PCDBASIC Reference Manual

For PC-DMIS Version 4.3 

[image: image1.png]



By Wilcox Associates, Inc.

Copyright © 1999-2001, 2002-2008 Hexagon Metrology and Wilcox Associates Incorporated. All rights reserved.

PC-DMIS, Direct CAD, Tutor for Windows, Remote Panel Application, DataPage, and Micro Measure IV are either registered trademarks or trademarks of Hexagon Metrology and Wilcox Associates, Incorporated.

SPC-Light is a trademark of Lighthouse.

HyperView is a trademark of Dundas Software Limited and HyperCube Incorporated.

Orbix 3 is a trademark of IONA Technologies.

I-DEAS and Unigraphics are either trademarks or registered trademarks of EDS.

Pro/ENGINEER is a registered trademark of PTC.

CATIA is either a trademark or registered trademark of Dassault Systemes and IBM Corporation.

ACIS is either a trademark or registered trademark of Spatial and Dassault Systemes.

3DxWare is either a trademark or registered trademark of 3Dconnexion.

lp_solve is a free software package licensed and used under the GNU LGPL.

PC-DMIS for Windows version 4.0 and beyond uses a free, open source package called lp_solve (or lpsolve) that is distributed under the GNU lesser general public license (LGPL). 

lpsolve citation data

----------------------

Description: Open source (Mixed-Integer) Linear Programming system

Language: Multi-platform, pure ANSI C / POSIX source code, Lex/Yacc based parsing

Official name: lp_solve (alternatively lpsolve)

Release data: Version 5.1.0.0 dated 1 May 2004

Co-developers: Michel Berkelaar, Kjell Eikland, Peter Notebaert

License terms: GNU LGPL (Lesser General Public License)

Citation policy: General references as per LGPL

Module specific references as specified therein

You can get this package from:

http://groups.yahoo.com/group/lp_solve/
Table of Contents

1Chapter 1: PC-DMIS BASIC Overview


1Introduction


1What is Cypress Enable?


1Organization of the Manual


1Chapter 2: Basic Script Editor


1Introduction


1File Menu


1New


1Open


1Save


1Save As


2Print


2Print Preview


2Exit


2Edit Menu


2Undo


2Cut


2Copy


2Paste


2Delete


2Select All


3Find


3Find Next


3Replace


4Dialog Editor


5Convert OldBasic Script


5Help Menu


5Basic Script Toolbar


5New


6Open


6Save


6Print


6Print Preview


6Find


6Cut


6Copy


6Paste


7Undo


7Compile


7Run


1Chapter 3: Cypress Enable Scripting Language Elements


1Comments


1Statements:


1Line Continuation Character:


1Variable Types


1Variant


2Variants and Concatenation


2Other Data Types


2Data Types


3Scope of Variables


3Declaration of Variables


3Control Structures


4Loop Structures


6Subroutines and Functions


6Naming conventions


6Function Return Types


8Calling Procedures in DLLs


8Passing and Returning Strings


9File Input/Output


9File I/O Examples


10Arrays


10Ways to Declare a Fixed-Size Array


11Manipulating Arrays


11MultiDimensional Arrays


12Dialog Support


12Dialog Box controls


12OK and Cancel Buttons


13List Boxes, Combo Boxes and Drop-down List Boxes


14Check Boxes


14Text Boxes and Text


16Option Buttons and Group Boxes


18The Dialog Function


18The Dialog Box Controls


18The Dialog Function Syntax


19Statements and Functions Used in Dialog Functions


23OLE Automation


23What is OLE Automation?


23OLE Fundamentals


24Making Applications Work Together


24WIN.INI


24The Registration Database.


24Associations.


24Shell Operations.


24OLE Object Servers.


25DDE/OLE Automation.


1Chapter 4: Scripting Language Overview


1Quick Reference of Functions and Statements Available


1Type/Functions/Statements


2Data Types


3Operators


3Operator Precedence


4Functions, Statements, Reserved words - Quick Reference


1Chapter 5: Language Reference A to Z


1Abs Function


1AppActivate Statement


2Asc Function


2Atn Function


3Beep Statement


4Call Statement


5CBool Function


5CDate Function


6CDbl Function


6ChDir Statement


7ChDrive Statement


8CheckBox


9Choose Function


9Chr Function


10CInt Function


10CLng Function


11Close Statement


12Const Statement


12Const Statement


13CosFunction


13CreateObject Function


15CSng Function


16CStr Function


16CurDir Function


17CVar Function


17Date Function


19DateSerial Function


19DateValue Function


20Day Function


20Declare Statement


22Dialog, Dialog Function


23Dim Statement


24Dir Function


25DlgEnable Statement


26DlgText Statement


27DlgVisible Statement


27Do...Loop Statement


29End Statement


29EOF Function


30Erase Statement


31Exit Statement


31Exp


32FileCopy Function


32FileLen Function


33Fix Function


33For each … Next Statement


34For...Next Statement


35Format Function


44FreeFile Function


45Function Statement


46Global Statement


47GoTo Statement


48Hex


48Hour Function


50HTMLDialog


50If...Then...Else Statement


51Input # Statement


52Input Function


53InputBox Function


53InStr


54IsArray Function


54IsDate


55IsEmpty


56IsNumeric


56IsObject Function


57Kill Statement


58LBound Function


58LCase, Function


59Left


60Len


60Let Statement


61Line Input # Statement


62LOF


62Log


63Mid Function


64Minute Function


65MkDir


66Month Function


66MsgBox  Function MsgBox Statement


68Now Function


69Oct Function


70OKButton


71On Error


71Defined Errors


74Open Statement


75Option Base Statement


76Option Explicit Statement


76Print Method


77Print # Statement


79Randomize Statement


79ReDim Statement


80Rem Statement


80Right Function


81RmDir Statement


82Rnd Function


82Second Function


84Seek Function


85Seek Statement


85Select Case Statement


87SendKeys Function


87Set Statement


88Shell Function


89Sin Function


89Space Function


90Sqr Function


91Static Statement


92Stop Statement


92Str Function


93StrComp Function


94String Function


94Sub Statement


95Tan Function


95Text Statement


96TextBox Statement


97Time Function


97Timer  Event


98TimeSerial - Function


98TimeValue - Function


99Trim, LTrim, RTrim Functions


100Type Statement


102UBound Function


102UCase Function


103Val


103VarType


104Weekday Function


105While...Wend Statement


105With Statement


107Write # - Statement


107Year Function


109Chapter 6: Automation


109Introduction


109Getting Started


109Accessing an Object's Propreties, Methods, and Events


110Accessing Event Subroutines


112Accessing Methods and Properties


113Using the Object Browser in Other Editors


114Sample Automation Scripts


120Object Hierarchy Chart


125Project Overview


125Classes


133ActiveTip Object


133ActiveTip Object Members


133Methods


134Properties


137AlignCmnd Object


137AlignCmnd Object Members


137Methods


141Properties


153Application Object


153Launching PC-DMIS with Startup Options


154Application Object Members


154Methods


169Properties


183ApplicationObjectEvents Object


183ApplicationObjectEvents Object Members


183Events


191ApplicationSettings Object


191ApplicationSettings Object Members


191Properties


195ArrayIndex Object


195ArrayIndex Object Members


195Methods


199Attach Object


199Attach Object Members


199Properties


203Autotrigger Object


203Autotrigger Object Members


205BasicScan Object


208BasicScan Object Members


208Methods


225Properties


237CadModel Object


237CadModel Object Members


237Methods


240Properties


243CadPointOnSurface Object


243CadPointOnSurface Object Members


243Properties


247CadPointsOnSurface Object


247CadPointsOnSurface Object Members


247Methods


248Properties


251CadPolyLineOnSurface Object


251CadPolyLineOnSurface Object Members


251Properties


253CadPolyLinesOnSurface Object


253CadPolyLinesOnSurface Object Members


253Methods


254Properties


257CadWindow Object


257CadWindow Object Members


257Methods


258Properties


263CadWindows Object


265CadWindows Object Members


265Methods


265Properties


269Calibration Object


269Calibration Object Members


269Properties


271Color Object


271Color Object Members


271Methods


273Properties


279Colors Collection


279Colors Collection Members


279Methods


284Properties


289Colors Collection


289Colors Collection Members


289Methods


294Properties


299Command Object


300Command Object Members


300Methods


312Properties


355Commands Object


355Methods


360Properties


363DimensionCmd Object


363DimensionCmd Object Members


363Methods


364Properties


381DimFormat Object


381DimFormat Object Members


381Methods


382Properties


385DimInfo Object


385DimInfo Object Members


385Methods


389Properties


390DispMetaFile Object


390DispMetaFile Object Members


390Properties


393DmisDialog Object DmisDialog Object


393DmisDialog Object Members DmisDialog Object


393Properties


395DmisMatrix Object DmisMatrix Object


395DmisMatrix Object Members DmisMatrix Object


395Methods


400Properties


405EditWindow Object


405EditWindow Object Members


405Methods


410Properties


419ExecutedCommands Object


419ExecutedCommands Object Members


419Methods


421Properties


423ExternalCommand Object


423ExternalCommand Object Members


423Properties


425FeatCmd Object


425FeatCmd Object Members


425Methods


444Properties


477FeatData Object


477FeatData Object Members


477Properties


487FileIO Object


487FileIO Object Members


487Properties


493FlowControlCmd Object


493FlowControlCmd Object Members


493Methods


502Properties


511FPanel Object


511FPanel Object Members


511Properties


513LabelControls Object


513LabelControls Object Members


513Methods


516Properties


519LabelTemplate Object


519LabelTemplate Object Members


519Methods


520Properties


525LabelTemplates Object


525LabelTemplates Object Members


525Methods


528Properties


531LEAPFROG Object


531LEAPFROG Object Members


531Properties


533LoadMachine Object


533LoadMachine Object Members


533Properties


535LoadProbe Object


535LoadProbe Object Members


535Properties


537OldBasic Object


537OldBasic Object Members


537Methods


591Properties


593OPTIONPROBE Object


593OPTIONPROBE Object Members


593Properties


599OptMotion Object


599OptMotion Object Members


599Properties


601Page Object


602Page Object Members


602Properties


607Pages Object


607Pages Object Members


607Methods


608Properties


611PartProgram Object


611PartProgram Object Members


611Methods


626Properties


640Events


649PartPrograms Object


649PartPrograms Object Members


649Methods


652Properties


655PartProgramSettings Object


655PartProgramSettings Object Members


655Properties


659PictureData Object


659PictureData Object Members


659Methods


661PointData Object


661PointData Object Members


661Methods


662Properties


665probe Object


665probe Object Members


665Methods


668Properties


675Probes Object


675Probes Object Members


675Methods


677Properties


679QualificationSettings Object


679QualificationSettings Object Members


679Methods


680Properties


693QuickStart Object


693QuickStart Object Members


693Methods


694Properties


695QuickStartAddedCommands Object


695QuickStartAddedCommands Object Members


695Methods


696Properties


697QuickStartStep Object


697QuickStartStep Object Members


697Methods


699Properties


703QuickStartSteps Object


703QuickStartSteps Object Members


703Methods


704Properties


705QuickStartTask Object


705QuickStartTask Object Members


705Methods


706Properties


707RegistrySetting Object


707RegistrySetting Object Members


707Methods


707Properties


711RegistrySettings Object


711RegistrySettings Object Members


711Methods


712Properties


715ReportControls Object


719ReportControls Object Members


719Methods


722Properties


725ReportData Object


726ReportData Object Members


726Methods


731Properties


733ReportTemplate Object


733ReportTemplate Object Members


733Methods


734Properties


739ReportTemplates Object


739ReportTemplates Object Members


739Methods


743Properties


745ReportWindow Object


745ReportWindow Object Members


745Methods


752Properties


757RegistrySetting Object


757RegistrySetting Object Members


757Methods


757Properties


761RegistrySettings Object


761RegistrySettings Object Members


761Methods


762Properties


765ReportControls Object


769ReportControls Object Members


769Methods


772Properties


775ReportData Object


776ReportData Object Members


776Methods


781Properties


783ReportTemplate Object


783ReportTemplate Object Members


783Methods


784Properties


789ReportTemplates Object


789ReportTemplates Object Members


789Methods


793Properties


795ReportWindow Object


795ReportWindow Object Members


795Methods


802Properties


807Scan Object


807Scan Object Members


807Methods


823Properties


833Section Object


833Section Object Members


833Properties


837Sections Object


837Sections Object Members


837Methods


839Properties


841STATISTICS Object


841STATISTICS Object Members


841Methods


843Properties


847Target Object


847Target Object Members


847Properties


853Targets Object


853Targets Object Members


853Methods


854Properties


857TempComp Object


857TempComp Object Members


857Methods


858Properties


861Tip Object


861Tip Object Members


861Properties


871Tips Object


871Tips Object Members


871Methods


873Properties


875tool Object


875tool Object Members


875Properties


879Tools Object


879Tools Object Members


879Methods


881Properties


883TRACEFIELD Object


883TRACEFIELD Object Members


883Properties


885tutorhit Object


885tutorhit Object Members


887Variable Object


887Variable Object Members


887Methods


889Properties


893VariableArray Object


893VariableArray Object Members


893Methods


895Index





Chapter 1: PC-DMIS BASIC Overview

Introduction

While PC-DMIS for Windows contains a myriad of valuable options and features to aid you in your part measurements, there may be times when you want greater customizability to meet specific needs. Maybe you want the capability to globally change a particular value inside the Edit window, or maybe you want to export statistical data to a specific application. Rather than waiting for an item on your wish list to be coded into a future version of PC-DMIS, PC-DMIS allows you to create your own BASIC scripts and run them inside PC-DMIS. In fact, using PC-DMIS's comprehensive list of automation commands, properties and methods, you can run PC-DMIS entirely from a custom-built third party application.
What is Cypress Enable?

PC-DMIS comes with a BASIC Script Editor that uses Cypress Enable Scripting Language, a powerful subset of the BASIC language. If you have a working knowledge of BASIC, the tools given in this manual will be invaluable to creating your own mini-applications that work in conjunction with PC-DMIS.

Organization of the Manual

This manual contains the following chapters:

· Basic Script Editor - this discusses how to open and use the Basic Script Editor from within PC-DMIS to create and compile your BASIC scripts. 

· Cypress Enable Scripting Language Elements  - this discusses the language elements used to create BASIC scripts using Cypress Enable.

· Scripting Language Overview  - this contains quick reference charts on functions, statements, data types, operators, reserved words, and precedence.

· Language Reference A-Z  - this contains a full fledged language reference of BASIC code that you can use.

· Automation - this contains all the properties and methods associated with every PC-DMIS object that you can use via your BASIC scripts.

Chapter 2: Basic Script Editor

Introduction

The Utilities | Scripting | Basic Script Editor menu option opens the Basic Script Editor. The Basic Script Editor can be used to create and edit basic scripts that can be used in Basic Script objects during execution or from the Basic Script's Standard toolbar. The Basic Script Editor consists of the following menus:

1. File menu
2. Edit menu
3. View menu
4. Run menu
5. Help menu
Tip: You do not have to use the BASIC Script Editor to create your scripts. Many users prefer to use the Visual BASIC interface that comes with Microsoft Office applications such as Visual BASIC for Microsoft Excel or Microsoft Word. These applications contain advanced debugging tools and visual aids to help you create your scripts. See "Using the Object Browser in Other Editors" in the "Automation" chapter.

File Menu

The Basic Script Editor's File menu gives you the following commands and options:

New

The File | New menu option opens a new Basic Script Editor in which you can write a new script.

Open

 XE "Open" \* MERGEFORMAT The File | Open menu option allows you to navigate to and open an existing script. In order for files to appear in the Basic Script Editor, files must be of file type .BAS. 

Save

The File | Save menu option allows you to save a script. With a new script, the first time this option is selected, the Save As dialog box will appear.

Save As

The File | Save As menu option allows you to save a new script, or an already existing script by a new file name. The Save As dialog box appears, allowing you to select the file name and the directory to which you will be saving the script.

 XE "Print" \* MERGEFORMAT Print

The File | Print menu option allows you to print the script in the Basic Script Editor from your system's printer.

 XE "Print Preview" \* MERGEFORMAT Print Preview

The File | Print Preview menu option allows you to preview what will be sent to the printer when Print is selected from the Basic Script Editor's File menu.

 XE "Exit" \* MERGEFORMAT Exit

The File | Exit menu option allows you to exit out of the Basic Script Editor without saving any changes you have made to any open scripts. Choosing File | Exit will return you the main user interface. The menu bar will return to normal PC-DMIS functions.

Edit Menu

 XE "Undo" \* MERGEFORMAT Undo

The Edit | Undo menu option allows you to undo the most recent action taken in the Basic Script Editor.

Cut

The Edit | Cut menu option allows you to cut selected text from the Basic Script Editor. Cut text is stored in the Windows clipboard to later be pasted elsewhere.

 XE "Copy" \* MERGEFORMAT Copy

The Edit | Copy menu option allows you to copy selected text. Copied text is stored in the Windows clipboard to later be pasted elsewhere.

 XE "Paste" \* MERGEFORMAT Paste

The Edit | Paste command allows you to paste text that is stored in the Windows clipboard.

 XE "Delete" \* MERGEFORMAT Delete

The Edit | Delete command allows you to delete highlighted text.

 XE "Select All" \* MERGEFORMAT Select All

The Edit | Select All menu option automatically selects all the text within the Basic Script Editor. You can then Cut, Copy, or Delete the selected text.

 XE "Find D2HBFind80" \* MERGEFORMAT Find

The Edit | Find menu option brings up the Find dialog box.

[image: image2.jpg]s HE
Fedwh [ |G
I Match whole word only o

I~ Machgsse.





Find dialog box

This dialog allows you to search for a specific word, or term within the Basic Script Editor.

· If you choose the Match whole word only check XE "Check" \* MERGEFORMAT box the dialog will display only those words that match the entire word. 

· If you choose the Match Case check box, then the dialog box will display only those terms that match the case (Uppercase or Lowercase) that you used in the Find what box.

 XE "Find Next D2HBFind_Next80" \* MERGEFORMAT Find Next

The Edit | Find Next will search in the Basic Script Editor for the next term that meets the qualifications specified in the Find dialog box (See Edit | Find above.)

 XE "Replace D2HBReplace80" \* MERGEFORMAT Replace

The Edit | Replace menu option brings up the Replace dialog box

[image: image3.jpg]Fodwhat

Regcewit [ | Aoee

T~ Metch uhole word ol i
atch whole wordcrly

™ Match case Cancel





Replace dialog box

This dialog box is an extension of the Edit | Find command. This allows you to search for a specific term and then replace it with the term entered in the Replace with box.
Find Next

The Find Next button searches through the Basic Script Editor and brings up the first instance that meets the qualifications entered in the dialog box.

Replace

The Replace button allows you to replace what has been found (using the Find Next button) with what is in the Replace with box.

Replace All

The Replace All button allows you to replace all instances in the Basic Script Editor that meet the search qualifications with what is in the Replace with box.

Cancel

The Cancel button closes the Replace dialog box.

Dialog Editor

 XE "Cos:dialogs" \* MERGEFORMAT 

 XE "Cos:forms" \* MERGEFORMAT 

 XE "Delete:dialog" \* MERGEFORMAT 

 XE "Delete:create" \* MERGEFORMAT 

 XE "Delete:designer" \* MERGEFORMAT 

 XE "Delete:editor" \* MERGEFORMAT 

 XE "Do...Loop Statement:dialog" \* MERGEFORMAT 

 XE "For...Next Statement:designer" \* MERGEFORMAT 

 XE "MasQ Enable Dialog Designer" \* MERGEFORMAT The Dialog Editor menu option launches the MasQ Enable Dialog Designer:

[image: image4.jpg]EINEITUTTIT e o]

o €8 Ve b

Mxwo @B AROBRE ¢ 2na 2 L
[rosertiesorouioovinien
Dt OREE

Dieg e l_mw.





MasQ Enable Dialog Designer

This application allows you to design dialog boxes for use with the Basic Script Editor. While it doesn't have the full power of a Visual Basic form designer, it provides you with a quick way to generate and place dialog box code into the Basic Script Editor.

For additional information on the Cypress Enable dialog box code, see the "Dialog Support" topic.

To Create a New Dialog Box:

1. Select Edit | Dialog Editor. The MasQ Enable Dialog Designer appears.

2. Use the dialog designer toolbar to select and place controls into the Design Window.

3. Change caption properties as needed by using the Properties option from the Window menu.

4. Align controls on the Design Window by using options in the Edit menu.

5. When you have finished designing your dialog box, select File | Put Dialog on Clipboard. This sends the code for the dialog box to the Windows Clipboard.

6. Select File | Close Dialog Designer.

7. Access the Basic Script Editor inside PC-DMIS.

8. Press CTRL + V to paste the code from the clipboard into the Basic Script Editor. The dialog box code begins with Begin Dialog and ends with End Dialog.

9. Modify the code as needed.

To Modify an Existing Dialog Box:

This procedure assumes you have already pasted some sort of dialog box code from the clipboard into the Basic Script Editor, as described in the "To Create a New Dialog Box:" topic.

1. Access the Basic Script Editor inside PC-DMIS.

2. Select the dialog box code and press CTRL + C to copy it to the Clipboard. The dialog box code begins with Begin Dialog and ends with End Dialog.

3. Select Edit | Dialog Editor. The MasQ Enable Dialog Designer appears.

4. From the dialog designer's menu bar, select File | Load Dialog from Clipboard. 

5. Use the dialog designer to further modify your dialog box. 

6. When you have finished modifying your dialog box, select File | Put Dialog on Clipboard. This sends the code for the dialog box to the Windows Clipboard.

7. Select File | Close Dialog Designer.

8. Access the Basic Script Editor inside PC-DMIS.

9. Press CTRL + V to paste the code from the clipboard into the Basic Script Editor.

10. Modify the code as needed.

Convert OldBasic Script

 XE "OKButton:Convert" \* MERGEFORMAT The Convert OldBasic Script menu item, allows you to convert scripts from older versions (versions 2.3 and previous) into the latest format. To use this option, first load the old script into the Basic Script Editor and then select the Edit | Convert OldBasic Script menu item.

Help Menu
The Help | Basic Help command brings up the on-line help file (Pcdbasic.hlp or Pcdbasic.chm) created for the add on Basic Module.

Basic Script Toolbar

New

[image: image5.png]



This icon allows you to create a new basic script in the editor.

Open

[image: image6.png]



This icon brings up an Open File dialog box allowing you opens an existing basic script into the editor.

Save

[image: image7.png]



This icon saves the current basic script. If you have not already named the current script, a Save As dialog box asking for the name of the script will appear.

Print

[image: image8.png]



This icon prints the current basic script.

Print Preview

[image: image9.png]



This icon allows you to see the current basic script in the Print Preview window as it will appear when printed.

Find

[image: image10.png]



This icon allows you to search for text in the current basic script.

 XE "Cut" \* MERGEFORMAT 

 XE "Cut" \* MERGEFORMAT Cut

[image: image11.png]



This button cuts currently selected text and put text on the clipboard.

Copy

[image: image12.png]



This icon copies currently selected text and put text on the clipboard.

Paste

[image: image13.png]



This icon pastes text from the clipboard into the editor at the current insertion point.

Undo

[image: image14.png]



This icon allows you to undo the last editing change.

Compile

[image: image15.png]< |




This icon compiles (makes the script understandable and ready to run on the computer system) the current BASIC script. You must compile a script before running it.

Run

[image: image16.png]



This icon compiles and runs the current basic script. 

Note:  Scripts run from the editor using the PC-DMIS basic commands can insert objects into the current part program.

Chapter 3: Cypress Enable Scripting Language Elements

Comments

Statements:
In Enable there is no statement terminator. More than one statement can be put on a line if they are separated by a colon ":".

X.AddPoint( 25, 100) :  X.AddPoint(  0,  75)

Which is equivalent to:

X.AddPoint( 25, 100)

X.AddPoint(  0,  75)

 

Line Continuation Character:
The underscore is the line continuation character in Enable. There must be a space before and after the line continuation character.

X.AddPoint _ ​

( 25, 100)

Variable Types

Variant

As is the case with Visual Basic, when a variable is introduced in Cypress Enable, it is not necessary to declare it first (see option explicit for an exception to this rule). When a variable is used but not declared then it is implicitly declared as a variant data type. Variants can also be declared explicitly using "As Variant" as in Dim x As Variant. The variant data type is capable of storing numbers, strings, dates, and times. When using a variant you do not have to explicitly convert a variable from one data type to another. This data type conversion is handled automatically.

For example:

Sub Main

Dim x                              'variant variable
x = 10

x = x + 8

x = "F" & x

print x       'prints F18
End Sub

[image: image17.png]



A variant  variable can readily change its type and its internal representation can be determined by using the function VarType. VarType returns a value that corresponds to the explicit data types.  See "VarType" in the "Language Reference A – Z" chapter for return values.

When storing numbers in variant variables the data type used is always the most compact type possible. For example, if you first assign a small number to the variant it will be stored as an integer. If you then assign your variant to a number with a fractional component it will then be stored as a double.

For doing numeric operations on a variant variable it is sometimes necessary to determine if the value stored is a valid numeric, thus avoiding an error. This can be done with the IsNumeric function described in the "IsNumeric" topic in the "Language Reference A – Z" chapter.

Variants and Concatenation

If a string and a number are concatenated the result is a string. To be sure your concatenation works regardless of the data type involved use the & operator. The & will not perform arithmetic on your numeric values it will simply concatenate them as if they were strings.

The IsEmpty function can be used to find out if a variant variable has been previously assigned (see "IsEmpty").

Other Data Types

Data Types

	Variable
	Symbol
	Type Declaration
	Size

	Byte
	 
	Dim BVar As Byte
	0 to 255

	Boolean
	 
	Dim BoolVar As Boolean
	True or False

	String
	$
	Dim Str_Var As String
	0 to 65,500 char

	Integer
	%
	Dim Int_Var As Integer
	2 bytes

	Long
	&
	Dim Long_Var As Long
	4 bytes

	Single
	!
	Dim Sing_Var As Single
	4 bytes

	Double
	#
	Dim Dbl_Var As Double
	8 bytes 

	Variant
	 
	Dim X As Any
	 

	Currency
	 
	Dim Cvar As Currency
	8 bytes

	Object
	 
	Dim X As Object
	4 bytes

	Date
	 
	Dim D As Date
	8 bytes

	User Defined Types
	 
	 
	size of each element


Scope of Variables

Cypress Enable scripts can be composed of many files and each file can have many subroutines and functions in it. Variable names can be reused even if they are contained in separate files. Variables can be local or global.

Declaration of Variables

In Cypress Enable variables are declared with the Dim statement. To declare a variable other than a variant the variable must be followed by As or appended by a type declaration character such as a % for Integer type.

For example:

Sub Main

Dim X As Integer

Dim Y As Double

Dim  YourName$, YourAge%         ' multiple declaration on one line Dim v

End Sub

Notice that the variables YourName and YourAge use a symbol to declare the variable type instead of the term As.

See "Dim Statement" for more information.

Note: While it may be possible in some cases to use variables without declaring them with the Dim statement first, doing so is not supported in Enable BASIC and may cause problems in your code.

 XE "Control Structures" \* MERGEFORMAT Control Structures

Cypress Enable has complete process control functionality. The control structures available are Do loops, While loops, For loops, Select Case, If Then , and If Then Else. In addition, Cypress Enable has one branching statement:  GoTo. The GoTo Statement branches to the label specified in the GoTo Statement.

For example:

Goto label1

        .

        .

        .

 

label1:

The program execution jumps to the part of the program that begins with the label "label1:".

Loop Structures 

Do Loops

The Do...Loop allows you to execute a block of statements an indefinite number of times. The variations of the Do...Loop are Do While, Do Until, Do Loop While, and Do Loop Until.

Do While

Do While|Until condition

statement(s)...

[Exit Do]

statement(s)...

Loop

Do Until

Do Until condition
statement(s)...
Loop

Do Loop While

Do 

statements...

Loop While condition

Do Loop Until

Do

Statements...

Loop Until condition

Do While and Do Until check XE "Check" \* MERGEFORMAT the condition before entering the loop, thus the block of statements inside the loop are only executed when those conditions are met. Do Loop While and Do Loop Until check the condition after having executed the block of statements thereby guaranteeing that the block of statements is executed at least once.

While Loop

The While...Wend loop is similar to the Do While loop. The condition is checked before executing the block of statements comprising the loop.

While condition

statements...

Wend
For ... Next Loop

The For...Next loop has a counter variable and repeats a block of statements a set number of times. The counter variable increases or decreases with each repetition through the loop. The counter default is one if the Step variation is not used.

For counter = beginning value To ending value [Step increment]

Statements...

Next
If  and  Select Statements

The If...Then block has a single line and multiple line syntax. The condition of an If statement can be a comparison or an expression, but it must evaluate to True or False.

If condition Then Statements...         'single line syntax

If condition Then                                 'multiple line syntax

statements...

End If

The other variation on the If statement is the If...Then...Else statement. XE "If...Then...Else Statement" \* MERGEFORMAT   This statement should be used when there are different statement blocks to be executed depending on the condition. There is also the If...Then...ElseIf... variation, these can get quite long and cumbersome, at which time you should consider using the Select  statement.

If condition Then
statements...

ElseIf condition Then
statements...

Else

End If

The Select Case statement tests the same variable for many different values. This statement tends to be easier to read, understand and follow and should be used in place of a complicated If...Then...ElseIf statement.

Select Case variable to test

Case 1

statements...

Case 2

statements...

Case 3

statements...

Case Else
statements...

End Select

See "Language Reference A – Z" chapter for exact syntax and code examples.

 XE "Subroutines and Functions" \* MERGEFORMAT 

 XE "Subroutines and Functions:Naming conventions" \* MERGEFORMAT Subroutines and Functions

Naming conventions

Subroutine and Function names can contain she letters A to Z and a to z, the underscore “_” and digits 0 to 9. The only limitation is that subroutine and function names must begin with a letter, be no longer than 40 characters, and not be reserved words. For a list of reserved words, see the table of reserved words under "Functions, Statements, Reserved words – Quick Reference" topic in the "Scripting Language Overview" chapter.

Cypress Enable allows script developers to create their own functions or subroutines or to make DLL calls. Subroutines are created with the syntax "Sub <subname> .... End Sub". Functions are similar "Function <funcname> As <type> ... <funcname> = <value> ... End Function.”  DLL functions are declared via the Declare statement.

Function Return Types

Note: Be aware that type Object is not a valid return type of functions. 

ByRef and ByVal

ByRef gives other subroutines and functions the permission to make changes to variables that are passed in as parameters. The keyword ByVal denies this permission and the parameters cannot be reassigned outside their local procedure. ByRef is the Enable default and does not need to be used explicitly. Because ByRef is the default all variables passed to other functions or subroutines can be changed, the only exception to this is if you use the ByVal keyword to protect the variable or use parentheses which indicate the variable is ByVal.

If  the arguments or parameters are passed with parentheses around them, you will tell Enable that you are passing them ByVal

SubOne var1, var2, (var3) 

The parameter var3 in this case is passed by value and cannot be changed by the subroutine SubOne.

Function R( X As String, ByVal n As Integer)

In this example the function R is receiving two parameters X and n. The second parameter n is passed by value and the contents cannot be changed from within the function R.

In the following code samples, scalar variable and user defined types are passed by reference.
Scalar Variables

Sub Main

Dim x(5) As Integer

Dim i As Integer

for i = 0 to 5

   x(i) = i

next i

Print i

Joe (i), x  ‘ The parenthesis around it turn it into an expression which passes by value

print "should be 6: "; x(2), i

End Sub

 

Sub Joe( ByRef j As Integer, ByRef y() As Integer )

print "Joe: "; j, y(2)
j = 345

for i = 0 to 5

   print "i: "; i; "y(i): "; y(i)

next i

y(2) = 3 * y(2)

End Sub

Passing User Defined Types by Ref to DLL’s and Enable functions

' OpenFile() Structure

Type OFSTRUCT

cBytes As String * 1

fFixedDisk As String * 1

nErrCode As Integer

reserved As String * 4

szPathName As String * 128

End Type

' OpenFile() Flags4

Global Const OF_READ = &H0

Global Const OF_WRITE = &H1

Global Const OF_READWRITE = &H2

Global Const OF_SHARE_COMPAT = &H0

Global Const OF_SHARE_EXCLUSIVE = &H10

Global Const OF_SHARE_DENY_WRITE = &H20

Global Const OF_SHARE_DENY_READ = &H30

Global Const OF_SHARE_DENY_NONE = &H40

Global Const OF_PARSE = &H100

Global Const OF_DELETE = &H200

Global Const OF_VERIFY = &H400

Global Const OF_CANCEL = &H800

Global Const OF_CREATE = &H1000

Global Const OF_PROMPT = &H2000

Global Const OF_EXIST = &H4000

Global Const OF_REOPEN = &H8000

Declare Function OpenFile Lib "Kernel" (ByVal lpFileName As String, lpReOpenBuff As OFSTRUCT, ByVal wStyle As Integer) As Integer

Sub Main

Dim ofs As OFSTRUCT

' Print OF_READWRITE

ofs.szPathName = "c:\enable\openfile.bas"

print ofs.szPathName

ofs.nErrCode = 5

print ofs.nErrCode

OpenFile "t.bas", ofs

print ofs.szPathName

print ofs.nErrCode

End Sub

 

Calling Procedures in DLLs

Passing and Returning Strings

Cypress Enable maintains variable-length strings internally as BSTRs. BSTRs  are  defined  in the OLE header  files  as  OLECHAR FAR *. An OLECHAR is a UNICODE character in 32-bit OLE and an ANSI character in 16-bit OLE. A BSTR  can contain NULL values because a length is also maintained with the BSTR. BSTRs are also NULL terminated so they can be treated as an LPSTR. Currently this length is stored immediately prior  to the string. This may change in the future, however, so you should use the OLE APIs to access the string length.

You can pass a string from Cypress Enable to a DLL in one of two ways. You can pass it "by value" (ByVal) or "by reference". When you pass a string ByVal, Cypress Enable passes a pointer to the beginning of the string data (i.e. it passes a BSTR). When a string is passed byreference, Enable passes a pointer to  a pointer to the string data (i.e. it passes a BSTR *).

OLE API

SysAllocString/SysAllocStringLen

SysAllocString/SysAllocStringLen

SysFreeString

SysStringLen

SysReAllocStringLen

SysReAllocString

Note::  The  BSTR  is a  pointer  to the  string, so you don't need to dereference it.

 

File Input/Output

File I/O Examples

Sub Main

Open "TESTFILE" For Input As #1              ' Open file.

Do While Not EOF(1)                     ' Loop until end of file.

Line Input #1, TextLine                ' Read line into variable.

Print TextLine                               ' Print to Debug window.

Loop

Close #1             ' Close file.

End Sub

 

Sub test

Open "MYFILE" For Input As #1     ' Open file for input.

