
i 

Table of Contents 

Branching by Using Flow Control ................................................................................... 1 

Branching by Using Flow Control: Introduction ........................................................... 1 

Using Control Pairs .................................................................................................... 1 

If / End If ................................................................................................................. 2 

Else If / End Else If ................................................................................................. 3 

Else / End Else ....................................................................................................... 5 

While / End While ................................................................................................... 7 

Do / Until ................................................................................................................. 8 

Select / End Select ............................................................................................... 10 

Case / End Case ................................................................................................... 13 

Default Case / End Default Case .......................................................................... 14 

Using Generic Loops ................................................................................................ 14 

Uses for Looping ................................................................................................... 17 

Creating a Loop .................................................................................................... 18 

Using Labels ............................................................................................................ 18 

Jumping to a Label Using GOTO .......................................................................... 19 

Branching on an Error .............................................................................................. 21 

On Error Supported Interfaces .............................................................................. 24 

Branching with Subroutines ...................................................................................... 25 

Creating a New Subroutine ................................................................................... 26 

Editing an Existing Subroutine .............................................................................. 30 

Understanding the Argument Edit Dialog Box ....................................................... 30 



Table of Contents 

ii 

Calling a Subroutine.............................................................................................. 31 

Subroutine Examples ............................................................................................ 39 

Ending a Measurement Routine ............................................................................... 45 



1 

Branching by Using Flow 
Control 

Branching by Using Flow Control: 
Introduction 

Suppose you have a part with many features, but you just want to measure a few 
features over and over to get a comprehensive statistical set of data for those features. 
Suppose you want to jump to a particular part in your measurement routine dependent 
on a response from the user. You can accomplish tasks such as these, and many 
others, by using flow control commands. By setting up conditions for certain commands, 
you can control the flow of your measurement routine. 

This chapter provides you with the information you need to accomplish such tasks. It 
explains the syntax for conditional statements, loops, and subroutines. It also provides 
many code samples. 

The main topics covered in this chapter include the following: 

• Using Control Pairs 

• Using Generic Loops 

• Using Labels 

• Branching on an Error 

• Branching with Subroutines 

• Ending a Measurement Routine 

Using Control Pairs 

The Insert | Flow Control Command | Control Pairs submenu offers various paired 
commands that work within the Edit window to govern or "control" the proper flow of the 
measurement routine. To insert a control pair type command into the Edit window, 
simply type the command, or choose a command from this submenu. 



Branching by Using Flow Control 

2 

 When you use a conditional branching statement to test for a the value of a YES 
/ NO comment, be aware that your test should look for an uppercase "YES" or "NO" 
value. A lowercase "Yes" or "No" will not work. For information on comments, see the 
"Inserting Programmer Comments" topic in the "Inserting Report Commands" chapter. 

If / End If 

The Insert | Flow Control Command | Control Pairs | If / End If menu option allows 
you to add a conditional block to the measurement routine. The items between the IF 
and the END IF commands will only execute if the expression for the IF command 
evaluates to true (nonzero). Otherwise, flow of execution will jump to the first command 
after the END/IF command. 

The Edit window command line for a IF / END IF statement reads: 
 

IF/expression 

END_IF/ 

To insert the If / End If commands: 

1. Place the cursor in the desired location of the Edit window. 

2. Select If / End If from the menu bar. The IF / END IF statement will appear in the 

Edit window. 

Code Sample of If / End If 

Consider the following example that asks the user if he or she would like measure a 
point feature. 

C1= COMMENT/YESNO,Would you like to measure the point feature, 

PNT1? 

IF/C1.INPUT=="YES" 

PNT1=FEAT/POINT,RECT 

… 

… 

ENDMEAS/ 

END_IF/ 



Using Control Pairs 

3 

Explanation of Sample Code 

C1=COMMENT/YESNO 
This line takes and stores the YES or NO response from the user. 

IF/C1.INPUT=="YES" 
This line is the expression. It tests to see if the input of comment 1 is a YES. If it's a 
YES then the IF statement is TRUE and continues executing the statements after the IF 
statement, in this case it measures the PNT1 feature. If NO it moves to the END_IF 

statement. 

END_IF 
This line ends the execution of commands inside the IF / END IF block of code. Any 
command following this line is where PC-DMIS will go to if the user clicks No at the 
comment. 

Else If / End Else If 

The Insert | Flow Control Command | Control Pairs | Else If / End Else If menu 
option allows you to add a conditional block to the measurement routine. The items 
between the ELSE IF and the END ELSE IF commands will only execute if the 
expression for the ELSE IF command evaluates to true (nonzero). The ELSE IF / END 
ELSE IF block must be positioned directly after an IF / END IF block or another ELSE IF 
/ END ELSE IF block. If all IF / ELSE IF expressions above the current block have 
evaluated to false, then the expression will be evaluated. If the expression evaluates to 
false (zero), then execution will jump to the next command following the END ELSE IF 
command. If any of the IF / ELSE if expressions above the current block evaluate to 
true, all subsequent ELSE IF / END ELSE IF blocks in this sequence will be skipped. 

The Edit window command line for a ELSE IF / END ELSE IF statement reads: 
 

ELSE_IF/expression 

END_ELSE_IF/ 

To insert the ELSE IF / END ELSE IF commands: 

1. Place the cursor in the desired location of the Edit window, after an existing 

IF/END IF statement or ELSE IF/END ELSE IF statement. 

2. Select Else If / End Else If from the menu bar. The ELSE IF / END ELSE IF 

statement will appear in the Edit window. 



Branching by Using Flow Control 

4 

 This type of block is only valid when positioned after an IF / END IF or ELSE 
IF / END ELSE IF block. Invalidly positioned control pairs are shown in red text in the 
Edit window. 

Code Sample of Else If / End Else If 

Consider the following example that displays a message notifying the user when any 
one of the X, Y, or Z values for a measured point exceeds defined tolerances: 

PNT2=FEAT/POINT,RECT 

… 

… 

ENDMEAS/ 

IF/PNT2.X<6.9 OR PNT2.X>7.1 

COMMENT/OPER,"The measured X value of PNT2: " + PNT2.X + " 

is out of tolerance." 

END_IF/ 

ELSE_IF/PNT2.Y<3.3 OR PNT2.Y>3.5 

COMMENT/OPER,"The measured Y value for PNT2: " + PNT2.Y + " 

is out of tolerance." 

END_ELSEIF/ 

ELSE_IF/PNT2.Z<.9 OR PNT2.Z>1.1 

COMMENT/OPER,"The measured Z value for PNT2: " + PNT2.Z + " 

is out of tolerance." 

END_ELSEIF/ 

Explanation of Sample Code 

This code first tests the X value of the point. If the condition evaluates to false, then the 
code tests for the Y value. If the condition for the Y value evaluates to false, then it tests 
for the Z value. 

If any of these conditions evaluates to true, PC-DMIS displays the comment associated 
with it and skips the remaining conditional statements. 

IF/PNT2.X7.1 
This line is the expression. It tests to see if the measured X value is less than 6.9 or 
greater than 7.1. If it exceeds either of these boundaries it executes the first comment. 



Using Control Pairs 

5 

END_IF 
This line ends the execution of commands inside the IF / END IF block of code. Any 
command following this line is where PC-DMIS will go to if the IF THEN condition 
evaluates to false. 

ELSE_IF/PNT2.Y3.5 
This line is the expression for the first ELSE_IF command. It only gets executed if the IF 
/ END IF block above it returns false. It tests to see if the measured Y value is less than 
3.3 or greater than 3.5. If it exceeds either of these boundaries it executes the second 
comment. 

END_ELSEIF/ 
This line ends the execution of commands inside the first ELSE IF / END ELSE IF block 
of code. 

