,Please type a file you want to delete. 



Using File Input and Output 

35 

,(Include full file path) 

V1=FILE/EXISTS,C1.INPUT 

IF/V1<>0 

COMMENT/OPER,File exists. Ready to delete. 

FILE/DELETE,C1.INPUT 

V2=FILE/EXISTS, 

IF/V2==0 

COMMENT/OPER,File deleted successfully 

ROUTINE/END 

END_IF/ 

ELSE/ 

COMMENT/OPER,File still exists 

ROUTINE/END 

END_ELSE/ 

END_IF/ 

COMMENT/OPER,File doesn't exist to delete. Choose a file that exists. 

Code Explanation 
Much of this code is similar to that explained in "Sample Code for File Move ". 

Only explanations unique to this example are given here. 

FILE/DELETE,C1.INPUT 
This line deletes the file specified. This command takes one parameter, the name of the file 
to delete. In this case, C1.INPUT. 

Checking for a File's Existence 
 

The Insert | File I/O Command | File Exists menu option inserts a command into the Edit 
window which will check for the existence of a file when executed and will set the supplied 
variable with the result. 

The syntax of this command in the Edit window is: 

<varname> = File/Exists,<filename> 

Descriptions for some of the components of this command are: 

<filename> 
This is the name of the file being checked to see if it exists on disk. 

<varname> 
This is the name of the variable that is set to the result of the check that is performed. The 
variable will be set to 1 if the file exists and 0 if the file does not exist. 

To access the dialog box associated with this File I / O command: 

1. Open the Edit window. 



Using File Input / Output 

36 

2. Placing your cursor on the File Exists command. 
3. Press F9. 

 
  

 

Sample Code for File Exists 

Note: The sample code below should be entered inside the Edit window's Command Mode, not 
inside the File I/O dialog box. 

The following code asks for a file name and then checks for the file's existence. 

C1=COMMENT/INPUT,Please type a file you want to check. 

V1=FILE/EXISTS,C1.INPUT 

IF/V1<>0 

COMMENT/OPER,File exists. 

END_IF/ 

ELSE/ 

COMMENT/OPER,File doesn't exist 

END_ELSE/ 

Code Explanation 
Much of this code is similar to that explained in "Sample Code for Read Character" or in "Sample 
Code for Read Line". 

Only explanations unique to this example are given here. 

V1=FILE/EXISTS,C1.INPUT 
This line checks to see if the specified file exists. The file must be placed in the directory 
where PC-DMIS resides for this code to work, otherwise the line containing the file must also 
contain the full pathway for the file. V1 receives the result of the file check. It's a non-zero 
value if it exists; 0 otherwise. 

Displaying a File Dialog Box 
 



Using File Input and Output 

37 

The Insert | File I/O Command | File Dialog menu option inserts a command into the Edit 
window that brings up an Open dialog box during execution. This allows the operator to choose a 
filename at run time. It stores the name of the file chosen in the specified variable. 

The syntax of this command in the Edit window is: 

<varname> = File/Dialog,<expr> 

Descriptions for some of the components of this command are: 

<varname> 
This is the name of the variable that will be set to the name of the file chosen by the user in 
the file dialog. 

<expr> 
This is the text that will appear on the title bar of the file dialog. 

To access the dialog box associated with this File I / O command: 

1. Open the Edit window. 
2. Placing your cursor on the File Dialog command. 
3. Press F9. 

 

  
 

Sample Code for File Dialog 

Note: The sample code below should be entered inside the Edit window's Command Mode, not 
inside the File I/O dialog box. 

The following code submits a dialog box that allows you to choose a file to delete. 

V1=FILE/DIALOG,Choose a file to delete. 

V2=FILE/EXISTS,V1 

IF/V2<>0 

COMMENT/OPER,File exists. Ready to delete. 