Do While Not EOF(1)          ' Check XE "Check" \* MERGEFORMAT for end of file.

Line Input #1, InputData            ' Read line of data.

MsgBox InputData

Loop

Close #1 ' Close file.

End Sub

 

Sub FileIO_Example()

Dim Msg        ' Declare variable.
Call Make3Files()         ' Create data files.

Msg = "Several test files have been created on your disk. "

Msg = Msg & "Choose OK to remove the test files."

MsgBox Msg

For I = 1 To 3

Kill "TEST" & I ' Remove data files from disk.

Next I

End Sub

 

Sub Make3Files ()

Dim I, FNum, FName    ' Declare variables.

For I = 1 To 3

FNum = FreeFile  ' Determine next file number.

FName = "TEST" & FNum

Open FName For Output As FNum  ' Open file.

Print #I, "This is test #" & I              ' Write string to file.

Print #I, "Here is another ";  "line";  I

Next I

Close              ' Close all files. 

End Sub

 

[image: image18.png]Several test files have been created on your di
Choose OK to remove the test files.

OK!





 

Arrays

Ways to Declare a Fixed-Size Array

       Global array, use the Dim statement outside the procedure section of a code module to declare the array.

       To create a local array, use the Dim statement inside a procedure. 

       Cypress Enable supports  Dynamic arrays.

 

Declaring an Array

The array name must be followed by the upper bound in parentheses. The upper bound must be an integer.

Dim  ArrayName (10) As Interger

Dim Sum (20) As Double

Creating a Global Array

To create a global array, you simply use Dim outside the procedure:

Dim Counters (12) As Integer

Dim Sums (26) As Double

 

Sub Main () …

The same declarations within a procedure use Static or Dim:

Static Counters (12)  As Integer

Static Sums (22) As Double

The first declaration creates an array with 11 elements, with index numbers  XE "Numbers" \* MERGEFORMAT running from 0 to 10. The second creates an array with 21 elements. To change the default lower bound to 1 place an Option Base statement in the Declarations section of a module:

Option Base 1

Another way to specify the lower bound is to provide it explicitly (as an integer, in the range -32,768 to 32,767) using the To key word:

Dim Counters (1 To 13) As Integer

Dim Sums (100 To 126) As String

In the preceding declarations, the index numbers of Counters run from 1 to 13, and the index numbers of Sums run from 100 to 126.

Note:  Many other versions of Basic allow you to use an array without first declaring it. Enable Basic does not allow this; you must declare an array before using it.

Manipulating Arrays

Loops often provide an efficient way to manipulate arrays. For example, the following For loop initializes all elements in the array to 5:

Static Counters (1 To 20) As Integer

Dim I As Integer

        For I = 1 To 20

                Counter ( I ) = 5

        Next I

…

 

MultiDimensional Arrays

Cypress Enable supports multidimensional arrays. For example the following example declares a two-dimensional array within a procedure.

Static Mat(20, 20) As Double

Either or both dimensions can be declared with explicit lower bounds.

Static Mat(1 to 10, 1 to 10) As Double

You can efficiently process a multidimensional array with the use of for loops. In the following statements the elements in a multidimensional array are set to a value.

Dim L As Integer, J As Integer

Static TestArray(1 To 10, 1 to 10) As Double

For L = 1 to 10

For J = 1 to 10

TestArray(L,J) = I * 10 + J

Next J

Next L

Arrays can be more than two dimensional. Enable does not have an arbitrary upper bound on array dimensions.

Dim ArrTest(5, 3, 2)

This declaration creates an array that has three dimensions with sizes 6 by 4, by 3  unless Option Base 1 is set previously in the code. The use of Option Base 1 sets the lower bound of all arrays to 1 instead of 0.

Dialog Support

Dialog Box controls

Enable Basic supports the standard Windows dialog box controls. This section introduces the controls available for custom dialog boxes and provides guidelines for using them. 

The Dialog Box syntax begins with the statement “Begin Dialog”. The first two parameters of this statement are optional. If they are left off the dialog will automatically be centered.

Begin Dialog DialogName1 240, 184, "Test Dialog"

Begin Dialog DialogName1 60, 60,240, 184, "Test Dialog" 
 

 XE "OK and Cancel Buttons" \* MERGEFORMAT OK and Cancel Buttons

[image: image19.png]Ok and Cancel





Sub Main

Begin Dialog ButtonSample 16,32,180,96,"OK and Cancel"

OKButton 132,8,40,14

CancelButton 132,28,40,14

End Dialog

Dim Dlg1 As ButtonSample

Button = Dialog (Dlg1)

End Sub

Every custom dialog box must contain at least one “command” button - a OK button or a Cancel button. Enable includes separate dialog box definition statements for each of these two types of buttons. 

List Boxes, Combo Boxes and Drop-down List Boxes XE "List Boxes Combo Boxes and Drop-down List Boxes" \* MERGEFORMAT 
[image: image20.jpg]Combo Box, and Droj

LitBor ConboBox DipDomn ListBax
e T = 5 o
o: ek B[z
i3

i 4

ine 5





Sub Main

Dim MyList$ (5)

MyList (0) = "line Item 1"

MyList (1) = "line Item 2"

MyList (2) = "line Item 3"

MyList (3) = "line Item 4"

MyList (4) = "line Item 5"

MyList (5) = "line Item 6"

 

Begin Dialog BoxSample 16,35,256,89,"List Box, Combo Box, and Drop-Down List Box"

OKButton 204,24,40,14

CancelButton 204,44,40,14

ListBox 12,24,48,40, MyList$( ),.Lstbox

DropListBox 124,24,72,40, MyList$( ),.DrpList

ComboBox 68,24,48,40, MyList$( ),.CmboBox

Text 12,12,32,8,"List Box:"

Text 124,12,68,8,"Drop-Down List Box:"

Text 68,12,44,8,"Combo Box:

End Dialog

Dim Dlg1 As BoxSample

Button = Dialog ( Dlg1 )

End Sub

You can use a list box, drop-down list box, or combo box to present a list of items from which the user can select. A drop-down list box saves space (it can drop down to cover other dialog box controls temporarily). A combo box allows the user either to select an item from the list or type in a new item. The items displayed in a list box, drop-down list box, or combo box are stored in an array that is defined before the instructions that define the dialog box.

 XE "Check Boxes" \* MERGEFORMAT 

 XE "Check" \* MERGEFORMAT Check Boxes

[image: image21.png]™ CheckBox
(Cencer |

I CheckBox

™ Chockbon

I CheckBox





        Sub Main

                Begin Dialog CheckSample15,32,149,96,"Check Boxes"

                OKButton 92,8,40,14

                CancelButton 92,32,40,14

                CheckBox 12,8,45,8,"CheckBox",.CheckBox1

                CheckBox 12,24,45,8,"CheckBox",.CheckBox2

                CheckBox 12,40,45,8,"CheckBox",.CheckBox3

                CheckBox 12,56,45,8,"CheckBox",.CheckBox4

        End Dialog

                Dim Dlg1 As CheckSample

                Button = Dialog ( Dlg1 )

        End Sub

You use a check box to make a “yes or no” or “on or off” choice. for example, you could use a check box to display or hide a toolbar in your application.

 XE "Text Boxes and Text" \* MERGEFORMAT Text Boxes and Text

[image: image22.png]Text Boxes and Text

Text Box:

—

Multiine Text Box:

Cancel





   Sub Main

                Begin Dialog TextBoxSample 16,30,180,96,"Text Boxes and Text"

                OKButton 132,20,40,14

                CancelButton 132,44,40,14

                Text 8,8,32,8,"Text Box:"

                TextBox 8,20,100,12,.TextBox1

                Text 8,44,84,8,"Multiline Text Box:"

                TextBox 8,56,100,32,.TextBox2

        End Dialog

                Dim Dlg1 As TextBoxSample

                Button = Dialog ( Dlg1 )

        End Sub

A text box control is a box in which the user can enter text while the dialog box is displayed. By default, a text box holds a single line of text. Enable support single and multi-line text boxes. The last parameter of the textbox function contains a variable to set the textbox style.

	'=========================================================

' This sample shows how to implement a multiline textbox

'=========================================================

Const ES_LEFT             = &h0000&  'Try these different styles or-ed together

Const ES_CENTER           = &h0001&  ' as the last parameter of Textbox the change

Const ES_RIGHT            = &h0002&  ' the text box style.

Const ES_MULTILINE        = &h0004&  ' A 1 in the last parameter position defaults to 

Const ES_UPPERCASE        = &h0008&  ' A multiline, Wantreturn, AutoVScroll testbox.

Const ES_LOWERCASE        = &h0010&

Const ES_PASSWORD         = &h0020&

Const ES_AUTOVSCROLL      = &h0040&

Const ES_AUTOHSCROLL      = &h0080&

Const ES_NOHIDESEL        = &h0100&

Const ES_OEMCONVERT       = &h0400&

Const ES_READONLY         = &h0800&

Const ES_WANTRETURN       = &h1000&

Const ES_NUMBER           = &h2000&

 

Sub Multiline

    Begin Dialog DialogType 60, 60, 140, 185, "Multiline text Dialog", .DlgFunc

        TextBox 10, 10, 120, 150, .joe, ES_MULTILINE Or ES_AUTOVSCROLL Or ES_WANTRETURN            ' Indicates multiline TextBox
         'TextBox 10, 10, 120, 150, .joe, 1 ' indicates multi-line textbox                    

         CancelButton 25, 168, 40, 12    

        OKButton 75, 168, 40, 12

    End Dialog

    Dim Dlg1 As DialogType

    Dlg1.joe  = "The quick brown fox jumped over the lazy dog"

    ' Dialog returns -1 for OK, 0 for Cancel

    button = Dialog( Dlg1 )
    'MsgBox "button: " & button

    If button = 0 Then Exit Sub
 

    MsgBox "TextBox: "& Dlg1.joe

End Sub

 


 XE "Option Buttons and Group Boxes" \* MERGEFORMAT Option Buttons and Group Boxes

You can have option buttons to allow the user to choose one option from several. Typically, you would use a group box to surround a group of option buttons, but you can also use a group box to set off a group of check XE "Check D2HBCheck35" \* MERGEFORMAT boxes or any related group of controls.

[image: image23.png]Option Button and Check Box

GroupBox R

® OptionButton ™ CheckBox
C OptionButton ™ CheckBox





Begin Dialog GroupSample 31,32,185,96,"Option Button and Check Box"

        OKButton 28,68,40,14

        CancelButton 120,68,40,14

        GroupBox 12,8,72,52,"GroupBox",.GroupBox1

        GroupBox 100,12,72,48,"GroupBox",.GroupBox2

        OptionGroup .OptionGroup1

        OptionButton 16,24,54,8,"OptionButton",.OptionButton1

        OptionButton 16,40,54,8,"OptionButton",.OptionButton2

        CheckBox 108,24,45,8,"CheckBox",.CheckBox1

        CheckBox 108,40,45,8,"CheckBox",.CheckBox2

End Dialog

        Dim Dlg1 As GroupSample

        Button = Dialog (Dlg1)

End Sub

[image: image24.png]Name:

[ CHECKME





Sub Main 

    Begin Dialog DialogName1 60, 60, 160, 70

    TEXT 10, 10, 28, 12, "Name:"

    TEXTBOX 42, 10, 108, 12, .nameStr

    TEXTBOX 42, 24, 108, 12, .descStr

    CHECKBOX 42, 38, 48, 12, "&CHECKME", .checkInt

    OKBUTTON 42, 54, 40, 12

    End Dialog
    Dim Dlg1 As DialogName1

    Dialog Dlg1

 

    MsgBox Dlg1.nameStr

    MsgBox Dlg1.descStr

    MsgBox Dlg1.checkInt

End Sub

The Dialog Function

Cypress Enable supports the dialog function. This function is a user-defined function that can be called while a custom dialog box is displayed. The dialog  function makes nested dialog boxes possible and receives messages from the dialog box while it is still active. 

When the function dialog() is called in Enable it displays the dialog box, and calls the dialog function for that dialog. Enable calls the dialog function to see if there are any commands to execute. Typical commands that might be used are disabling or hiding a control. By default all dialog box controls are enabled. If you want a control to be hidden you must explicitly make it disabled during initialization. After initialization Enable displays the dialog box. When an action is taken by the user Enable calls the dialog function and passes values to the function that indicate the kind of action to take and the control that was acted upon.

The dialog box and its function are connected in the dialog definition. A “function name” argument is added to the Begin Dialog instruction, and matches the name of the dialog function located in your Enable program.

Begin Dialog UserDialog1 60,60, 260, 188, "3", .Enable 

The Dialog Box Controls

A dialog function needs an identifier for each dialog box control that it acts on. The dialog function uses string identifiers. String identifiers are the same as the identifiers used in the dialog record.

CheckBox 8, 56, 203, 16, "Check to display controls",. Chk1

The control’s identifier and label are different. An identifier begins with a period and is the last parameter in a dialog box control instruction. In the sample code above “Check to display controls” is  the label and .chk1 is the identifier.

 XE "The Dialog Function Syntax" \* MERGEFORMAT 

 XE "The Dialog Function" \* MERGEFORMAT The Dialog Function Syntax

The syntax for the dialog function is as follows:

Function FunctionName( ControlID$, Action%, SuppValue%)

        Statement Block

        FunctionName = ReturnValue

End Function

All parameters in the dialog function are required.

A dialog function returns a value when the user chooses a command button. Enable acts on the value returned. The default is to return 0 (zero) and close the dialog box. If a non zero is assigned the dialog box remains open. By keeping the dialog box open, the dialog function allows the user to do more than one command from the same dialog box. Dialog examples ship as part of the sample .bas programs and can be found in your install directory.

ControlID$ 

ControlID$ Receives the identifier of the dialog box control

Action

Action  Identifies the action that calls the dialog function. There are six possibilities, Enable supports the first  4.

Action 1    The value passed before the dialog becomes visible

Action 2    The value passed when an action is taken ( i.e. a button is pushed, checkbox is checked etc...)  The controlID$ is the same as the identifier for the control that was chosen

Action 3   Corresponds to a change in a text box or combo box. This value is passed when a control loses the focus (for example, when the user presses the TAB key to move XE "Move" \* MERGEFORMAT to a different control) or after the user clicks an item in the list of a combo box (an Action value of 2 is passed first). Note that if the contents XE "Contents" \* MERGEFORMAT of the text box or combo box do not change, an Action value of 3 is not passed. When Action is 3, ControlID$ corresponds to the identifier for the text box or combo box whose contents were changed.

Action 4   Corresponds to a change of focus. When Action is 4, ControlID$ corresponds to the identifier of the control that is gaining the focus. SuppValue corresponds to the numeric identifier for the control that lost the focus. A Dialog function cannot display a message box or dialog box in response to an Action value of 4

 

Supp Value

SuppValue receives supplemental information about a change in a dialog box control. The information SuppValue receives depends on which control calls the dialog function. The following SuppValue values are passed when Action is 2 or 3.

	Control
	SuppValue passed

	ListBox, DropListBox, or ComboBox
	Number of the item selected where 0 (zero) is the first item in the list box, 1 is the second item, and so on.

	CheckBox
	1 if selected, 0 (zero) if cleared.

	OptionButton
	Number of the option button selected, where 0 (zero) is the first option button within a group, 1 is the second option button, and so on.

	TextBox
	Number of characters in the text box.

	ComboBox
	If Action is 3, number of characters in the combo box.

	CommandButton
	A value identifying the button chosen. This value is not often used, since the same information is available from the ControlID$ value. 


 

Statements and Functions Used in Dialog Functions

 XE "DlgControlId Function" \* MERGEFORMAT DlgControlId Function

DlgControlId(Identifier)
Used within a dialog function to return the numeric identifier for the dialog box control specified by Identifier, the string identifier of the dialog box control. Numeric identifiers are numbers,  XE "Numbers" \* MERGEFORMAT starting at 0 (zero) that correspond to the positions of the dialog box control instructions within a dialog box definition. For example, consider the following instruction in a dialog box definition:

CheckBox 90, 50, 30, 12, “&Update”, .MyCheckBox

The instruction DlgControlId(“MyCheckBox”) returns 0 (zero) if the CheckBox instruction is the first instruction in the dialog box definition, 1 if it is the second, and so on.

In most cases, your dialog functions will perform actions based on the string identifier of the control that was selected.

 XE "DlgFocus Statement DlgFocus() Function" \* MERGEFORMAT DlgFocus Statement, DlgFocus() Function

DlgFocus Identifier

DlgFocus()

The DlgFocus statement is used within a dialog function to set the focus on the dialog box control identified by Identifier while the dialog box is displayed. When a dialog box control has the focus, it is active and responds to keyboard input. For example, if a text box has the focus, any text you type appears in that text box.

The DlgFocus() function returns the string identifier for the dialog box control that currently has the focus.

Example

This example sets the focus on the control “MyControl1” when the dialog box is initially displayed. (The main subroutine that contains the dialog box definition is not shown.)

Function MyDlgFunction( identifier, action, suppvalue)

Select Case action

    Case 1                                ‘ The dialog box is displayed

        DlgFocus “MyControl1”

    Case 2

        ‘ Statements that perform actions based on which control is selected

    End Select

End Function

 XE "DlgListBoxArray DlgListBoxArray()" \* MERGEFORMAT DlgListBoxArray, DlgListBoxArray()

DlgListBoxArray Identifier, ArrayVariable()

DlgListBoxArray(Identifier, ArrayVariable())

The DlgListBoxArray statement is used within a dialog function to fill a ListBox, DropListBox, or ComboBox with the contents of ArrayVariable() while the dialog box is displayed.

The DlgListBoxArray() function fills ArrayVariable() with the contents of the ListBox, DropListBox, or ComboBox specified by Identifier and returns the number of entries in the ListBox, DropListBox, or ComboBox. The ArrayVariable() parameter is optional (and currently not implemented) with the DlgListBoxArray() function; if ArrayVariable() is omitted, DlgListBoxArray() returns the number of entries in the specified control.

 XE "DlgSetPicture" \* MERGEFORMAT DlgSetPicture

DlgSetPicture  Identifier, PictureName

The DlgSetPicture function is used to set the graphic displayed by a picture control in a dialog.

The Identifier is a string or numeric representing the dialog box. The PictureName is a string that identifies the picture to be displayed. 

 XE "DlgValue DlgValue()" \* MERGEFORMAT DlgValue, DlgValue() 

DlgValue Identifier, Value

DlgValue(Identifier)

The DlgValue statement is used in a dialog function to select or clear a dialog box control by setting the numeric value associated with the control specified by Identifier. For example, DlgValue “MyCheckBox”, 1 selects a check XE "Check" \* MERGEFORMAT box, DlgValue “MyCHeckBox”, 0 clears a check box, and DlgValue “MyCheckBox”, -1 fills the check box with gray. An error occurs if Identifier specifies a dialog box control such as a text box or an option button that cannot be set with a numeric value.

The following dialog function uses a Select Case control structure to check the value of Action. The SuppValue is ignored in this function.

'This sample file outlines dialog capabilities, including nesting dialog boxes.

Sub Main

Begin Dialog UserDialog1 60,60, 260, 188, "3", .Enable

        Text 8,10,73,13, "Text Label:"

        TextBox 8, 26, 160, 18, .FText

        CheckBox 8, 56, 203, 16, "Check to display controls",. Chk1

        GroupBox 8, 79, 230, 70, "This is a group box:", .Group

        CheckBox 18,100,189,16, "Check to change button text", .Chk2

        PushButton 18, 118, 159, 16, "File History", .History

        OKButton 177, 8, 58, 21

        CancelButton 177, 32, 58, 21

 End Dialog

    Dim Dlg1 As UserDialog1

    x = Dialog( Dlg1 )

End Sub

 

Function Enable( ControlID$, Action%, SuppValue%)

Begin Dialog UserDialog2 160,160, 260, 188, "3", .Enable

        Text 8,10,73,13, "New dialog Label:"

        TextBox 8, 26, 160, 18, .FText

        CheckBox 8, 56, 203, 16, "New CheckBox",. ch1

        CheckBox 18,100,189,16, "Additional CheckBox", .ch2

        PushButton 18, 118, 159, 16, "Push Button", .but1

        OKButton 177, 8, 58, 21

        CancelButton 177, 32, 58, 21

 End Dialog

 Dim Dlg2 As UserDialog2

 Dlg2.FText = "Your default string goes here"

Select Case Action%

 

Case 1

        DlgEnable "Group", 0

        DlgVisible "Chk2", 0

        DlgVisible "History", 0               

Case 2

        If ControlID$ = "Chk1" Then

                  DlgEnable "Group"

                  DlgVisible "Chk2"

                  DlgVisible "History"

        End If

 

        If ControlID$ = "Chk2" Then

                  DlgText "History", "Push to display nested dialog"

        End If

 

        If ControlID$ = "History" Then

                   Enable =1            

                   x = Dialog( Dlg2 )

        End If        

Case Else

 

End Select

Enable =1

 

End Function

 

 

OLE Automation

What is OLE Automation?

OLE Automation is a standard, promoted by Microsoft that applications use to expose their OLE objects to development tools, Enable Basic, and containers that support OLE Automation. A spreadsheet application may expose a worksheet, chart, cell, or range of cells all as different types of objects. A word processor might expose objects such as application, paragraph, sentence, bookmark, or selection.

When an application supports OLE Automation, the objects it exposes can be accessed by Enable Basic. You can use Enable Basic to manipulate these objects by invoking methods on the object, or by getting and setting the object’s properties, just as you would with the objects in Enable Basic. For example, if you created an OLE Automation object named MyObj, you might write code such as this to manipulate the object:

Sub Main

Dim MyObj As Object

Set MyObj = CreateObject ("Word.Basic")

MyObj.FileNewDefault

MyObj.Insert "Hello, world."

MyObj.Bold 1

End Sub

[image: image25.png]Documentl4 ~1-

Hatlo, wold.





The following syntax is supported for the GetObject function:

Set MyObj = GetObject ("", class)  

Where class is the parameter representing the class of the object to retrieve. The first parameter at this time must be an empty string.

The properties and methods an object supports are defined by the application that created the object. See the application's documentation for details on the properties and methods it supports.

OLE Fundamentals

OLE Object

An OLE object refers to a discrete unit of data supplied by an OLE application. An application can expose many types of objects. For example a spreadsheet application can expose a worksheet, macro sheet, chart, cell, or range of cells all as different types of objects. You use the OLE control to create linked and embedded objects. When a linked or embedded object is created, it contains the name of the application that supplied the object, its data (or, in the case of a linked object, a reference to the data), and an image of the data.

OLE Automation

Some applications provide objects that support OLE Automation. You can use Enable Basic to programmatically manipulate the data in these objects. Some objects that support OLE Automation also support linking and embedding. You can create an OLE Automation object by using the CreateObject function.

Class

An objects class determines the application that provides the objects data and the type of data the object contains. The class names of some commonly used Microsoft applications include MSGraph, MSDraw, WordDocument, and ExcelWorksheet.

Making Applications Work Together

WIN.INI

The win.ini file contains a special section called [embedding] that contains information about each of three applications that operate as object servers.

The Registration Database.

Starting with Windows 3.1, Each Windows system maintains a registration database file that records details about the DDE and OLE functions supported by the installed applications. The database is stored in  file called REG.DAT in the \ WINDOWS directory.

Associations.

The table contains information that associates files with specific extensions to particular applications. This is essentially the same function performed by the [extensions] section of the WIN.INI.

 XE "Shell" \* MERGEFORMAT Shell Operations.

Windows contains two programs that are referred to as Shell programs. The term Shell  refers to a program that organizes basic operating system tasks, like running applications, opening files, and sending files to the printer. Shell programs use list, windows, menus, and dialog boxes to perform these operations. In contrast, command systems like DOS require the entry of explicit command lines to accomplish these tasks

OLE Object Servers.

The registration database maintains a highly structured database of the details needed by programs that operate as object servers. This is by far the most complex task performed by the database. There is no WIN.INI equivalent for this function.

 XE "OLE Automation:What is OLE Automation?" \* MERGEFORMAT 

 XE "OLE Automation" \* MERGEFORMAT DDE/OLE Automation. 

The registration database contains the details and the applications that support various types of DDE/OLE Automation operations.

It is useful to appreciate the difference in structure between the WIN.INI file and the REG.DAT database. WIN.INI is simply a text document. There are no special structures other than headings (simply titles enclosed in brackets) that organize the information.  If you want to locate an item in the WIN.INI file, you must search through the file for the specific item you want to locate. The registration database is a tree-like, structured database used for storing information relating to program and file operations, in particular, those that involve the use of DDE or OLE. The tree structure makes it easier to keep the complex set of instructions, needed to implement DDE and OLE operations, organized and accessible by the applications that need to use them. This is not possible when you are working with a text document like WIN.INI. The WIN.INI file records all sorts or information about the Windows system in a simple sequential listing.

 

Chapter 4: Scripting Language Overview

Quick Reference of Functions and Statements Available

Type/Functions/Statements XE "Type/Functions/Statements" \* MERGEFORMAT 
	Flow of Control

	Goto, End, OnError, Stop, Do...Loop, Exit Loop, For...Next, Exit For, If..Then..Else...End If, Return, Stop, While...Wend, Select Case

 

	Converting

	Chr, Hex, Oct, Str, CDbl, CInt, Clng, CSng, CStr, CVar, CVDate, Asc, Val, Date, DateSerial, DateValue, Format, Fix, Int, Day, Weekday, Month, Year, Hour, Minute, Second, TimeSerial, TimeValue

 

	Dialog

	Text, TextBox, ListBox, DropList, ComboBox, CheckBox, OKButton, BeginDialog, EndDialog, OptionGroup, OKButton, CancelButton, PushButton, Picture, GroupBox, Multi-line TextBox,

 

	File I/O

	FileCopy, XE "FileCopy" \* MERGEFORMAT ChDir, XE "ChDir" \* MERGEFORMAT ChDrive, XE "ChDrive" \* MERGEFORMAT CurDir, CurDir, MkDir,RmDir, Open, Close, Print #, Kill, FreeFile, LOF, FileLen, Seek, EOF, Write #, Input, Line Input, Dir, Name, GetAttr, SetAttr, Dir, Get, Put               

 

	Math

	Exp, XE "Exp" \* MERGEFORMAT Log, Sqr, Rnd, Abs, Sgn, Atn, Cos, Sin, Tan, Int, Fix

 

	Procedures

	Call,  Declare, Function, End Function, Sub, End Sub, Exit, Global

 

	Strings

	Let, Len, InStr, Left, Mid, Asc, Chr, Right, LCase, Ucase, InStr, LTrim, RTrim, Trim, Option Compare, Len, Space, String, StrComp Format, 

 

	Variables and Constants

	Dim, IsNull, IsNumeric,VarType, Const, IsDate, IsEmpty, IsNull, Option Explicit, Global, Static,

 

	Error Trapping

	On Error, Resume 

 

	Date/Time

	Date, Now, Time, Timer

 

	DDE

	DDEInitiate, DDEExecute, DDETerminate

 

	Arrays

	Option Base, Option Explicit, Static, Dim, Global, Lbound, Ubound, Erase, ReDim 

 

	Miscellaneous

	SendKeys, AppActivate, Shell, Beep, Rem, CreateObject, GetObject, Randomize

 


 

Data Types XE "Data Types" \* MERGEFORMAT 
	Variable
	Type Specifier
	Usage

	String
	$
	Dim Str_Var As String

	Integer
	%
	Dim Int_Var As Integer

	Long
	&
	Dim Long_Var As Long

	Single
	!
	Dim Sing_Var As Single

	Double
	#
	Dim Dbl_Var As Double

	Variant
	 
	Dim X As Any

	Boolean
	 
	Dim X As Boolean

	Byte
	 
	Dim X As Byte

	Object
	 
	Dim X As Object

	Currency
	 
	(Not currently supported)


 

 XE "Operators" \* MERGEFORMAT Operators

Arithmetic Operators

	Operator
	Function
	Usage

	^
	Exponentiation
	x = y^2

	-
	Negation
	x = -2

	*
	Multiplication
	x% = 2 * 3

	/
	division
	x = 10/2

	Mod
	Modulo
	x = y Mod z

	+
	Addition
	x = 2 + 3

	-
	Subtraction
	x = 6 - 4


*Arithmetic operators follow mathematical rules of precedence

* '+' or '&' can be used for string concatenation.

 

Relational Operators

	Operator
	Function
	Usage

	<
	Less than
	x < Y

	<=
	Less than or equal to
	x <= Y

	=
	Equals
	x = Y

	>=
	Greater than or equal to
	x >= Y

	>
	Greater than
	x > Y

	<>
	Not equal to
	x <> Y


Logical Operators

	Operator
	Function
	Usage

	Not
	Logical Negation
	If Not (x)

	And
	Logical And
	If (x> y) And (x < Z)

	Or
	Logical Or
	if (x = y) Or (x = z)


Operator Precedence

	Operator
	Description
	Order

	()
	Parenthesis
	Highest

	^
	Exponentiation
	 

	-
	Unary minus
	 

	/,*
	Division / Multiplication
	 

	mod
	Modulo
	 

	+, -, &
	Addition, subtraction, concatenation
	 

	=, <>, <, >,<=,>=
	Relational
	 

	not
	Logical negation
	 

	and
	Logical conjunction
	 

	or
	Logical disjunction
	 

	Xor
	Logical exclusion
	 

	Eqv
	Logical Equivalence
	 

	Imp
	Logical Implication
	Lowest


Functions, Statements, Reserved words - Quick Reference

Abs, Access, Alias, And Any 

App, AppActivate, Asc, Atn, As     

Base, Beep, Begin, Binary, ByVal

Call, Case, ChDir,  XE "ChDir" \* MERGEFORMAT ChDrive, Choose, Chr, Const, Cos, CurDir,  CDbl, CInt, CLng, CSng, CStr, CVar,  CVDate,Close, CreateObject

Date, Day, Declare, Dim, Dir, Do...Loop,Dialog, DDEInitiate

DDEExecute, DateSerial, DateValue, Double   

Else, ElseIf, End, EndIf, EOF, Eqv, Erase, Err, Error

Exit, Exp, Explicit   

False, FileCopy, FileLen, Fix, For,

For...Next, Format, Function               

Get, GetAttr, GoTo, Global, Get Object

Hex, Hour

If...Then...Else...[End If], Imp, Input, InputBox, InStr, Int, Integer, Is, IsEmpty, IsNull, IsNumeric, IsDate 

Kill

LBound, LCase, Left, Len, Let, LOF,Log, Long, Loop, LTrim Line Input   

Mid,Minute, MkDir, Mod, Month, MsgBox

Name, Next, Not, Now

Oct,On, Open, OKButton,Object, Option, Optional, Or, On Error

Print, Print #, Private, Put

Randomize, Rem, ReDim, RmDir, Rnd, Return, Rtrim

Seek, SendKeys, Set, SetAttr, Second, Select, Shell, Sin, Sqr, Stop,Str, Sng, Single, Space, Static, Step, Stop, Str, String, Sub, StringComp

Tan,Text, TextBox, Time, Timer, TimeSerial, TimeVale, Then, Type, Trim, True, To, Type

UBound, UCase, Ucase, Until

Val, Variant, VarType

Write #, While, Weekday, Wend, With

Xor

Year

Chapter 5: Language Reference A to Z

 XE "Abs Function" \* MERGEFORMAT 

 XE "Abs Function" \* MERGEFORMAT Abs Function

 

Abs (number)

 

Returns the absolute value of a number.

The data type of the return value is the same as that of the number argument. However, if  the number argument is a Variant of VarType (String) and can be converted to a number, the return value will be a Variant of VarType (Double). If the numeric expression results in a Null, _Abs returns a Null.

Example:

Sub Main

        Dim Msg, X, Y

        X = InputBox("Enter a Number:")

        Y = Abs(X)

        Msg = "The number you entered is "  & X 

        Msg = Msg + ". The Absolute value of " & X & " is " & Y

        MsgBox Msg 'Display Message.       

End Sub

[image: image26.png]InputBox Dialog

Enter a Number





 XE "AppActivate Statement" \* MERGEFORMAT AppActivate Statement

 

AppActivate “app”
 

Activates an application.

The parameter app is a string expression and is the name that appears in the title bar of the application window to activate.

Related Topics: Shell, SendKeys
Example:

Sub Main ()

        AppActivate "Microsoft Word"

        SendKeys “%F,%N,Cypress Enable”,True

        Msg = “Click OK to close Word”

        MsgBox Msg 

        AppActivate “Microsoft Word”               

        SendKeys “%F,%C,N”, True                     

End Sub

[image: image27.png]e

OK to close Word

OK!





 

 XE "Asc Function" \* MERGEFORMAT Asc Function

 

Asc ( str)

 

Returns a numeric value that is the ASCII code for the first character in a string.

 

Example:

 

Sub Main ()

    Dim I, Msg                      ' Declare variables.

    For I = Asc("A") To Asc("Z")    ' From A through Z.

        Msg = Msg & Chr(I)          ' Create a string.

    Next I

    MsgBox Msg                      ' Display results.

End Sub

 

 XE "Atn Function" \* MERGEFORMAT Atn Function

 

Atn (rad )

 

Returns the arc tangent of a number

The argument rad can be any numeric expression. The result is expressed in radians

Related Topics:  Cos, Tan, Sin 
 

Example:

 

Sub AtnExample ()

    Dim Msg, Pi         ' Declare variables.

    Pi = 4 * Atn(1)    ' Calculate Pi.

    Msg = "Pi is equal to " & Str(Pi)

    MsgBox Msg          ' Display results.

End Sub

 

[image: image28.png]— I

equalto 314159

OK!





 XE "Beep Statement" \* MERGEFORMAT Beep Statement

 

Beep

 

Sounds a tone through the computer's speaker. The frequency and duration of the beep depends on hardware, which may vary among computers.

 

Example:

 

Sub BeepExample ()

Dim Answer, Msg ' Declare variables.

Do

Answer = InputBox("Enter a value from 1 to 3.")

If Answer >= 1 And Answer <= 3 Then   ' Check XE "Check D2HBCheck59" \* MERGEFORMAT range.

Exit Do ' Exit Do...Loop.
Else

Beep   ' Beep if not in range.

End If

Loop

MsgBox "You entered a value in the proper range."

End Sub

 

[image: image29.png]InputBox Dialog

Enter a value from 1 to 3.





 XE "Call Statement" \* MERGEFORMAT Call Statement

 

Call funcname [(parameter(s)]

or

[parameter(s)]

 

Activates an Enable Subroutine called name or a DLL function with the name name. The first parameter is the name of the function or subroutine to call, and the second is the list of arguments to pass to the called function or subroutine.

You are never required to use the Call statement when calling an Enable subroutine or a DLL function. Parentheses must be used in the argument list if the Call statement is being used.

 

Example:

 

Sub Main ()

Call Beep

MsgBox "Returns a Beep"

End Sub

 

[image: image30.png]— I

Returns a Beep

OK!