ELSE_IF/PNT2.Z1.1 
This line is the expression for the second ELSE IF command. It only gets executed if the 
ELSE IF / END ELSE IF block above it returns false. It tests to see if the measured Z 
value is less than .9 or greater than 1.1. If it exceeds either of these boundaries it 
executes the third comment. 

END_ELSEIF/ 
This line ends the execution of commands inside the second ELSE IF / END ELSE IF 
block of code. 

Else / End Else 

The Insert | Flow Control Command | Control Pairs | Else / End Else menu option 
allows you to add a conditional block to the measurement routine. The items between 
the ELSE and the END ELSE commands will execute only if all other if / end if and else 
if / end else if blocks above the else block have failed (All evaluated to zero). ELSE / 
END ELSE blocks must be located at the end of  a set of IF / END IF or ELSE IF / END 
ELSE IF blocks in order to be valid. 

The Edit window command line for a ELSE / END ELSE statement reads: 
 

ELSE/ 

END_ELSE/ 

To insert Else / End Else commands: 

1. Place the cursor in the desired location of the Edit window. Note that Else / END 

ELSE blocks must be positioned after a IF / END IF or ELSE IF / END ELSE IF 

blocks. 



Branching by Using Flow Control 

6 

2. Select Else / End Else from the menu bar. The ELSE / END ELSE statement will 

appear in the Edit window. 

Code Sample of Else / End Else 

Consider the following example that asks the user if he or she would like measure a 
point feature. 

C1= COMMENT/YESNO,Would you like to measure the point feature, 

PNT1? Clicking No measures the next feature. 

IF/C1.INPUT=="YES" 

PNT1=FEAT/POINT,RECT 

… 

… 

ENDMEAS/ 

END_IF/ 

ELSE 

PNT2=FEAT/POINT,RECT 

… 

… 

ENDMEAS/ 

END_ELSE 

Explanation of Sample Code 

C1=COMMENT/YESNO 
This line takes and stores the YES or NO response from the user. 

IF/C1.INPUT=="YES" 
This line is the expression. It tests to see if the input of comment 1 is a YES. If it's a 
YES then the IF statement is TRUE and continues executing the statements after the IF 
statement, in this case it measures the PNT1 feature. If NO it moves to the END_IF 

statement. 

END_IF 
This line ends the execution of commands inside the IF / END IF block of code. Any 
command following this line is where PC-DMIS will go to if the user clicks No at the 
comment. 



Using Control Pairs 

7 

ELSE 
If the above IF / END IF block evaluates to false then command lines falling after this 
line and before the END_ELSE line will be executed. In this case, PNT2 gets executed. 

END_ELSE 
This line ends the execution of commands inside the ELSE / END_ELSE block of code. 

While / End While 

The Insert | Flow Control Command | Control Pairs | While / End While menu option 
allows you to add a conditional loop to the measurement routine. The items between the 
WHILE and the END WHILE command will continue to execute in a loop until the 
condition (or expression ) keeping the loop activated is no longer met, meaning the 
expression for the while loop evaluates to FALSE (i.e. zero). The WHILE command can 
be added anywhere in the measurement routine. The expression is tested at the start of 
each loop. 

The Edit window command line for a WHILE / END WHILE statement reads: 
 

WHILE/expression 

END_WHILE/ 

To insert a While / End While option: 

1. Place the cursor in the desired location of the Edit window. 

2. Select While / End While from the menu bar. The WHILE / END WHILE 

statement will appear in the Edit window. 

Code Sample of While / End While 

Consider the following example that measures a feature an amount specified by the 
measurement routine user. 

C1=COMMENT/INPUT,How many times would you like to measure PNT1? 

Please type an integer only. 

ASSIGN/COUNT=0 

WHILE/COUNT<C1.INPUT 

PNT2=FEAT/POINT,RECT 

… 

… 

… 

ENDMEAS/ 



Branching by Using Flow Control 

8 

ASSIGN/COUNT=COUNT+1 

COMMENT/OPER,"Measured "+COUNT+" out of "+C1.INPUT+" times." 

END_WHILE/ 

Explanation of Sample Code 

C1=COMMENT/INPUT 

This line takes and stores the integer input from the user into the variable C1.INPUT. 

ASSIGN/COUNT=0 

This line initializes COUNT, a user-defined variable, and gives it an initial value of 0. The 

code uses this variable to count the number of times PC-DMIS measures the feature 
inside the loop. 

WHILE/COUNT<C1.INPUT 

This line is the expression. It tests to if the value of COUNT (initially set to 0) is less than 

the integer selected by the user. If this tests true, then the statements in following 
WHILE/ and before END_WHILE/ are executed 

ASSIGN/COUNT=COUNT+1 

This line increments the COUNT variable by one so that it eventually exits the loop when 

it fails the condition test. 

COMMENT/OPER,"Measured "+COUNT+" out of "+C1.INPUT+" times." 

This line displays a message showing the number of times, out of the total, that the loop 
is running. 

END_WHILE 

This line ends the execution of commands inside the WHILE / END WHILE block as 

long as the condition is false. Other wise when PC-DMIS encounters this command it 
loops back to the WHILE statement. 

Do / Until 

The Insert | Flow Control Command | Control Pairs | Do / Until menu option allows 
you to add a conditional loop to the measurement routine. The items between the DO 
and the UNTIL commands will continue to execute in a loop until the expression of the 
UNTIL command evaluates to TRUE (nonzero). The DO/ UNTIL commands can be 



Using Control Pairs 

9 

added anywhere in the measurement routine. The expression is tested at the end of 
each loop. 

The Edit window command line for a DO / UNTIL statement reads: 
 

DO/ 

UNTIL/ expression 

To insert DO / UNTIL commands: 

1. Place the cursor in the desired location of the Edit window. 

2. Select Do / Until from the menu bar. The DO / UNTIL statements will appear in 

the Edit window. 

Code Sample of Do / Until 

Consider the following example that measures a feature an amount specified by the 
measurement routine user. This is similar to the example given under the While / End 
While topic, except that PC-DMIS tests for the condition at the end of the loop instead of 
at the beginning. 

C1=    COMMENT/INPUT,Type the number of times PC-DMIS should 

measure the PNT1 feature:(type an integer only) 

ASSIGN/COUNT=0 

DO/ 

PNT1=FEAT/POINT,RECT 

… 

… 

ENDMEAS/ 

ASSIGN/COUNT=COUNT+1 

COMMENT/OPER,"Measured "+COUNT+" out of "+C1.INPUT+" times." 

UNTIL/COUNT==C1.INPUT 

Explanation of Sample Code 

C1=COMMENT/INPUT 

This line takes and stores the integer input from the user into the variable C1.INPUT. 

ASSIGN/COUNT=0 



Branching by Using Flow Control 

10 

This line initializes COUNT, a user-defined variable, and gives it an initial value of 0. The 

code uses this variable to count the number of times PC-DMIS measures the feature 
inside the loop. 

DO/ 

Begins the DO / UNTIL loop. All statements are executed at least once and 

measurement routine flow exits out of the loop once the expression evaluates to false. 

ASSIGN/COUNT=COUNT + 1 

This line increments the COUNT variable by one so that it eventually exits the loop when 

it fails the condition test. 

COMMENT/OPER,"Measured " + COUNT + " out of " + C1.INPUT + " 

times." 

This line displays a message showing the number of times, out of the total, that the loop 
is running. 

UNTIL/COUNT == C1.INPUT 

This line ends the execution of commands inside the DO / UNTIL loop as long as the 

condition evaluates to false. Otherwise, when PC-DMIS encounters this command it 
loops back to the DO statement. 