FILE/DELETE,V1 

V3=FILE/EXISTS, 



Using File Input / Output 

38 

IF/V3==0 

COMMENT/OPER,File deleted successfully 

ROUTINE/END 

END_IF/ 

ELSE/ 

COMMENT/OPER,File still exists 

ROUTINE/END 

END_ELSE/ 

END_IF/ 

COMMENT/OPER,File doesn't exist to delete. Choose a file that exists. 

Much of this code is similar to that explained in "Sample Code for Read Character" or in "Sample 
Code for Read Line". 

Only explanations unique to this example are given here. 

V1=FILE/Dialog,Choose a file to delete 
This line displays a dialog box with the title "Choose a file to delete". You can browse to a file 
and when you click Open, PC-DMIS gives V1 the full pathway to the selected file. The rest of 
the routine deletes the selected file. 

Checking for the End of a File or the End of a Line 
 

PC-DMIS allows you to check for the End of a File by using the functions EOF or EOL in a 
conditional test. 

EOF stands for END OF FILE. This function takes a file pointer of type string. When properly 
placed within a conditional statement, it tests to see if the file pointer has reached the end of 
the specified file. If it has, then the function returns true. 

EOL stands for END OF LINE. This function takes a file pointer of type string. When properly 
placed within a conditional statement, it tests to see if the file pointer has reached the end of 
a line in the specified file. If it has, then the function returns true. This works best inside of a 
loop. 

The syntax of this command in the Edit window is: 

EOF(<filepointer>) or EOL(<filepointer>) 

Descriptions for some of the components of this command are: 

<filepointer> 
This is the name of the file pointer that you're checking. 

  
 



Using File Input and Output 

39 

Sample code for EOF and EOL 

Note: The sample code below should be entered inside the Edit window's Command Mode, not 
inside the File I/O dialog box. 

The following code opens test.txt and reads through the file. As long as the end of file hasn't been 
reached (designated with the code, WHILE/!EOF), PC-DMIS reads through the file character by 
character, assigning a character to V1. 

If PC-DMIS reaches the end of a line in the file, PC-DMIS shows the last character on that line. 

This repeats until PC-DMIS reaches the end of the file. PC-DMIS then shows the text "End of File 
Reached…". 

FPTR=FILE/OPEN,D:\temp\test.txt,READ 

WHILE/!EOF("FPTR") 

V1=FILE/READ_CHARACTER,FPTR 

IF/EOL("FPTR") 

COMMENT/OPER,NO,"End of Line Reached. The last character is:" 

,V1 

END_IF/ 

END_WHILE/ 

COMMENT/OPER,NO,"End of File Reached..." 

 


	Using File Input / Output
	Using File Input / Output: Introduction
	Understanding Basic File I/O Concepts
	Using the File I/O Dialog Box
	Opening a File for Reading or Writing
	Sample Code for File Open

	Closing an Opened File after Reading or Writing
	Sample Code for File Close

	Reading a Character from a File
	Sample Code for Read Character

	Reading a Line from a File
	Sample Code for Read Line
	Sample Code Dealing with Numbers Containing Preceding Zeros

	Reading a Block of Text from a File
	Sample Code for Read Block

	Reading Text up to a Delimiter
	Sample Code for Read Up To

	Writing a Character to a File
	Sample Code for Write Character

	Writing a Line to a File
	Sample Code for Write Line

	Writing a Block of Text to a File
	Sample Code for Write Block

	Positioning a File Pointer at the Beginning of a File
	Sample Code for Rewind to Start

	Saving a File Pointer's Current Position
	Sample Code for Save File Position

	Recalling a Saved File Pointer's Position
	Sample Code for Recall File Position

	Copying a File
	Sample Code for File Copy

	Moving a File
	Sample Code for File Move

	Deleting a File
	Sample Code for File Delete

	Checking for a File's Existence
	Sample Code for File Exists

	Displaying a File Dialog Box
	Sample Code for File Dialog

	Checking for the End of a File or the End of a Line
	Sample code for EOF and EOL