 XE "CBool Function" \* MERGEFORMAT CBool Function

 

CBool (expression)

 

Converts expressions from one data type to a boolean. The parameter expression must be a valid string or numeric expression.

 

Example:

 

Sub Main
  Dim A, B, Check

  A = 5: B = 5         

  Check = CBool(A = B)       

  Print Check

  A = 0

  Check = CBool(A)              

  Print Check

End Sub

 

 

 XE "CDate Function" \* MERGEFORMAT CDate Function

 

CVDate (expression)

 

Converts any valid expression to a Date variable with a vartype of  7.

The parameter expression must be a valid string or numeric date expression and can represent a date from January 1, 30 through December 31, 9999.

 

Example:

 

Sub Main
Dim MyDate, MDate, MTime, MSTime

MybDate = "May 29, 1959"               ' Define date.
MDate = CDate(MybDate) ' Convert to Date data type.

MTime = "10:32:27 PM"      ' Define time.
MSTime = CDate(MTime)  ' Convert to Date data type.

Print MDate

Print MSTime

End Sub

 

 

 XE "CDbl Function" \* MERGEFORMAT CDbl Function

 

CDbl (expression)

 

Converts expressions from one data type to a double. The parameter expression must be a valid string or numeric expression.

 

Example:

 

Sub Main ()

Dim y As Integer

y = 25555 'the integer expression only allows for 5 digits

If  VarType(y) = 2 Then

Print y

x = CDbl(y)   'Converts the integer value of y to a double value in x

x = x * 100000 'y is now 10 digits in the form of x   '  

Print x

End If

End Sub

 

 

 XE "ChDir" \* MERGEFORMAT ChDir Statement

 

ChDir pathname
 

Changes the default directory 

 

Pathname: [drive:] [ \ ] dir[\dir]...

 

The parameter pathname is a string limited to fewer then 128 characters. The drive parameter is optional. The dir parameter is a directory name. ChDir changes the default directory on the current drive, if the drive is omitted.

Related Topics:  CurDir, CurDir$, ChDrive, Dir, Dir$, MkDir, RmDir
 

Example:

 

Sub Main ()

        Dim Answer, Msg, NL                ' Declare variables.

        NL = Chr(10) ' Define newline.

        CurPath = CurDir()       ' Get current path.

        ChDir "\"

        Msg = "The current directory has been changed to "

        Msg = Msg & CurDir() & NL & NL & "Press OK to change back "

        Msg = Msg & "to your previous default directory."

        Answer = MsgBox(Msg)            ' Get user response.

        ChDir CurPath             ' Change back to user default.

        Msg = "Directory changed back to " & CurPath & "."

        MsgBox Msg                ' Display results.

End Sub

 

 XE "ChDrive Statement" \* MERGEFORMAT ChDrive Statement

 

ChDrive drivename
 

Changes the default drive

 

The parameter drivename is a string and must correspond to a an existing drive. If  drivename contains more than one letter, only the first  character is used.

 

Example:

 

Sub Main ()

        Dim Msg, NL                ' Declare variables.

        NL = Chr(10) ' Define newline.

        CurPath = CurDir()       ' Get current path.

        ChDir "\"

        ChDrive "C:"

        Msg = "The current directory has been changed to "

        Msg = Msg & CurDir() & NL & NL & "Press OK to change back "

        Msg = Msg & "to your previous default directory."

        MsgBox Msg                ' Get user response.

        ChDir CurPath              ' Change back to user default.

        Msg = "Directory changed back to " & CurPath & "."

        MsgBox Msg                ' Display results.

End Sub

 

Related Topics: ChDir, CurDir, CurDir$, MkDir, RmDir
 XE "CheckBox" \* MERGEFORMAT CheckBox

 

CheckBox starting x position, starting y position, width, height
 

For selecting one or more in a series of choices

 

Example:

 

Sub Main ()
    Begin Dialog DialogName1 60, 70, 160, 50, "ASC - Hello"  

        CHECKBOX 42, 10, 48, 12, "&CHECKME", .checkInt

        OKBUTTON 42, 24, 40, 12

     End Dialog

    Dim Dlg1 As DialogName1
    Dialog Dlg1

    If Dlg1.checkInt = 0 Then
           Q = "didn't check XE "Check" \* MERGEFORMAT the box."
     Else

           Q = "checked the box."

    End If

    MsgBox "You " & Q 

End Sub

 XE "Choose Function" \* MERGEFORMAT Choose Function

 

Choose(number, choice1, [choice2,] [choice3,]… )

 

Returns a value from a list of arguments

Choose will return a null value if number is less than one or greater than the number of choices in the list. If number is not an integer it will be rounded to the nearest integer.

 

Example:

 

Sub Main
    number = 2

    GetChoice = Choose(number, "Choice1", "Choice2", "Choice3")

    Print GetChoice

End Sub

 

 XE "Chr Function" \* MERGEFORMAT Chr Function

 

Chr(int )

 

Returns a one-character string whose ASCII number is the argument

Chr returns a String

 

Example:

 

Sub ChrExample ()

        Dim X, Y, Msg, NL

        NL = Chr(10)

        For X = 1 to 2

                For Y = Asc("A") To Asc("Z")

                                Msg = Msg & Chr(Y)

                Next Y

        Msg = Msg & NL

        Next X

        MsgBox Msg

End Sub

 

[image: image31.png]=

ABCDEFGHIJKLMNOPQRSTUVWXYZ
ABCDEFGHIJKLMNOPQRSTUVWXYZ

OK!





 XE "Cint Function" \* MERGEFORMAT CInt Function

 

CInt (expression)

 

Converts any valid expression to an integer.

                                

Example:
Sub Main ()

Dim y As Long

y = 25 

If  VarType(y) = 2 Then

Print y

x = CInt(y)   'Converts the long value of y to an integer value in x

Print x

End If

End Sub

 

 XE "CLng Function" \* MERGEFORMAT CLng Function

 

CLng (expression)

 

Converts any valid expression  into a long.

 

Example:

Sub Main ()
    Dim y As Integer

 

    y = 25000           'the integer expression can only hold five digits

    If  VarType(y) = 2 Then

      Print y

      x = CLng(y)  'Converts the integer value of x to a long value in x

      x = x * 10000 'y is now ten digits in the form of x 

      Print x

    End If

End Sub

 

 XE "Close Statement" \* MERGEFORMAT Close Statement

 

Close [[#filenumber] [, [#]filenumber],,,
 

The Close Statement takes one argument filenumber. Filenumber  is the number used with the Open Statement to open the file. If the Close Statement is used without any arguments it closes all open files.

 

Example:

 

Sub Main

Open "c:\test.txt" For Input As #1

Do While Not EOF(1)

        MyStr = Input(10, #1)

        MsgBox MyStr

Loop

Close #1

 

End Sub

 

Sub Make3Files ()

Dim I, FNum, FName    ' Declare variables.

For I = 1 To 3

FNum = FreeFile  ' Determine next file number.

FName = "TEST" & FNum

Open FName For Output As FNum  ' Open file.

Print #I, "This is test #" & I              ' Write string to file.

Print #I, "Here is another ";  "line";  I

Next I

Close              ' Close all files.

End Sub

 

[image: image32.png]Directories:

€ dialog
& dialogde
an
ae

=e: %] I Confim

Conversions

testgets.bas
List Files of Type:

|All Files (%) 3] I Bead Only





 

Const Statement

 XE "Const Statement" \* MERGEFORMAT Const Statement  

 

Const name = expression
 

Assigns a symbolic name to a constant value. 

A constant must be defined before it is used. 

 

The definition of a Const in Cypress Enable outside the procedure or at the module level XE "Level" \* MERGEFORMAT is a global. The syntax Global Const and Const are used below outside the module level are identical. 

A type declaration character may be used however if none is used Enable will automatically assign one of the following data types to the constant, long (if it is a long or integer), Double (if a decimal place is present), or a String ( if it is a string).  

 

Example:

 

Sub Main ()

Global Const Height = 14.4357     '

Const PI = 3.14159      'Global to all procedures in a module

Begin Dialog DialogName1 60, 60, 160,70, "ASC - Hello"

TEXT 10, 10, 100, 20, "Please fill in the radius of circle x"

TEXT 10, 40, 28, 12, "Radius"

TEXTBOX 42, 40, 28, 12, .Radius

OKBUTTON 42, 54,40, 12

End Dialog

Dim Dlg1 As DialogName1

Dialog Dlg1

CylArea = Height * (Dlg1.Radius * Dlg1.Radius) * PI

MsgBox "The volume of Cylinder x is " & CylArea 

End Sub

 

Cos XE "Cos" \* MERGEFORMAT Function 

 

Cos (rad)

 

Returns the cosine of an angle

The argument rad must  be expressed in radians and must be a valid numeric expression.Cos will by default return a double unless a single  or integer is specified as the return value. 

 

Example:

 

Sub Main()

    Dim J As Double

    Dim I As Single                    ' Declare variables.

    Dim K As Integer

    For I =1 To 10    '

        Msg = Msg & Cos(I) & ", "          'Cos function call

        J=Cos(I)
        Print J

        K=Cos(I)        

        Print K            

    Next I

    MsgBox Msg                      ' Display results.

    MsgBox Msg1

End Sub

 

 XE "CreateObject" \* MERGEFORMAT CreateObject Function

 

CreateObject (class)

 

Creates an OLE automation object.

 

 

CreateObject Example

Sub Command1_Click ()

    Dim word6 As object

    Set word6 = CreateObject("Word.Basic")

    word6.FileNewDefault

    word6.InsertPara

    word6.Insert "Attn:"

    word6.InsertPara

    word6.InsertPara

    word6.InsertPara

    word6.Insert "          Vender Name: "

    word6.Bold 1

    name = "Some Body"

    word6.Insert name

    word6.Bold 0

    word6.InsertPara

    word6.Insert "    Vender Address:"

    word6.InsertPara

    word6.Insert "        Vender Product:"

    word6.InsertPara

    word6.InsertPara

    word6.Insert "Dear Vender:"

    word6.InsertPara

    word6.InsertPara

    word6.Insert "The letter you are reading was created with Cypress Enable."

    word6.Insert " Using OLE Automation Cypress Enable can call any other OLE _ enabled "

    word6.Insert "application. Enable is a Basic Scripting Language for _ applications"

    word6.InsertPara

    word6.InsertPara

    word6.Insert "      Product Name: Cypress Enable"

    word6.InsertPara

    word6.Insert "      Company Name: Cypress Software Inc."

    word6.InsertPara

    

    word6.InsertPara

   MsgBox "You have just called Word 6.0 using OLE"

End Sub

Vender Name: Client Name
Vender Address:

Vender Product:

Dear Vender:

        The letter you are reading was created with Cypress Enable.Using OLE Automation Cypress Enable can call any other OLE enabled application. Enable is a Basic Scripting Language for applications

                 Product Name: Cypress Enable

                 Company Name: Cypress Software Inc.

[image: image33.png]You have just called Word 6.0 using OLE

OK!





 XE "CSng Function" \* MERGEFORMAT CSng Function

 

CSng (expression)

 

Converts any valid expression to a  Single.

 

Example:

 

Sub Main ()

    Dim y As Integer

 

    y = 25 

    If  VarType(y) = 2 Then

        Print y

        x = CSng(y)   'Converts the integer value of y to a single value in x

       Print x

    End If

End Sub

 

 

 XE "CStr Function" \* MERGEFORMAT CStr Function

 

CStr(expression)

 

Converts any valid expression to a  String.

 

Example:

Sub Main                               
Dim Y As Integer

Y = 25

Print Y

If VarType(Y) = 2 Then

X = CStr(Y) 'converts Y To a Str

X = X + "hello"  'It is now possible to combine Y with strings

Print X

End If

End Sub

 

 

 XE "CurDir Function" \* MERGEFORMAT CurDir Function

 

CurDir (drive)

 

Returns the current path for the specified drive

CurDir returns a Variant; CurDir$ returns a String.

 

Example:

 

'Declare Function CurDir Lib "NewFuns.dll" ()  As String

Sub Form_Click ()

        Dim Msg, NL                ' Declare variables.

        NL = Chr(10) ' Define newline.

        Msg = "The current directory is: "

        Msg = Msg & NL & CurDir()   

        MsgBox Msg                ' Display message.

End Sub

 

[image: image34.png]—

The current directory is:
CAENABLE

OK!





 XE "CVar Function" \* MERGEFORMAT CVar Function

 

CVar (expression)

 

Converts any valid expression to a Variant.

 

Example:

 

Sub Main()
 

        Dim MyInt As Integer

        MyInt = 4534

        Print MyInt

        MyVar = CVar(MyInt & "0.23") 'makes MyInt a Variant + 0.32

        Print MyVar

 

End Sub

 

 

 XE "Date Function" \* MERGEFORMAT Date Function

 

Date, Date()

 

Returns the current system date

Date returns a Variant of VarType 8 (String) containing a date.

 

Example:

' Format Function Example

' This example shows various uses of the Format function to format values

' using both named and user-defined formats. For the date separator (/),

' time separator (:), and AM/ PM literal, the actual formatted output

' displayed by your system depends on the locale settings on which the code

' is running. When times and dates are displayed in the development

' environment, the short time and short date formats of the code locale

' are used. When displayed by running code, the short time and short date 

' formats of the system locale are used, which may differ from the code

' locale. For this example, English/United States is assumed.

 

' MyTime and MyDate are displayed in the development environment using

' current system short time and short date settings.

 

Sub Main

x = Date()
Print Date

Print x

Print “VarType: “ & VarType(Date)

MyTime = "08:04:23 PM"

MyDate = "03/03/95"

MyDate = "January 27, 1993"

SysDate = Date

MsgBox Sysdate,0,"System Date"

MsgBox Now,0,"Now"

MsgBox MyTime,0,"MyTime"

MsgBox Second( MyTime ) & " Seconds"

MsgBox Minute( MyTime ) & " Minutes"

MsgBox Hour( MyTime ) & " Hours"

MsgBox Day( MyDate ) & " Days"

MsgBox Month( MyDate ) & " Months"

MsgBox Year( MyDate ) & " Years"

' Returns current system time in the system-defined long time format.

MsgBox Format(Time, "Short Time") & " Short Time"

MsgBox Format(Time, "Long Time") & "Long Time"   

' Returns current system date in the system-defined long date format.

MsgBox Format(Date, "Short Date") & " Short Date"

MsgBox Format(Date, "Long Date") & " Long Date"

MyDate = "30 December 91" ' use of European date 

print Mydate

MsgBox MyDate,0,"MyDate International..."

MsgBox Day(MyDate),0,"day"

MsgBox Month(MyDate),0,"month"

MsgBox Year(MyDate),0,"year"

MyDate = "30-Dec-91" ' another of European date usage

print Mydate

MsgBox MyDate,0,"MyDate International..."

MsgBox Day(MyDate),0,"day"

MsgBox Month(MyDate),0," month"

MsgBox Year(MyDate),0,"year"

MsgBox Format("This is it", ">")        ' Returns "THIS IS IT".

End Sub

 XE "DateSerial" \* MERGEFORMAT DateSerial Function

 

DateSerial (year, month,day)

 

Returns a variant (Date) corresponding to the year, month and day that were passed in. All three parameters for the DateSerial Function are required and must be valid.

Related Topics: DateValue, TimeSerial, TimeValue
 

Example:

Sub Main

Dim MDate

MDate = DateSerial(1959, 5, 29)

Print MDate

End Sub

 

 XE "DateValue" \* MERGEFORMAT DateValue Function

 

DateValue(dateexpression)

 

Returns a variant (Date) corresponding to the string date expression that was passed in. dateexpression can be a string or any expression that can represent a date, time or both a date and a time.

Related Topics: DateSerial, TimeSerial, TimeValue
Example:

Sub Main()
Dim v As Variant

Dim d As Double

        d = Now

        Print d         
        v = DateValue("1959/05/29")

        MsgBox (VarType(v))

        MsgBox (v)
End Sub

 

 XE "Day Function" \* MERGEFORMAT Day Function

 

Day(dateexpression)

 

Returns a variant date corresponding to the string date expression that was passed in. dateexpression can be a string or any expression that can represent a date.

Related Topics: Month, Weekday, Hour, Second
 

Example:

Sub Main

   Dim MDate, MDay

   MDate = #May 29, 1959#     
   MDay = Day(MDate)    

   Print "The Day listed is the " & MDay

End Sub

 

 XE "Declare Statement" \* MERGEFORMAT Declare Statement

 

Declare Sub procedurename Lib Libname$ [Alias aliasname$][(argument list)]

Declare Function procedurename Lib Libname$ [Alias aliasname$] [(argument list)][As Type]

 

· The Declare statement  makes a reference to an external procedure in a Dynamic Link Library (DLL). 

· The procedurename parameter is the name of the function or subroutine being called. 

· The Libname parameter is the name of the DLL that contains the procedure.

· The optional Alias aliasname clause is used to supply the procedure name in the DLL if different from the name specified on the procedure parameter. When the optional argument list needs to be passed the format is as follows:

 

([ByVal] variable [As type] [,ByVal] variable [As type] ]…])

 

· The optional ByVal parameter specifies that the variable is [passed by value instead of by reference (see “ByRef and  ByVal” in this manual). The optional As type parameter is used to specify the data type. Valid types are String, Integer, Double, Long, and Varaint (see “Variable Types” in this manual). 

 

If a procedure has no arguments, use double parentheses () only to assure that no arguments are passed. For example:

 

Declare Sub OntTime Lib “Check XE "Check" \* MERGEFORMAT ” ()

 

Cypress Enable extentions to the declare statement. The following syntax is not supported by Microsoft Visual Basic. 

 

Declare Function procedurename App [Alias aliasname$] [(argument list)][As Type]

 

This form of the Declare statement  makes a reference to a function located in the executable file located in the application where Enable is embedded.

Related Topics: Call
 

 

Example:

Declare Function GetFocus Lib "User" () As Integer

Declare Function GetWindowText Lib "User" (ByVal hWnd%, ByVal Mess$, ByVal cbMax%) As _ Integer

 

Sub Main

    Dim hWindow%

    Dim str1 As String *51

    Dim str2 As String * 25

    hWindow% = GetFocus()

    print "GetWindowText returned: ", GetWindowText( hWindow%, str1,51 )

    print "GetWindowText2 returned: ", GetWindowText( hWindow%, str2, 25)

    print str1

    print str2

 

End Sub

 

[image: image35.png]Enable Scripting Language Editor

GetWindowText returned: 50





 

 XE "Dialog Dialog Function" \* MERGEFORMAT Dialog, Dialog Function  

 

Dialog(DialogRecord)

 

Returns a value corresponding to the button the user chooses.

The Dialog() function is used to display the dialog box specified by DialogRecord . DialogRecord is the name of the dialog and must be defined in a preceeding Dim statement.

The return value or button:

 -1 = OK button

  0 =  Cancel button

> 0 A command button where 1 is the first PushButton in the definition of the dialog and 2 is the second  and so on.

 

Example:

' This sample shows all of the dialog controls on one dialog and how to

' vary the response based on which PushButton was pressed.

 

Sub Main ()

    Dim MyList$(2)

    MyList(0) = "Banana"

    MyList(1) = "Orange"

    MyList(2) = "Apple"

    Begin Dialog DialogName1 60, 60, 240, 184, "Test Dialog"

        Text 10, 10, 28, 12, "Name:"

        TextBox 40, 10,50, 12, .joe

        ListBox 102, 10, 108, 16, MyList$(), .MyList1

        ComboBox 42, 30, 108, 42, MyList$(), .Combo1

        DropListBox 42, 76, 108, 36, MyList$(), .DropList1$

        OptionGroup .grp1

            OptionButton 42, 100, 48, 12, "Option&1"

            OptionButton 42, 110, 48, 12, "Option&2"

        OptionGroup .grp2

            OptionButton 42, 136, 48, 12, "Option&3"

            OptionButton 42, 146, 48, 12, "Option&4"

        GroupBox 132, 125, 70, 36, "Group"

        CheckBox 142, 100, 48, 12, "Check&A XE "Check" \* MERGEFORMAT ", .Check1

        CheckBox 142, 110, 48, 12, "Check&B", .Check2

        CheckBox 142, 136, 48, 12, "Check&C", .Check3

        CheckBox 142, 146, 48, 12, "Check&D", .Check4

        CancelButton 42, 168, 40, 12       

        OKButton 90, 168, 40, 12

        PushButton 140, 168, 40, 12, "&Push Me 1"

        PushButton 190, 168, 40, 12, "Push &Me 2"

    End Dialog

    Dim Dlg1 As DialogName1

    Dlg1.joe  = "Def String"

    Dlg1.MyList1 = 1

    Dlg1.Combo1 = "Kiwi"

    Dlg1.DropList1 = 2

    Dlg1.grp2 = 1

    ' Dialog returns -1 for OK, 0 for Cancel, button # for PushButtons

    button = Dialog( Dlg1 )

    'MsgBox "button: " & button 'uncomment for button return vale

    If button = 0 Then Return

    MsgBox "TextBox: "& Dlg1.joe

    MsgBox "ListBox: " & Dlg1.MyList1

    MsgBox Dlg1.Combo1

    MsgBox Dlg1.DropList1

    MsgBox "grp1: " & Dlg1.grp1

    MsgBox "grp2: " & Dlg1.grp2

    Begin Dialog DialogName2 60, 60, 160, 60, "Test Dialog 2"

        Text 10, 10, 28, 12, "Name:"

        TextBox 42, 10, 108, 12, .fred

        OkButton 42, 44, 40, 12

    End Dialog

    If button = 2 Then

        Dim Dlg2 As DialogName2
        Dialog Dlg2

        MsgBox Dlg2.fred

    ElseIf button = 1 Then

        Dialog Dlg1

        MsgBox Dlg1.Combo1

    End If

End Sub

 XE "Dim Statement" \* MERGEFORMAT Dim Statement

 

Dim variablename[(subscripts)][As Type][,name][As Type]]

 

Allocates storage for and declares the data type of variables and arrays in a module.

The types currently supported are integer, long, single, double and string and variant.

Note: While it may be possible in some cases to use variables without declaring them with the Dim statement first, doing so is not supported in Enable BASIC and may cause problems in your code.

Example:

Sub Main

    Dim x As Long

    Dim y As Integer
    Dim z As single

    Dim a As double

    Dim s As String

    Dim v As Variant ' This is the same as Dim x or Dim x as any

End Sub

 XE "Dir$ Function" \* MERGEFORMAT Dir Function       

 

Dir[(path,attributes)]

 

Returns the first file/directory name that matches the given path and attributes. If you want the next matched item simply use the Dir function again without any arguments.

path is optional and is the pathway to the directory or file. If no path is found the function returns a string of zero-length. You can also use  * and ? wild cards. For example d:\temp\*.bmp would match bitmap image files in that directory.

attributes is an optional number representing the sum of all the file or directory attributes. These attributes can be a combination of one or more of these values:

0 Normal (Default) 

1 Read-only 

2 Hidden 

4 System file 

8 Volume label 

16 Directory or folder 

64 File name is an alias 

So, to return a hidden system file, you would use a value of 6 (4 for the system file attribute plus 2 for the hidden attribute).Most of the time you will just use 0.

 

Example:

'===============================================================

' Example of using the Dir Function

' This script displays all the files In the specified directory.

' Files will be displayed one at a time inside message boxes.

'===============================================================

Sub Main

   Dim filename As String

   Dim dirname As String

   dirname = InputBox("Please type a directory's pathway (be sure to include the ending backslash):","Directory")

   filename = Dir(dirname & "*.*",0)

   Dim count As Integer

   count = 0

   While filename <> ""

      count = count +1

      MsgBox count & " - " & filename        

      filename = Dir ' find the Next file

   Wend

End Sub

 

 

 XE "DlgEnable Statement" \* MERGEFORMAT DlgEnable Statement

 

DlgEnable “ControlName”, Value
 

This statement is used to enable or disable a particular control on a dialog box.

The  parameter ControlName  is the name of the control on the dialog box. The parameter Value  is the value to set it to. 1 = Enable, 0 = Disable. On is equal to 1 in the example below. If the second parameter is omitted the status of the control toggles. The entire example below can be found in the dialog section of this manual and in the example .bas files that ship with Cypress Enable.

Related Topics: DlgVisible, DlgText 
 

 

Example:

Function Enable( ControlID$, Action%, SuppValue%)

Begin Dialog UserDialog2 160,160, 260, 188, "3", .Enable

        Text 8,10,73,13, "New dialog Label:"

        TextBox 8, 26, 160, 18, .FText

        CheckBox 8, 56, 203, 16, "New CheckBox",. ch1

        CheckBox 18,100,189,16, "Additional CheckBox", .ch2

        PushButton 18, 118, 159, 16, "Push Button", .but1

        OKButton 177, 8, 58, 21

        CancelButton 177, 32, 58, 21

 End Dialog

 

Dim Dlg2 As UserDialog2

Dlg2.FText = "Your default string goes here"

Select Case Action%

Case 1

        DlgEnable "Group", 0

        DlgVisible "Chk2", 0

        DlgVisible "History", 0               

Case 2

        If ControlID$ = "Chk1" Then

                  DlgEnable "Group", On

                  DlgVisible "Chk2"

                  DlgVisible "History"

        End If

        If ControlID$ = "Chk2" Then

                  DlgText "History", "Push to display nested dialog"

        End If

        If ControlID$ = "History" Then

                   Enable =1            

                   Number = 4

                   MsgBox SQR(Number) & " The sqr of 4 is 2"

                   x = Dialog( Dlg2 )

        End If

        If ControlID$ = "but1" Then           

        End If

 

Case Else

End Select

Enable =1

End Function 

 

 XE "DlgText Statement" \* MERGEFORMAT DlgText Statement    

 

DlgText “ControlName”, String
 

This statement is used to set or change the text of a dialog control.

The  parameter ControlName  is the name of the control on the dialog box. The parameter String  is the value to set it to.

Related Topics: DlgEnable, DlgVisible 
 

 

Example:

If ControlID$ = "Chk2" Then

          DlgText "History", "Push to display nested dialog"

End If

 

 

 XE "DlgVisible Statement" \* MERGEFORMAT DlgVisible Statement       

 

DlgVisible “ControlName”, Value
 

This statement is used to hide or make visible a particular control on a dialog box.

The  parameter ControlName  is the name of the control on the dialog box. The parameter Value  is the value to set it to. 1 = Visible, 0 = Hidden. On is equal to 1. If the second parameter is omitted the status of the control toggles. The entire example below can be found in the dialog section of this manual and in the example .bas files that ship with Cypress Enable.

Related Topics: DlgEnable, DlgText 
 

Example:

If ControlID$ = "Chk1" Then

DlgEnable "Group", On

DlgVisible "Chk2"

DlgVisible "History"

End If

 

Do...Loop Statement XE "Do...Loop Statement" \* MERGEFORMAT 
 

Do [{While|Until} condition]

 [statements]

 [Exit Do] 

 [statements]

Loop       

 

Do 

[statements]

[Exit Do] 

[statements]

Loop   [{While|Until} condition]

 

Repeats a group of  statements while a condition is true or until a condition is met. 

Related Topics: While..Wend
 

 

Example:

Sub Main ()

    Dim Value, Msg         ' Declare variables.

    Do
        Value = InputBox("Enter a value from 5 to 10.")

        If Value >= 5 And Value <= 10 Then                                         

            Exit Do         ' Exit Do...Loop.
        Else

            Beep            ' Beep if not in range.

        End If

    Loop
End Sub

 

                [image: image36.png]InputBox Dialog

Enter a value from 5 to 10.





 XE "End Statement" \* MERGEFORMAT End Statement

 

End[{Function | If | Sub}]

 

Ends a program or a block of statements such as a Sub procedure or a function.

Related Topics: Exit, Function, If...Then...Else, Select Case, Stop
 

Example:

Sub Main()

 

        Dim Var1 as String

 

        Var1 = "hello"

        MsgBox " Calling Test"

        Test Var1

        MsgBox Var1

 

End Sub

 

Sub Test(wvar1 as string)

 

        wvar1 = "goodbye"

        MsgBox "Use of End Statement"

        End

 

End Sub

EOF Function

 XE "Eof" \* MERGEFORMAT 
EOF(Filenumber) 

 

Returns a value during file input that indicates whether the end of a file has been reached. 

Related Topics:  Open Statement
Example:

' Input Function Example

' This example uses the Input function to read 10 characters at a time from a ' file and display them in a MsgBox. This example assumes that TESTFILE is a 'text file with a few lines of 'sample data.

 

Sub Main

    Open "TESTFILE" For Input As #1          ' Open file.

    Do While Not EOF(1)                      ' Loop until end of file.

        MyStr = Input(10, #1)  ' Get ten characters.

        MsgBox MyStr

    Loop

    Close #1                                  ' Close file.

End Sub

 

 

 XE "Erase" \* MERGEFORMAT Erase Statement

 

Erase arrayname[,arrayname ]

 

Reinitializes the elements of a fixed array.

Related Topics: Dim
 

Example:

' This example demonstrates some of the  features of arrays. 

' The lower bound for an array is 0 unless it is specified 

' or option base has set it as is done in this example.

 

Option Base 1

 

Sub Main
' Declare array variables.

Dim Num(10) As Integer   ' Integer array.

Dim StrVarArray(10) As String   ' Variable-string array.

Dim StrFixArray(10) As String * 10   ' Fixed-string array.

Dim VarArray(10) As Variant   ' Variant array.

Dim DynamicArray() As Integer   ' Dynamic array.

ReDim DynamicArray(10)   ' Allocate storage space.
Erase Num   ' Each element set to 0.

Erase StrVarArray   ' Each element set to zero-length 

   ' string ("").  

Erase StrFixArray   ' Each element set to 0.

Erase VarArray   ' Each element set to Empty.

Erase DynamicArray   ' Free memory used by array.

End Sub

 

 XE "Exit Statement" \* MERGEFORMAT Exit Statement

 XE "Exp" \* MERGEFORMAT 
Exit {Do | For | Function | Sub }

 

Exits a loop or procedure

Related Topics: End Statement, Stop Statement
 

Example:

' This sample shows Do ... Loop with Exit Do to get out.

Sub Main ()

    Dim Value, Msg      ' Declare variables.

    Do
        Value = InputBox("Enter a value from 5 to 10.")

        If Value >= 5 And Value <= 10 Then  ' Check XE "Check" \* MERGEFORMAT range.

            Exit Do  ' Exit Do...Loop.
        Else

            Beep    ' Beep if not in range.

        End If

    Loop
End Sub

 

 XE "Exp" \* MERGEFORMAT Exp

 

Exp(num)

 

Returns the base of the natural log raised to a power (e ^ num).

The value of  the constant e is approximately 2.71828.

Related Topics: Log
 

Example:

Sub ExpExample ()

        ' Exp(x) is e ^x so Exp(1) is e ^1 or e.

        Dim Msg, ValueOfE     ' Declare variables.
        ValueOfE = Exp(1)        ' Calculate value of e.

        Msg = "The value of e is " & ValueOfE

        MsgBox Msg                ' Display message.

End Sub

 

[image: image37.png]— I

The value of e is 2.71828

OK!





 XE "FileCopy" \* MERGEFORMAT FileCopy Function

 

FileCopy( sourcefile, destinationfile)

 

Copies a file from source to destination.

The sourcefile and destinationfile parameters must be valid string expressions. sourcefile  is the file name of the file to copy, destinationfile  is the file name to be copied to.

 

Example:

Dim SourceFile, DestinationFile

SourceFile = "SRCFILE"   ' Define source file name.

DestinationFile = "DESTFILE"   ' Define target file name.

FileCopy SourceFile, DestinationFile   ' Copy source to target.

 

 XE "FileLen Function" \* MERGEFORMAT FileLen Function

 

FileLen( filename )

 

Returns a Long integer that is the length of the file in bytes

Related Topics: LOF Function
 

Example:

Sub Main

Dim MySize

MySize = FileLen("C:\TESTFILE") ' Returns file length (bytes).

Print MySize

End Sub

 XE "Fix Function" \* MERGEFORMAT Fix Function

 

Fix(number )

 

Returns the integer portion of a number

Related Topics: Int

 

Example:

Sub Main()

Dim MySize

MySize = Fix(4.345)

Print MySize

End Sub

 XE "For...Next Statement" \* MERGEFORMAT For each … Next Statement

 

For  Each  element in group

        [statements]

                [Exit For]

        [statements]

Next [element]

 

Repeats the group of statments for each element in an array of a collection. For each … Next statements can be nested if each loop element is unique. The For Each…Next statement cannot be used with and array of user defined types.

 

Example:

Sub Main

dim z(1 to 4) as double

z(1) = 1.11

z(2) = 2.22

z(3) = 3.33

For Each v In z

    Print v

Next v

End Sub

 

 XE "For...Next Statement" \* MERGEFORMAT For...Next Statement

 

For  counter = expression1 to expression2 [Step increment]
                [statements]

Next [counter]

 

Repeats the execution of a block of statements for a specified number of times.

 

Example:
Dim x,y,z

        

        For x = 1 to 5

                For y = 1 to 5

                                For z = 1 to 5

                                Print "Looping" ,z,y,x

                                Next z

                Next y

        Next x

End Sub

 

[image: image38.png]



Format Function

Predefined numeric format names:

Format

	Name 
	Description 

	General 
	Display the number as is, with no thousand Separators Number.

	Fixed 
	Display at least one digit to the left and two digits to the right of the decimal separator.

	Standard
	Display number with thousand separator, if appropriate; display two digits to the right of the decimal separator.

	Scientific

 
	Use standard scientific notation.

	True/False

 
	Display False if number is 0, otherwise display True.


Characters for Creating User-Defined Number Formats

The following shows the characters you can use to create user-defined number formats.

	Character 
	Meaning 

	Null string
	Display the number with no formatting.

	0
	Digit placeholder. Display a digit or a zero.

If the number being formatted has fewer digits than there are zeros (on either side of the decimal) in the format expression, leading or trailing zeros are displayed.

If the number has more digits to the right of the decimal separator than there are zeros to the right of the decimal separator in the format expression, the number is rounded to as many decimal places as there are zeros.

If the number has more digits to left of the decimal separator than there are zeros to the left of the decimal separator in the format expression, the extra digits are displayed without modification.

 

	#
	Digit placeholder. Displays a digit or nothing. If there is a digit in the expression being formatted in the position where the # appears in the format string, displays it; otherwise, nothing is displayed.

 

	.
	Decimal placeholder.The decimal placeholder determines how many digits are displayed to the left and right of the decimal separator.

 

 


 

	Character 
	Meaning 
	Description 

	%
	Percentage placeholder.
	The percent character (%) is inserted in the position where it appears in the format string. The expression is multiplied by 100.

 

	,
	Thousand separator.
	The thousand separator separates thousands from hundreds within a number that has four or more places to the left of the decimal separator.

Use of  this separator as specified in the format statement contains a comma surrounded by digit placeholders(0 or #). Two adjacent commas or a comma immediately to the left of the decimal separator (whether or not a decimal is specified) means “scale the number by dividing it by 1000, rounding as needed.”