Select / End Select 

The Insert | Flow Control Command | Control Pairs | Select / End Select menu 
option allow for the addition of a conditional block that is used in conjunction with the 
CASE / END CASE and Default Case / End Default Case pairs. The expression for the 
Select command provides data that is compared against the expression in the Case 
statements. If the two expressions evaluate to the same thing, then the statements 
within the Case / End Case Block will execute. The SELECT / END SELECT block 
surrounds the sets of CASE / END CASE and DEFAULT CASE / END DEFAULT CASE 
blocks. 

The Edit window command line for a SELECT / END SELECT statement reads: 
 

SELECT/expression 

END_SELECT/ 

To insert the Select / End Select commands: 

1. Place the cursor in the desired location of the Edit window. 



Using Control Pairs 

11 

2. Choose Select / End Select from the menu bar. The SELECT / END SELECT 

statements will appear in the Edit window. 

Code Sample of Select / End Select 

The pairs, SELECT / END_SELECT, CASE / END_CASE, DEFAULT CASE / 

END_DEFAULT CASE, all work together evaluate multiple conditions providing a wide 

range of alternatives. 

Suppose you have five circles, labeled CIR1 through CIR5, and you want the operator 
to be able to measure a circle by simply pressing a key on the keyboard. You could use 
code similar to the following: 

Entire Code 

DO/ 

C1=COMMENT/INPUT,Type a number to measure that circle: 

,FOR CIR1 - Type 1 

,FOR CIR2 - Type 2 

,FOR CIR3 - Type 3 

,FOR CIR4 - Type 4 

,FOR CIR5 - Type 5 

,Any other character exits the loop 

SELECT/C1.INPUT 

CASE/1 

CIR1=FEAT/CIRCLE 

… 

… 

ENDMEAS/ 

END_CASE 

CASE/2 

CIR2=FEAT/CIRCLE 

… 

… 

ENDMEAS/ 

END_CASE 

CASE/3 

CIR3=FEAT/CIRCLE 



Branching by Using Flow Control 

12 

… 

… 

ENDMEAS/ 

END_CASE 

CASE/4 

CIR4=FEAT/CIRCLE 

… 

… 

ENDMEAS/ 

END_CASE 

CASE/5 

CIR5=FEAT/CIRCLE 

… 

… 

ENDMEAS/ 

END_CASE 

DEFAULT CASE 

COMMENT/OPER,Now exiting loop. 

END_DEFAULT CASE 

END_SELECT 

UNTIL C1.INPUT < 1 OR C1.INPUT > 5 

Explanation of Sample Code 

SELECT/C1.INPUT 

This line of code takes a number or string value (in this case a number) typed by the 
user and determines which CASE/END_CASE block will execute from the input. Notice 

that SELECT/END_SELECT pair surrounds the entire list of code. All CASE/END_CASE 

and DEFAULT CASE/END_DEFAULT CASE pairs must reside within these two lines. 

END_SELECT 

This marks the end of the code held inside the SELECT/END SELECT pair. 

CASE/1 through CASE/5 

Depending on the value of C1.INPUT, one of the CASE code blocks executes. For 

example, if C1.INPUT evaluates to 1, the CASE 1 block of code executes, measuring 



Using Control Pairs 

13 

CIR1. If it evaluates to 2, then the CASE 2 block of code executes, measuring CIR2, 
and so forth. 

END_CASE 

These lines end the specific case blocks of code. 

DEFAULT CASE 

If the value of the C1.INPUT doesn’t match any of the defined CASE statements (if the 

value isn’t a number one through five) then the DEFAULT CASE code block executes. In 

this case it displays a message letting you know that you are exiting the loop. 

Notice how the DO / UNTIL loop surrounds the entire code sample. This allows the 

user to continue to choose from the menu created from the COMMENT/INPUT line until 

the user selects a character not recognized by the CASE statements. 

Case / End Case 

The Insert | Flow Control Command | Control Pairs | Case / End Case menu option 
allows you to add a conditional block to the measurement routine. The items between 
the CASE and the END CASE commands will execute if the expression for the case 
statement evaluates to a value equal to the expression of the corresponding SELECT 
command. Otherwise, the block of statements will be skipped. The CASE / END CASE 
statement block must be located directly after a SELECT command or an END CASE 
command of a previous CASE / END CASE block. Also, PC-DMIS cannot compare 
multiple expressions on a single case statement. 

The Edit window command line for a CASE / END CASE statement reads: 
 

CASE/expression 

END_CASE/ 

To insert the Case / End Case option: 

1. Place the cursor in the desired location of the Edit window. Note the positional 

requirements stated above. 

2. Select Case / End Case from the menu bar. The CASE / End CASE statements 

will appear in the Edit window. 

 



Branching by Using Flow Control 

14 

Default Case / End Default Case 

The Insert | Flow Control Command | Control Pairs | Default Case / End Default 
Case menu option allows you to add a conditional block to the measurement routine. 
The items between the DEFAULT CASE and the END DEFAULT CASE commands will 
execute if all other expressions in previous CASE / END CASE blocks within the 
corresponding SELECT / END SELECT block evaluated to false. Only one DEFAULT 
CASE / END DEFAULT CASE block is allowed within a SELECT/ END SELECT block. 
The DEFAULT CASE / END DEFAULT CASE block must be located after all CASE / 
END CASE blocks within the SELECT / END SELECT block. 

The Edit window command line for a DEFAULT CASE / END DEFAULT CASE 
statement reads: 
 

DEFAULT CASE/ 

END_DEFAULT_CASE/ 

To insert DEFAULT CASE/ END DEFAULT CASE commands: 

1. Place the cursor in the desired location of the Edit window noting positional 

limitations as stated above. 

2. Select Default Case / End Default Case from the menu bar. The DEFAULT 

CASE / END DEFAULT CASE statements will appear in the Edit window. 

Using Generic Loops 

 

Loop Parameters dialog box 



Using Generic Loops 

15 

The Insert | Flow Control Command | Looping menu option displays the Loop 
Parameters dialog box. You can use this dialog box to create a LOOP command that 
repeats the measurement routine (or portions of the measurement routine) with or 
without any of the offsets. The LOOP command can be added anywhere in the 
measurement routine, although this function is most useful at the beginning and end of 
the routine. 

Start Number - This box tells PC-DMIS the starting position number in a series of parts. 

 Suppose you have 10 parts, and you want to start with position number 
5. You would enter 10 for the total number of parts and 5 for the starting position. 

End Number - This box tells PC-DMIS how many times to loop through the 
measurement routine. This number is usually the same as the number of parts that the 
fixture holds (or patterns on the part) in the x (y or z) direction. PC-DMIS also asks for 
the starting part (pattern) number. 

 Suppose you have 10 parts in the x (y or z) direction, and you want to 
start with position number 5. For the End Number box, type 10. For in the Start 
Number box, type 5. 

Skip Number - In a loop, PC-DMIS repeats a measurement routine the indicated 
number of times. The Skip Number box allows you to skip a specified increment. Note 
that you cannot skip the first increment using this box, but you can change the Start 
Number to 2 and effectively skip over it that way. 

 Suppose you want to set the parameter to skip every third increment of 
the loop. If the number three is indicated, PC-DMIS measures the first and second 
part and then skip to the fourth part. 

Offset - The offset area contains these boxes: 

X Axis, Y Axis, Z Axis - These boxes set up the x, y, or z offset between parts, or 
patterns on the same part. These offset the part by the entered distance each time the 
loop runs. The first offset is based on the part's origin. 



Branching by Using Flow Control 

16 

Angle - This box sets up the angular offset between parts, or patterns on the same part. 
The first offset is based on the part's origin. PC-DMIS offsets the part by the angle value 
each time the loop runs. 