 

	E-E+e-e+
	Scientific format.
	If the format expression contains at least one digit placeholder (0 or #) to the right of E-,E+,e- or e+, the number is displayed in scientific formatted E or e inserted between the number and its exponent. The number of digit placeholders to the right determines the number of digits in the exponent. Use E- or e- to place a minus sign next to negative exponents. Use E+ or e+ to place a plus sign next to positive exponents.

 

	:
	Time separator.

 
	The actual character used as the time separator depends on the Time Format specified in the International section of the Control Panel.

 

	/
	Date separator.

 
	The actual character used as the date separator in the formatted out depends on Date Format specified in the International section of the Control Panel.

 


 

	Character 
	Meaning 

	- + $ ( )

space
	Display a literal character.

To display a character other than one of those listed, precede it with a backslash (\).

	\
	Display the next character in the format string.

The backslash itself isn’t displayed. To display a backslash, use two backslashes (\\).
Examples of characters that can’t be displayed as literal characters are the date- and time- formatting characters (a,c,d,h,m,n,p,q,s,t,w,y, and /:), the numeric -formatting characters(#,0,%,E,e,comma, and period), and the string- formatting characters (@,&,<,>, and !).

	“String”
	Display the string inside the double quotation marks.

To include a string in fmt from within Enable, you must use the ANSI code for a double quotation mark Chr(34) to enclose the text.

	*
	Display the next character as the fill character.

Any empty space in a field is filled with the character following the asterisk.


Unless the fmt argument contains one of the predefined formats, a format expression for numbers XE "Numbers D2HBNumbers88" \* MERGEFORMAT can have from one to four sections separated by semicolons.

	If you use 
	The result is 

	One section only
	The format expression applies to all values.

	Two
	The first section applies to positive values, the second to negative sections values.

	Three
	The first section applies to positive values, the second to negative sections values, and the third to zeros.

	Four 
	The first section applies to positive values, the second to negative section values, the third to zeros, and the fourth to Null values.


The following example has two sections: the first defines the format for positive values and zeros; the second section defines the format for negative values.

“$#,##0; ($#,##0)”

If you include semicolons with nothing between them. the missing section is printed using the format of the positive value. For example, the following format displays positive and negative values using the format in the first section and displays “Zero” if the value is zero.

“$#,##0;;\Z\e\r\o”

 

Sample Format Number Expressions 

Some sample format expressions for numbers are shown below. (These examples all assume the Country is set to United States in the International section of the Control Panel.)  The first column contains the format strings. The other columns contain the output the results if the formatted data has the value given in the column headings

	Format (fmt)
	Positive 3
	Negative 3
	Decimal .3
	Null

	Null string
	3
	-3
	0.3
	 

	0
	3
	-3
	1
	 

	0.00
	3.00
	-3.00
	0.30
	 

	#,##0
	3
	-3
	1
	 

	#,##0.00;;;Nil
	3.00
	-3.00
	0.30
	Nil

	$#,##0;($#,##
0)
	$3
	($3)
	$1
	 

	$#,##0.00;($
#,##0.00)
$3.00
	($3.00)
	$0.30
	 
	 

	0%
	300%
	-300%
	30%
	 

	0.00%
	300.00%
	-300.00%
	30.00%
	 

	0.00E+00
	3.00E+00
	-3.00E+00
	3.00E-01
	 

	0.00E-00
	3.00E00
	-3.00E00
	3.00E-01
	 


 

Numbers can also be used to represent date and time information. You can format date and time serial numbers using date and time formats or number formats because date/time serial numbers are stored as floating-point values.

To format dates and times, you can use either the commonly used format that have been predefined or create user-defined time formats using standard meaning of each:

The following table shows the predefined data format names you can use and the meaning of each.

 

Format

	Name
	Description

	General
	Display a date and/or time. for real numbers, display a date and time.(e.g. 4/3/93 03:34 PM); If there is no fractional part, display only a date (e.g. 4/3/93); if there is no integer part, display time only (e.g. 03:34 PM).

	Long Date
	Display a Long Date, as defined in the International section of the Control Panel.

	Medium
	Display a date in the same form as the Short Date, as defined in the international section of the Control Panel, except spell out the month abbreviation.

	Short Date
	Display a Short Date, as defined in the International section of the Control Panel.

	Long Time
	Display a Long Time, as defined in the International section of the Control panel. Long Time includes hours, minutes, seconds.

	Medium Time
	Display  time in 12-hour format  using hours and minutes and the Time AM/PM designator.

	Short Time
	Display a time using the 24-hour format (e.g. 17:45)


 

This table shows the characters you can use to create user-defined date/time formats.

 

	Character
	Meaning

	c
	Display the date as dddd and display the time as ttttt. in the order.

	d
	Display the day as a number without a leading zero (1-31).

	dd
	Display the day as a number with a leading zero (01-31).

	ddd
	Display the day as an abbreviation (Sun-Sat).

	ddddd
	Display a date serial number as a complete date (including day , month, and year).


 

 

	Character
	Meaning

	w
	Display the day of the week as a number (1- 7 ).

	ww
	Display the week of the year as a number (1-53).

	m
	Display the month as a number without a leading zero (1-12). If m immediately follows h or hh, the minute rather than the month is displayed.

	mm
	Display the month as a number with a leading zero (01-12). If mm immediately follows h or hh, the minute rather than the month is displayed.

	mmm
	Display the month as an abbreviation (Jan-Dec).

	mmmm
	Display the month as a full month name (January-December).

	q
	display the quarter of the year as a number (1-4).

	y
	Display the day of the year as a number (1-366).

	yy
	Display the day of the year as a two-digit number (00-99)

	yyyy
	Display the day of the year as a four-digit number (100-9999).

	h
	Display the hour as a number without leading zeros (0-23).

	hh
	Display the hour as a number with leading zeros (00-23).

	n
	Display the minute as a number without leading zeros (0-59).

	nn
	Display the minute as a number with leading zeros (00-59).

	s
	Display the second as a number without leading zeros (0-59).

	ss
	Display the second as a number with leading zeros (00-59).

	ttttt
	Display a time serial number as a complete time (including hour, minute, and second) formatted using the time separator defined by the Time Format in the International section of the Control Panel. A leading zero is displayed if the Leading Zero option is selected and the time is before 10:00 A.M. or P.M. The default time format is h:mm:ss.

	AM/PM
	Use the 12-hour clock and display an uppercase AM/PM

	am/pm
	Use the 12-hour clock display a lowercase am/pm


 

	Character
	Meaning

	A/P
	Use the 12-hour clock display a uppercase A/P

	a/p
	Use the 12-hour clock display a lowercase a/p

	AMPM
	Use the 12-hour clock and display the contents XE "Contents" \* MERGEFORMAT of the 11:59 string (s1159) in the WIN.INI file with any hour before noon; display the contents of the 2359 string (s2359) with any hour between noon and 11:59 PM. AMPM can be either uppercase or lowercase, but the case of the string displayed matches the string as it exists in the WIN.INI file. The default format is AM/PM.


 

The Following are examples of user-defined date and time formats:

 

	Format
	Display

	m/d/yy
	2/26/65

	d-mmmm-yy
	26-February-65

	d-mmmm
	26 February

	mmmm-yy
	February 65

	hh:nn AM/PM
	06:45 PM

	h:nn:ss a/p
	6:45:15 p

	h:nn:ss
	18:45:15

	m/d/yy/h:nn
	2/26/65 18:45


 

Strings can also be formatted with Format[$]. A format expression for strings can have one section or two sections separated by a semicolon.

 

	If you use
	The result is

	One section only
	The format applies to all string data.

	Two sections
	The first section applies to string data, the second to Null values and zero-length strings.


 

The following characters can be used to create a format expression for strings:

 

	Character
	Meaning

	@
	Character placeholder. Displays a character or a space. Placeholders are filled from right to left unless there is an ! character in the format string.

	&
	Character placeholder. Display a character or nothing.

	<
	Force lowercase.

	>
	Force uppercase.

	!
	Force placeholders to fill from left to right instead of right to left.


 

Related Topics: Str, Str$ Function.

 

Example:

' Format Function Example

 

' This example shows various uses of the Format function to format values

' using both named and user-defined formats. For the date separator (/),

' time separator (:), and AM/ PM literal, the actual formatted output

' displayed by your system depends on the locale settings on which the code

' is running. When times and dates are displayed in the development

' environment, the short time and short date formats of the code locale

' are used. When displayed by running code, the short time and short date 

' formats of the system locale are used, which may differ from the code

' locale. For this example, English/United States is assumed.

 

' MyTime and MyDate are displayed in the development environment using

' current system short time and short date settings.

 

Sub Main()

 

MyTime = "08:04:23 PM"

MyDate = "03/03/95"

MyDate = "January 27, 1993"

 

MsgBox Now

MsgBox MyTime

 

MsgBox Second( MyTime ) & " Seconds"

MsgBox Minute( MyTime ) & " Minutes"

MsgBox Hour( MyTime ) & " Hours"

 

MsgBox Day( MyDate ) & " Days"

MsgBox Month( MyDate ) & " Months"

MsgBox Year( MyDate ) & " Years"

 

' Returns current system time in the system-defined long time format.

MsgBox Format(Time, "Short Time")

MyStr = Format(Time, "Long Time")                

 

' Returns current system date in the system-defined long date format.

MsgBox Format(Date, "Short Date")

MsgBox Format(Date, "Long Date")                

 

MyStr Format(MyTime, "h:n:s")        ' Returns "17:4:23".

MyStr Format(MyTime, "hh:nn:ss")' Returns "20:04:22 ".

MyStr Format(MyDate, "dddd, mmm d yyyy")' Returns "Wednesday, Jan 27 1993".

 

' If format is not supplied, a string is returned.

MsgBox Format(23)                       ' Returns "23".

 

' User-defined formats.

MsgBox Format(5459.4, "##,##0.00")      ' Returns "5,459.40".

MsgBox Format(334.9, "###0.00")         ' Returns "334.90".

MsgBox Format(5, "0.00%")               ' Returns "500.00%".

MsgBox Format("HELLO", "<")             ' Returns "hello".

MsgBox Format("This is it", ">")        ' Returns "THIS IS IT".

 

End Sub

 

 XE "FreeFile Function" \* MERGEFORMAT FreeFile Function

 

FreeFile

 

Returns an integer that is the next available file handle to be used by the Open Statement.

Related Topics: Open, Close, Write
 

Example:

Sub Main()
Dim Mx, FileNumber

For Mx = 1 To 3    

        FileNumber = FreeFile
        Open "c:\e1\TEST" & Mx For Output As #FileNumber        

        Write #FileNumber, "This is a sample."

        Close #FileNumber

Next Mx

 

Open "c:\e1\test1" For Input As #1

Do While Not EOF(1)

        MyStr = Input(10, #1)

        MsgBox MyStr

Loop
Close #1

End Sub

 

 XE "Function Statement" \* MERGEFORMAT Function Statement

 

Function Fname [(Arguments)] [As type]

        [statements]

        Functionname = expression

            [statements] 

            Functionname = expression

End Function

        

Declares and defines a procedure that can receive arguments and return a value of a specified data type.

When the optional argument list needs to be passed the format is as follows:

 

([ByVal] variable [As type] [,ByVal] variable [As type] ]…])

 

The optional ByVal parameter specifies that the variable is [passed by value instead of by reference (see “ByRef and  ByVal” in this manual). The optional As type parameter is used to specify the data type. Valid types are String, Integer, Double, Long, and Varaint (see “Variable Types” in this manual). 

Related Topics: Dim, End, Exit, Sub
 

Example:

 

Sub Main

        Dim I as integer

        For I = 1 to 10

        Print GetColor2(I)

        Next I

End Sub

Function GetColor2( c% ) As Long

   GetColor2 = c% * 25

   If c% > 2 Then

      GetColor2 = 255                              ' 0x0000FF - Red

   End If

   If c% > 5 Then

      GetColor2 = 65280                          ' 0x00FF00 - Green

   End If

   If c% > 8 Then

      GetColor2 = 16711680    ' 0xFF0000 - Blue

   End If

End Function

 

[image: image39.png]



 XE "Global Statement" \* MERGEFORMAT Global Statement

 

Global Const constant
 

The Global Statement must be outside the procedure section of the script. Global variables are available to all functions and subroutines in your program

Related Topics: Dim, Const and Type Statements

 

Example:

Global Const Height = 14.4357     '

Const PI = 3.14159      'Global to all procedures in a module

Sub Main ()
        Begin Dialog DialogName1 60, 60, 160,70, "ASC - Hello"

        TEXT 10, 10, 100, 20, "Please fill in the radius of circle x"

        TEXT 10, 40, 28, 12, "Radius"

        TEXTBOX 42, 40, 28, 12, .Radius

        OKBUTTON 42, 54,40, 12

End Dialog

Dim Dlg1 As DialogName1

Dialog Dlg1

CylArea = Height * (Dlg1.Radius * Dlg1.Radius) * PI

MsgBox "The volume of Cylinder x is " & CylArea 

End Sub

 

 XE "GoTo Statement" \* MERGEFORMAT GoTo Statement

 

GoTo label
 

Branches unconditionally and without return to a specified label in a procedure.

 

Example:
Sub main ()       

Dim x,y,z      

For x = 1 to 5

For y = 1 to 5

For z = 1 to 5

Print "Looping" ,z,y,x

If y > 3 Then

GoTo Label1

End If

Next z

Next y

Next x

Label1:

End Sub

 

[image: image40.png]



 XE "Hex" \* MERGEFORMAT Hex

 

Hex (num)

 

Returns the hexadecimal value of a decimal parameter.

Hex returns a string 

The parameter num can be any valid number. It is rounded to nearest whole number before evaluation.

Related Topics:  Oct, Oct$
 

Example:

Sub Main ()

        Dim Msg As String, x%

        x% = 10

        Msg =Str( x%) &  " decimal is "

        Msg = Msg & Hex(x%) & " in hex "

        MsgBox Msg

End Sub

[image: image41.png]ain hex

OK!





 

 XE "Hour Function" \* MERGEFORMAT Hour Function

 

Hour(string )

 

The Hour Function returns an integer between 0 and 23 that is the hour of the day indicated in the parameter number.

The parameter string is any number expressed as a string that can represent a date and time from January 1, 1980 through December 31, 9999. 

 

Example:

' This example shows various uses of the Format function to format values

' using both named and user-defined formats. For the date separator (/),

' time separator (:), and AM/ PM literal, the actual formatted output

' displayed by your system depends on the locale settings on which the code

' is running. When times and dates are displayed in the development

' environment, the short time and short date formats of the code locale

' are used. When displayed by running code, the short time and short date 

' formats of the system locale are used, which may differ from the code

' locale. For this example, English/United States is assumed.

 

' MyTime and MyDate are displayed in the development environment using

' current system short time and short date settings.

 

Sub Main

 

MyTime = "08:04:23 PM"

MyDate = "03/03/95"

MyDate = "January 27, 1993"

 

MsgBox Now

MsgBox MyTime

 

MsgBox Second( MyTime ) & " Seconds"

MsgBox Minute( MyTime ) & " Minutes"

MsgBox Hour( MyTime ) & " Hours"

 

MsgBox Day( MyDate ) & " Days"

MsgBox Month( MyDate ) & " Months"

MsgBox Year( MyDate ) & " Years"

 

' Returns current system time in the system-defined long time format.

MsgBox Format(Time, "Short Time")

MyStr = Format(Time, "Long Time")                

 

' Returns current system date in the system-defined long date format.

MsgBox Format(Date, "Short Date")

MsgBox Format(Date, "Long Date")                

 

' This section not yet supported

'MyStr = Format(MyTime, "h:n:s")        ' Returns "17:4:23".

'MyStr = Format(MyTime, "hh:nn:ss AMPM")' Returns "05:04:23 PM".

'MyStr = Format(MyDate, "dddd, nnn d yyyy")' Returns "Wednesday, Jan 27 1993".

 

' If format is not supplied, a string is returned.

MsgBox Format(23)                       ' Returns "23".

 

' User-defined formats.

MsgBox Format(5459.4, "##,##0.00")      ' Returns "5,459.40".

MsgBox Format(334.9, "###0.00")         ' Returns "334.90".

MsgBox Format(5, "0.00%")               ' Returns "500.00%".

MsgBox Format("HELLO", "<")             ' Returns "hello".

MsgBox Format("This is it", ">")        ' Returns "THIS IS IT".

 

End Sub

 

 XE "Hex" \* MERGEFORMAT 

 XE "HTMLDialog" \* MERGEFORMAT HTMLDialog

 

HTMLDialog (path, number)

 

Runs a DHTML dialog that is specified in the path. 

 

Example:

x =HtmlDialog( "c:\enable40\htmlt.htm", 57 )

‘See sample code on the samples disk htmldlg.bas 

 XE "If...Then...Else Statement" \* MERGEFORMAT If...Then...Else Statement

 

Syntax 1

If condition Then thenpart [Else elsepart]

 

Syntax 2

If condition Then

   [statement(s)]

ElseIf condition Then

   [statement(s)]

Else

   [statements(s)].

End If

Syntax 2

 

If conditional Then statement 

Allows conditional statements to be executed in the code.

Related Topics: Select Case
 

Example:

Sub Main()

        ' demo If...Then...Else

        Dim msg as String

        Dim nl as String

        Dim someInt as Integer

 

        nl = Chr(10)

        msg = "Less"

        someInt = 4

 

        If 5 > someInt Then msg = "Greater" : Beep

        MsgBox “” & msg

 

        If 3 > someInt Then

                msg = "Greater"

                Beep

        Else

                msg = "Less"

        End If                             

        MsgBox “” & msg

 

        If someInt = 1 Then
                msg = "Spring"

        ElseIf someInt = 2 Then

                msg = "Summer"

        ElseIf someInt = 3 Then

                msg = "Fall"

        ElseIf someInt = 4 Then

                msg = "Winter"

        Else
                msg = "Salt"

        End If
        MsgBox “” & msg

 

End Sub

 XE "Input # Statement" \* MERGEFORMAT Input # Statement

 

Input   # filenumber, variablelist

 

Input  # Statement reads data from a sequential file and assigns that data to variables.

The Input # Statement has two parameters  filenumber and variablelist. filenumber is the number used in the open statement when the file was opened and variablelist is a Comma-delimited list of the variables that are assigned when read from the file.

 

Example:

Dim MyString, MyNumber

Open "c:\TESTFILE" For Input As #1   ' Open file for input.

Do While Not EOF(1)   ' Loop until end of file.

   Input #1, MyString, MyNumber   ' Read data into two variables.

Loop
Close #1   ' Close file.

 

 

 XE "Input Function" \* MERGEFORMAT Input Function

 

Input(n , [ #] filenumber )

 

Input returns characters from a sequential file.

The input function has two parameters n and filenumber. n  is the number of bytes to be read from a file and filenumber  is the number used in the open statement when the file was opened.

 

Example:

 

Sub Main

    Open "TESTFILE" For Input As #1          ' Open file.

    Do While Not EOF(1)                      ' Loop until end of file.

        MyStr = Input(10, #1)  ' Get ten characters.

        MsgBox MyStr

    Loop

    Close #1                                 ' Close file.

End Sub

 

 

 XE "InputBox Function" \* MERGEFORMAT InputBox Function

 

InputBox(prompt[,[title][,[default][,xpos,ypos]]])

 

InputBox returns a String. 

Prompt is string that is displayed usually to ask for input type or information.

Title is a string that is displayed at the top of the input dialog box. 

Default is a string that is displayed in the text box as the default entry. 

Xpos and Ypos and the x and y coodinates of the relative location of the input dialog box.

 

Example:

Sub Main ()

        Title$ = "Greetings"

        Prompt$ = "What is your name?"

        Default$ = ""

        X% = 200

        Y% = 200

        N$ = InputBox$(Prompt$, Title$, Default$, X%, Y%)

End Sub 

[image: image42.png]InputBox Dialog

‘What is your name?





 

 XE "InStr" \* MERGEFORMAT InStr

 

InStr(numbegin, string1, string2)

 

Returns the character position of the first occurrence of  string2 within string1.

The numbegin parameter is not optional and sets the starting point of the search. numbegin must be a valid positive integer no greater than 65,535. 

string1 is the string being searched and string2 is the string we are looking for.

Related Topics:  Mid Function
 

Example:

Sub Main ()

        B$ = "Good Bye"

        A% = InStr(2, B$, "Bye")

        C% = Instr(3, B$, "Bye")

End Sub

 

[image: image43.png]— I

Bye starts at character index:1

OK!





 XE "IsArray Function" \* MERGEFORMAT IsArray Function

 

IsArray(variablename )

 

Returns a boolean value True or False indicating whether the parameter vaiablename is an array.

Related Topics: IsEmpty, IsNumeric, VarType, IsObject
 

Example:

Sub Main
Dim MArray(1 To 5) As Integer, MCheck

MCheck = IsArray(MArray)

Print MCheck

End Sub

 

 XE "IsDate" \* MERGEFORMAT IsDate

 

IsDate(variant )

 

Returns a value that indicates if a variant parameter can be converted to a date.

 

Related Topics: IsEmpty, IsNumeric, VarType

 

Example:

Sub Main
Dim x As String

      Dim MArray As Integer, MCheck

      MArray = 345

      x = "January 1, 1987"
      MCheck = IsDate(MArray)

      MChekk = IsDate(x)

      MArray1 = CStr(MArray)

      MCheck1 = CStr(MCheck)

      Print MArray1 & " is a date " & Chr(10) & MCheck

      Print x & " is a date" & Chr(10) & MChekk 

End Sub

 

 XE "IsEmpty" \* MERGEFORMAT IsEmpty

 

IsEmpty(variant )

 

Returns a value that indicates if a variant parameter has been initialized.

 

Related Topics:  IsDate, IsNull, IsNumeric, VarType

 

Example:

' This sample explores the concept of an empty variant

 

Sub Main

    Dim x       ' Empty

    x = 5       ' Not Empty - Long

    x = Empty   ' Empty

    y = x       ' Both Empty

    MsgBox “x” & " IsEmpty: " & IsEmpty(x)

End Sub

 XE "IsNumeric" \* MERGEFORMAT IsNumeric

 

IsNumeric(v)

 

Returns a TRUE or FALSE indicating if the v parameter can be converted to a numeric data type.

The parameter v can be any variant, numeric value, Date or string (if the string can be interpreted as a numeric). 

Related topics:  :  IsDate, IsEmpty, IsNull, VarType
 

Example:

Sub Form_Click ()

Dim TestVar  ' Declare variable.

TestVar = InputBox("Please enter a number, letter, or symbol.")

If IsNumeric(TestVar) Then      ' Evaluate variable.

MsgBox "Entered data is numeric." ' Message if number.

Else

MsgBox "Entered data is not numeric."   ' Message if not.

End If

End Sub 

 

[image: image44.png]InputBox Dialog

Please enter a number, letter. or
symbol





 

 XE "IsObject Function" \* MERGEFORMAT IsObject Function

 

IsObject(objectname )

 

Returns a boolean value True or False indicating whether the parameter objectname is an object.

Related Topics: IsEmpty, IsNumeric, VarType, IsObject
 

Example:

Sub Main
Dim MyInt As Integer, MyCheck             

Dim MyObject As Object

Dim YourObject As Object

Set MyObject = CreateObject("Word.Basic")

Set YourObject = MyObject       

MyCheck = IsObject(YourObject)                  

Print MyCheck        

End Sub

 XE "Kill Statement" \* MERGEFORMAT Kill Statement

 

Kill filename
 

Kill will only delete files. To remove a directory use the RmDir Statement

Related Topics: RmDir
 

Example:

Const NumberOfFiles = 3

 

Sub Main ()

Dim Msg                                    ' Declare variable.

Call MakeFiles()                           ' Create data files.

Msg = "Several test files have been created on your disk. You may see "

Msg = Msg & "them by switching tasks. Choose OK to remove the test files."

MsgBox Msg

For I = 1 To NumberOfFiles

Kill "TEST" & I                       ' Remove data files from disk.

Next I

End Sub

 

Sub MakeFiles ()

Dim I, FNum, FName                           ' Declare variables.

For I = 1 To NumberOfFiles

FNum = FreeFile                        ' Determine next file number.

FName = "TEST" & I

Open FName For Output As FNum          ' Open file.

Print #FNum, "This is test #" & I      ' Write string to file.

Print #FNum, "Here is another ";  "line";  I

Next I

Close                                        ' Close all files.

Kill FName

End Sub

 XE "LBound Function" \* MERGEFORMAT LBound Function

 

LBound(array [,dimension]  )

 

Returns the smallest available subscript for the dimension of  the indicated array.

Related Topics: UBound Function 

 

Example:

' This example demonstrates some of the  features of arrays. The lower bound

' for an array is 0 unless it is specified or option base has set as is

' done in this example.

 

Option Base 1

 

Sub Main

    Dim a(10) As Double

    MsgBox "LBound: " & LBound(a) & " UBound: " & UBound(a)

    Dim i As Integer

    For i = 0 to 3

        a(i) = 2 + i * 3.1

    Next i

    Print a(0),a(1),a(2), a(3)

End Sub

 XE "LCase Function" \* MERGEFORMAT LCase, Function

 

Lcase[$](string )

 

Returns a string in which all letters of the string parameter have been converted to upper case.

Related Topics: Ucase Function 

 

Example:

 

' This example uses the LTrim and RTrim functions to strip leading and 

' trailing spaces, respectively, from a string variable. It 

' uses the Trim function alone to strip both types of spaces.

' LCase and UCase are also shown in this example as well as the use

' of nested function calls

 

Sub Main

    MyString = "  <-Trim->  "               ' Initialize string.

    TrimString = LTrim(MyString)       ' TrimString = "<-Trim->  ".

    MsgBox "|" & TrimString & "|"

    TrimString = LCase(RTrim(MyString))        ' TrimString = "  <-trim->".

    MsgBox "|" & TrimString & "|"

    TrimString = LTrim(RTrim(MyString))          ' TrimString = "<-Trim->".

    MsgBox "|" & TrimString & "|"

    ' Using the Trim function alone achieves the same result.

    TrimString = UCase(Trim(MyString))           ' TrimString = "<-TRIM->".

    MsgBox "|" & TrimString & "|"

End Sub

 

 XE "Left" \* MERGEFORMAT Left

 

Left(string, num)

 

Returns the left most num characters of a string parameter.

Left returns a Variant, Left$ returns a String

 

Example:

Sub Main ()

        Dim LWord, Msg, RWord, SpcPos, UsrInp            ' Declare variables.

        Msg = "Enter two words separated by a space."

        UsrInp = InputBox(Msg)            ' Get user input.

        print UsrInp

        SpcPos = InStr(1, UsrInp, " ")    ' Find space.

        If SpcPos Then

                LWord = Left(UsrInp, SpcPos - 1)    ' Get left word.

                print "LWord: ";  LWord

                RWord = Right(UsrInp, Len(UsrInp) - SpcPos)              ' Get right word.

                Msg = "The first word you entered is " & LWord 

                Msg = Msg & "." & " The second word is "

                Msg = "The first word you entered is <" & LWord & ">"

                Msg = Msg & RWord & "." 

        Else

                Msg = "You didn't enter two words."

        End If

        MsgBox Msg                ' Display message.

        MidTest = Mid("Mid Word Test", 4, 5)

        Print MidTest

End Sub

 XE "Len" \* MERGEFORMAT Len

 

Len(string)

 

Returns the number of characters in a string.

Related Topics: InStr
 

Example:

 

Sub Main ()

        A$ = "Cypress Enable"

        StrLen% = Len(A$)     'the value of StrLen is 14

        MsgBox StrLen%

End Sub

 

[image: image45.png]14

OK!





 XE "Let Statement" \* MERGEFORMAT Let Statement

 

[Let] variablename = expression
 

Let assigns a value to a variable.

Let is an optional keyword that is rarely used. The Let statement is required in older versions of BASIC.

 

Example:

 

Sub Form_Click ()

    Dim Msg, Pi         ' Declare variables.

    Let Pi = 4 * Atn(1)    ' Calculate Pi.

    Msg = "Pi is equal to " & Str(Pi)

    MsgBox Msg          ' Display results.

End Sub

 

[image: image46.png]— I

equalto 314159

OK!





 XE "Line Input # Statement" \* MERGEFORMAT Line Input # Statement

 

Line Input # filenumber and name
 

Reads a line from a sequential file into a String or Variant variable.

The parameter filenumber  is used in the open statement to open the file. The parameter name is the name of a variable used to hold the line of text from the file.

Related Topics: Open 

 

Example:

' Line Input # Statement Example:

' This example uses the Line Input # statement to read a line from a

' sequential file and assign it to a variable. This example assumes that 

' TESTFILE is a text file with a few lines of sample data.

 

Sub Main

    Open "TESTFILE" For Input As #1              ' Open file.

    Do While Not EOF(1)                      ' Loop until end of file.

        Line Input #1, TextLine              ' Read line into variable.

        Print TextLine                               ' Print to Debug window.

    Loop

    Close #1             ' Close file.

 

End Sub

 XE "LOF" \* MERGEFORMAT LOF

 

LOF(filenumber)

 

Returns a long number for the number of bytes in the open file.

The parameter filenumber is required and must be an integer.

Related Topics: FileLen 

 

Example:

Sub Main()

        Dim FileLength

        Open "TESTFILE" For Input As #1          

        FileLength = LOF(1)

       Print FileLength

        Close #1

 

End Sub

 

 XE "Log" \* MERGEFORMAT Log

 

Log(num)

 

Returns the natural log of a number

The parameter num must be greater than zero and be a valid number.

Related Topics: Exp, Sin, Cos 

 

Example:

Sub Form_Click ( )

        Dim I, Msg, NL

        NL = Chr(13) & Chr(10)

        Msg = Exp(1) & NL

        For I = 1 to 3

        Msg = Msg & Log(Exp(1) ^ I ) & NL

        Next I

        MsgBox Msg

End Sub

 

[image: image47.png]271828





 XE "Mid Function" \* MERGEFORMAT Mid Function

 

string = Mid(strgvar,begin,length) 

 

Returns a substring within a string.

 

Example:

Sub Main ()

        Dim LWord, Msg, RWord, SpcPos, UsrInp            ' Declare variables.

        Msg = "Enter two words separated by a space."

        UsrInp = InputBox(Msg)            ' Get user input.

        print UsrInp

        SpcPos = InStr(1, UsrInp, " ")    ' Find space.

        If SpcPos Then

                LWord = Left(UsrInp, SpcPos - 1)    ' Get left word.

                print "LWord: ";  LWord

                RWord = Right(UsrInp, Len(UsrInp) - SpcPos)              ' Get right word.

                Msg = "The first word you entered is " & LWord 

                Msg = Msg & "." & " The second word is "

                Msg = "The first word you entered is <" & LWord & ">"

                Msg = Msg & RWord & "." 

        Else

                Msg = "You didn't enter two words."

        End If

        MsgBox Msg                ' Display message.

        MidTest = Mid("Mid Word Test", 4, 5)

        Print MidTest

End Sub

 

 XE "Minute Function" \* MERGEFORMAT Minute Function

 

Minute(string)

 

Returns an integer between 0 and 59 representing the minute of the hour.

 

Example:

' Format Function Example

 

' This example shows various uses of the Format function to format values

' using both named and user-defined formats. For the date separator (/),

' time separator (:), and AM/ PM literal, the actual formatted output

' displayed by your system depends on the locale settings on which the code

' is running. When times and dates are displayed in the development

' environment, the short time and short date formats of the code locale

' are used. When displayed by running code, the short time and short date 

' formats of the system locale are used, which may differ from the code

' locale. For this example, English/United States is assumed.

 

' MyTime and MyDate are displayed in the development environment using

' current system short time and short date settings.

 

Sub Main()

 

MyTime = "08:04:23 PM"

MyDate = "03/03/95"

MyDate = "January 27, 1993"

 

MsgBox Now

MsgBox MyTime

 

MsgBox Second( MyTime ) & " Seconds"

MsgBox Minute( MyTime ) & " Minutes"

MsgBox Hour( MyTime ) & " Hours"

 

MsgBox Day( MyDate ) & " Days"

MsgBox Month( MyDate ) & " Months"

MsgBox Year( MyDate ) & " Years"

 

End Sub

 XE "MkDir" \* MERGEFORMAT MkDir

 

MkDir  path
 

Creates a new directory.

The parameter path is a string expression that must contain fewer than 128 characters.

 

Example:

Sub Main

   Dim DST As String

 

   DST = "t1"
   mkdir DST

   mkdir "t2"

End Sub

 

[image: image48.png]File Name: Directories:
e

5 enable

€ dialog Find File

5 dialogde

I" Confitm
Conversions

List Files of Type:

[an Fites ) #| ™ ReadOnly





 XE "Month Function" \* MERGEFORMAT Month Function

 

Month(number)

 

Returns an integer between 1 and 12, inclusive, that represents the month of the year.

Related Topics:  Day, Hour, Weekday, Year
 

Example:

Sub Main

MyDate = "03/03/96"

print MyDate

x = Month(MyDate)

print x

End Sub

 XE "MsgBox" \* MERGEFORMAT MsgBox  Function MsgBox Statement

 

MsgBox ( msg, [type] [, title])

 

Displays a message in a dialog box and waits for the user to choose a button. 

The first parameter msg is the string displayed in the dialog box as the message. The second and third parameters are optional and respectively designate the type of buttons and the title displayed in the dialog box.

MsgBox Function returns a value indicating which button the user has chosen; the MsgBox statement does not.

	Value
	Meaning

	Group 1

	0
	Display OK button only

	1
	Display OK and Cancel buttons

	2
	Display Abort, Retry, and Ignore buttons

	3
	Display Yes, No, and Cancel buttons

	4
	Display Yes and No buttons

	5
	Display Retry and Cancel buttons

	Group 2

	16
	Stop Icon

	32
	Question Icon

	48
	Exclamation Icon

	64
	Information Icon

	Group 3

	0
	First button is default

	256
	Second button is default

	512
	Third button is default

	Group 4

	768
	Fourth button is default

	0
	Application modal

	4096
	System modal


The first group of values (1-5) describes the number and type of buttons displayed in the dialog box; the second group (16, 32, 48, 64) describes the icon style; the third group (0, 256, 512) determines which button is the default; and the fourth group (0, 4096) determines the modality of the message box. When adding numbers XE "Numbers" \* MERGEFORMAT to create a final value for the argument type, use only one number from each group. If omitted, the default value for type is 0.

title:

String expression displayed in the title bar of the dialog box. If you omit the argument title, MsgBox has no default title. 

The value returned by the MsgBox function indicates which button has been selected, as shown below:

	Value
	Meaning

	1
	OK button selected.

	2
	Cancel button selected.

	3
	Abort button selected.

	4
	Retry button selected.

	5
	Ignore button selected.

	6
	Yes button selected.

	7
	No button selected.


If the dialog box displays a Cancel button, pressing the Esc key has the same effect as choosing Cancel.