 If you have an alignment command inside a loop and the loop is using 
offsets, you must define all axes for that alignment. Additionally, the alignment 
inside the loop must use features measured inside the loop. 

Loop IDs - This check box determines whether or not PC-DMIS increment the feature 
IDs (within the loop) as a value in square brackets that coincides with the loop 
increment. 

 If you have feature CIR1, it becomes CIR1[1] on the first loop, CIR1[2] 
on the second loop, and so on. 

Feature IDs in Statistical Databases 

If you select the Loop IDs check box and are sending statistical data to a 
database, in some cases, PC-DMIS may not display these loop IDs in the 
database. 

Consider the following: 

If you have a STATS/ON command and a STATS/UPDATE command inside 
a loop block, then loop IDs are not displayed inside the database. 

If you have a STATS/ON command outside a loop block and a 
STATS/UPDATE command inside a loop block, then loop IDs are not 
displayed inside the database. 

If you have a STATS/ON command outside a loop block and a 
STATS/UPDATE command outside a loop block, then loop IDs are 
displayed inside the database. 

If you have a STATS/ON command inside a loop block and a 
STATS/UPDATE command outside a loop block, then loop IDs are 
displayed inside the database. 

  



Using Generic Loops 

17 

Variable ID - This box allows you to define the variable name used to track the loop's 
current iteration (or current loop within the number of specified loops). During the 
measurement routine's execution, this variable is equal to the current iteration number 
of the loop. 

End Loop - This button completes the looping process. The command LOOP/START 

must be followed by the command LOOP/END in the Edit window. 

Uses for Looping 

There are three main uses for the looping option: 

• You have a multiple part fixture that holds a grid of parts. The fixture should use 

consistent spacing between the rows. The translation / rotation offsets allow you 

to index from one part to the next in the grid of parts. 

• You have a fixture that holds one part and you want to swap in a new part before 

each loop of the routine. A COMMENT command is helpful to stop the CMM 

when the part is being replaced with a new one. The command can be at the 

beginning or end of the loop. 

• You want to use the LOOP option to rotate the measurement routine to measure 

a different portion of the same part. For example, you could create a 

measurement routine to measure a complicated hole pattern that was duplicated 

10 times on the part. Your measurement routine would only need to measure one 

of the hole patterns. The LOOP option could be used to offset this measurement 

routine to measure the other 9 occurrences of the pattern. 

 If you're using an alignment inside of a loop, PC-DMIS allows you to use the 
active alignment in the ALIGNMENT/START command line instead of always recalling a 

previously stored alignment. See the "Using an Alignment Inside Loops" topic in the 
"Creating and Using Alignments" chapter. 

  

  

 



Branching by Using Flow Control 

18 

Creating a Loop 

1. Select Insert | Flow Control Command | Looping from the menu bar to display 

the Looping Parameters dialog box. 

2. Make any necessary changes to the boxes. 

3. Select parameters as needed (such as Number of Parts, Start Number, Skip 

Number, Offsets Angle). 

4. Place the cursor in a location in the Edit window where you want to begin the 

loop. 

5. Click the OK button. 

The Edit window command line for looping reads: 

VARNAME = LOOP/START, ID = Y/N, NUMBER = 0, START = 1, SKIP 

= , 

OFFSET: XAXIS = 0, YAXIS = 0, ZAXIS = 0, ANGLE = 0 

 To complete the looping procedure, you must finish with a LOOP/END command. 

PC-DMIS loops any Edit window commands encompassed by the LOOP/START and 

LOOP/END commands. You can insert this command in one of these ways: In the Edit 

window, type LOOP/END, select the Insert | Flow Control Command | End Loop 

menu item, or from the Looping Parameters dialog box, click the End Loop button. 

Using Labels 

You can use a LABEL command with a GOTO or an IF_GOTO command to control 

where the execution flow gets sent based on certain conditions. The label name cannot 
have spaces and must not exceed 230 characters. PC-DMIS displays the label name 
using all capital letters. 

To create a LABEL command, do one of the following: 

Type the Command 

1. Position the cursor on a blank line in the Edit window. 

2. Type LABEL and then press the Tab key. 

3. In the highlighted field, type a new label name. 

or 



Using Labels 

19 

Choose the Command 

1. Position the cursor in the Edit window. 

2. From the menu bar, select Insert | Flow Control Command | Label to access 

the Edit Label Name dialog box. 

3. In the New label name box, type the name for the label. 

 

Edit Label Name dialog box 

4. Click OK to insert the label name in the next possible location in the Edit window. 

The LABEL command in the Edit window's Command mode reads: 
ID = LABEL/ 

Where ID represents the specified label name. 

For information on using the GOTO command with labels, see the "Jumping to a Label 

Using GOTO" topic. 

For information on using the IF_GOTO command with labels, see the "Jumping to a 

Label Based on Conditions" topic. 

Jumping to a Label Using GOTO 

You can tell your measurement routine to jump to a specific label by creating a GOTO 
command. 

To create a GOTO command, do one of the following: 

Type the Command 

1. Position the cursor on a blank line in the Edit window. 

2. Type GOTO and then press the Tab key. 

3. Type the label name to jump to. 

or 



Branching by Using Flow Control 

20 

Choose the Command 

1. Position the cursor in the Edit window. 

2. From the menu bar, select Insert | Flow Control Command | Goto to access 

the GoTo dialog box. 

 

GoTo dialog box 

3. If labels already exist in the measurement routine, they appear in the Current 

labels box. 

4. From Current labels, select the desired label, or in the GoTo Label box, type a 

label name directly. 

5. Click OK to insert the GOTO command in the next possible location in the Edit 

window. 

The GOTO command in the Edit window's Command mode reads: 
GOTO/label_ID 

Where label_ID represents the name of the specified label. The label name cannot have 
spaces and must not exceed 230 characters. 



Branching on an Error 

21 

 If the label has not yet been created, the label name appears highlighted in 
red in the Edit window's Command mode and that GOTO command is ignored during 
execution. 

 

If Expression dialog box 

With the Insert | Flow Control Command | If Goto option, you can use the If 
Expression dialog box to create IF GOTO statements within your measurement 
routine. When the measurement routine is executed and PC-DMIS encounters an IF 
GOTO statement, the routine flow moves to the label identification if the specified 
expression evaluates to a non-zero value.  

The Edit window command line for an IF_GOTO statement reads: 
 

IF_GOTO/expression, GOTO=Label 

Expression - If you click Expression, the expression builder opens. With the 
expression builder you can create a variety of different expressions that you may need 
within your measurement routine. Once you create the expression it appears in the 
Expression box. For information on creating expressions, see the "Using Expressions 
and Variables" chapter. 

Label - If you click Label, the Goto dialog box opens. From the Goto dialog box, you 
can choose what label you want the routine flow to move to when the defined 
expression is met. The chosen label appears in the Label box. Or if you know the label 
name, you can type it in the box. For more information on labels, see "Jumping to a 
Label". 

Branching on an Error 

The Insert | Flow Control Command | On Error option opens the On Error dialog box: 



Branching by Using Flow Control 

22 

 

On Error dialog box 

You can use this dialog box to tell PC-DMIS the action to take when a machine error 
occurs. 

Error type - PC-DMIS tracks these error conditions: 

• Unexpected probe hit 

• Missed probe hit 

• Reflector not found - This is used with the Tracker in PC-DMIS Portable. 

• Laser error - If you are using a Laser configuration, see the "Handling Laser 

Sensor Errors with On Error Command" topic in the PC-DMIS Laser 

documentation. 

• Temperature Outside Limits - The Temperature Compensation command in the 

measurement routine raises this error if one or more of the temperatures for the 

X axis, Y axis, or Z axis scale or part are above the maximum limit or below the 

minimum limit that is defined for the Temperature Compensation command. 

 The On Error command must be placed above the Temperature 
Compensation command in the measurement routine. 

• Calibration Outside Limits - The Check Calibration Limits command in the 

measurement routine raises this error if one or more calibration error checks are 

outside the limits. For more information on the Check Calibration Limits 



Branching on an Error 

23 

command, see "About Check Calibration Limits" in the PC-DMIS Toolkit Modules 

documentation. 

 The On Error command must be placed above the Check Calibration 

Limits command in the measurement routine. 

Error mode - PC-DMIS can take these possible actions depending on the error type: 

• Off - PC-DMIS does nothing. 

• GoTo label - The measurement routine flow moves to a defined label (see 

"Using Labels"). These options become available: 

• Label ID - Type a reference to a label that doesn't exist yet. 

• Current labels - Lists all the labels in the measurement routine. 

• Set variable - Sets a variable's value to one. 

• Skip command - The measurement routine flow skips over the current 

command and moves to the next marked command in the measurement routine. 

By default, all measurement routines start with the action for both types of errors set to 
Off (PC-DMIS does nothing). The action mode for each error type can be changed 
throughout the measurement routine. 

 During execution, if PC-DMIS encounters an ONERROR/UNEXPECTED 

HIT/JUMPTOLABEL command, any unexpected hits that occur after that point in the 

measurement routine cause the execution to jump to the specified label. The action to 
"set a variable’s value to one" causes the variable to be set as soon as the specified 
error type occurs. This value of the variable can then be tested using an IF statement to 
cause execution to jump to a new point in the measurement routine. 

Using the On Error Command 

1. Select Insert | Flow Control Command | On Error to open the On Error dialog 

box. 

2. In the Error type list, select the error type as the condition for branching. 

3. In the Error mode area, select the option that defines the action to take place 

when that condition is met. 

4. To add the On Error command, click OK. To close the dialog box without 

applying any changes, click Cancel. 



Branching by Using Flow Control 

24 

The Edit window command line in Summary mode is: 

On Error 

 Error Type : <type> 

 Error Mode : <mode> 

Where <type> is the type of error, and <mode> is the error mode to be taken. 

On Error Supported Interfaces 

Some interfaces support the On Error command. To see if your interface supports the 
command, refer to the following table. 

• If your interface is in the table, a small black box indicates the error type that the 

interface supports. 

• If your interface is not in the table, then it's not able to use the On Error 

command. 

Supported Interfaces 
Unexpected 

Probe Hit 

Missed 

Probe Hit 

Reflector Not 

Found 

Brown & Sharpe Excel 

(Sharpe) 
■ ■ - 

Dea - ■ - 

FDC ■ ■ - 

I++ DME Client ■ ■ - 

Johansson ■ ■ - 

Leica Tracker - - ■ 

Leitz ■ ■ - 

LK Direct (also known as 

LKRS232) 
■ ■ - 

LK Driver ■ ■ - 

Mora ■ ■ - 

Sharpe ■ ■ - 



Branching with Subroutines 

25 

Sheffield ■ ■ - 

Wenzel ■ ■ - 

Zeiss ■ ■ - 

Branching with Subroutines 

Subroutines are blocks of code in your measurement routine or in an external 
measurement routine that are usually referenced repeatedly, allowing for more concise 
programming. PC-DMIS allows you to pass information to "arguments" (or local 
variables) in the subroutine. The types of arguments that can be passed into a 
subroutine are numeric values, variables, text strings, and feature names. 

 Subroutine command blocks are enclosed within SUBROUTINE and ENDSUB 
commands. 

Once you have created a subroutine in your measurement routine you can "call" it from 
your current measurement routine or from another measurement routine, causing the 
measurement routine execution flow to go into the specified subroutine, executing 
commands contained within the subroutine command block. Measurement routine flow 
will then return to the statement immediately following the calling statement. 

 Subroutines are called by using the CALLSUB command. 

External Subroutines 

External subroutines, or subroutines located in a measurement routine outside of the 
calling measurement routine, do not have access to features, variables, or alignments 
from the calling measurement routine. The subroutine would still have access to items 
within its own measurement routine. The external measurement routine and the calling 
measurement routine must use the same units of measurement. 

Nesting Subroutines 

You can nest subroutines within other subroutines. The only limitation to the number of 
arguments and nested subroutines is the amount of available memory.   



Branching by Using Flow Control 

26 

Creating a New Subroutine 

Creating a Subroutine by Typing SUBROUTINE 

You can insert this command by typing SUBROUTINE in the Edit window's Command 
mode, and then pressing TAB. Once the command is inserted, you will need to specify 
the subroutine's name and any arguments it has. See the subroutine syntax and 
example below for this information. 

Type the ENDSUB command and press TAB to end the command block. Any Edit 
window commands placed within this command block will be considered part of the 
subroutine and will be executed when the subroutine is called. 

Creating a Subroutine by Using the Subroutine Menu Item 

1. Select Insert | Flow Control Command | Subroutine from the submenu. This 

displays the Subroutine Creation dialog box. For information on this dialog box, 

see the "Understanding the Subroutine Creation Dialog Box" topic. 

 
Subroutine Creation dialog box 

   

2. Give the subroutine a name by typing it in the Name box. The name is limited to 

180 or fewer characters. If you enter 181 or more characters a "Line too long" 

error message appears. 

When you click the OK button, the name is automatically shortened to the first 180 
characters, and the Subroutine Creation dialog box closes. 



Branching with Subroutines 

27 

3. If your subroutine uses arguments (place holders for information passed into the 

subroutine), add them one by one by clicking the Add Argument button. The 

Argument Edit dialog box appears. For information on this dialog box, see the 

"Understanding the Argument Edit Dialog Box" topic. 

 

Argument Edit dialog box 

4. Give your argument a name by typing it in the Name box. 

5. Give your argument a default value by typing it in the Value box. The subroutine 

will use the default value if no values are passed into the subroutine from the 

CALLSUB statement. Valid argument values can be numeric values, variables, 

text strings, and feature names. 

6. If you want to give the argument a description, type it in the Description box. 

7. Click OK in the Argument Edit dialog box to create the argument. 

8. Repeat steps 3 through 7 for each argument you want in your subroutine. 

9. Click the OK button in the Subroutine Creation dialog box to finish creating your 

subroutine. This subroutine will appear inside the Edit window with any defined 

arguments. 

10. End your subroutine by selecting the Insert | Flow Control Command | End 

Sub menu option. This places an ENDSUB/ command in the Edit window, 

completing the subroutine's command block. Any other measurement routine 

commands you want in your subroutine must be added inside the subroutine's 

command block, before the ENDSUB command. 

Syntax for a Subroutine Command Block 

The Edit window command line syntax for a sample subroutine command block would 
read:  

SUBROUTINE/<Name>, 

<A1> = <Arg1> : <Description>, 

<A2> = <Arg2> : <Description>, 

= 

<Commands> 

ENDSUB/ 



Branching by Using Flow Control 

28 

SUBROUTINE/ is the command used to start the subroutine command block. 

<Name>= The name of the subroutine. The name is limited to 256 or fewer characters. 
If you enter 257 or more characters, the name is automatically shortened to 256 
characters. 

<A1>= The first argument (or local variable) used in the subroutine. This variable 
generally cannot be accessed outside of the subroutine. 

<A2>= Second argument used in the subroutine. This variable generally cannot be 
accessed outside of the subroutine. Additional arguments can be added as needed. 

<Arg1> = The default value for the first argument. 

<Arg2>= The default value for the second argument. 

<Description> = The description for the argument. 

<Commands> = Other Edit window commands can be inserted as needed after the 
arguments and before the ENDSUB command. 