 

MsgBox Function, MsgBox Statement Example

The example uses MsgBox to display a close without saving message in a dialog box with a Yes button a No button and a Cancel button. The Cancel button is the default response. The MsgBox function returns a value based on the button chosen by the user. The MsgBox statement uses that value to display a message that indicates which button was chosen.

Related Topics: InputBox, InputBox$ Function

 

Example:

Dim Msg, Style, Title, Help, Ctxt, Response, MyString

Msg = "Do you want to continue ?: ' Define message.

'Style = vbYesNo + vbCritical + vbDefaultButton2   ' Define buttons.

Style = 4 + 16 + 256   ' Define buttons.

Title = "MsgBox Demonstration"   ' Define title.

Help = "DEMO.HLP"   ' Define Help file.

Ctxt = 1000   ' Define topic

      ' context. 

      ' Display message.

Response = MsgBox(Msg, Style, Title, Help, Ctxt)

If Response = vbYes Then   ' User chose Yes.

   MyString = "Yes"   ' Perform some action.

Else   ' User chose No.

   MyString = "No"   ' Perform some action.

End If

 

 XE "Now Function" \* MERGEFORMAT Now Function

 

Now

 

Returns a date that represents the current date and time according to the setting of the computer’s system date and time

The Now function returns a Variant data type containing a date and time that are stored internally as a double. The number is a date and time from January 1, 100 through December 31, 9999, where January 1, 1900 is 2. Numbers XE "Numbers" \* MERGEFORMAT to the left of the decimal point represent the date and numbers to the right represent the time.

 

Example:

Sub Main ()

        Dim Today

        Today = Now 

End Sub

 

 XE "Oct Function" \* MERGEFORMAT Oct Function

 

Oct (num)

 

Returns the octal value of the decimal parameter

Oct returns a string

Related Topics:  Hex
 

Example:

Sub Main ()

        Dim Msg, Num             ' Declare variables.

        Num = InputBox("Enter a number.")         ' Get user input.

        Msg = Num & " decimal is &O"

        Msg = Msg & Oct(Num) & " in octal notation."

        MsgBox Msg                ' Display results.

End Sub

 

[image: image49.png]InputBox Dialog

Enter a number.





 XE "OKButton" \* MERGEFORMAT OKButton

 

OKBUTTON starting x position, starting y position, width, Height

 

For selecting options and closing dialog boxes

 

Example:

Sub Main ()

    Begin Dialog DialogName1 60, 60, 160, 70, "ASC - Hello"

        TEXT 10, 10, 28, 12, "Name:"

        TEXTBOX 42, 10, 108, 12, .nameStr

        TEXTBOX 42, 24, 108, 12, .descStr

        CHECKBOX 42, 38, 48, 12, "&CHECKME", .checkInt

        OKBUTTON 42, 54, 40, 12

    End Dialog
    Dim Dlg1 As DialogName1
    Dialog Dlg1

 

    MsgBox Dlg1.nameStr

    MsgBox Dlg1.descStr

    MsgBox Dlg1.checkInt

End Sub

 

[image: image50.png]ASC - Hello

Name:

[ CHECKME





 

On Error

Example:

Sub Main

  On Error GoTo dude

  Dim x as object

  x.draw        ' Object not set

  jpe           ' Undefined function call

  print 1/0     ' Division by zero

  Err.Raise 6   ' Generate an "Overflow" error

  MsgBox "Back"

  MsgBox "Jack"

  Exit Sub

dude:

  MsgBox "HELLO"

  Print Err.Number, Err.Description

  Resume Next

  MsgBox "Should not get here!"

  MsgBox "What?"

End Sub

 

 

Errors can be raised with the syntax:

 

Err.Raise x

Defined Errors

The list below shows the corresponding descriptions for the defined values of errors: 

3:  "Return without GoSub";

5:  "Invalid procedure call";

6:  "Overflow";

7:  "Out of memory";

9:  "Subscript out of range";

10: "Array is fixed or temporarily locked";

11: "Division by zero";

13: "Type mismatch";

14: "Out of string space";

16: "Expression too complex";

17: "Can't perform requested operation";

18: "User intrrupt occurred";

20: "Resume without error";

28: "Out of stack space";

35: "Sub, Function, or Property not defined";

47: "Too many DLL application clients";

48: "Error in loading DLL";

49: "Bad DLL calling convention";

51: "Internal error";

52: "Bad file name or number";

53: "File not found";

54: "Bad file mode XE "Mode D2HBMode120" \* MERGEFORMAT ";

55: "File already open";

57: "Device I/O error";

58: "File already exists";

59: "Bad record length";

60: "Disk full";

62: "Input past end of file";

63: "Bad record number";

67: "Too many files";

68: "Device unavailable";

70: "Permission denied";

71: "Disk not ready";

74: "Can't rename with different drive";

75: "Path/File access error";

76: "Path not found";

91: "Object variable or With block variable not set";

92: "For loop not initialized";

93: "Invalid pattern string";

94: "Invalid use of Null";

// OLE Automation Messages

429: "OLE Automation server cannot create object";

430: "Class doesn't support OLE Automation";

432: "File name or class name not found during OLE Automation operation";

438: "Object doesn't support this property or method";

440: "OLE Automation error";

443: "OLE Automation object does not have a default value";

445: "Object doesn't support this action";

446: "Object doesn't support named arguments";

447: "Object doesn't support current local setting";

448: "Named argument not found";

449: "Argument not optional";

450: "Wrong number of arguments";

451: "Object not a collection";

// Miscellaneous Messages

444: "Method not applicable in this context";

452: "Invalid ordinal";

453: "Specified DLL function not found";

457: "Duplicate Key";

460: "Invalid Clipboard format";

461: "Specified format doesn't match format of data";

480: "Can't create AutoRedraw image";

481: "Invalid picture";

482: "Printer error";

483: "Printer driver does not supported specified property";

484: "Problem getting printer information from the system.";

     // Make sure the printer is set up correctly.

485: "invalid picture type";

520: "Can't empty Clipboard";

521: "Can't open Clipboard";

 

 

 XE "Open Statement" \* MERGEFORMAT Open Statement

 

Open filename$ [For mode] [Access access] As [#]filenumber
 

Opens a file for input and output operations.

You must open a file before any I/O operation can be performed on it.

The Open statement has these parts:

	Part
	Description

	file
	File name or path.

	mode
	Reserved word that specifies the file mode:  Append, Binary      Input, Output

	Access
	Reserved word that specifies which operations are permitted on the open file:  Read, Write.

	filenumber
	Integer expression with a value between 1 and 255, inclusive. When an Open statement is executed, filenumber is associated with the file as long as it is open. Other I/O statements can use the number to refer to the file.


If file doesn't exist, it is created when a file is opened for Append, Binary or Output modes.

The argument mode is a reserved word that specifies one of the following file modes.

	Mode
	Description

	Input
	Sequential input mode.

	Output.
	Sequential output mode


Append Sequential output mode. Append sets the file pointer to the end of the file. A Print # or Write # statement then extends (appends to) the file.

The argument access is a reserved word that specifies the operations that can be performed on the opened file. If the file is already opened by another process and the specified type of access is not allowed, the Open operation fails and a Permission denied error occurs. The Access clause works only if you are using a version of MS-DOS that supports networking (MS-DOS version 3.1 or later). If you use the Access clause with a version of MS-DOS that doesn't support networking, a feature XE "Feature" \* MERGEFORMAT unavailable error occurs. The argument access can be one of the following reserved words.

	Access type
	Description

	Read
	Opens the file for reading only.

	Write
	Opens the file for writing only.

	Read Write
	Opens the file for both reading and riting. This mode is valid only  for Random and Binary files and files opened for Append  mode.


The following example writes data to a test file and reads it back.

 

Example:

Sub Main ()              

        Open "TESTFILE" For Output As #1       ' Open to write file.

        userData1$ = InputBox("Enter your own text here")

        userData2$ = InputBox("Enter more of your own text here")

        Write #1, "This is a test of the Write # statement."

        Write #1,userData1$, userData2

        Close #1

        Open "TESTFILE" for Input As #2           ' Open to read file.

        Do While Not EOF(2)

                Line Input #2, FileData        ' Read a line of data.

                PRint FileData                       ' Construct message              

        Loop

        Close #2                         ' Close all open files.

        MsgBox "Testing Print Statement"          ' Display message.

        Kill "TESTFILE"           ' Remove file from disk.

End Sub

 

 XE "Option Base Statement" \* MERGEFORMAT Option Base Statement

 

Option Base number
 

Declares the default lower bound for array subscripts.

The Option Base statement is never required. If used, it can appear only once in a module, it can occur only in the Declarations section, and must be used before you declare the dimensions of any arrays.

The value of number must be either 0 or 1. The default base is 0.

The To clause in the Dim, Global, and Static statements provides a more flexible way to control the range of an array's subscripts. However, if you don't explicitly set the lower bound with a To clause, you can use Option Base to change the default lower bound to 1.

The example uses the Option Base statement to override the default base array subscript value of 0.

Related Topics:  Dim, Global and Lbound Statements

 

Example:

Option Base 1      ' Module level XE "Level" \* MERGEFORMAT statement.

Sub Main

        Dim A(), Msg, NL        ' Declare variables.

        NL = Chr(10) ' Define newline.

        ReDim A(20) ' Create an array.

        Msg = "The lower bound of the A array is " & LBound(A) & "."

        Msg = Msg & NL & "The upper bound is " & UBound(A) & "."

        MsgBox Msg                ' Display message.

End Sub

 

 XE "Option Explicit" \* MERGEFORMAT Option Explicit Statement

 

Option Explicit

 

Forces explicit declaration of all variables.

The Option explicit statement is used outside of the script in the declarations section.  This statement can be contained in a declare file or outside of any script in a file or buffer.  If  this statement is contained in the middle of a file the rest of the compile buffer will be affected. 

Related Topics:  Const and Global Statements

 

Example:

Option Explicit     

Sub Main

        Print y    ‘because y is not explicitly dimmed an error will occur.

End Sub

 

 XE "Print Method" \* MERGEFORMAT Print Method

 

Print [expr, expr...]  Print a string to an object.

 

Example:

Sub PrintExample ()

    Dim Msg, Pi          ' Declare variables.

    Let Pi = 4 * _Atn(1) ' Calculate Pi.

    Msg = "Pi is equal to " & Str(Pi)

    MsgBox Msg           ' Display results.

    Print Pi             ' Print the results in the compiler messages window

End Sub

 

[image: image51.png]



 XE "Print # Statement" \* MERGEFORMAT Print # Statement

 

Print # filenumber, [ [{Spc(n) | Tab(n)}][ expressionlist] [{; | ,}] ]

 

Writes data to a sequential file.

Print statement Description:

filenumber:

Number used in an Open statement to open                                                                                                                                                                                                                                                                                                   a sequential file. It can be any 

number of an open file. Note that the 

number sign (#) preceding filenumber is not optional.

Spc(n):

Name of the Basic function optionally used to insert n spaces into the printed 

output. Multiple use is permitted.

Tab(n):

Name of the Basic function optionally used to tab to the nth column before printing 

expressionlist. Multiple use is permitted.

expressionlist :

Numeric and/or string expressions to be written to the file.

{;|,}

Character that determines the position of the next character printed. A semicolon means the next character is printed immediately after the last character; a comma means the next character is printed at the start of the next print zone. Print zones begin every 14 columns. If neither character is specified, the next character is printed on the next line.

If you omit expression list, the Print # statement prints a blank line in the file, but you must include the comma. Because Print # writes an image of the data to the file, you must delimit the data so it is printed correctly. If you use commas as delimiters, Print # also writes the blanks between print fields to the file.

The Print # statement usually writes Variant data to a file the same way it writes any other data type. However, there are some exceptions:

· If the data being written is a Variant of VarType 0 (Empty), Print # writes nothing to the file for that data item.

· If the data being written is a Variant of VarType 1 (Null), Print # writes the literal #NULL# to the file.

· If the data being written is a Variant of VarType 7 (Date), Print # writes the date to the file using the Short Date format defined in the WIN.INI file. When either the date or the time component is missing or zero, Print # writes only the part provided to the file.

The following example writes data to a test file.

 

Example:

' The following example writes data to a test file and reads it back.

Sub Main () 

        Dim I, FNum, FName    ' Declare variables.

        For I = 1 To 3

                FNum = FreeFile  ' Determine next file number.

                FName = "TEST" & FNum

                Open FName For Output As FNum  ' Open file.

                Print #I, "This is test #" & I              ' Write string to file.

                Print #I, "Here is another ";  "line";  I

        Next I

        Close              ' Close all files.

End Sub

 

Sub Main ()

        Dim FileData, Msg, NL                ' Declare variables.

        NL = Chr(10) ' Define newline.

        Open "TESTFILE" For Output As #1       ' Open to write file.

        Print #2, "This is a test of the Print # statement."

        Print #2                         ' Print blank line to file.

        Print #2, "Zone 1", "Zone 2"    ' Print in two print zones.

        Print #2, "With no space between"  ;  "." ' Print two strings together.

        Close

        Open "TESTFILE" for Input As #2           ' Open to read file.

        Do While Not EOF(2)

                Line Input #2, FileData        ' Read a line of data.

                Msg = Msg & FileData & NL            ' Construct message.

                MsgBox Msg

        Loop

        Close                              ' Close all open files.

        MsgBox "Testing Print Statement"          ' Display message.

        Kill "TESTFILE"           ' Remove file from disk.

End Sub

 

 

 XE "Randomize Statement" \* MERGEFORMAT Randomize Statement

 

Randomize[number]

 

Used to Initialize the random number generator.

The Randomize statement has one optional parameter number. This parameter can be any valid number and is used to initialize the random number generator. If you omit the parameter then the value returned by the Timer function is used as the default parameter to seed the random number generator.

 

Example:

Sub Main()

        Dim MValue

        Randomize   ' Initialize random-number generator.

        MValue = Int((6 * Rnd) + 1)  

        Print MValue 

 

End Sub

 

 XE "ReDim Statement" \* MERGEFORMAT ReDim Statement

 

ReDim varname(subscripts)[As Type][,varname(subscripts)]

 

Used to declare dynamic arrays and reallocate storage space.

The ReDim statement is used to size or resize a dynamic array that has already been declared using the Dim statement with empty parentheses. You can use the ReDim statement to repeatedly change the number of elements in and array but not to change the number of dimensions in an array or the type of the elements in the array.

ReDim will only work with single dimensional arrays. Multi-dimensional arrays, like ReDim MyArray (3,5), are invalid.

Example:

Sub Main

Dim TestArray() As Integer

Dim I 

ReDim TestArray(10)

For I = 1 To 10

      TestArray(I) = I + 10 

      Print TestArray(I)

Next I

End Sub

 XE "Rem Statement" \* MERGEFORMAT Rem Statement

 

Rem remark ‘remark

 

Used to include explanatory remarks in a program.

The parameter remark  is the text of any comment XE "Comment" \* MERGEFORMAT you wish to include in the code.

 

Example:

Rem This is a remark, and is skipped by the compiler.

Sub Main()

    Dim Answer, Msg  ' Declare variables.

    Do

        Answer = InputBox("Enter a value from 1 to 3.")

        Answer = 2

        If Answer >= 1 And Answer <= 3 Then       ' Check XE "Check" \* MERGEFORMAT range.

            Exit Do                                 ' Exit Do...Loop.
        Else

            Beep                                    ' Beep if not in range.

        End If

    Loop

    MsgBox "You entered a value in the proper range."

End Sub

 

 XE "Right Function" \* MERGEFORMAT Right Function 

 

Right (stringexpression, n )

 

Returns the right most n characters of the string parameter.

The parameter stringexpression   is the string from which the rightmost characters are returned.

The parameter n  is the number of characters that will be returned and must be a long integer.

Related Topics: Len, Left, Mid Functions.

 

 

Example:

' The example uses the Right function to return the first of two words 

' input by the user.

Sub Main ()

        Dim LWord, Msg, RWord, SpcPos, UsrInp            ' Declare variables.

        Msg = "Enter two words separated by a space."

        UsrInp = InputBox(Msg)            ' Get user input.

        print UsrInp

        SpcPos = InStr(1, UsrInp, " ")    ' Find space.

        If SpcPos Then

                LWord = Left(UsrInp, SpcPos - 1)    ' Get left word.

                print "LWord: ";  LWord

                RWord = Right(UsrInp, Len(UsrInp) - SpcPos)             ' Get right word.

                Msg = "The first word you entered is " & LWord 

                Msg = Msg & "." & " The second word is "

                Msg = "The first word you entered is <" & LWord & ">"

                Msg = Msg & RWord & "." 

        Else

                Msg = "You didn't enter two words."

        End If

        MsgBox Msg                ' Display message.

End Sub

 XE "RmDir Statement" \* MERGEFORMAT RmDir Statement

 

RmDir path
 

Removes an existing directory.

The parameter path  is a string that is the name of the directory to be removed. 
Related Topics: ChDir, CurDir
 

Example:

' This sample shows the functions mkdir (Make Directory) 

' and rmdir (Remove Directory)

 

Sub Main

   Dim dirName As String

   dirName = "t1"
   mkdir dirName

   mkdir "t2"

   MsgBox "Directories: t1 and t2 created. Press OK to remove them"

   rmdir "t1"

   rmdir "t2"

End Sub

 

 XE "Rnd" \* MERGEFORMAT Rnd Function

 

Rnd (number)

 

Returns a random number.

The parameter number must be a valid numeric expression.

 

Example:

'Rnd Function Example

'The example uses the Rnd function to simulate rolling a pair of dice by 

'generating random values from 1 to 6. Each time this program is run, 

 

Sub Main ()

        Dim Dice1, Dice2, Msg                ' Declare variables.

        Dice1 = CInt(6 * Rnd() + 1)         ' Generate first die value.

        Dice2 = CInt(6 * Rnd() + 1)         ' Generate second die value.

        Msg = "You rolled a " & Dice1

        Msg = Msg & " and a " & Dice2

        Msg = Msg & " for a total of "

        Msg = Msg & Str(Dice1 + Dice2) & "."
        MsgBox Msg                ' Display message.

End Sub

 

 XE "Second Function" \* MERGEFORMAT Second Function

 

Second (number)

 

Returns an integer that is the second portion of the minute in the time parameter.

The parameter number must be a valid numeric expression.

Related Topics: Day, Hour, Minute, Now.

 

Example:

' Format Function Example

 

' This example shows various uses of the Format function to format values

' using both named and user-defined formats. For the date separator (/),

' time separator (:), and AM/ PM literal, the actual formatted output

' displayed by your system depends on the locale settings on which the code

' is running. When times and dates are displayed in the development

' environment, the short time and short date formats of the code locale

' are used. When displayed by running code, the short time and short date 

' formats of the system locale are used, which may differ from the code

' locale. For this example, English/United States is assumed.

 

' MyTime and MyDate are displayed in the development environment using

' current system short time and short date settings.

 

Sub Main

 

MyTime = "08:04:23 PM"

MyDate = "03/03/95"

MyDate = "January 27, 1993"

 

MsgBox Now

MsgBox MyTime

 

MsgBox Second( MyTime ) & " Seconds"

MsgBox Minute( MyTime ) & " Minutes"

MsgBox Hour( MyTime ) & " Hours"

 

MsgBox Day( MyDate ) & " Days"

MsgBox Month( MyDate ) & " Months"

MsgBox Year( MyDate ) & " Years"

 

' Returns current system time in the system-defined long time format.

MsgBox Format(Time, "Short Time")

MyStr = Format(Time, "Long Time")                

 

' Returns current system date in the system-defined long date format.

MsgBox Format(Date, "Short Date")

MsgBox Format(Date, "Long Date")                

 

'This section not yet supported

MsgBox Format(MyTime, "h:n:s")        ' Returns "17:4:23".

MsgBox Format(MyTime, "hh:nn:ss")' Returns "05:04:23".

MsgBox Format(MyDate, "dddd, mmm d yyyy")' Returns "Wednesday, Jan 27 1993".

 

' If format is not supplied, a string is returned.

MsgBox Format(23)                       ' Returns "23".

 

' User-defined formats.

MsgBox Format(5459.4, "##,##0.00")      ' Returns "5,459.40".

MsgBox Format(334.9, "###0.00")         ' Returns "334.90".

MsgBox Format(5, "0.00%")               ' Returns "500.00%".

MsgBox Format("HELLO", "<")             ' Returns "hello".

MsgBox Format("This is it", ">")        ' Returns "THIS IS IT".

 

End Sub

 XE "Seek Function" \* MERGEFORMAT Seek Function

 

Seek (filenumber)

 

The parameter filenumber  is used in the open statement and must be a valid numeric expression.

Seek returns a number that represents the byte position where the next operation is to take place. The first byte in the file is at position 1.

Related Topics: Open
 

Example:

Sub Main

    Open "TESTFILE" For Input As #1              ' Open file for reading.

    Do While Not EOF(1)                      ' Loop until end of file.

        MyChar = Input(1, #1)                ' Read next character of data.

        Print Seek(1)                 ' Print byte position  .

    Loop

    Close #1                                             ' Close file.

End Sub

 

Seek Statement

 

Seek filenumber, position
 

The parameter filenumber  is used in the open statement and must be a valid numeric expression, the parameter position is the number that indicates where the next read or write is to occur. In Cypress Enable Basic position is the byte position relative to the beginning of the file.

Seek statement sets the position in a file for the next read or write

Related Topics: Open
 

Example:

Sub Main

    Open "TESTFILE" For Input As #1              ' Open file for reading.

    For i = 1 To 24 Step 3                       ' Loop until end of file.

        Seek #1, i                      ' Seek to byte position 

        MyChar = Input(1, #1)                ' Read next character of data.

        Print MyChar                                'Print character of data

    Next i 

    Close #1                                             ' Close file.

End Sub

 

Select Case Statement

Executes one of the statement blocks in the case based on the test variable

 

Select Case testvar 
        Case var1
                Statement Block

        Case var2
                Statement Block

        Case Else

                Statement Block

End Select

The syntax supported by the Select statement includes the “To” keyword, a coma delimited list and a constant or variable. 

 

Select Case Number   ' Evaluate Number.

Case 1 To 5   ' Number between 1 and 5, inclusive.

… 

' The following is the only Case clause that evaluates to True.

Case 6, 7, 8   ' Number between 6 and 8.

… 

Case 9 To 10   ' Number is 9 or 10.

…

Case Else   ' Other values.

…

End Select 

 

Related Topics: If...Then...Else
 

Example:

' This rather tedious test shows nested select statements and if uncommented,

' the exit for statement

Sub Test ()

    For x = 1 to 5

        print x

        Select Case x

        Case 2

            Print "Outer Case Two"

        Case 3

            Print "Outer Case Three"

'            Exit For

            Select Case x

            Case 2

                Print "Inner Case Two"

            Case 3

                Print "Inner Case Three"

'                Exit For

            Case Else   ' Must be something else.

                Print "Inner Case Else:", x

            End Select
 

            Print "Done with Inner Select Case"

        Case Else       ' Must be something else.

            Print "Outer Case Else:",x

        End Select
    Next x

    Print "Done with For Loop"

End Sub

 XE "SendKeys" \* MERGEFORMAT SendKeys Function

 

SendKeys (Keys, [wait XE "Wait" \* MERGEFORMAT ])

 

Sends one or more keystrokes to the active window as if they had been entered at the keyboard

The SendKeys statement has two parameters.  The first parameter keys is a string and is sent to the active window. The second parameter wait is optional and if omitted is assumed to be false. If wait is true the keystrokes must be processed before control is returned to the calling procedure.

Example:

Sub Main ()

        Dim I, X, Msg               ' Declare variables.

        X = Shell("Calc.exe", 1)               ' Shell Calculator.

        For I = 1 To 5                ' Set up counting loop.

                SendKeys I & "{+}", True ' Send keystrokes to Calculator

        Next I              ' to add each value of I.

        AppActivate "Calculator"          ' Return focus to Calculator.

        SendKeys "%{F4}", True          ' Alt+F4 to close Calculator.

End Sub

 XE "Set Statement" \* MERGEFORMAT Set Statement

 

Set Object = {[New] objectexpression | Nothing}

 

Assigns an object to an object variable.

Related Topics: Dim, Global, Static
 

Example:

Sub Main

        Dim visio As Object

        Set visio = CreateObject( "visio.application" )

        Dim draw As Object                                          

        Set draw = visio.Documents

        draw.Open "c:\visio\drawings\Sample1.vsd"

        MsgBox "Open docs: " & draw.Count

        Dim page As Object

        Set page = visio.ActivePage

        Dim red As Object

        Set red = page.DrawRectangle (1, 9, 7.5, 4.5)

        red.FillStyle = "Red fill"

        

        Dim cyan As Object

        Set cyan = page.DrawOval (2.5, 8.5, 5.75, 5.25)

        cyan.FillStyle = "Cyan fill"

        

        Dim green As Object

        Set green = page.DrawOval (1.5, 6.25, 2.5, 5.25)

        green.FillStyle = "Green fill"

        

        Dim DarkBlue As Object

        set DarkBlue = page.DrawOval (6, 8.75, 7, 7.75)

        DarkBlue.FillStyle = "Blue dark fill"

        

        visio.Quit

End Sub

 

[image: image52.png]ViSi®

DRAG & DROP DRAW/ING FOR EVERYDAY GRAPHICS

Copyright © 1991-1953 Shapeware Corporation
Al fights reserved





 

 XE "Shell" \* MERGEFORMAT Shell Function

 

Shell ( app [, style])

 

Runs an executable program.

The shell function has two parameters. The first one, app is the name of the program to be executed. The name of the program in app must include a  .PIF, .COM, .BAT, or .EXE file extension or an error will occur. The second argument, style is the number corresponding to the style of the window . It is also optional and if omitted the program is opened minimized with focus.

Window styles:

Normal with focus   1,5,9

Minimized with focus (default) 2

Maximized with focus  3

normal without focus 4,8

minimized without focus 6,7

Return value: ID, the task ID of the started program.

 

Example:

' Calculator program included with Microsoft Windows; it then 

' uses the SendKeys statement to send keystrokes to add some numbers. XE "Numbers" \* MERGEFORMAT 
 

Sub Main ()

        Dim I, X, Msg               ' Declare variables.

        X = Shell("Calc.exe", 1)              ' Shell Calculator.

        For I = 1 To 5                ' Set up counting loop.

                SendKeys I & "{+}", True ' Send keystrokes to Calculator

        Next I              ' to add each value of I.

        AppActivate "Calculator"          ' Return focus to Calculator.

        SendKeys "%{F4}", True          ' Alt+F4 to close Calculator.

End Sub

 XE "Sin" \* MERGEFORMAT Sin Function

 

Sin (rad)

 

Returns the sine of an angle that is expressed in radians

 

Example:

Sub Main ()

        pi = 4 * Atn(1)

        rad = 90 * (pi/180)
        x = Sin(rad)

        print x

End Sub

 

 XE "Space" \* MERGEFORMAT Space Function

 

Space[$] (number )

 

Skips a specified number of spaces in a print# statement.

The parameter number can be any valid  integer and determines the number of blank spaces.

 

Example:

' This sample shows the space function

Sub Main

    MsgBox "Hello" & Space(20) & "There"

End Sub

 

 XE "Sqr" \* MERGEFORMAT Sqr Function

 

Sqr(num)

 

Returns the square root of a number.

 

The parameter num must be a valid number greater than or equal to zero.

 

Example:

Sub Form_Click ()

        Dim Msg, Number        ' Declare variables.

        Msg = "Enter a non-negative number."

        Number = InputBox(Msg)          ' Get user input.

        If Number < 0 Then

                Msg = "Cannot determine the square root of a negative number."

                Else

                Msg = "The square root of " & Number & " is "

                Msg = Msg & Sqr(Number) & "."

        End If

        MsgBox Msg                ' Display results.

        

End Sub

 

[image: image53.png]= InputBox Dialog

Enter a non-negative number.

The square root of 456 is 21.3542.





 

 XE "Static" \* MERGEFORMAT Static Statement

 

Static variable
 

Used to declare variables and allocate storage space. These variables will retain their value through the program run

 

Related Topics: Dim, Function, Sub

 

Example:

' This example shows how to use the static keyword to retain the value of

' the variable i in sub Joe. If Dim is used instead of Static then i

' is empty when printed on the second call as well as the first.

 

Sub Main

    For i = 1 to 2

        Joe 2

    Next i

End Sub

 

Sub Joe( j as integer )

    Static i
    print i

    i = i + 5

    print i

End Sub

 

 

 XE "Stop" \* MERGEFORMAT Stop Statement

 

Stop

 

Ends execution of the program

The Stop statement can be placed anywhere in your code.

 

Example:
Sub main ()

        

        Dim x,y,z

        

        For x = 1 to 5

                For y = 1 to 5

                                For z = 1 to 5

                                Print "Looping" ,z,y,x

                                Next z

                Next y

              Stop
        Next x

End Sub

 

[image: image54.png]



 XE "Str Function" \* MERGEFORMAT Str Function

 

Str(numericexpr)

 

Returns the value of a numeric expression.

Str returns a String.

Related topics: Format, Val
 

Example:

Sub main ()

        Dim msg

        a = -1

        msgBox "Num = " & Str(a)
        MsgBox "Abs(Num) =" & Str(Abs(a))

End Sub

 

[image: image55.png]OK!





 

 XE "StrComp Function" \* MERGEFORMAT StrComp Function

 

StrComp( nstring1,string2, [compare]  )

 

Returns a variant that is the result of the comparison of two strings

 

Example:

Sub Main

 

Dim MStr1, MStr2, MComp

        MStr1 = "ABCD": MStr2 = "today"         ' Define variables.

        print MStr1, MStr2

        MComp = StrComp(MStr1, MStr2)           ' Returns -1.

        print MComp

        MComp = StrComp(MStr1, MStr2)           ' Returns -1.

        print MComp

        MComp = StrComp(MStr2, MStr1)           ' Returns 1.

        print MComp

End Sub

 

 XE "String Function" \* MERGEFORMAT String Function

 

String ( numeric, charcode )

 

String returns a string.

String is used to create a string that consists of one character repeated over and over.

Related topics: Space Function
 

Example:

 

Sub Main

    Dim MString

    MString = String(5, "*")       ' Returns "*****".

    MString = String(5, 42)        ' Returns "44444".

    MString = String(10, "Today")  ' Returns "TTTTTTTTTT".

    Print MString

End Sub

 

 XE "Sub Statement" \* MERGEFORMAT Sub Statement

 

Sub SubName [(arguments)]

        Dim [variable(s)]

        [statementblock] 

        [Exit Function] 

End Sub

 

Declares and defines a Sub procedures name, parameters and code.

When the optional argument list needs to be passed the format is as follows:

 

([ByVal] variable [As type] [,ByVal] variable [As type] ]…])

 

The optional ByVal parameter specifies that the variable is [passed by value instead of by reference (see “ByRef and  ByVal” in this manual). The optional As type parameter is used to specify the data type. Valid types are String, Integer, Double, Long, and Varaint (see “Variable Types” in this manual). 

Related Topics: Call, Dim, Function
 

Example:

Sub Main

   Dim DST As String

   DST = "t1"
   mkdir DST

   mkdir "t2"

End Sub

 

Tan Function

 

Tan(angle)

 

Returns the tangent of an angle as a double.

The parameter angle must be a valid angle expressed in radians.

Related Topic: Atn, Cos, Sin
 

Example:

' This sample program show the use of the Tan function 

Sub Main ()

    Dim Msg, Pi         ' Declare variables.

    Pi = 4 * Atn(1)     ' Calculate Pi.

    Msg = "Pi is equal to " & Pi

    MsgBox Msg          ' Display results.

    x = Tan(Pi/4)

    MsgBox  x & " is the tangent of Pi/4"

End Sub

 

 XE "Text" \* MERGEFORMAT Text Statement

 

Text Starting X position, Starting Y position, Width, Height, Label

 

Creates a text field for titles and labels.

 

Example:

 

Sub Main ()

    Begin Dialog DialogName1 60, 60, 160, 70, "ASC - Hello"

        TEXT 10, 10, 28, 12, "Name:"

        TEXTBOX 42, 10, 108, 12, .nameStr

        TEXTBOX 42, 24, 108, 12, .descStr

        CHECKBOX 42, 38, 48, 12, "&CHECKME", .checkInt

        OKBUTTON 42, 54, 40, 12

    End Dialog
    Dim Dlg1 As DialogName1
    Dialog Dlg1

 

    MsgBox Dlg1.nameStr

    MsgBox Dlg1.descStr

    MsgBox Dlg1.checkInt

End Sub

 

[image: image56.png]ASC - Hello

Name: [Test1

Test2

CICHECKME!

Cox ]





 XE "TextBox" \* MERGEFORMAT TextBox Statement

 

TextBox Starting X position, Starting Y position, Width, Height, Default String

 

Creates a Text Box for typing in numbers XE "Numbers" \* MERGEFORMAT and text

 

Example:

Sub Main ()

    Begin Dialog DialogName1 60, 60, 160, 70, "ASC - Hello"

        TEXT 10, 10, 28, 12, "Name:"

        TEXTBOX 42, 10, 108, 12, .nameStr

        TEXTBOX 42, 24, 108, 12, .descStr

        CHECKBOX 42, 38, 48, 12, "&CHECKME", .checkInt

        OKBUTTON 42, 54, 40, 12

    End Dialog
    Dim Dlg1 As DialogName1
    Dialog Dlg1

 

    MsgBox Dlg1.nameStr

    MsgBox Dlg1.descStr

    MsgBox Dlg1.checkInt

End Sub

 

 XE "Time Function" \* MERGEFORMAT Time Function

 

Time[()]

 

Returns the current system time.

Related topics:  To set the time use the TIME$ statement.

 

Example:

Sub Main

  x = Time$(Now)

  Print x

End Sub

 

 

 XE "Timer Event" \* MERGEFORMAT Timer  Event

 

Timer

 

Timer Event is used to track elapsed time or can be display as a stopwatch in a dialog. The timers value is the number of seconds from midnight.

Related topics:  DateSerial, DateValue, Hour, Minute, Now, Second, TimeValue.

 

Example:

Sub Main
        Dim TS As Single

        Dim TE As Single
        Dim TEL As Single

        TS = Timer
        MsgBox "Starting Timer"

        TE = Timer

        TT = TE - TS

        Print TT

End Sub

 

 XE "TimeSerial - Function" \* MERGEFORMAT TimeSerial - Function

 

TimeSerial ( hour, minute, second   )

 

Returns the time serial for the supplied parameters hour, minute, second.

Related topics:  DateSerial, DateValue, Hour, Minute, Now, Second, TimeValue.

 

Example:

Sub Main
 

        Dim MTime

        MTime = TimeSerial(12, 25, 27)  

        Print MTime

 

End Sub

 

 XE "TimeValue - Function" \* MERGEFORMAT TimeValue - Function

 

TimeValue ( TimeString  )

 

Returns a double precision serial number based of the supplied string parameter.

 

Midnight = TimeValue(“23:59:59”)

 

Related topics:  DateSerial, DateValue, Hour, Minute, Now, Second, TimeSerial.

 

Example:

Sub Main
        Dim MTime

        MTime = TimeValue("12:25:27 PM")

        Print MTime

End Sub

 

 XE "Trim LTrim Rtrim Functions" \* MERGEFORMAT Trim, LTrim, RTrim Functions

 

[L| R] Trim (String  )

 

· Ltrim, Rtrim and Trim all Return a copy of a string with leading, trailing or both leading and trailing spaces removed.

· Ltrim, Rtrim and Trim all return a string

· Ltrim removes leading spaces.

· Rtrim removes trailing spaces.

· Trim removes leading and trailing spaces.

 

Example:

' This example uses the LTrim and RTrim functions to strip leading and 

' trailing spaces, respectively, from a string variable. It 

' uses the Trim function alone to strip both types of spaces.

' LCase and UCase are also shown in this example as well as the use

' of nested function calls

 

Sub Main

    MyString = "  <-Trim->  "               ' Initialize string.

    TrimString = LTrim(MyString)     ' TrimString = "<-Trim->  ".

    MsgBox "|" & TrimString & "|"

    TrimString = LCase(RTrim(MyString))         ' TrimString = "  <-trim->".

    MsgBox "|" & TrimString & "|"

    TrimString = LTrim(RTrim(MyString))        ' TrimString = "<-Trim->".

    MsgBox "|" & TrimString & "|"

    ' Using the Trim function alone achieves the same result.

    TrimString = UCase(Trim(MyString))           ' TrimString = "<-TRIM->".

    MsgBox "|" & TrimString & "|"

End Sub

 

 

 

 XE "Type Statement" \* MERGEFORMAT 

 XE "Type Statement" \* MERGEFORMAT Type Statement

 

Type usertype        elementname As typename

                [ elementname As typename]

                . . .

End Type

 

Defines a user-defined data type containing one or more elements.

The Type statement has these parts:

	Part
	Description

	Type
	Marks the beginning of a user-defined type.

	usertype
	Name of a user-defined data type. It follows standard variable naming conventions. 

	elementname
	Name of an element of the user-defined data type. It follows standard variable-naming conventions.

	subscripts
	Dimensions of an array element. You can declare multiple dimensions. (not currently implemented)

	typename
	One of these data types: Integer, Long, Single, Double, String (for variable-length strings), String * length (for fixed-length strings), Variant,  or another user-defined type. The argument typename can't be an object type. End Type Marks the end of a user-defined type.


Once you have declared a user-defined type using the Type statement, you can declare a variable of that type anywhere in your script. Use Dim or Static to declare a variable of a user-defined type. Line numbers XE "Numbers" \* MERGEFORMAT and line labels aren't allowed in Type...End Type blocks.

User-defined types are often used with data records because data records frequently consist of a number of related elements of different data types. Arrays cannot be an element of a user defined type in Enable.

 

Example:

' This sample shows some of the features of user defined types XE "User Defined Types" \* MERGEFORMAT 
 

Type type1

    a As Integer

    d As Double

    s As String

End Type

 

Type type2

    a As String

    o As type1

End Type

 

Type type3

    b As Integer

    c As type2

End Type

 

Dim type2a As type2

Dim type2b As type2

Dim type1a As type1

Dim type3a as type3

 

Sub Form_Click ()

    a = 5

    type1a.a = 7472

    type1a.d = 23.1415

    type1a.s = "YES"

    type2a.a = "43 - forty three"

    type2a.o.s = "Yaba Daba Doo"
    type3a.c.o.s = "COS"

    type2b.a = "943 - nine hundred and forty three"

    type2b.o.s = "Yogi"

    MsgBox type1a.a

    MsgBox type1a.d

    MsgBox type1a.s

    MsgBox type2a.a

    MsgBox type2a.o.s

    MsgBox type2b.a

    MsgBox type2b.o.s

    MsgBox type3a.c.o.s

    MsgBox a

End Sub

 

 XE "UBound Function" \* MERGEFORMAT UBound Function

 

Ubound(arrayname[,dimension])

 

Returns the value of the largest usable subscript for the specified dimension of an array.

Related Topics: Dim, Global, Lbound, and Option Base
 

Example:

' This example demonstrates some of the  features of arrays. The lower bound

' for an array is 0 unless it is specified or option base is set it as is

' done in this example.

 

Option Base 1

 

Sub Main

    Dim a(10) As Double

    MsgBox "LBound: " & LBound(a) & " UBound: " & UBound(a)

    Dim i As Integer

    For i = 1 to 3

        a(i) = 2 + i

    Next i

    Print a(1),a(1),a(2), a(3)

End Sub

 

 XE "UCase Function" \* MERGEFORMAT UCase Function

 

Ucase (String )

 

Returns a copy of String in which all lowercase characters have been converted to uppercase.

Related Topics: Lcase, Lcase$ Function

 

Example:

' This example uses the LTrim and RTrim functions to strip leading and 

' trailing spaces, respectively, from a string variable. It 

' uses the Trim function alone to strip both types of spaces.

' LCase and UCase are also shown in this example as well as the use

' of nested function calls

 

Sub Main

    MyString = "  <-Trim->  "               ' Initialize string.

    TrimString = LTrim(MyString)       ' TrimString = "<-Trim->  ".

    MsgBox "|" & TrimString & "|"

    TrimString = LCase(RTrim(MyString))         ' TrimString = "  <-trim->".

    MsgBox "|" & TrimString & "|"

    TrimString = LTrim(RTrim(MyString))          ' TrimString = "<-Trim->".

    MsgBox "|" & TrimString & "|"

    ' Using the Trim function alone achieves the same result.

    TrimString = UCase(Trim(MyString))           ' TrimString = "<-TRIM->".

    MsgBox "|" & TrimString & "|"

End Sub

 

 XE "Val" \* MERGEFORMAT Val

 

Val(string)

 

Returns the numeric value of a string of characters.

 

Example:

Sub main

        Dim Msg

        Dim YourVal As Double

        YourVal = Val(InputBox$("Enter a number"))

        Msg = "The number you enered is: " & YourVal

        MsgBox Msg

End Sub

 XE "VarType" \* MERGEFORMAT VarType

 

VarType(varname)

 

Returns a value that indicates how the parameter varname is stored internally.

The parameter varname is a variant data type.

	VarType
	return values:

	Empty
	0

	Null
	1

	Integer
	2

	Long
	3

	Single
	4

	Double
	5

	Currency
	6  (not available at this time)

	Date/Time
	7

	String
	8


Related Topics:   IsNull, IsNumeric
 

Example:

 

If VarType(x) = 5 Then 

Print "Vartype is Double"   'Display variable type

End If

 

 XE "Weekday Function" \* MERGEFORMAT Weekday Function

 

Weekday(date,firstdayof week)

 

Returns a integer containing the whole number for the weekday it is representing. 

Related Topics:  Hour, Second, Minute, Day
 

Example:

 

Sub Main()

x = Weekday(#5/29/1959#)

Print x

End Sub

 XE "While...Wend Statement" \* MERGEFORMAT While...Wend Statement

 

While condition

        .

        .

        .

        [StatementBlock]

        .

        .

        .

Wend

 

While begins the while...Wend flow of control structure. Condition is any numeric or expression that evaluates to true or false. If the condition is true the statements are executed. The statements can be any number of valid Enable Basic statements. Wend ends the While...Wend flow of control structure.

Related Topics:  Do...Loop Statement
 

Example:

Sub Main

        Const Max = 5

        Dim A(5) As String

        A(1) = "Programmer"

        A(2) = "Engineer"

        A(3) = "President"

        A(4) = "Tech Support"

        A(5) = "Sales"

        Exchange = True

        While Exchange

        Exchange = False

        For I = 1 To Max 

MsgBox A(I)

        Next                I

        Wend

End Sub

 

 XE "With Statement" \* MERGEFORMAT With Statement

 

With object

[STATEMENTS]

End With

 

The With statement allows you to proeform a series of commands or statements on a particular object without again refering to the name of that object. With statements can be nested by putting one With block within another With block. You  will need to fully specify any object in an inner With block to any memeber of an object in an outer With block. 

Related Topics:  While…Wend Statement and Do Loop
 

Example:

' This sample shows some of the features of user defined types and the with

' statement

 

Type type1

    a As Integer

    d As Double

    s As String

End Type

 

Type type2

    a As String

    o As type1

End Type

 

Dim type1a As type1

Dim type2a As type2

 

Sub Main ()

 

    With type1a

      .a = 65

      .d = 3.14

    End With

    With type2a

      .a = "Hello, world"

      With .o                             

        .s = "Goodbye"

      End With

   End With

    type1a.s = "YES"

    MsgBox type1a.a

    MsgBox type1a.d

    MsgBox type1a.s

    MsgBox type2a.a

    MsgBox type2a.o.s

  

End Sub

 

 XE "Write # - Statement" \* MERGEFORMAT Write # - Statement

 

Write #filenumber [,parameterlist ] 

 

Writes and formats data to a sequential file that must be opened in output or append mode. XE "Mode" \* MERGEFORMAT   

A comma delimited list of the supplied parameters is written to the indicated file. If no parameters are present,  the newline character is all that will be written to the file. 

Related Topics:  Open and Print# Statements

 

Example:

Sub Main ()

 

        Open "TESTFILE" For Output As #1       ' Open to write file.

        userData1$ = InputBox ("Enter your own text here")

        userData2$ = InputBox ("Enter more of your own text here")

        Write #1, "This is a test of the Write # statement."

        Write #1,userData1$, userData2

        Close #1

 

        Open "TESTFILE" for Input As #2           ' Open to read file.

        Do While Not EOF(2)

                Line Input #2, FileData        ' Read a line of data.

                PRint FileData                       ' Construct message.

                

        Loop

        Close #2                         ' Close all open files.

        MsgBox "Testing Print Statement"          ' Display message.

        Kill "TESTFILE"           ' Remove file from disk.

End Sub

 

 

 XE "Year" \* MERGEFORMAT Year Function

 

Year(serial#  )

 

Returns  an integer representing a year between 1930 and 2029, inclusive. The returned integer represents the year of the serial parameter.

The parameter serial#  is a string that represents a date.

If serial  is a Null, this function returns a Null.

Related Topics:   Date, Date$ Function/Statement, Day, Hour, Month, Minute, Now, Second.

 

Example:

Sub Main

       MyDate = "11/11/94"

       x = Year(MyDate)

      print x

End Sub

PC-DMIS

Chapter 6: Automation XE "Automation Objects" 
	Introduction XE "Introduction to Automation Objects" 


PC-DMIS's Automation gives you the ability to automate repetitive tasks within PC-DMIS or even to use elements of PC-DMIS functionality, within a custom built application.

PC-DMIS Automation contains these benefits:

· PC-DMIS Automation is computer independent. You can have a process on one computer automating a process on another computer. 

· PC-DMIS Automation is location independent. You can run automation scripts within PC-DMIS itself, using the BASIC Script Editor or you can run automation scripts in external Visual Basic Editors. In addition, you can run automation scripts across a network. 

· PC-DMIS Automation is Language independent: If you don't know BASIC but are familiar with another programming language, you can configure that programming language to use PC-DMIS's library (the examples and descriptions in this help file, however, are written using the BASIC programming language).

This Automation section contains a detailed list of methods and properties for each PC-DMIS Automation Object. The various objects are listed in alphabetical order. A bold item indicates a default property or method for the object.

To get started with Automation, see the information on the "Getting Started Page" to get a feel for what's needed. For questions beyond the scope of this section, consult a Visual BASIC book on automation.

	Getting Started XE "Getting Started" 


To get started using PC-DMIS automation, consider using this information: 
· Accessing an Object's Properties, Methods and Events

· Using the Object Browser in Other Editors

· Sample Automation Scripts

· Object Hierarchy Chart

Accessing an Object's Propreties, Methods, and Events  XE "Accessing an Object's Propreties, Methods, and Events" 
Objects are external classes that contain methods, properties and events. 

[image: image57.png]


[image: image58]Methods: Methods are functions that usually perform actions. This usually return a boolean value to determine whether or not the function succeeded. Methods are analogous to verbs in languages.

[image: image59][image: image60.png]


Properties: Properties allow you to read or sometime write certain characteristics or attributes of an object or control. Properties are analogous to adjectives in languages.

[image: image61][image: image62.png]


Events: Events are routines that get called when certain conditions are met. Events differ from methods and properties in that PC-DMIS is the source of the action, instead of the destination. To take advantage of events, the automation controller application must support events. Visual BASIC, for example supports events. Handling events involves declaring an object of the correct type and then adding handling functions for the different events. Currently events are found in only these objects:

· ApplicationObjectEvents

· Machine

· PartProgram

A Note on Enumerated Constants:  XE "A Note on Enumerated Constants:" 
The syntax of several available methods or properties will require you to specify an enumerated value from a list of enumerated constants. All available values are usually not listed with each method or property. Rather, when some syntax requires an enumerated value, you should consult the appropriate enumeration in the final chapter of this documentation, titled "Enumerations" for complete listings.
Accessing Event Subroutines XE "Accessing Event Subroutines" 
The easiest way to access an object’s event subroutines is by following this procedure.

1. Access a readily available and robust Visual BASIC editor (such as one that ships with Microsoft’s Word or Excel products).

2. Select (General) from the Object list in the code window. This allows you to make global variable declarations.
[image: image63]
3. Declare a global variable for your PC-DMIS application as well as your PC-DMIS events. For events, you should use the WithEvents keyword and specify an object that has events. For example these two lines are necessary to define as global variables:

Dim PCDApp As PCDLRN.Application
Dim WithEvents AppEvents As PCDLRN.ApplicationObjectEvents

This code would enable the AppEvents variable in the Object list. 

4. Select your declared variable from the Object list in the code window.
[image: image64]
This enables you to select specific event subroutines from the Procedure list.

5. From the code window, select an event subroutine from the Procedure list. 
[image: image65]
The new subroutine appears in the code window.

6. Make modifications to the event’s subroutine code as needed. When PC-DMIS meets the specified condition, the event subroutine gets ran along with any code you added.

7. In your script, be sure to "set" the AppEvents object variable sometime after you "set" the Pcdlrn.Application object. For example, you will need to have these two lines of code somewhere in your script:

Set PCDApp = CreateObject("PCDLRN.Application")
Set AppEvents = PCDApp.ApplicationEvents

Example Script Showing Event Handing

This example script contains code that calls subroutines when certain PC-DMIS events are executed. Inside a blank Excel worksheet, access the Visual Basic Editor and type in the following code. When finished, save the program, then place the cursor inside the Start() subroutine and press F8 to step through the code line by line to see what's happening. Notice that the code within a specific event subroutine is executed when Excel detects that event occurring within PC-DMIS. 

' These are global variable declarations

Dim PCDApp As PCDLRN.Application

Dim WithEvents AppEvents As PCDLRN.ApplicationObjectEvents

 

Sub Start()

' This is the subroutine to run to start the script

    HideExcel

End Sub

 

Private Sub HideExcel()

    Dim intAnswer As Integer

    intAnswer = MsgBox("Do you want to make Excel invisible? For this test, you should click Yes. It will become visible when you open a part program.", vbYesNo, "Hide Excel?")

    

    If intAnswer = vbYes Then

        Application.Visible = False

    Else

        Application.Visible = True

    End If

    

    LaunchPCDMIS

End Sub

 

Sub LaunchPCDMIS()

    Set PCDApp = CreateObject("PCDLRN.Application")

    Set AppEvents = PCDApp.ApplicationEvents

    PCDApp.Visible = True

End Sub

 

Private Sub AppEvents_OnOpenPartProgram(ByVal PartProg As PCDLRN.IPartProgram)

    ' Event subroutine. This activates when you OPEN a part program.

    Set PartProg = PCDApp.ActivePartProgram

    Application.Visible = True

    MsgBox "Part Program " & PartProg.Name & " opened. Excel should also be visible."

End Sub

 

Private Sub AppEvents_OnStartExecution(ByVal PartProg As PCDLRN.IPartProgram)

    ' Event subroutine. This activates when you START EXECUTION of the part program.

    MsgBox "STARTING EXECUTION OF " & PartProg.Name & ". Click OK to continue."

End Sub

 

Private Sub AppEvents_OnEndExecution(ByVal PartProg As PCDLRN.IPartProgram, ByVal TerminationType As Long)

    ' Event subroutine. This activates when you END EXECUTION of the part program.

    MsgBox "ENDING EXECUTION OF " & PartProg.Name & ". Click OK to continue."

End Sub

 

 

Accessing Methods and Properties XE "Accessing Methods and Properties" 
There are two ways to get to an object's methods, properties, and events.

1. Create objects by their ID

2. Call the object from an existing object

Whether you're creating an object or calling an object from an existing object, you'll need to first create and then set a pointer to the appropriate object. 

Step 1: Declare the pointer variable name for the application by using the "DIM" statement. For example: 

Dim App As Object 
Step 2: Set the pointer variable to the PCDLRN Application using CreateObject. For example:

Set App = CreateObject("PCDLRN.Application")
Step 3: Declare and set additional pointer variable names for any needed sub objects found within the Application object. For example if you wanted to access commands available for the active part program, you're code would look something like this:

Dim Part As Object 
Set Part = App.ActivePartProgram
Dim Cmds As Object 
Set Cmds = Part.Commands
Dim Cmd As Object 
Set Cmd = Cmds.Add(SET_COMMENT, True)
Using the Object Browser in Other Editors XE "Using the Object Browser in Other Editors" 
While the PC-DMIS Basic Script Editor has its uses, it doesn’t have a lot of the visual syntax and other programming aids available to you from other common programs that also support automation.

The Object Browser, available in standard Visual Basic Editors, is essential to getting the proper help when writing automation scripts. It contains all the different objects for any library you have chosen to use in your automation project. 

[image: image66]
Example Object Browser

To set up the object browser with the appropriate libraries, do the following:

1. Open Visual Basic (or you can open the VB editor that ships with MS Word or MS Excel)

2. In Visual Basic, select the References menu item. In VB5 this is Project | References. (In Excel or Word’s VB Editor, select Tools | References).

3. The References dialog box appears. Items that are checked are libraries already included currently.

4. Scroll down to PC-DMIS X.X Object Library (where X.X is your library version type and select the check box&emdash;this should be similar to your version of PC-DMIS).

5. Click OK.

6. Access the Object Browser (press F2 within the VB Editor). In the list at the top it should say <All Libraries>. From the list, select the PCDLRN library. 

You can now browse through all the objects and view their properties, methods, and events. Most of the objects have properties and methods in the PC-DMIS object library. Only a few objects have events.

Additionally, when writing code, your Visual Basic Editor will now contain the visual syntax aids for the various PC-DMIS objects and commands.

Note: If new objects, methods, properties, or events are added, the Object Browser will most likely contain the new information first and will subsequently be more up to date than this manual--another good reason to use the Object Browser when coding your scripts.

Sample Automation Scripts XE "Sample Automation Scripts" 
Below are some sample automation scripts that will demonstrate some of the necessary components needed to get started automating PC-DMIS.

Testing the Sample Scripts

If you want to test these scripts, be aware that sometimes copying and pasting the code from these examples into the Basic Script Editor may cause some lines to wrap that shouldn't wrap and may insert white space characters that the Editor doesn't recognize. It is recommended that you type in these scripts if you find that copying and pasting doesn't function properly.

Note: Notice in the examples below that you must declare and set the proper automation objects before you can access and use PC-DMIS's automation methods and properties. The "Accessing an Object's Properties, Methods and Events" topic will be of assistance to you as you create your own scripts.

Sample Automation Script 1 XE "Sample Automation Script 1" 
The following example first uses PC-DMIS code to receive an integer value from the user and assigns it to the V1 variable.

C1=COMMENT/INPUT,Please type an integer value.
ASSIGN/V1 = INT(C1.INPUT)
COMMENT/OPER,BEFORE SCRIPT: Variable is: 
,V1
 

It then calls a BASIC script named TEST2.BAS.

CS1=SCRIPT/FILENAME= D:\PROGRAM FILES\PCDMIS35\TEST2.BAS
FUNCTION/Main,,
STARTSCRIPT/
ENDSCRIPT/
 

Here is TEST2.BAS:

Sub Main
  Dim App As Object
  Set App = CreateObject ("PCDLRN.Application")
  Dim Part As Object
  Set Part = App.ActivePartProgram
  Dim Var As Object
  Set Var = Part.GetVariableValue ("V1")
  Dim I As Object
  If Not Var Is Nothing Then
    Var.LongValue = Var.LongValue + 1
    Part.SetVariableValue "V1", Var
    MsgBox "V1 is now: " & Var
  Else
    Msgbox "Could Not find variable"
  End If
End Sub
This script takes V1 variable and, using the GetVariableValue and SetVariableValue automation methods, increments the V1 by one and then sets the new value for V1 in the part program.

PC-DMIS then displays the changed variable in an operator comment.

COMMENT/OPER,AFTER SCRIPT: Variable is now 
,V1

Note: PC-DMIS variables only hold values during execution; at learn time PC-DMIS variables have a value of zero. The GetVariableValue and SetVariableValue methods only change a variable's value during the script's execution. If you want to permanently change a value of a variable inside PC-DMIS, you should use the PutText method instead.

Sample Automation Script 2 XE "Sample Automation Script 2" 
The following script receives an operator name from the user and then inserts an COMMENT/OPER command into the Edit window for the currently open part program, displaying the name of the operator.

PC-DMIS must be running with an open part program in the background. 

Sub Main
'Get operator Name And assign it To variable: N$.
N$ = InputBox$("Please enter your name:", "Operator", "", 200, 175)

'The following section adds a comment cmd to the part program
Dim App As Object 

'Get the pointer to the PC-DMIS application
Set App = CreateObject("PCDLRN.Application")
Dim Part As Object 

'Get the pointer to the current part program
Set Part = App.ActivePartProgram
Dim Cmds As Object 

'Get the pointer to the set of commands In the part program
Set Cmds = Part.Commands
Dim Cmd As Object 

'Add a COMMENT command
Set Cmd = Cmds.Add(SET_COMMENT, True) 

'Set the comment's type to REPT
retvaltype = Cmd.PutText("REPT", COMMENT_TYPE, 0)

'Put the string held in variable N$ into the comment's text
retvaltext = Cmd.PutText(N$, COMMENT_FIELD, 1)

'Redraws the COMMENT command so that the applied changes are applied to the part program
Cmd.ReDraw
End Sub
Sample Automation Script 3 XE "Sample Automation Script 3" 
This script is more involved than the previous examples as it involves dialog box creation and reading and writing data. Specifically, it recreates a customized version of the Comment dialog box found in PC-DMIS, showing that you can create a customized dialog box that matches your exact specifications to perform specific tasks. 

[image: image67]
My Comment dialog box

This script functions nearly identically to the Comment dialog box, with one exception. It allows you to change and store the default comment text that appears, thereby demonstrating how to write and read text strings to and from a file. 

Sub Main
  Dim App As Object
  Set App = CreateObject ("PCDLRN.Application")
  Dim Part As Object
  Set Part = App.ActivePartProgram
  Dim Cmds As Object
  Set Cmds = Part.Commands
  Dim Cmd As Object
  
  Dim strText As String
  Dim optVal As Integer
  Dim lngCommentType As Long
  Dim buttonval As Integer
  Dim strDefaultText As String
  Dim strLine As String
Start: ' This label is used to quickly redisplay the Dialog after changing the default text.
 ' Reads in stored comment text. 
' This uses text from a text file named default_comment.txt and reads it. 
' This creates the file to read from and write to, if it doesn't exist. If it exists, it simply opens the file and then
' closes it.
Open "default_comment.txt" For Append As #1 ' This creates it if it doesn't exist.
Close #1
  
' This opens the file for writing, and puts the info into strLine variable
  Open "default_comment.txt" For Input As #1
    Do While Not EOF(1)
      Line Input #1, strLine
    Loop
    If len(strLine)>0 Then
   ' Removes automatic quotation marks
     strLine = mid(strLine,2,len(strLine)-3)
     strDefaultText = strLine
   Else
    ' If there isn't any default value to read in, it uses and sets this
    strDefaultText = "Type your comment text here."
    Open "default_comment.txt" For Output As #2
    Write #2, strDefaultText
    Close #2
   End If
Close #1 ' Closes the Open file handler
 'Creates the dialog box
Begin Dialog DLG_CUSTOM_COMMENT 106,15, 143, 177, "My Comment"
  OptionGroup .GROUP_1
    OptionButton 20,12,48,24, "Operator"
    OptionButton 20,28,40,24, "Report"
    OptionButton 20,44,48,24, "Document"
    OptionButton 76,12,32,24, "Input"
    OptionButton 76,28,40,24, "Yes/No"
    OptionButton 76,44,44,24, "ReadOut"
  GroupBox 12,4,116,68, "Comment Type"
  TextBox 12,88,116,44, .EditBox_1
  Text 12,76,56,12, "Comment Text"
  OKButton 20,160,44,12
  CancelButton 72,160,52,12
  PushButton 20,140,104,12, "Change Default Text", .PushButton_1
End Dialog
Dim dlg1 As DLG_CUSTOM_COMMENT
dlg1.EditBox_1 = strDefaultText
 buttonval = Dialog (dlg1)
  strCommentText = dlg1.EditBox_1
  optValue = dlg1.GROUP_1
' If OK is clicked, run this routine
If buttonval = -1 Then
    optVal = dlg1.GROUP_1
' If it's an Operator Comment
    If optVal = 0 Then     
        ' strCommentType is For testing only.
        strCommentType = "Operator"
        ' This variable determines the Type of comment
        lngCommentType = 0
    End If
' If it's a Report Comment
    If optVal = 1 Then
        strCommentType = "Report"
        lngCommentType = 2
   End If
    
' If it's a Document Comment
    If optVal = 2 Then
        strCommentType = "Document"
        lngCommentType = 4
    End If
' If it's a a Input Comment
    If optVal = 3 Then
        strCommentType = "Input"
        lngCommentType = 3
    End If
'If it's a Yes/No Comment
    If optVal = 4 Then
        strCommentType = "Yes/No"
        lngCommentType = 5
    End If
    
' If it's a Readout Comment
    If optVal = 5 Then
        strCommentType = "Readout"
        lngCommentType = 6
    End If
    ' This statement adds the initial comment
    Set Cmd = Cmds.Add(SET_COMMENT, True)
    ' This statement changes the comment Type To lngCommentType
    Cmd.SetToggleString lngCommentType, COMMENT_TYPE, 0
    ' This statement displays the comment text.
    Cmd.PutText strCommentText, COMMENT_FIELD, 1
    ' Redraws the Edit window
    Part.Refreshpart
' If the pushbutton to set new default text is clicked, then collect and write the new default
ElseIf buttonval = 1 Then
  strDefaultText = InputBox ("Type the new default comment text","Change Default Comment Text","")
  Open "default_comment.txt" For Output As #1
    Write #1, strDefaultText
  Close #1
  GoTo Start ' After setting the new default comment text, the program flow goes the Start: label
' If Cancel is clicked...
Else
    '...the dialog closes without doing anything
End If
End Sub
Sample Automation Script 4 XE "Sample Automation Script 4" 
This script shows how to pass a variable's ID into a script from a PC-DMIS part program, how to locate the passed in ID in the script, and then how to modify the right side of the ASSIGN command associated with the ID.

Sample Part Program Code:

This script takes one parameter, a variable's ID, supplied by your part program. When you execute this example part program code within PC-DMIS, an Input comment will appear, asking you for the variable's ID to change. Once you type that valid ID, PC-DMIS passes that ID into a script called SETASSIGNMENTVALUE.BAS.

START      =LABEL/

C1         =COMMENT/INPUT,NO,'Type a variable's id: V1, V2, V3, V4, or V5.'

            IF/C1.INPUT <> "V1" AND C1.INPUT <> "V2" AND C1.INPUT <> "V3" AND C1.INPUT

<> "V4" AND C1.INPUT <> "V5"

            COMMENT/OPER,NO,You did not enter a correct variable ID.

            GOTO/START

            END_IF/

            ELSE/

CS1        =SCRIPT/FILENAME= D:\MYAUTOMATIONSCRIPTS\SETASSIGNMENTVALUE.BAS

            FUNCTION/Main,SHOW=YES,ARG1=C1.INPUT,,

            STARTSCRIPT/

            ENDSCRIPT/

            ASSIGN/V1 = ""

            ASSIGN/V2 = ""

            ASSIGN/V3 = ""

            ASSIGN/V4 = ""

            ASSIGN/V5 = ""

            END_ELSE/

SETASSIGNMENTVALUE.BAS Code:

Below is the code for SETASSIGNMENTVALUE.BAS. Once the script opens, it takes the passed in ID, cycles through all the commands, and when it finds the matching ID, it displays an input box asking you to specify a new value for the command:

Sub Main (strID As String)
Dim App As Object
Set App = CreateObject ("PCDLRN.Application")
Dim Part As Object
Set Part = App.ActivePartProgram
Dim Cmds As Object
Set Cmds = Part.Commands
Dim Cmd As Object
Dim FCCmd As Object
Dim VarCommentValue As Variant
VarCommentValue = InputBox("Type a Value for " & strID & ". (Surround what you Type With quotation marks To make it a String.)","Set Assignment Value","""Type Something Here""")
For Each Cmd In Cmds
  If Cmd.TypeDescription = "Assignment" Then
    Set FCCmd = Cmd.FlowControlCommand
    If FCCmd.GetLeftSideOfExpression = strID Then
      FCCmd.SetRightSideOfAssignment VarCommentValue
    End If
  End If
Next Cmd
End Sub
 

Object Hierarchy Chart XE "Object Hierarchy Chart" 
This chart shows the hierarchal relationship (starting with PCDLRN and moving from left to right) of all the objects in PC-DMIS's type library. You will find this chart useful when coding your scripts: 
[image: image68.png]CetPamtnsres

CadPolinensurbos ) (CofPomestnsirbee

(Caspaylnesonsutes
e

I

o — (G {Femona )

Executed Commands | {hem (Command) or FindByUiiquelD (Command) |

(BuaatinSetings }—(GetToa (120

| (Reporindon }—(Pages |—{Page }

(kT ) G ieps )k

\e
|\

o] e ) B




	Project Overview  XE "Project Overview" 


Description
PC-Dmis 4.3 Object Library 

Classes
	Class Module
	Description

	ActiveTip
	The ActiveTip object gives access to the properties of the PC-DMIS Set Active Tip command.

	AlignCmnd
	Alignment Command AlignCmnd objects are created from more generic Command objects to pass alignment information back and forth.

	Application
	PC-Dmis Application Object 

The Application object represents the PC-DMIS application.

	ApplicationObjectEvents
	The ApplicationObjectEvents object provides you with a series of events that get called when the PC-DMIS application meets certain conditions.

	ApplicationSettings
	The ApplicationSettings object is a class that contains various properties and methods that allow you to work with PC-DMIS settings.

	ArrayIndex
	The ArrayIndex object is used to set up multi-dimensional feature arrays in PC-DMIS. Methods are provided to add, remove, or edit array upper and lower bounds for array indices.

	Attach
	The Attach object attaches part programs to the current part program. The current part program can then access objects from the attached part programs.

	Autotrigger
	The Autotrigger object automatically takes hits when the probe enters a specified zone.

	BasicScan
	BasicScan objects are created from more generic Command objects to pass information specific to the scan command back and forth. At present only DCC basic scans are user-accessible.

	CadModel
	The CadModel object allows you to work with the imported CAD model in PC-DMIS' Graphics Display window.

	CadPointOnSurface
	CadPointOnSurface Object 

	CadPointsOnSurface
	Object for the collection of polylines on surface 

	CadPolyLineOnSurface
	CadPolyLineOnSurface Object 

	CadPolyLinesOnSurface
	Object for the collection of polylines on surface 

	CadWindow
	Cad Window Object The CadWindow object is the one and only cad window for a part program.

	CadWindows
	Cad Windows Collection Object 

The CadWindows object is an object containing a collection of CadWindow objects currently available to a part program. 



	Calibration
	The Calibration object allows for tip calibration during part program execution. This object is placed into a part program through the Add method of the Commands object and obtained from the Command object via the CalibrationCommand property.

	Color
	Reporting Color Object The Color object is used to automate color settings used in PC-DMIS's report templates.

	Colors
	Reporting Colors collection 

The Colors object allows you to work with collections of Color objects. These are used to automate color settings used in PC-DMIS's report templates. 

	Command
	PartProgram Command Object 

The Command object represents a single command in PC-DMIS. 

	Commands
	Part Program Commands Collection Object The Commands object contains all the Command objects in a part program.

	Comment
	The Comment object gives access to the properties of the PC-DMIS Comment command.

	ControlPoint
	With the ControlPoint object you can insert control point locations. These locations interrupt the normal scan and alter scan speed, point density or both for defined portions of the scan.

	DataType
	Command Data Type Information Object The DataType object allows you to return objects of information about a particular data type or field.

	DataTypes
	Command Data Type Information Collection Object The DataTypes object allows you to return objects of varying data types.

	DimData
	Dimension data object 

The DimData object is similar to a type defined in the Example below. You can use it to pass dimension information in automation functions that accept that type.

	DimensionCmd
	Dimension Command Object DimensionCmd objects are created from more generic Command objects to pass information specific to the dimension command back and forth.

	DimFormat
	The DimFormat object gives access to the properties of the PC-DMIS Dimension Format command. For additional information on dimensions, see the topic "Dimension Options" in the PC-DMIS documentation.

	DimInfo
	The DimInfo object gives access to the properties and methods of the PC-DMIS Dimension Information command. See "DIMINFO Command" in the PC-DMIS documentation for additional information.

	DispMetaFile
	The DispMetaFile object gives access to the comment properties of the PC-DMIS Display Metafile command.

	DmisDialog
	The DmisDialog object represents a PC-DMIS modeless dialog and can be used to determine if the dialog is still visible. 



	DmisMatrix
	The DmisMatrix object is a four by three array of doubles modeled after the transformation matrices used in PC-DMIS. The first set of three doubles represents the matrix offset. The second set of three doubles represents the X axis. The third set of three doubles represents the Y axis. The fourth set of three doubles represents the Z axis.

	EditWindow
	Edit window object The EditWindow object represents the Edit window associated with a part program. It is always present, although sometimes it is invisible. When in Command mode, the Edit window lists all the commands in the part program.

	ExecutedCommands
	Part Program Executed Commands Collection Object The ExecutedCommands object acts much like the Commands object except that it only contains a collection of the executed commands from the last part program execution, while the Commands object contains all the commands in the part program.

	ExternalCommand
	The ExternalCommand object causes PC-DMIS to launch an external program during part program execution. This object has one property: The command property. This property consists of a string value used to execute the external command.