ENDSUB/ is the command used to end the subroutine command block. 

Example Subroutine Command Block 

For example, a finished subroutine that takes operator data and displays it to the report 
might look like this: 

SUBROUTINE/GET_OPERATOR_INFO, 

   OPNAME = <Operator> : OPERATOR NAME, 

   SHIFT = <Shift> : SHIFT TIME, 

= 

COMMENT/REPT,OPNAME 

COMMENT/REPT,SHIFT 

ENDSUB/ 

 



Branching with Subroutines 

29 

Understanding the Subroutine Creation Dialog Box 

To access the Subroutine Creation dialog box, select Insert | Flow Control 
Command | Subroutine. 

 

Subroutine Creation dialog box 

The following options are available in the Subroutine Creation dialog box: 

Name - This box defines your subroutine. This is the name you will use when calling the 
subroutine later, so if you have multiple subroutines in a single measurement routine, 
each name must be unique. 

The name is limited to 180 or fewer characters. If you enter 181 or more 
characters in the Name box, a "Line too long error" message appears. 

When you click the OK button, the name is automatically shortened to the first 180 
characters, and the Subroutine Creation dialog box closes. 

Number of arguments - This list shows the arguments for the subroutine you are 
creating. Arguments appear in this area in this form: 

<NAME> = <VALUE> : <DESCRIPTION> 

For example, if one of your arguments was named "Diameter" with a default value 
of 3, your argument in this list may appear as: 

DIAMETER = 3 : The hole's diameter 



Branching by Using Flow Control 

30 

PC-DMIS uses the default value whenever another value is not passed from the 
CALLSUB command. 

To edit an argument, double-click on the argument you want to change. The 
Argument Edit dialog box opens, allowing you to make the changes. See 
"Understanding the Argument Edit Dialog Box" for information on this dialog box. 

Add Argument - This button adds new arguments to your subroutine. Click on this 
button to open the Argument Edit dialog box appears. See "Understanding the 
Argument Edit Dialog Box" for information on this dialog box. 

Delete Argument - This button allows you to delete arguments from your subroutine. 
Select the argument from the list, and then click the Delete Argument button to remove 
it. 

Editing an Existing Subroutine 

To edit an existing subroutine you can always use the Edit window's Command mode 
and edit the subroutine directly. Alternately, you can access the Subroutine Creation 
dialog box by placing your cursor on the subroutine in the Edit window and pressing F9. 
This brings up the Subroutine Creation dialog box. For information on this dialog box, 
see the "Understanding the Subroutine Creation Dialog Box" topic. 

Understanding the Argument Edit Dialog Box 

 

Argument Edit dialog box 

The Argument Edit dialog box appears whenever you choose to create or edit an 
argument within either the Subroutine Creation dialog box (Insert | Flow Control 
Command | Subroutine) or the Call Subroutine (Insert | Flow Control Command | 
Call Sub) dialog box. 

The Argument Edit dialog box can be used in these two contexts: 

• To define a subroutine's arguments and their default values in a SUBROUTINE 

command block. 



Branching with Subroutines 

31 

• To define the values that will be passed into the subroutine from a CALLSUB 

command. 

The following options are available in the Argument Edit dialog box: 

Name - This box defines the name for the argument you are creating or editing. 

Value - This box defines the value of the argument. 

If creating or editing the SUBROUTINE command, this is the default value used if 

no value is passed into the subroutine by the CALLSUB statement. 

If creating or editing the CALLSUB command, this is the value passed into the 

subroutine. 

Valid values can be: 

• Numeric 

• Variable 

• Text String - Text strings must be enclosed in double quotation marks. 

• Feature Name - The feature name must be bounded by curly brackets, for 

example {F1}. 

Description - Defines the description of the argument for the subroutine. This 
description will appear next to the argument in the Edit window's SUBROUTINE 

command block. 

Calling a Subroutine 

To call a subroutine you need to insert a CALLSUB command into your measurement 
routine to call an existing subroutine from the current measurement routine or a 
subroutine from an external measurement routine. 

 When a CALLSUB command executes, PC-DMIS executes all the commands in 
the subroutine. This even includes unmarked commands. 

Calling a Subroutine by Typing CALLSUB 

You can insert this command by typing CALLSUB in the Edit window and then pressing 
the Tab key on your keyboard where you want the command to appear in the Edit 
window. 



Branching by Using Flow Control 

32 

Once the command is inserted, you will need to specify the subroutine's name, its 
location if it is in an external measurement routine, as well as any values to pass to 
available arguments. See "Passing Arguments into a Subroutine" for examples of 
passing arguments. 

Calling a Subroutine Using the Call Sub Menu Item 

1. Select the Insert | Flow Control Command | Call Sub option from the 

submenu. The Call Subroutine dialog box opens. See "Understanding the Call 

Subroutine Dialog Box" for information on this dialog box. 

 

Call Subroutine dialog box 

2. Click the Select Subroutine button. The Select Subroutine dialog box opens. 



Branching with Subroutines 

33 

 

Select Subroutine dialog box 

3. Select either the User directory check box or the Current directory check box, 

or both. If the measurement routine the subroutine is from resides in the directory 

specified to be searched for subroutines, select the User directory check box. If 

it is from the current directory, select the Current directory check box. PC-DMIS 

lists all the measurement routines available for selection. 

4. Select the measurement routine that contains the subroutine you want. You will 

see all subroutines associated with the selected measurement routine appear in 

the Subroutine name box. 

5. Select the subroutine you want to call. 

6. Click the OK button. The subroutine information you are going to call will appear 

in the Name and File boxes of the Call Subroutine dialog box. 

7. If you want to pass information into the subroutine, click the Add Argument 

button, and use the Argument Edit dialog box to define arguments and values to 

pass. See "Understanding the Argument Edit Dialog Box" for information on this 

dialog box. See "Passing Arguments into a Subroutine" for examples of passing 

arguments. 

8. Click the OK button again. The CALLSUB command will appear in the selected 

location of the Edit window. 

Syntax for the CALLSUB Command 

The Edit window command line syntax for calling a subroutine is this: 

CS1        =CALLSUB/<Name>, <File>:<Arg1>,<Arg2>, 

CS1 = the label ID given to the CALLSUB command. 

<Name> = the name of the subroutine to be called. 



Branching by Using Flow Control 

34 

<File> = the full path way to the measurement routine that contains the subroutine to 
call. If this field is blank, PC-DMIS will look in the current measurement routine for the 
subroutine. 

<Arg1> = the value to be passed to the first argument in the subroutine. If this field is 
blank, the default value defined for the first argument in the subroutine will be used 
instead. 

<Arg2> = the value to be passed to the second argument in the subroutine. If this field 
is blank, the default value defined for the second argument in the subroutine will be 
used instead. This syntax sample shows only two arguments. Other arguments can be 
passed if needed to your subroutine 

 In your CALLSUB command, you should keep a set of pointers to all of the 

objects made for the subroutine so that you can easily refer to them afterwards, using 
the subroutine's ID. For more information on pointers, see "Pointers" in the "Using 
Expressions and Variables" chapter. 

Example CALLSUB Command 

CS1 

       =CALLSUB/GET_OPERATOR_INFO,D:\MEASROUTINES\V42SUBROUTINET

EST.PRG:V1,V2,, 

This example CALLSUB command, CS1, calls a subroutine named 
GET_OPERATOR_INFO located within the measurement routine 
V42SUBROUTINETEXT.PRG located in the D:\MEASROUTINES\ directory. 

It passes two values - in this case the variables V1 and V2 - into the subroutine. 

  

  

 



Branching with Subroutines 

35 

Understanding the Call Subroutine Dialog Box 

 

Call Subroutine dialog box  

The following describes the options available in the Call Subroutine dialog box. 

Name box 

 

The Name box contains the name of the subroutine you have selected after 
using the Select Subroutine... button. 

The name is limited to 180 or fewer characters. If you enter 181 or more 
characters in the Name box, a "Line too long error" message appears. 

When you click the OK button, the name is automatically shortened to the 
first 180 characters, and the Call Subroutine dialog box closes. 



Branching by Using Flow Control 

36 

File box 

 

The File box contains the directory pathway to the subroutine file you have 
called. 

Values box 

 

The Values box contains a list of the values of each argument associated 

with the subroutine. These values will get passed into the subroutine when 

the subroutine is executed. 

To change these values, double-click on the value you want to change. The 

Argument Edit dialog box appears. See "Understanding the Argument Edit 

Dialog Box" for information on this dialog box. 

Select Subroutine button 

 

The Select Subroutine button displays  the Select Subroutine dialog box 



Branching with Subroutines 

37 

 

Select Subroutine dialog box  

This dialog box allows you to call previously-created subroutines by 
searching in the user directory or the current directory. See "Calling a 
Subroutine" for information on the Select Subroutine dialog box. 

Add Argument button 

 

This button defines a value to pass to the arguments for the subroutine. 

Delete Argument button 

 

This button allows you to delete arguments from the Values box. Select the 
value displayed, and then click the Delete Argument button. The argument 
associated with that value is then deleted. 

To add a new argument using the Call Subroutine Dialog 
box: 

To add a new argument into your CALLSUB command to pass into the subroutine: 

1. Inside the Call Subroutine dialog box, click the Add Arg button to open the 

Argument Edit dialog box. 

2. Click in the Value box. 

3. In the Value box, type the value for the argument. 

4. Click OK. 



Branching by Using Flow Control 

38 

To edit existing arguments using the Call Subroutine Dialog 
box: 

To edit an existing argument inside your CALLSUB command: 

1. In the Call Subroutine dialog box, double-click on the value of the argument you 

want to change. A value box appears and shows the default value for the called 

subroutine. 

2. Type a new value. 

3. Click the OK button. 

For additional information on how to edit or create new arguments for a subroutine, see 
"Creating a New Subroutine" and "Editing an Existing Subroutine". 

To delete arguments from a Call Subroutine command: 

1. Place the cursor on the CALLSUB command. 

2. Press F9 to access the Call Subroutine dialog box. 

3. From the list of arguments, select one or more arguments. 

4. Click the Delete Arg button. 

5. Click OK. 

You can also delete an argument in the Edit window text directly. To do this, 

1. Place PC-DMIS in Command mode. 

2. Place the cursor on the CALLSUB command, and press TAB until you highlight 

the desired argument. 

3. Type the letters "del" to delete the argument. Note that pressing Delete or 

Backspace doesn't truly delete the argument, they merely change the argument 

to an empty argument. 

Using CALLSUB Statements in Multiple Arm Mode 

If you assign a CALLSUB statement to Arm1; all of the commands in the subroutine are 

assigned to Arm1 when the subroutine is called. 

If you assign a CALLSUB statement to Arm2; all of the commands in the subroutine are 

assigned to Arm2 when the subroutine is called. 

If you mark a CALLSUB statement for both arms, PC-DMIS leaves the subroutine 

markings as they were originally set. 



Branching with Subroutines 

39 

If a subroutine contains a MOVE/SYNC command in it, and you assign the CALLSUB 

statement to Arm1 or Arm2, at execution time PC-DMIS displays an error indicating that 
this is invalid and the subroutine is not called. 

For information on assigning a command to execute for a specific arm, see the 
"Assigning a Command to an Arm" topic in the "Using Multiple Arm Mode" chapter. 

Subroutine Examples 

Consider the information in the following topics for some examples of passing 
arguments and subroutines in general. 

• Passing Arguments into a Subroutine 

• Code Sample of a Subroutine 

Passing Arguments into a Subroutine 

The types of arguments that can be passed into a subroutine are numeric values, 
variables, text strings, and feature names. To pass values into arguments, type the 
value within the Value box of the Argument Edit dialog box, or directly into an inserted 
CALLSUB command in Command mode. 

For details on how to do this, see "Creating a New Subroutine" and "Understanding the 
Argument Edit Dialog Box". 

Passing Variables into a Subroutine 

Arguments that can pass data back are variables. When you use a variable as an 
argument to a subroutine, any changes that occur to the corresponding variable in the 
subroutine are passed back and become the value of the variable that was passed in. 

 

Example of Passing Variables: 

This example shows how a variable's value, used as an argument to a subroutine, 
is modified and passed back from a subroutine: 

The variable V1 is assigned the value 6: 

ASSIGN/V1=6. 

A subroutine call passes V1 as the first argument: 

CS1        =CALLSUB/MYSUB,:V1,,, 



Branching by Using Flow Control 

40 

  

The subroutine is defined as follows: 

SUBROUTINE/MYSUB, 

    A1=0:FIRST ARGUMENT, 

    = 

ASSIGN/A1=A1+1 

ENDSUB/ 

A1 is the name for the first argument so when the call is made, A1 will have the 
same value that V1 did at the time of the call, 6. 

The subroutine contains this one statement: 

ASSIGN/A1=A1+1. 

This increments the value of A1 to 7. 

Then subroutine ends with the ENDSUB/ command. 

Flow of execution returns to the statement directly following the CALLSUB 

command. As execution jumps back, any variables that were used as arguments, 
V1 in this case, are updated to the value of the corresponding variables in the 
subroutine, A1 in this case. So, V1 now has a value of 7. The value was passed 
back from the subroutine. 

Passing Number Values into a Subroutine 

Arguments can also take numeric characters. 

 

Example of Passing Number Values: 

This example shows how to pass number values into a subroutine. It passes up to 
two numbers and then adds them together. 

CS1        =CALLSUB/SUM_NUMBERS,:,,, 

CS2        =CALLSUB/SUM_NUMBERS,:5,10,, 

  

            SUBROUTINE/SUM_NUMBERS, 

                NUM1=1:FIRST NUMBER, 



Branching with Subroutines 

41 

                NUM2=1:SECOND NUMBER, 

                 = 

            COMMENT/OPER,NO,"The sum of the first number, 

"+NUM1+", plus the second number, "+NUM2+", is: " 

                           ,NUM1+NUM2 

            ENDSUB/ 

In the first CALLSUB command (CS1) no number values are passed into the 

subroutine. The default numbers, 1 for NUM1 and 1 for NUM2 are used instead, 
and the generated sum would be 2. 

In the second CALLSUB command (CS2) two number values are passed, 5 and 

10. So NUM1 would be 5 and NUM2 would be 10, with a generated sum of 15. 

Passing Text Strings into a Subroutine 

Arguments can also take a text string. To pass a text string, make sure the 
alphanumeric characters are placed within double quotation marks. 

 

Example of Passing Text Strings: 

This example shows how to pass string values into a subroutine. It passes two 
string values into the two parameters and then displays them in the report: 

CS1        =CALLSUB/GET_OPERATOR_INFO,:"BOB 

JONES","MORNING",, 

  

... 

  

SUBROUTINE/GET_OPERATOR_INFO, 

    OPNAME=<Operator>:OPERATOR NAME, 

    SHIFT=<Shift>:SHIFT TIME, 

COMMENT/REPT,OPNAME 

COMMENT/REPT,SHIFT 

ENDSUB/ 

  



Branching by Using Flow Control 

42 

The first argument, OPNAME, receives the passed value of "BOB JONES" and the 

second argument, SHIFT, receives "MORNING". The COMMENT commands then 

send the passed strings to the inspection report. 