	FeatCmd
	Feature Command Object FeatCmd are created from more generic Command objects to pass information specific to the feature command back and forth.

	FeatData
	Feature Data Object 

The FeatData object is similar to a type as defined in the Example below. 

It is be used to pass feature data in automation functions that accept this type

	FileIO
	The FileIO object is used to access the PC-DMIS File I/O object. 

	FlowControlCmd
	FlowControlCmd objects are created from more generic Command objects to pass information specific to the flow control command back and forth.

	FPanel
	The FPanel object contains properties that allow you to work with an F-Panel controller and interface.

	LabelControls
	The LabelControls object gives you access to a variety of controls such as buttons, text boxes, and other items that you can add to, remove, and otherwise manipulate on a label template.

	LabelTemplate
	The LabelTemplate object allows you to get or set various settings for a label template.

	LabelTemplates
	The LabelTemplates object contains all open label templates in PC-DMIS's Label Template editor. 

	LEAPFROG
	The Leapfrog object contains three leapfrog properties that will allow you to define how to use PC-DMIS's Leapfrog option (available in PC-DMIS Versions 3.0 and above) to translate along a part as well as the numbers of hits to use for each feature. 

For information on Leapfrog, see the "Performing a LeapFrog Operation” topic in the PC-DMIS Help File.

	LoadMachine
	The LoadMachine object gives access to the machine name property of the PC-DMIS Load Machine command.

	LoadProbe
	The LoadProbe object gives access to the filename property of the PC-DMIS Load Probe command.

	Machine
	Machine (CMM or Offline) Object 

The Machine object represents a CMM, or a virtual off-line "machine". The Machine objects are contained in the Machines collection. 

The Machine object is primarily an event source.

	Machines
	The Machines object is the collection of all Machine objects currently available in PC-DMIS. Each Machine object is bound to exactly one PartProgram object, and vice versa. Use Machines(index) where index is the index number or on-line machine’s name to return a single Machine object.

	MasterSlaveDlg
	The MasterSlaveDlg object gets called when the PartProgram.MasterSlaveDlg method is used.

	ModalCmd
	Modal Command Objects of type AlignCmnd are created from more generic Command objects to pass information specific to the modal command back and forth.

	MoveCmd
	Move Command Object Objects of type MoveCmd are created from more generic Command objects to pass information specific to the move command back and forth.

	OldBasic
	Object providing access to the previous basic command set These PC-DMIS OldBasic functions were made available in previous version of PC-DMIS basic and are provided here, listed in alphabetical order, for backwards compatibility.

	OPTIONPROBE
	The OPTIONPROBE object provides support for the Optional Probe command.

	OptMotion
	The OptMotion command object is used to change optional motion settings for the PC-DMIS probe motion command object.

	Page
	This object contains information about a specific page in the Report window.

	Pages
	This object contains a collection of the Page objects that appear in the Report window.

	PartProgram
	PC-Dmis Part Program Object The PartProgram object represents a part program currently available in PC-DMIS. This is the main object used to manipulate part programs.

	PartPrograms
	Object for the collection of open part programs 

The PartPrograms object contains all the open part programs in PC-DMIS. 

	PartProgramSettings
	The PartProgramSettings object allows you to get or set various part program settings.

	PictureData
	Picture Data Object 

	PointData
	Point Data Object 



	probe
	Probe Object The Probe object provides information about a given probe description file. It also allows you to manipulate the Probe dialog in PC-DMIS.

	Probes
	Probes collection object The Probes object is the collection of all Probe objects currently available to a part program.

	QualificationSettings
	The QualificationSettings object specifies how to calibrate your probe. The calibration process tells PC-DMIS the location and diameter of the probe tip. For more information on calibrating the probe, see the "Defining Probes" topic in the PC-DMIS help file.

	QuickStart
	 

	QuickStartAddedCommands
	 

	QuickStartStep
	 

	QuickStartSteps
	 

	QuickStartTask
	 

	RegistrySetting
	 

	RegistrySettings
	 

	ReportControls
	The ReportControls object gives you access to a variety of controls such as buttons, text boxes, and other items that you can add to, remove, and otherwise manipulate on a particular section of a report template.

	ReportData
	The ReportData object lets you access data sent to reports during the EventReportData event. 

	ReportTemplate
	The ReportTemplate object allows you to get or set various settings for a report template.

	ReportTemplates
	The ReportTemplates object contains all open report templates in PC-DMIS's Report Template editor. 

	ReportWindow
	The ReportWindow object allows you to get or set various settings for the Report window.

	Scan
	Scan objects are created from more generic Command objects to pass information specific to the scan command back and forth. At present only DCC and Manual scans are user accessible.

	Section
	The Section object lets you manipulate a particular section from the collection of available Selections used by a report template.

	Sections
	The Sections object contains a collection of all existing Section tabs for a given report template in PC-DMIS's Report Template editor. 

	STATISTICS
	The Statistics object gives access to the properties and data members of the PC-DMIS Statistics command.

	Target
	 

	Targets
	 

	TempComp
	The TempComp object gives access to the properties of the PC-DMIS Temperature Compensation command. For additional information about Temperature Compensation, see "Compensating for Temperature" in the "Setting Your Preferences" of the PC-DMIS Help File.

	Tip
	Probe Tip Object The Tip object describes a single tip of a probe. All of its properties are read-only.

	Tips
	The Tips object is the collection of all Tip objects for a Probe object. The Probe object that the Tips store Tip objects for is contained in the Parent property.

	tool
	Probe Calibration Tool Object The Tool object represents a single probe calibration tool.

	Tools
	Probe Calibration Tools Collection The Tools collection object contains the tools available to the parent PartProgram object.

	TRACEFIELD
	The Tracefield object gives access to the name and value properties of the PC-DMIS Tracefield command. For additional information on this command see "Using Trace Field" in the "Tracking Statistical Data" section of the PC-DMIS documentation.

	tutorhit
	 

	Variable
	PC-Dmis Variable Object 

	VariableArray
	 


	ActiveTip Object  XE "ActiveTip Object" 


Description
The ActiveTip object gives access to the properties of the PC-DMIS Set Active Tip command.

See Also
ActiveTip Members 

	ActiveTip Object Members  XE "ActiveTip Object Members" 


Methods
	GetShankVector Method  XE "GetShankVector Method" 


Description
Gets the shank vector of the tip. 

Syntax
	Visual Basic

	Public Function GetShankVector( _

   ByRef I As Double, _

   ByRef J As Double, _

   ByRef K As Double _

) As Boolean


Parameters
I

Required Long variable that receives the I component of the shank vector.

J

Required Long variable that receives the J component of the shank vector.

K

Required Long variable that receives the K component of the shank vector.

Return Type
Boolean value representing whether the call successfully retrieved the values or not.

See Also
ActiveTip Object 

	SetShankVector Method  XE "SetShankVector Method" 


Description
Sets the shank vector of the tip. 

Syntax
	Visual Basic

	Public Function SetShankVector( _

   ByVal I As Double, _

   ByVal J As Double, _

   ByVal K As Double _

) As Boolean


Parameters
I

 Required Long used to set the I component of the shank vector.

J

 Required Long used to set the J component of the shank vector.

K

 Required Long used to set the K component of the shank vector.

Return Type
Boolean value representing whether the call successfully set the shank vector values.

See Also
ActiveTip Object 

Properties

	Angle Property  XE "Angle Property" 


Description
Read/Write: Angle of tip Double value representing the rotation angle of the tip transformation matrix.

Property type
Read-write property

Syntax
	Visual Basic

	Public Property Angle() As Double


Return Type
Read/Write Double
See Also
ActiveTip Object 

	TipID Property  XE "TipID Property" 


Description
Read/Write: ID of the tip. 

String value representing the ID of the tip to be made active.

Property type
Read-write property

Syntax
	Visual Basic

	Public Property TipID() As String


Return Type
Read/Write String
See Also
ActiveTip Object 
	AlignCmnd Object  XE "AlignCmnd Object" 


Description
Alignment Command AlignCmnd objects are created from more generic Command objects to pass alignment information back and forth.

Object Model
	[image: image69]
[image: image70]

 INCLUDEPICTURE "Images/pcdlrn~parent_(command)~208.gif" \* MERGEFORMAT \d [image: image71]
[image: image72]

 INCLUDEPICTURE "Images/pcdlrn~angle_(pointdata)~208.gif" \* MERGEFORMAT \d [image: image73]
[image: image74]

 INCLUDEPICTURE "Images/pcdlrn~bfoffset_(pointdata)~208.gif" \* MERGEFORMAT \d [image: image75]
[image: image76]

 INCLUDEPICTURE "Images/pcdlrn~machinetopartmatrix_(dmismatrix)~208.gif" \* MERGEFORMAT \d [image: image77]
[image: image78]

 INCLUDEPICTURE "Images/pcdlrn~cadtopartmatrix_(dmismatrix)~208.gif" \* MERGEFORMAT \d [image: image79]


See Also
AlignCmnd Members 

	AlignCmnd Object Members  XE "AlignCmnd Object Members" 


Methods
	AddBestFitFeat Method  XE "AddBestFitFeat Method" 


Description
Adds best fit feature to BF3D or BF2D alignments. 

Syntax
	Visual Basic

	Public Function AddBestFitFeat( _

   ByVal ID As String, _

   ByVal Tolerance As Double _

) As Boolean


Parameters
ID

 Required String that is the ID of the feature to add to the level set.

Tolerance

Required Double that is the tolerance to associate with ID.

Return Type
This method returns a Boolean value. Boolean returns true if the function succeeds, false if it fails.

Remarks
This function only has an effect on objects of type BF2D_ALIGN and BF3D_ALIGN. On objects of these types, it adds the feature with the ID ID to the set of best fit features with tolerance tolerance. On objects of other types, it does nothing.

See Also
AlignCmnd Object | Type Property 

	AddLevelFeat Method  XE "AddLevelFeat Method" 


Description
Adds level feature to iterative alignment. 

Syntax
	Visual Basic

	Public Function AddLevelFeat( _

   ByVal ID As String _

) As Boolean


Parameters
ID

Required String that is the ID of the feature to add to the level set.

Return Type
This method returns a Boolean value. Boolean returns true if the function succeeds, false if it fails.

Remarks
This function only has an effect on objects of type ITER_ALIGN. On objects of this type, it adds the feature with the ID ID to the set of level features. On objects of other types, it does nothing.

See Also
AlignCmnd Object | Type Property 

	AddOriginFeat Method  XE "AddOriginFeat Method" 


Description
Adds origin feature to iterative alignment. 

Syntax
	Visual Basic

	Public Function AddOriginFeat( _

   ByVal ID As String _

) As Boolean


Parameters
ID

Required String that is the ID of the feature to add to the origin set.

Return Type
This method returns a Boolean value. Boolean returns true if the function succeeds, false if it fails.

Remarks
This function only has an effect on objects of type ITER_ALIGN. On objects of this type, it adds the feature with the ID ID to the set of origin features. On objects of other types, it does nothing.

See Also
AlignCmnd Object | Type Property 

	AddRotateFeat Method  XE "AddRotateFeat Method" 


Description
Adds rotation feature to iterative alignment. 

Syntax
	Visual Basic

	Public Function AddRotateFeat( _

   ByVal ID As String _

) As Boolean


Parameters
ID

Required String that is the ID of the feature to add to the Rotate set.

Return Type
This method returns a Boolean value. Boolean returns true if the function succeeds, false if it fails.

Remarks
This function only has an effect on objects of type ITER_ALIGN. On objects of this type, it adds the feature with the ID ID to the set of rotate features. On objects of other types, it does nothing.

See Also
AlignCmnd Object | Type Property 

	CalculateDeviation Method  XE "CalculateDeviation Method" 


Description
Returns deviation value and vector for a feature. 

Syntax
	Visual Basic

	Public Function CalculateDeviation( _

   ByVal Item As Long, _

   ByRef deviation_before As Double, _

   ByRef ijk_before As Double, _

   ByRef deviation_after As Double, _

   ByRef ijk_after As Double _

) As Boolean


Parameters
Item

deviation_before

ijk_before

deviation_after

ijk_after

See Also
AlignCmnd Object 

	CalculateMatrices Method  XE "CalculateMatrices Method" 


Description
Forces immediate calculation of alignment matrices. Forces the immediate calculation of alignment matrices.

Syntax
	Visual Basic

	Public Sub CalculateMatrices() 


See Also
AlignCmnd Object 

	CalculateStatistics Method  XE "CalculateStatistics Method" 


Description
Returns the mean and standard deviation. 

Syntax
	Visual Basic

	Public Sub CalculateStatistics( _

   ByRef MEAN As Double, _

   ByRef STDDEV As Double _

) 


Parameters
See Also
AlignCmnd Object 

	GetBFIterations Method  XE "GetBFIterations Method" 


Description
Returns the number of bestfit iterations. 

Syntax
	Visual Basic

	Public Sub GetBFIterations( _

   ByRef max_iterations As Long, _

   ByRef actual_iterations As Long _

) 


Parameters
max_iterations

actual_iterations

See Also
AlignCmnd Object 

	GetFeatureIdByIndex Method  XE "GetFeatureIdByIndex Method" 


Description
Returns the feature id. 

Syntax
	Visual Basic

	Public Function GetFeatureIdByIndex( _

   ByVal index As Long _

) As String


Parameters
index

See Also
AlignCmnd Object 

Properties

	AboutAxis Property  XE "AboutAxis Property" 


Description
Read/Write: Represents the axis about which the alignment object rotates.

Property type
Read-write property

Syntax
	Visual Basic

	Public Property AboutAxis() As ENUM_AXIS_TYPE


Return Type
Read/write Long.

Remarks
This function only works for objects of type ROTATE_ALIGN, ROTATE_CIRCLE_ALIGN, and ROTATEOFF_ALIGN. For other object types, trying to set this property does nothing, and trying to get this property always returns PCD_ZPLUS.

Valid Settings to set this property to are as follows:

PCD_XPLUS
PCD_XMINUS
PCD_YPLUS
PCD_YMINUS
PCD_ZPLUS
PCD_ZMINUS

See Also
AlignCmnd Object | Type Property 

	Angle Property  XE "Angle Property" 


Description
Read/Write: Point data object with angle values for BF3D and BF2D alignments. Represents the offset angles of a 3D or 2D alignment. 

Property type
Read-write property

Syntax
	Visual Basic

	Public Property Angle() As PointData


Return Type
Read/write PointData. If used on an object other than a 3D or 2D alignment, setting this variable will do nothing, and getting this variable will return Nothing.

See Also
AlignCmnd Object 

	AverageError Property  XE "AverageError Property" 


Description
Read/Write: Average Error setting for Iterative Alignments. 

Represents whether or not error averaging is used during the iterative alignment. 

Property type
Read-write property

Syntax
	Visual Basic

	Public Property AverageError() As Boolean


Return Type
Read/write Boolean.

Remarks
This property is only valid for objects of type ITER_ALIGN. For other objects, getting this property always returns FALSE, and setting it does nothing.

See Also
AlignCmnd Object | Type Property 

	AXIS Property  XE "AXIS Property" 


Description
Read/Write: The alignment axis. Represents the axis that the alignment object uses.

Property type
Read-write property

Syntax
	Visual Basic

	Public Property AXIS() As ENUM_AXIS_TYPE


Return Type
Read/write Long.

Remarks
This function only works for objects of type ROTATE_ALIGN, ROTATE_CIRCLE_ALIGN, TRANS_ALIGN, and TRANSOFF_ALIGN. For other object types, trying to set this property does nothing, and trying to get this property always returns PCD_ZPLUS.

Valid Settings to set this property to are as follows:

PCD_XPLUS
PCD_XMINUS
PCD_YPLUS
PCD_YMINUS
PCD_ZPLUS
PCD_ZMINUS

See Also
AlignCmnd Object | Type Property 

	BFOffset Property  XE "BFOffset Property" 


Description
Read/Write: Point data object with best fit offsets for BF3D and BF2D alignments. Represents the offsets of a 3D or 2D alignment.

Property type
Read-write property

Syntax
	Visual Basic

	Public Property BFOffset() As PointData


Return Type
Read/write PointData. If used on an object other than a 3D or 2D alignment, setting this variable will do nothing, and getting this variable will return Nothing.

See Also
AlignCmnd Object | Type Property 

	CadToPartMatrix Property  XE "CadToPartMatrix Property" 


Description
Read Only: Returns a DmisMatrix object representing the cad to part matrix for the alignment. 

Represents the matrix used to transform points between the cad and part alignment systems. 

Property type
Read-write property

Syntax
	Visual Basic

	Public Property CadToPartMatrix() As DmisMatrix


Return Type
Read only DmisMatrix. 

If used on an object other than a start alignment or a recall alignment, the identity matrix will be returned.

See Also
AlignCmnd Object | Type Property 

	ExternalFileID Property  XE "ExternalFileID Property" 


Description
Read/Write: External filename for recalling external alignments. Represents the external filename for recalling external alignments.

Property type
Read-write property

Syntax
	Visual Basic

	Public Property ExternalFileID() As String


Return Type
Read/write String.

Remarks
This function only works for objects of type RECALL_ALIGN and SAVE_ALIGN. If used on an object other than a RECALL_ALIGN or SAVE_ALIGN, setting this variable will do nothing, and getting this variable will return the empty string.

See Also
AlignCmnd Object | Type Property 

	ExternalID Property  XE "ExternalID Property" 


Description
Read/Write: ID of External Alignment. Represents the external ID.

Property type
Read-write property

Syntax
	Visual Basic

	Public Property ExternalID() As String


Return Type
Read/write String.

See Also
AlignCmnd Object 

	FeatID Property  XE "FeatID Property" 


Description
Read/Write: Feature referenced by the alignment. Represents the first (or only) feature ID used by this alignment object.

Property type
Read-write property

Syntax
	Visual Basic

	Public Property FeatID() As String


Return Type
Read/write String.

Remarks
This function only works for objects of type LEVEL_ALIGN, ROTATE_ALIGN, ROTATE_CIRCLE_ALIGN, TRANS_ALIGN, and EQUATE_ALIGN. If used on any other object type, setting this variable will do nothing, and getting this variable will return the empty string.

See Also
AlignCmnd Object | Type Property 

	FeatID2 Property  XE "FeatID2 Property" 


Description
Read/Write: Second referenced alignment feature. Represents the second feature ID used by this alignment object.

Property type
Read-write property

Syntax
	Visual Basic

	Public Property FeatID2() As String


Remarks
This function only works for objects of type ROTATE_CIRCLE_ALIGN and EQUATE_ALIGN. If used on any other object type, setting this variable will do nothing, and getting this variable will return the empty string.

See Also
AlignCmnd Object | Type Property 

	FindCad Property  XE "FindCad Property" 


Description
Read/Write: Find Cad setting for BF3D and BF2D alignments. Represents the FindCad property status of this best fit alignment object.

Property type
Read-write property

Syntax
	Visual Basic

	Public Property FindCad() As Boolean


Return Type
Read/write Boolean.

Remarks
This function only works for objects of type BF2D_ALIGN and BF3D_ALIGN. If used on any other object type, setting this variable will do nothing, and getting this variable will return FALSE.

See Also
AlignCmnd Object | Type Property 

	ID Property  XE "ID Property" 


Description
Read/Write: Id of the alignment. Represents the ID of this alignment object.

Property type
Read-write property

Syntax
	Visual Basic

	Public Property ID() As String


Return Type
Read/write String.

Remarks
This function only works for objects of type START_ALIGN and RECALL_ALIGN. If used on any other object type, setting this variable will do nothing, and getting this variable will return the empty string.

See Also
AlignCmnd Object | Type Property 

	InitID Property  XE "InitID Property" 


Description
Read/Write: Id of initial/basic alignment. 

Represents the initial ID of this alignment object. The initial ID is the ID of the alignment to recall before modifying it with this alignment. 

Property type
Read-write property

Syntax
	Visual Basic

	Public Property InitID() As String


Return Type
Read/write String.

Remarks
This function only works for objects of type START_ALIGN and RECALL_ALIGN. If used on any other object type, setting this variable will do nothing, and getting this variable will return the empty string.

See Also
AlignCmnd Object | Type Property 

	IterativeLevelAxis Property  XE "IterativeLevelAxis Property" 


Description
Read/Write: Level Axis for Iterative Alignment. Represents the level axis for an iterative alignment.

Property type
Read-write property

Syntax
	Visual Basic

	Public Property IterativeLevelAxis() As PAXISTYPE


Return Type
Read/write PaxisType.

See Also
AlignCmnd Object | Type Property 

	IterativeOriginAxis Property  XE "IterativeOriginAxis Property" 


Description
Read/Write: Origin Axis for Iterative Alignment. Represents the origin axis for an iterative alignment.

Property type
Read-write property

Syntax
	Visual Basic

	Public Property IterativeOriginAxis() As PAXISTYPE


Return Type
Read/write PaxisType.

See Also
AlignCmnd Object | Type Property 

	IterativeRotateAxis Property  XE "IterativeRotateAxis Property" 


Description
Read/Write: Rotate Axis for Iterative Alignment Represents the rotate axis for an iterative alignment.

Property type
Read-write property

Syntax
	Visual Basic

	Public Property IterativeRotateAxis() As PAXISTYPE


Return Type
Read/write PaxisType.

See Also
AlignCmnd Object | Type Property 

	MachineToPartMatrix Property  XE "MachineToPartMatrix Property" 


Description
Read Only: Returns a DmisMatrix object representing the machine to part matrix for the alignment. 

Represents the matrix used to transform points between the machine and part alignment systems. 

 

Property type
Read-write property

Syntax
	Visual Basic

	Public Property MachineToPartMatrix() As DmisMatrix


Return Type
Read only DmisMatrix. If used on an object other than a start alignment or a recall alignment, the identity matrix will be returned.

See Also
AlignCmnd Object 

	MeasAllFeat Property  XE "MeasAllFeat Property" 


Description
Read/Write: Measure all features once setting for iterative alignment. Represents the "Measure All Features" property of this iterative alignment object.

Property type
Read-write property

Syntax
	Visual Basic

	Public Property MeasAllFeat() As Boolean


Return Type
Read/write Boolean.

Remarks
This function only works for objects of type ITER_ALIGN. If used on any other object type, setting this variable will do nothing, and getting this variable will return FALSE.

See Also
AlignCmnd Object | Type Property 

	MeasAllFeatAlways Property  XE "MeasAllFeatAlways Property" 


Description
Read/Write: Measure All Features Always setting for iterative alignments. Represents the "Measure All Features Always" property of this iterative alignment object.

Property type
Read-write property

Syntax
	Visual Basic

	Public Property MeasAllFeatAlways() As Boolean


Return Type
Read/write Boolean.

See Also
AlignCmnd Object | Type Property 

	NumInputs Property  XE "NumInputs Property" 


Description
Read Only: Number of inputs for BF3D, BF2D, or Iterative Alignments. 

Returns the number of inputs to this alignment object. Read-only Long.

Property type
Read-write property

Syntax
Return Type
This function only works for objects of type ITER_ALIGN, BF2D_ALIGN, and BF3D_ALIGN. If used on any other object type, setting this variable will do nothing, and getting this variable will return zero.

Remarks
See Also
AlignCmnd Object | Type Property 

	Offset Property  XE "Offset Property" 


Description
Read/Write: Alignment offset value. Represents the offset property of this offset alignment object.

Property type
Read-write property

Syntax
	Visual Basic

	Public Property Offset() As Double


Return Type
Read/write Double. For objects of type TRANSOFF_ALIGN, it is the number of MM or inches to offset the alignment. For objects of type ROTATEOFF_ALIGN, it is the number of radians to offset the alignment.

See Also
AlignCmnd Object 

	Parent Property  XE "Parent Property" 


Description
Read Only: Returns parent command object. 

Returns the parent Command object. Read-only.

Property type
Read-write property

Syntax
	Visual Basic

	Public Property Parent() As Command


Remarks
The parent of an AlignCommand object is the same underlying PC-DMIS object as the AlignCommand object itself. Getting the parent allows you to access the generic Command properties and methods of a given object. 

See Also
AlignCmnd Object 

	PointTolerance Property  XE "PointTolerance Property" 


Description
Read/Write: Point Tolerance value for BF3D, BF2D, or Iterative alignments Represents the "Point Tolerance" property of this alignment object.

Property type
Read-write property

Syntax
	Visual Basic

	Public Property PointTolerance() As Double


Return Type
Read/write Double.

Remarks
This function only works for objects of type ITER_ALIGN, BF2D_ALIGN, and BF3D_ALIGN. If used on any other object type, setting this variable will do nothing, and getting this variable will return zero.

See Also
AlignCmnd Object | Type Property 

	RepierceCad Property  XE "RepierceCad Property" 


Description
Read/Write: Repierce Cad setting for Iterative Alignments. Represents whether or not to repierce the cad model during the execution of this iterative alignment object.

Property type
Read-write property

Syntax
	Visual Basic

	Public Property RepierceCad() As Boolean


Return Type
Read/write Boolean.

Remarks
This function only works for objects of type ITER_ALIGN. If used on any other object type, setting this variable will do nothing, and getting this variable will return FALSE.

See Also
AlignCmnd Object | Type Property 

	UseBodyAxis Property  XE "UseBodyAxis Property" 


Description
Read/Write: Use body axis setting for Iterative Alignments. Represents whether or not to use the "Body Axis” method during the calculation of this iterative alignment object.

Property type
Read-write property

Syntax
	Visual Basic

	Public Property UseBodyAxis() As Boolean


Return Type
Read/write Boolean.

See Also
AlignCmnd Object | Type Property 

	Workplane Property  XE "Workplane Property" 


Description
Read/Write: Workplane setting for BF2D and Iterative Alignments. 

Represents the workplane of this alignment object. It can take the values PCD_XPLUS, PCD_XMINUS, PCD_YPLUS, PCD_YMINUS, PCD_ZPLUS, and PCD_ZMINUS.

Property type
Read-write property

Syntax
	Visual Basic

	Public Property Workplane() As ENUM_PLANE_TYPE


Return Type
Read/write Long.

Remarks
This function only works for objects of type ITER_ALIGN. If used on any other object type, setting this variable will do nothing, and getting this variable will return PCD_ZPLUS.

See Also
AlignCmnd Object | Type Property 
	Application Object  XE "Application Object" 


Description
PC-Dmis Application Object 

The Application object represents the PC-DMIS application.

Object Model
	[image: image80]
[image: image81]

 INCLUDEPICTURE "Images/pcdlrn~partprograms~260.gif" \* MERGEFORMAT \d [image: image82]
[image: image83]

 INCLUDEPICTURE "Images/pcdlrn~activepartprogram_(partprogram)~260.gif" \* MERGEFORMAT \d [image: image84]
[image: image85]

 INCLUDEPICTURE "Images/pcdlrn~machines~260.gif" \* MERGEFORMAT \d [image: image86]
[image: image87]

 INCLUDEPICTURE "Images/pcdlrn~applicationevents_(applicationobjectevents)~260.gif" \* MERGEFORMAT \d [image: image88]
[image: image89]

 INCLUDEPICTURE "Images/pcdlrn~applicationsettings~260.gif" \* MERGEFORMAT \d [image: image90]
[image: image91]

 INCLUDEPICTURE "Images/pcdlrn~reporttemplates~260.gif" \* MERGEFORMAT \d [image: image92]
[image: image93]

 INCLUDEPICTURE "Images/pcdlrn~labeltemplates~260.gif" \* MERGEFORMAT \d [image: image94]
[image: image95]

 INCLUDEPICTURE "Images/pcdlrn~getregistrypoint_(pointdata)~260.gif" \* MERGEFORMAT \d [image: image96]
[image: image97]

 INCLUDEPICTURE "Images/pcdlrn~getregistrysettings_(registrysettings)~260.gif" \* MERGEFORMAT \d [image: image98]


Remarks
To start PC-DMIS using Automation from another application, use CreateObject or GetObject to return an Application object.

Launching PC-DMIS with Startup Options

Because of an inherent weakness in the way Microsoft designed the CreateObject function, the CreateObject doesn't allow startup parameters. This means when the code executes it will launch PC-DMIS always in ONLINE mode. 

However, there is a way around this. Your code can dynamically create a special startup file that will cause PC-DMIS to launch with specific startup options. 

In order to launch PC-DMIS via automation with a startup file you must do the following:

· Create a text file named AutomationStartupOptions.txt.

· Create a single line of text in the file with the available startup options. The PC-DMIS specific startup options include the following: 

/f  - Launches in Offline mode.

/o - Launches in Operator mode.

/d - Launches in Debug mode.

/r - Launches in Reverse Axes mode

/postin - Launches in import mode. PC-DMIS will automatically import a specified file.

/postout - Launches in export mode. PC-DMIS will automatically export a specified file. 

The line of text would look like this: /f /o /d /r /postin /postout

· Launch PC-DMIS via automation.

When PC-DMIS starts, it checks to see if the AutomationStartupOptions.txt file exists. If it does, then it uses the file to set the necessary flags. However, when PC-DMIS closes, it will delete the text file. This means that the code you use to launch PC-DMIS must also create the needed text file on the fly or must rename an existing file to AutomationStartupOptions.txt. See the "Example Code from C++" below.

Automating in Online Mode: If you are trying to launch PC-DMIS in online mode, please note that the AutomationStartupOptions.txt file should not contain the /f startup parameter. Also, the machine parameter specified when using the Open or New methods of the PartPrograms object determines whether or not the part program will run in offline or online modes. Of online mode, this parameter should be "CMM1".

Example
Dim App as Object. 
Set App = CreateObject("Pcdlrn.Application") 

Example
Example Code from C++ 

See Also
Application Members 

	Application Object Members  XE "Application Object Members" 


Methods
	_AddRegistrySetting Method  XE "_AddRegistrySetting Method" 


Syntax
	Visual Basic

	Public Sub _AddRegistrySetting( _

   ByVal szSection As String, _

   ByVal szEntry As String, _

   ByVal szDefault As String, _

   ByVal nType As Long, _

   ByVal nFunction As Long, _

   ByVal bUserAdmin As Boolean, _

   ByVal bAutoEnabled As Boolean, _

   ByVal bSingleton As Boolean _

) 


Parameters
szSection

szEntry

szDefault

nType

nFunction

bUserAdmin

bAutoEnabled

bSingleton

See Also
Application Object 

	DeleteRegistryKey Method  XE "DeleteRegistryKey Method" 


Description
Deletes a key and all its subkeys from the registry 

Syntax
	Visual Basic

	Public Function DeleteRegistryKey( _

   ByVal lpszSection As String _

) As Boolean


Parameters
lpszSection

See Also
Application Object 

	DeleteRegistryValue Method  XE "DeleteRegistryValue Method" 


Description
Deletes a value from the registry 

Syntax
	Visual Basic

	Public Function DeleteRegistryValue( _

   ByVal lpszSection As String, _

   ByVal lpszEntry As String _

) As Boolean


Parameters
lpszSection

lpszEntry

See Also
Application Object 

	ExportRegistrySettings Method  XE "ExportRegistrySettings Method" 


Syntax
	Visual Basic

	Public Function ExportRegistrySettings( _

   ByVal FilePath As String _

) As Long


Parameters
FilePath

See Also
Application Object 

	GetHelpMap Method  XE "GetHelpMap Method" 


Description
Returns help map for menu id, used by online help 

Syntax
	Visual Basic

	Public Function GetHelpMap( _

   ByVal MenuId As Long _

) As String


Parameters
MenuId

See Also
Application Object 

	GetRegistryBool Method  XE "GetRegistryBool Method" 


Description
Gets a boolean from the registry 

Syntax
	Visual Basic

	Public Function GetRegistryBool( _

   ByVal lpszSection As String, _

   ByVal lpszEntry As String, _

   ByVal bDefault As Boolean _

) As Boolean


Parameters
lpszSection

lpszEntry

bDefault

See Also
Application Object 

	GetRegistryDouble Method  XE "GetRegistryDouble Method" 


Description
Gets a double from the registry 

Syntax
	Visual Basic

	Public Function GetRegistryDouble( _

   ByVal lpszSection As String, _

   ByVal lpszEntry As String, _

   ByVal dDefault As Double _

) As Double


Parameters
lpszSection

lpszEntry

dDefault

See Also
Application Object 

	GetRegistryDWORD Method  XE "GetRegistryDWORD Method" 


Description
Gets a DWORD from the registry 

Syntax
	Visual Basic

	Public Function GetRegistryDWORD( _

   ByVal lpszSection As String, _

   ByVal lpszEntry As String, _

   ByVal dwDefault As Long _

) As Long


Parameters
lpszSection

lpszEntry

dwDefault

See Also
Application Object 

	GetRegistryInt Method  XE "GetRegistryInt Method" 


Description
Gets an integer from the registry 

Syntax
	Visual Basic

	Public Function GetRegistryInt( _

   ByVal lpszSection As String, _

   ByVal lpszEntry As String, _

   ByVal nDefault As Long _

) As Long


Parameters
lpszSection

lpszEntry

nDefault

See Also
Application Object 

	GetRegistryPoint Method  XE "GetRegistryPoint Method" 


Description
Gets an XYZ triple from the registry 

Syntax
	Visual Basic

	Public Function GetRegistryPoint( _

   ByVal lpszSection As String, _

   ByVal lpszEntry As String, _

   ByVal dX As Double, _

   ByVal dY As Double, _

   ByVal dZ As Double _

) As PointData


Parameters
lpszSection

lpszEntry

dX

dY

dZ

See Also
Application Object 

	GetRegistrySettings Method  XE "GetRegistrySettings Method" 


Description
Gets the settings object for the application 

Syntax
	Visual Basic

	Public Function GetRegistrySettings() As RegistrySettings


See Also
Application Object 

	GetRegistryString Method  XE "GetRegistryString Method" 


Description
Gets a string from the registry 

Syntax
	Visual Basic

	Public Function GetRegistryString( _

   ByVal lpszSection As String, _

   ByVal lpszEntry As String, _

   ByVal lpszDefault As String _

) As String


Parameters
lpszSection

lpszEntry

lpszDefault

See Also
Application Object 

	Help Method  XE "Help Method" 


Description
Shows application or specified help file. Calls and opens a help file and topic.

Syntax
	Visual Basic

	Public Sub Help( _

   ByVal HelpFile As String, _

   ByVal HelpContext As Long, _

   ByVal HelpString As String _

) 


Parameters
HelpFile

Required String parameter that indicates what help file to open.

HelpContext

Optional Long parameter that indicates which Context ID number in HelpFile to open.

HelpString

Optional String parameter that indicates a string to match among HelpFile’s topics.

Remarks
If both the HelpContext and HelpString are provided, the HelpString will be ignored. If neither is provided, the first help page is shown.

See Also
Application Object 

	ImportRegistrySettings Method  XE "ImportRegistrySettings Method" 


Syntax
	Visual Basic

	Public Function ImportRegistrySettings( _

   ByVal FilePath As String _

) As Long


Parameters
FilePath

See Also
Application Object 

	Maximize Method  XE "Maximize Method" 


Description
Maximizes application window The Maximize Subroutine expands the PC-DMIS window to full-screen size.

Syntax
	Visual Basic

	Public Sub Maximize() 


See Also
Application Object 

	Minimize Method  XE "Minimize Method" 


Description
Minimizes application window. The Minimize subroutine reduces the PC-DMIS window to the taskbar.

Syntax
	Visual Basic

	Public Sub Minimize() 


See Also
Application Object 

	Post Method  XE "Post Method" 


Description
Imports or exports data to/from specified part program. 

The Post function tells PC-DMIS to import or export Source into Destination. It returns TRUE if the import or export process is successful, FALSE otherwise.

Exactly one of Source and Destination must be a PC-DMIS .prg or .cad file. If it is Source, then PC-DMIS will export based on the name of the Destination file. If the Destination file is a PC-DMIS .prg or .cad file, then PC-DMIS will import based on the name of the Source file.

The Source file must already exist, but the Destination file need not already exist.

Syntax
	Visual Basic

	Public Function Post( _

   ByVal Source As String, _

   ByVal Destination As String _

) As Boolean


Parameters
Source

Required String that indicates the file from which to import or export.

Destination

Required String that indicates the file into which to import or export.

Return Type
This method returns a Boolean value. Boolean returns true if the function succeeds, false if it fails.

See Also
Application Object 

	Quit Method  XE "Quit Method" 


Description
Quits application - once all object pointers have been released. The Quit function tells PC-DMIS to close. It always returns TRUE.

Syntax
	Visual Basic

	Public Sub Quit() 


See Also
Application Object 

	RegistryKeyExists Method  XE "RegistryKeyExists Method" 


Description
Queries the registry for a specific key 

Syntax
	Visual Basic

	Public Function RegistryKeyExists( _

   ByVal lpszSection As String _

) As Boolean


Parameters
lpszSection

See Also
Application Object 

	RegistryValueExists Method  XE "RegistryValueExists Method" 


Description
Queries the registry for a specific value 

Syntax
	Visual Basic

	Public Function RegistryValueExists( _

   ByVal lpszSection As String, _

   ByVal lpszEntry As String _

) As Boolean


Parameters
lpszSection

lpszEntry

See Also
Application Object 

	Restore Method  XE "Restore Method" 


Description
Restores application window. The Restore subroutine makes the PC-DMIS window open and neither maximized nor minimized.

Syntax
	Visual Basic

	Public Sub Restore() 


See Also
Application Object 

	SetActive Method  XE "SetActive Method" 


Description
Makes application the active application for the OS Brings PC-DMIS to the foreground, making it the active application.

Syntax
	Visual Basic

	Public Function SetActive() As Boolean


Return Type
Boolean value. Boolean returns true if the function succeeds, false if it fails.

See Also
Application Object 

	SpawnNewInstance Method  XE "SpawnNewInstance Method" 


Description
Returns Application Object of newly created instance of application 

 

Syntax
	Visual Basic

	Public Function SpawnNewInstance() As Application


Return Type
Returns Application Object of newly created instance of application.

See Also
Application Object 

	WaitUntilReady Method  XE "WaitUntilReady Method" 


Description
Waits until the online machine has fully initialized or timeout period has elapsed before returning.

Syntax
	Visual Basic

	Public Function WaitUntilReady( _

   ByVal TimeOutInSeconds As Long _

) As Boolean


Parameters
TimeOutInSeconds

Long value representing the number of seconds for the timeout period.

See Also
Application Object 

	WinHelp Method  XE "WinHelp Method" 


Description
Invokes internal help 

Syntax
	Visual Basic

	Public Sub WinHelp( _

   ByVal dwData As Long, _

   ByVal nCmd As Long _

) 


Parameters
dwData

nCmd

See Also
Application Object 

	WriteRegistryBool Method  XE "WriteRegistryBool Method" 


Description
Writes a boolean to the registry. Sets a PC-DMIS registry entry to a TRUE or FALSE value.

Syntax
	Visual Basic

	Public Function WriteRegistryBool( _

   ByVal lpszSection As String, _

   ByVal lpszEntry As String, _

   ByVal bValue As Boolean, _

   ByVal bSetVariable As Boolean _

) As Boolean


Parameters
lpszSection

String value that specifies the section in which the registry entry that you want to modify resides.

lpszEntry

String value that specifies the entry to which you want to write the value.

bValue

Boolean value to write to the registry entry.

bSetVariable

Boolean value that determines whether or not an associated global variable in PC-DMIS gets changed to the value of the third parameter. This parameter only works for registry entries pertaining to feature ID prefixes.

Return Type
Boolean value that determines whether or not the value of the third parameter was successfully written to the registry entry.

Remarks
 

Example
' This code sample turns off PC-DMIS’s start up music:

Dim myapp As New PCDLRN.Application

Set myapp = CreateObject("pcdlrn.application")

myval = myapp.WriteRegistryBool("Option", "TurnOffTheAnnoyingStartupMusic", False, True)

See Also
Application Object 

	WriteRegistryDouble Method  XE "WriteRegistryDouble Method" 


Description
Writes a double to the registry. Sets a PC-DMIS registry entry to a specified Double value.

Syntax
	Visual Basic

	Public Function WriteRegistryDouble( _

   ByVal lpszSection As String, _

   ByVal lpszEntry As String, _

   ByVal dValue As Double, _

   ByVal bSetVariable As Boolean _

) As Boolean


Parameters
lpszSection

String value that specifes the section in which the registry entry that you want to modify resides.

lpszEntry

String value that specifies the entry to which you want to write the value.

dValue

Double value to write to the registry entry.

bSetVariable

Boolean value that determines whether or not an associated global variable in PC-DMIS gets changed to the value of the third parameter. This parameter only works for registry entries pertaining to feature ID prefixes.

Return Type
Boolean value that determines whether or not the value of the third parameter was successfully written to the registry entry.

Example
' This code sample sets an analog probe’s lower force to the double value of 0.04.

Dim myapp As New PCDLRN.Application

Set myapp = CreateObject("pcdlrn.application")

myval = myapp.WriteRegistryDouble("ANALOG_PROBING", "ProbeLowerForce", 0.04, True)

See Also
Application Object 

	WriteRegistryDWORD Method  XE "WriteRegistryDWORD Method" 


Description
Writes a DWORD to the registry. Sets a PC-DMIS registry entry to a specified long value.

Syntax
	Visual Basic

	Public Function WriteRegistryDWORD( _

   ByVal lpszSection As String, _

   ByVal lpszEntry As String, _

   ByVal dwValue As Long, _

   ByVal bSetVariable As Boolean _

) As Boolean


Parameters
lpszSection

String value that specifes the section in which the registry entry that you want to modify resides.

lpszEntry

String value that specifies the entry to which you want to write the value.

dwValue

Long value to write to the registry entry.

bSetVariable

Boolean value that determines whether or not an associated global variable in PC-DMIS gets changed to the value of the third parameter. This parameter only works for registry entries pertaining to feature ID prefixes.

Return Type
Boolean value that determines whether or not the value of the third parameter was successfully written to the registry entry.

Example
' This code sample sets an auto circle’s hits to the long value of 4.

Dim myapp As New PCDLRN.Application

Set myapp = CreateObject("pcdlrn.application")

myval = myapp.WriteRegistryDWORD("AutoFeatures", "DccCirNumHits", 4, True)

See Also
Application Object 

	WriteRegistryInt Method  XE "WriteRegistryInt Method" 


Description
Writes an integer to the registry. Sets a PC-DMIS registry entry to a specified integer value. Write Integer.

Syntax
	Visual Basic

	Public Function WriteRegistryInt( _

   ByVal lpszSection As String, _

   ByVal lpszEntry As String, _

   ByVal nValue As Long, _

   ByVal bSetVariable As Boolean _

) As Boolean


Parameters
lpszSection

String value that specifes the section in which the registry entry that you want to modify resides.

lpszEntry

String value that specifies the entry to which you want to write the value.

nValue

Integer value to write to the registry entry.

bSetVariable

Boolean value that determines whether or not an associated global variable in PC-DMIS gets changed to the value of the third parameter. This parameter only works for registry entries pertaining to feature ID prefixes.

Return Type
Boolean value that determines whether or not the value of the third parameter was successfully written to the registry entry.

Example
' This code sample sets the number of rows for auto feature cylinders to the integer value of 3.

Dim myapp As New PCDLRN.Application

Set myapp = CreateObject("pcdlrn.application")

myval = myapp.WriteRegistryInt("AutoFeatures", "DccCylNumRows", 3, True)

MsgBox myval

See Also
Application Object 

	WriteRegistryPoint Method  XE "WriteRegistryPoint Method" 


Description
Writes an XYZ triple to the registry. Sets a PC-DMIS registry entry to a specified XYZ value. Write double.

Syntax
	Visual Basic

	Public Function WriteRegistryPoint( _

   ByVal lpszSection As String, _

   ByVal lpszEntry As String, _

   ByVal dX As Double, _

   ByVal dY As Double, _

   ByVal dZ As Double, _

   ByVal bSetVariable As Boolean _

) As Boolean


Parameters
lpszSection

String value that specifies the section in which the registry entry that you want to modify resides.

lpszEntry

String value that specifies the entry to which you want to write the value.

dX

double value representing the X value to write to the registry entry.

dY

double value representing the Y value to write to the registry entry.

dZ

double value representing the Z value to write to the registry entry.

bSetVariable

Boolean value that determines whether or not an associated global variable in PC-DMIS gets changed to the value of the third parameter. This parameter only works for registry entries pertaining to feature ID prefixes.

Return Type
Boolean value that determines whether or not the value of the third parameter was successfully written to the registry entry.

See Also
Application Object 

	WriteRegistrySettings Method  XE "WriteRegistrySettings Method" 


Description
Writes current registry settings to the debug file. Writes the current PC-DMIS registry entries and their values to the debug.txt file.

Syntax
	Visual Basic

	Public Sub WriteRegistrySettings() 


Return Type
The debug file is a text file with a default name of debug.txt and is located inside your PC-DMIS installation directory. When you have PC-DMIS set up to write data to this text file, you can use it to keep track of every action of PC-DMIS. This is useful data to give to Technical Support so that they can track down possible bugs or problems you may be encountering inside of PC-DMIS. 

When you run a script with this method, all the registry entries get appended to the end of your debug file. You will see a line that says:

//// Start of registry settings ////

Following this line you will find all the registry entries and their values. After the final entry, PC-DMIS shows this line:

//// End of registry settings ////

Example
' This code sample writes all of PC-DMIS’s registry entries and their values to the debug.txt file:

Dim myapp As New PCDLRN.Application

Set myapp = CreateObject("pcdlrn.application")

myapp.WriteRegistrySettings

See Also
Application Object 

	WriteRegistryString Method  XE "WriteRegistryString Method" 


Description
Writes a string to the registry This writes a specified string value to a valid PC-DMIS registry entry. Write String.

Syntax
	Visual Basic

	Public Function WriteRegistryString( _

   ByVal lpszSection As String, _

   ByVal lpszEntry As String, _

   ByVal lpszValue As String, _

   ByVal bSetVariable As Boolean _

) As Boolean


Parameters
lpszSection

String value that specifies the section in which the registry entry that you want to modify resides.

lpszEntry

String that specifies the entry to which you want to write the value.

lpszValue

String value to write to the registry entry.

bSetVariable

Boolean value that determines whether or not an associated global variable in PC-DMIS gets changed to the value of the third parameter. This parameter only works for registry entries pertaining to feature ID prefixes.

Return Type
Boolean value that determines whether or not the value of the third parameter was successfully written to the registry entry.

Example
' The following code sample, sets the PC-DMIS password for the Setup Options dialog box to the string: "PCDMIS007".

Dim myapp As New PCDLRN.Application

Set myapp = CreateObject("pcdlrn.application")

myval = myapp.WriteRegistryString("Option", "Password", "PCDMIS007", True)

See Also
Application Object 

Properties

	_Name Property  XE "_Name Property" 


Property type
Read-write property

Syntax
	Visual Basic

	Public Property _Name() As String


See Also
Application Object 

	ActivePartProgram Property  XE "ActivePartProgram Property" 


Description
Read/Write: Returns/Sets pointer to Currently Active Part Program Represents the currently active part program.

Property type
Read-write property

Syntax
	Visual Basic

	Public Property ActivePartProgram() As PartProgram


Return Type
Read/write PartProgram.

See Also
Application Object 

	AdminPrivileges Property  XE "AdminPrivileges Property" 


Description
Read Only: Returns true if current user has administrator privileges 

Property type
Read-write property

Syntax
	Visual Basic

	Public Property AdminPrivileges() As Boolean


See Also
Application Object 

	ApplicationEvents Property  XE "ApplicationEvents Property" 


Description
Returns Application Events Object for use in capturing application events Returns the ApplicationObjectEvents object for use in capturing application events.

Property type
Read-write property

Syntax
	Visual Basic

	Public Property ApplicationEvents() As ApplicationObjectEvents


See Also
Application Object 

	ApplicationSettings Property  XE "ApplicationSettings Property" 


Description
Read Only: Returns the ApplicationSettings Object Returns the ApplicationSettings object for use in modifying PC-DMIS’s settings.

Property type
Read-write property

Syntax
	Visual Basic

	Public Property ApplicationSettings() As ApplicationSettings


See Also
Application Object 

	Caption Property  XE "Caption Property" 


Description
Read/Write: Returns/Sets text of application title bar The text in the title bar of the application.

Property type
Read-write property

Syntax
	Visual Basic

	Public Property Caption() As String


Return Type
Read/write String.

See Also
Application Object 

	ConnectedInDriveMode Property  XE "ConnectedInDriveMode Property" 


Description
Read Only: Returns true when computer connected as driving computer 

Property type
Read-write property

Syntax
	Visual Basic

	Public Property ConnectedInDriveMode() As Boolean


See Also
Application Object 

	ConnectedInRelayMode Property  XE "ConnectedInRelayMode Property" 


Description
Read Only: Returns true when computer connected as relay computer 

Property type
Read-write property

Syntax
	Visual Basic

	Public Property ConnectedInRelayMode() As Boolean


See Also
Application Object 

	ConnectedToMaster Property  XE "ConnectedToMaster Property" 


Description
Read Only: Returns true if connected to master computer as slave 

Property type
Read-write property

Syntax
	Visual Basic

	Public Property ConnectedToMaster() As Boolean


See Also
Application Object 

	ConnectedToSlave Property  XE "ConnectedToSlave Property" 


Description
Read Only: Returns true if connected to slave computer as master 

Property type
Read-write property

Syntax
	Visual Basic

	Public Property ConnectedToSlave() As Boolean


See Also
Application Object 

	CurrentUserDirectory Property  XE "CurrentUserDirectory Property" 


Description
Read Only: Returns the directory where user information is stored 

This returns a string showing the directory that contains the current user’s setup information. 

Property type
Read-write property

Syntax
	Visual Basic

	Public Property CurrentUserDirectory() As String


Return Type
Read-only String.

See Also
Application Object 

	DefaultFilePath Property  XE "DefaultFilePath Property" 


Description
Read/Write: Returns name of current working directory 

The directory in which the File Open dialog starts. If you set this property to empty it returns the installation path. 

Property type
Read-write property

Syntax
	Visual Basic

	Public Property DefaultFilePath() As String


Return Type
Read/write String.
See Also
Application Object 

	DefaultMachineName Property  XE "DefaultMachineName Property" 


Description
Read Only: Name of next available machine - CMM or offline 

The name of the next available machine for attaching to a part program. 

Property type
Read-write property

Syntax
	Visual Basic

	Public Property DefaultMachineName() As String


Return Type
Read Only String.

See Also
Application Object 

	DefaultProbeFile Property  XE "DefaultProbeFile Property" 


Description
Read Only: Name of last used probe file 

The name of the last chosen probe file used when creating a new part program.

Property type
Read-write property

Syntax
	Visual Basic

	Public Property DefaultProbeFile() As String


Return Type
Read Only String
See Also
Application Object 

	ErrorDialogEnabled Property  XE "ErrorDialogEnabled Property" 


Description
Read/Write: Returns/Sets whether the CMM Error Dialog is enabled 

Property type
Read-write property

Syntax
	Visual Basic

	Public Property ErrorDialogEnabled() As Long


See Also
Application Object 

	FullName Property  XE "FullName Property" 


Description
Read Only: Returns full path for application executable - ex. C:PCDMISWPCDLRN.EXE The fully qualified path name of the PC-DMIS executable.

Property type
Read-write property

Syntax
	Visual Basic

	Public Property FullName() As String


Return Type
Read-only String. If the PC-DMIS executable is C:\PCDMISW\PCDLRN.EXE, the FullName property is "C:\PCDMISW\PCDLRN.EXE".

Remarks
 

See Also
Application Object 

	GetBoolSetting Property  XE "GetBoolSetting Property" 


Description
Read Only: Returns the boolean value of the named PC-DMIS setting 

Property type
Read-write property

Syntax
	Visual Basic

	Public Property GetBoolSetting() As Boolean


See Also
Application Object 

	GetDoubleSetting Property  XE "GetDoubleSetting Property" 


Description
Read Only: Returns the double value of the named PC-DMIS setting 

Property type
Read-write property

Syntax
	Visual Basic

	Public Property GetDoubleSetting() As Double


See Also
Application Object 

	GetDWORDSetting Property  XE "GetDWORDSetting Property" 


Description
Read Only: Returns the DWORD, or unsigned long, value of the named PC-DMIS setting 

Property type
Read-write property

Syntax
	Visual Basic

	Public Property GetDWORDSetting() As Long


See Also
Application Object 

	GetIntSetting Property  XE "GetIntSetting Property" 


Description
Read Only: Returns the integer value of the named PC-DMIS setting 

Property type
Read-write property

Syntax
	Visual Basic

	Public Property GetIntSetting() As Long


See Also
Application Object 

	GetStringSetting Property  XE "GetStringSetting Property" 


Description
Read Only: Returns the string value of the named PC-DMIS setting 

Property type
Read-write property

Syntax
	Visual Basic

	Public Property GetStringSetting() As String


See Also
Application Object 

	Height Property  XE "Height Property" 


Description
Read/Write: Returns/Sets height of application window 

The height of the PC-DMIS window in screen pixels. 

Property type
Read-write property

Syntax
	Visual Basic

	Public Property Height() As Long


Return Type
Read/write Long.

See Also
Application Object 

	LabelTemplates Property  XE "LabelTemplates Property" 


Description
Read Only: Returns the Label Templates object 

Property type
Read-write property

Syntax
	Visual Basic

	Public Property LabelTemplates() As LabelTemplates


See Also
Application Object 

	Left Property  XE "Left Property" 


Description
Read/Write: Returns/Sets left coordinate of application window 

The left edge of the PC-DMIS window, measured from the left edge of the Windows Desktop. 

Property type
Read-write property

Syntax
	Visual Basic

	Public Property Left() As Long


Return Type
Read/Write Long.

Remarks
The Left property is measured in screen pixels.

See Also
Application Object 

	LocaleID Property  XE "LocaleID Property" 


Description
Read Only: Returns the current LocaleID (LCID) of the application 

Property type
Read-write property

Syntax
	Visual Basic

	Public Property LocaleID() As Long


See Also
Application Object 

	Machines Property  XE "Machines Property" 


Description
Read Only: Returns Machines Object - CMMs, including offline, available to application Returns the read-only Machines collection object.

Property type
Read-write property

Syntax
	Visual Basic

	Public Property Machines() As Machines


See Also
Application Object 

	MajorVersion Property  XE "MajorVersion Property" 


Description
Read Only: Returns the major version number of the application 

Returns the major version number of the application. 

Property type
Read-write property

Syntax
	Visual Basic

	Public Property MajorVersion() As Long


Return Type
Read only Long.

See Also
Application Object 

	MinorVersion Property  XE "MinorVersion Property" 


Description
Read Only: Returns the minor version number of the application 

Returns the minor version number of the application. 

Property type
Read-write property

Syntax
	Visual Basic

	Public Property MinorVersion() As Long


Return Type
Read only Long.

See Also
Application Object 

	Name Property  XE "Name Property" 


Description
Read Only: Returns name of executable - ex. PCDLRN.EXE 

The file name of the PC-DMIS executable. 

Property type
Read-write property

Syntax
	Visual Basic

	Public Property Name() As String


Return Type
Read-only String.

Remarks
The Name property is the default property for the Application object. If the PC-DMIS executable is C:\PCDMISW\PCDLRN.EXE, the Name property is "PCDLRN.EXE".

See Also
Application Object 

	OperatorMode Property  XE "OperatorMode Property" 


Description
Read/Write: Returns/Sets status of application operator mode 

Represents whether or not you are in operator mode. TRUE when in operator mode, FALSE otherwise. 

Property type
Read-write property

Syntax
	Visual Basic

	Public Property OperatorMode() As Boolean


Return Type
Read/write Boolean.

Remarks
Changing into or out of operator mode makes significant changes to the appearance and utility of PC-DMIS.

See Also
Application Object 

	PartPrograms Property  XE "PartPrograms Property" 


Description
Read Only: Returns pointer to Partprograms object Returns the collection of part programs currently active in PC-DMIS.

Property type
Read-write property

Syntax
	Visual Basic

	Public Property PartPrograms() As PartPrograms


Return Type
PartPrograms object.

See Also
Application Object 

	Path Property  XE "Path Property" 


Description
Read Only: Returns path location for application - ex. C:PCDMISW Returns the directory in which the PC-DMIS executable resides.

Property type
Read-write property

Syntax
	Visual Basic

	Public Property Path() As String


Return Type
Read-only String.

Remarks
If the PC-DMIS executable is C:\PCDMISW\PCDLRN.EXE, the Path  property is "C:\PCDMISW\".

See Also
Application Object 

	RemotePanelMode Property  XE "RemotePanelMode Property" 


Description
Read/Write: Indicates that PC-Dmis is in Remote Panel mode. Used by remote panel. 

Indicates that PC-DMIS is in Remote Panel mode. Used by Remote Panel Application (RPA). 

Property type
Read-write property

Syntax
	Visual Basic

	Public Property RemotePanelMode() As Boolean


Return Type
Read/write Boolean.

See Also
Application Object 

	ReportTemplates Property  XE "ReportTemplates Property" 


Description
Read Only: Returns the Report Templates object 

Property type
Read-write property

Syntax
	Visual Basic

	Public Property ReportTemplates() As ReportTemplates


See Also
Application Object 

	StatusBar Property  XE "StatusBar Property" 


Description
Read/Write: Returns/Sets text of application status bar 

The text on the status bar of the main PC-DMIS window. 

Property type
Read-write property

Syntax
	Visual Basic

	Public Property StatusBar() As String


Return Type
Read/write String.

See Also
Application Object 

	Top Property  XE "Top Property" 


Description
Read/Write: Returns/Sets top coordinate of application window The top edge of the PC-DMIS window, measured from the top edge of the Windows Desktop.

Property type
Read-write property

Syntax
	Visual Basic

	Public Property Top() As Long


Return Type
Read/write Long.

See Also
Application Object 

	UserExit Property  XE "UserExit Property" 


Description
Read/Write: Determines whether user can close application 

TRUE if the PC-DMIS automation engine is will shut down when the user exits PC-DMIS, otherwise FALSE. 

Property type
Read-write property

Syntax
	Visual Basic

	Public Property UserExit() As Boolean


Return Type
Read/write Boolean.

See Also
Application Object 

	VerboseDialogs Property  XE "VerboseDialogs Property" 


Description
Read/Write: Controls verbose debugging dialogs 

Property type
Read-write property

Syntax
	Visual Basic

	Public Property VerboseDialogs() As Long


See Also
Application Object 

	VersionString Property  XE "VersionString Property" 


Description
Read Only: Returns the version string for the application 

Returns the version string for the application.

Property type
Read-write property

Syntax
	Visual Basic

	Public Property VersionString() As String


Return Type
Read only String.

See Also
Application Object 

	Visible Property  XE "Visible Property" 


Description
Read/Write: Returns visibility status of application or Shows or Hides the Application 

TRUE if PC-DMIS is visible, otherwise FALSE. 

Property type
Read-write property

Syntax
	Visual Basic

	Public Property Visible() As Boolean


Return Type
Read/Write Boolean.

See Also
Application Object 

	Width Property  XE "Width Property" 


Description
Read/Write: Returns/Sets width of application window 

The width of the PC-DMIS window in screen pixels.

Property type
Read-write property

Syntax
	Visual Basic

	Public Property Width() As Long


Return Type
Read/write Long.

See Also
Application Object 
	ApplicationObjectEvents Object  XE "ApplicationObjectEvents Object" 


Description
The ApplicationObjectEvents object provides you with a series of events that get called when the PC-DMIS application meets certain conditions.

See Also
ApplicationObjectEvents Members 

	ApplicationObjectEvents Object Members  XE "ApplicationObjectEvents Object Members" 


Events

	OnAddObject Event  XE "OnAddObject Event" 


Description
Event fired when command is added to part program. 

This event gets launched when the specified command (Command) gets added to the specified part program (PartProg).

Syntax
	Visual Basic

	Public Event OnAddObject( _

   ByVal PartProg As PartProgram, _

   ByVal Command As Command _

)


Parameters
PartProg

A PartProgram object to determine the part program for which this event should wait.

Command

A Command object to determine the command for which this event should wait.

See Also
ApplicationObjectEvents Object 

	OnClosePartProgram Event  XE "OnClosePartProgram Event" 


 

Description
Event fired when part program is closed. 

This event gets launched when the specified part program (PartProg) gets closed.

Syntax
	Visual Basic

	Public Event OnClosePartProgram( _

   ByVal PartProg As PartProgram _

)


Parameters
PartProg

An expression that evaluates to a PartProgram object to determine the part program for which this event should wait. 

 

See Also
ApplicationObjectEvents Object 

	OnConnectSlave Event  XE "OnConnectSlave Event" 


Description
Event fired when PC-Dmis connects to the slave computer. 

This event gets launched when PC-DMIS connects to and launches the specified part program (PartProg) on the slave computer.

Syntax
	Visual Basic

	Public Event OnConnectSlave( _

   ByVal PartProg As PartProgram _

)


Parameters
PartProg

An expression that evaluates to a PartProgram object to determine the part program for which this event should wait.

See Also
ApplicationObjectEvents Object 

	OnDisconnectSlave Event  XE "OnDisconnectSlave Event" 


Description
Event fired when PC-Dmis disconnects from the slave computer. 

This event gets launched when PC-DMIS disconnects from the slave computer.

Syntax
	Visual Basic

	Public Event OnDisconnectSlave( _

   ByVal PartProg As PartProgram _

)


Parameters
PartProg

An expression that evaluates to a PartProgram object to determine the part program for which this event should wait.

See Also
ApplicationObjectEvents Object 

	OnEndExecution Event  XE "OnEndExecution Event" 


Description
Event fired when part program execution ends. This event gets launched when PC-DMIS finishes executing the specified program. PC-DMIS determines it has finished execution based on the termination type.
Syntax
	Visual Basic

	Public Event OnEndExecution( _

   ByVal PartProg As PartProgram, _

   ByVal TerminationType As Long _

)


Parameters
PartProg

An expression that evaluates to a PartProgram object to determine the part program for which this event should wait.

TerminationType

Long value that determines the termination type used by this event.

See Also
ApplicationObjectEvents Object 

	OnObjectAboutToExecute Event  XE "OnObjectAboutToExecute Event" 


Description
Event fired before command is executed. 

This event gets launched immediately before the specified command (Cmmd) gets executed.

Syntax
	Visual Basic

	Public Event OnObjectAboutToExecute( _

   ByVal PartProg As PartProgram, _

   ByVal Cmmd As Command _

)


Parameters
PartProg

An expression that evaluates to a PartProgram object to determine the part program for which this event should wait.

Cmmd

An expression that evaluates to a Command object to determine the command about to be executed.

See Also
ApplicationObjectEvents Object 

	OnObjectAboutToExecute2 Event  XE "OnObjectAboutToExecute2 Event" 


Description
Event fired before command is executed for dual arm systems. 

This event gets launched immediately before the specified command (Cmmd) gets executed on a specified arm (Arm) of a multiple arm system.

Syntax
	Visual Basic

	Public Event OnObjectAboutToExecute2( _

   ByVal PartProg As PartProgram, _

   ByVal Cmmd As Command, _

   ByVal Arm As Long _

)


Parameters
PartProg

An expression that evaluates to a PartProgram object to determine the part program for which this event should wait.

Cmmd

An expression that evaluates to a Command object to determine the command about to be executed.

Arm

Long value representing the arm on a multiple arm machine that is about to execute the command (Cmmd) causing the event to launch.

See Also
ApplicationObjectEvents Object 

	OnObjectExecuted Event  XE "OnObjectExecuted Event" 


Description
Event fired when command finishes execution. 

This event gets launched immediately after the specified command (Cmmd) gets executed.

Syntax
	Visual Basic

	Public Event OnObjectExecuted( _

   ByVal PartProg As PartProgram, _

   ByVal Cmmd As Command _

)


Parameters
PartProg

An expression that evaluates to a PartProgram object to determine the part program for which this event should wait.

Cmmd

An expression that evaluates to a Command object to determine the command about to be executed.

See Also
ApplicationObjectEvents Object 

	OnObjectExecuted2 Event  XE "OnObjectExecuted2 Event" 


Description
Event fired when command finishes execution for dual arm systems. 

This event gets launched immediately after the specified command (Cmmd) gets executed on a specified arm (Arm) of a multiple arm system.

Syntax
	Visual Basic

	Public Event OnObjectExecuted2( _

   ByVal PartProg As PartProgram, _

   ByVal Cmmd As Command, _

   ByVal Arm As Long _

)


Parameters
PartProg

An expression that evaluates to a PartProgram object to determine the part program for which this event should wait.

Cmmd

An expression that evaluates to a Command object to determine the command about to be executed.

Arm

Long value representing the arm on a multiple arm machine that executes the command (Cmmd) causing the event to launch.

See Also
ApplicationObjectEvents Object 

	OnOpenPartProgram Event  XE "OnOpenPartProgram Event" 


Description
Event fired when part program is opened. 

This event gets launched when the specified part program (PartProg) gets opened.

Syntax
	Visual Basic

	Public Event OnOpenPartProgram( _

   ByVal PartProg As PartProgram _

)


Parameters
PartProg

An expression that evaluates to a PartProgram object to determine the part program for which this event should wait.

See Also
ApplicationObjectEvents Object 

	OnOpenRemotePanelDialog Event  XE "OnOpenRemotePanelDialog Event" 


Description
Event fired when dialogs open for the remote panel. 

This event gets launched when the specified Remote Panel Application dialog box opens.

Syntax
	Visual Basic

	Public Event OnOpenRemotePanelDialog( _

   ByVal PartProg As PartProgram, _

   ByVal DialogId As Long, _

   ByVal hWnd As Long, _

   ByVal Message As String, _

   ByVal BtnId1 As Long, _

   ByVal BtnId2 As Long, _

   ByVal BtnId3 As Long, _

   ByVal BtnId4 As Long, _

   ByVal DefaultBtn As Long _

)


Parameters
PartProg

An expression that evaluates to a PartProgram object to determine the part program for which this event should wait.

DialogId

Long value representing a dialog box’s ID.

hWnd

Message

String value representing the message displayed in the dialog box.

BtnId1

Long value representing button 1.

BtnId2

Long value representing button 2.

BtnId3

Long value representing button 3.

BtnId4

Long value representing button 4.

DefaultBtn

Long value representing the default button.

See Also
ApplicationObjectEvents Object 

	OnOpenRemotePanelDialog2 Event  XE "OnOpenRemotePanelDialog2 Event" 


Description
Event fired when dialogs open for the remote panel with five possible buttons. 

Syntax
	Visual Basic

	Public Event OnOpenRemotePanelDialog2( _

   ByVal PartProg As PartProgram, _

   ByVal DialogId As Long, _

   ByVal hWnd As Long, _

   ByVal Message As String, _

   ByVal BtnId1 As Long, _

   ByVal BtnId2 As Long, _

   ByVal BtnId3 As Long, _

   ByVal BtnId4 As Long, _

   ByVal BtnId5 As Long, _

   ByVal DefaultBtn As Long _

)


Parameters
PartProg

An expression that evaluates to a PartProgram object to determine the part program for which this event should wait.

DialogId

hWnd

Message

BtnId1

BtnId2

BtnId3

BtnId4

BtnId5

DefaultBtn

See Also
ApplicationObjectEvents Object 

	OnSavePartProgram Event  XE "OnSavePartProgram Event" 


Description
Event fired when part program is saved. 

This event gets launched when the specified part program (PartProg) gets saved.

Syntax
	Visual Basic

	Public Event OnSavePartProgram( _

   ByVal PartProg As PartProgram _

)


Parameters
PartProg

An expression that evaluates to a PartProgram object to determine the part program for which this event should wait.

See Also
ApplicationObjectEvents Object 

	OnStartExecution Event  XE "OnStartExecution Event" 


Description
Event fired when part program execution begins. 

This event gets launched when the specified part program (PartProg) begins execution.

Syntax
	Visual Basic

	Public Event OnStartExecution( _

   ByVal PartProg As PartProgram _

)


Parameters
PartProg

An expression that evaluates to a PartProgram object to determine the part program for which this event should wait.

See Also
ApplicationObjectEvents Object 

	OnUpdateStatusMessage Event  XE "OnUpdateStatusMessage Event" 


Description
Event fired when status bar is updated 

This event gets launched when the status bar gets updated with the specified message (Msg).

Syntax
	Visual Basic

	Public Event OnUpdateStatusMessage( _

   ByVal Msg As String _

)


Parameters
Msg

String value representing the displayed message.

See Also
ApplicationObjectEvents Object 
	ApplicationSettings Object  XE "ApplicationSettings Object" 


Description
The ApplicationSettings object is a class that contains various properties and methods that allow you to work with PC-DMIS settings.

See Also
ApplicationSettings Members 

	ApplicationSettings Object Members  XE "ApplicationSettings Object Members" 


Properties

	WarningDefaultNoSavePrg Property  XE "WarningDefaultNoSavePrg Property" 


Description
Read/Write: 

Property Type
Read-write property

Syntax
	Visual Basic

	Public Property WarningDefaultNoSavePrg() As Long


See Also
ApplicationSettings Object 

	WarningDefaultOkRotPh9 Property  XE "WarningDefaultOkRotPh9 Property" 


Description
Read/Write: 

Property Type
Read-write property

Syntax
	Visual Basic

	Public Property WarningDefaultOkRotPh9() As Long


See Also
ApplicationSettings Object 

	WarningDefaultOverwritingAlignment Property  XE "WarningDefaultOverwritingAlignment Property" 


Description
Read/Write: 

Property Type
Read-write property

Syntax
	Visual Basic

	Public Property WarningDefaultOverwritingAlignment() As Long


See Also
ApplicationSettings Object 

	WarnNoSavePrg Property  XE "WarnNoSavePrg Property" 


Description
Read/Write: 

Property