Passing Feature Names into a Subroutine 

Feature names are passed within curly brackets. For example, you can use {F1} to call 
the feature designated as F1 into the Edit window. Also, when you pass the feature 
name, the subroutine has full access to that feature. 

 

Example of Passing Feature Names: 

This example passes in the PNT1 feature name into the subroutine, giving your 
subroutine complete access to the feature. If no value is passed then the default 
feature name of F1 is used. This subroutine then queries you for a new value and 
changes the theoretical X value for the feature. 

CS1        =CALLSUB/CHANGE_THEO_X,:{PNT1},, 

  

            SUBROUTINE/CHANGE_THEO_X, 

                FEAT1={F1}:PASSED FEATURE NAME, 

                 = 

C1         =COMMENT/INPUT,NO,"PASSED FEATURE:" 

                            ,FEAT1 

                            ,"The current theo X is: 

"+FEAT1.TX 

                            ,"Type a new theo X value:" 

            ASSIGN/FEAT1.TX=C1.INPUT 

            COMMENT/OPER,NO,"Feature updated to "+FEAT1.TX 

            ENDSUB/ 

Because the subroutine has access to the passed feature, the statement 
ASSIGN/FEAT1.TX=C1.INPUT modifies the  theoretical X value of the actual 

PNT1 feature. PNT1 will now permanently have its theoretical  X value changed. 

 



Branching with Subroutines 

43 

Code Sample of a Subroutine 

The following code sample allows the operator to have a choice of changing the 
theoretical X, Y, and Z values of a feature after its measurement. Subsequent runs then 
use the updated theoretical values. 

PNT1       =GENERIC/POINT,DEPENDENT,CARTESIAN,$ 

            NOM/XYZ,<5,10,15>,$ 

            MEAS/XYZ,<7,12,17>,$ 

            NOM/IJK,<0,0,1>,$ 

            MEAS/IJK,<0,0,1> 

C1         =COMMENT/YESNO,NO,FULL SCREEN=NO,AUTO-CONTINUE=NO, 

            Do you want to change the theoretical values for 

PNT1? 

            IF/C1.INPUT=="YES" 

CS1        =CALLSUB/CHANGETHEO,:, 

            END_IF/ 

            COMMENT/OPER,NO,FULL SCREEN=NO,AUTO-CONTINUE=NO, 

            The XYZ theoretical and actual values for PNT1 are: 

            "Theo X= "+PNT1.TX 

            "Theo Y= "+PNT1.TY 

            "Theo Z= "+PNT1.TZ 

            -------------------- 

            "Actl X= "+PNT1.X 

            "Actl Y= "+PNT1.Y 

            "Actl Z= "+PNT1.Z 

            ROUTINE/END 

            SUBROUTINE/CHANGETHEO, 

                POINT1={PNT1}:, 

                 = 

            DIMINFO/PNT1;ICON,DIMID,FEATID,VERT,HORIZ,,$ 

                    HEADINGS,;MEAS,,,,,,,, 

C2         =COMMENT/INPUT,NO,FULL SCREEN=NO, 

            Type the new X theo value for PNT1. 

            "Its current value is "+PNT1.TX 

            ASSIGN/PNT1.TX=C2.INPUT 



Branching by Using Flow Control 

44 

C3         =COMMENT/INPUT,NO,FULL SCREEN=NO, 

            Type the new Y theo value for PNT1. 

            "Its current value is "+PNT1.TY 

            ASSIGN/PNT1.TY=C3.INPUT 

C4         =COMMENT/INPUT,NO,FULL SCREEN=NO, 

            Type the new Z theo value for PNT1. 

            "Its current value is "+PNT1.TZ 

            ASSIGN/PNT1.TZ=C4.INPUT 

            ENDSUB/ 

Explanation of Sample Code 

C1=COMMENT/YESNO 
This line takes and stores the YES or NO response from the user. 

IF/C1.INPUT=="YES" 
This line is the expression. It tests to see if the input of comment 1 is a YES. If it's a 
YES then the IF statement is TRUE and continues executing the statements after the IF 
statement, in this case it measures the PNT1 feature. If NO it moves to the END_IF 

statement. 

CS1=CALLSUB/CHANGETHEO,:, 
This line calls the subroutine named CHANGETHEO. The flow of the measurement 
routine now jumps to the SUBROUTINE/CHANGETHEO line. 

SUBROUTINE/CHANGETHEO 
This line initializes the CHANGETHEO subroutine. Measurement routine flow continues 
with the execution of code between this line and the ENDSUB/ line. 

POINT1={PNT1}:, 
This is the only argument of the subroutine. It allows the subroutine to access 
information from the PNT1 feature. 

C2=COMMENT/INPUT,C3=COMMENT/INPUT,C4=COMMENT/INPUT 
These input comments all take the new theoretical X, Y, and Z values from the user and 
store them in C2.INPUT, C3.INPUT, and C4.INPUT respectively. 

ASSIGN/PNT1.TX=C2.INPUT 
This line takes the theoretical X value from C2.INPUT and assigns it to the PNT1.TX 

variable. PNT1.TX is a PC-DMIS variable that holds the theoretical X value (denoted by 

TX) for the point with the ID label of PNT1. 



Ending a Measurement Routine 

45 

ASSIGN/PNT1.TY=C3.INPUT 
This line takes the theoretical Y value from C3.INPUT and assigns it to the PNT1.TY 

variable. PNT1.TY is a PC-DMIS variable that holds the theoretical Y value (denoted by 

TY) for the point with the ID label of PNT1. 

ASSIGN/PNT1.TZ=C4.INPUT 
This line takes the theoretical Z value from C4.INPUT and assigns it to the PNT1.TZ 

variable. PNT1.TZ is a PC-DMIS variable that holds the theoretical Z value (denoted by 

TZ) for the point with the ID label of PNT1. 

ENDSUB/ 
This line ends the subroutine, and measurement routine flow returns to the line 
immediately following the subroutine call. In this case the END_IF/ statement. The 

measurement routine flow then continues with the next operator comment which 
displays the theoretical and actual X, Y, and Z values, and then the measurement 
routine ends with the ROUTINE/END command. 

 

Ending a Measurement Routine 
The Insert | Flow Control Command | End Routine menu item inserts a 
ROUTINE/END command into the Edit window. Whenever PC-DMIS encounters this 

command during routine execution, it immediately stops measurement routine 
execution. 

This command is useful when you want to end a measurement routine earlier than 
usual, based on defined conditions. 

 


	Table of Contents
	Branching by Using Flow Control
	Branching by Using Flow Control: Introduction
	Using Control Pairs
	If / End If
	Code Sample of If / End If

	Else If / End Else If
	Code Sample of Else If / End Else If

	Else / End Else
	Code Sample of Else / End Else

	While / End While
	Code Sample of While / End While

	Do / Until
	Code Sample of Do / Until

	Select / End Select
	Code Sample of Select / End Select

	Case / End Case
	Default Case / End Default Case

	Using Generic Loops
	Uses for Looping
	Creating a Loop

	Using Labels
	Jumping to a Label Using GOTO

	Branching on an Error
	On Error Supported Interfaces

	Branching with Subroutines
	Creating a New Subroutine
	Understanding the Subroutine Creation Dialog Box

	Editing an Existing Subroutine
	Understanding the Argument Edit Dialog Box
	Calling a Subroutine
	Understanding the Call Subroutine Dialog Box
	To add a new argument using the Call Subroutine Dialog box:
	To edit existing arguments using the Call Subroutine Dialog box:
	To delete arguments from a Call Subroutine command:
	Using CALLSUB Statements in Multiple Arm Mode

	Subroutine Examples
	Passing Arguments into a Subroutine
	Code Sample of a Subroutine


	Ending a Measurement Routine


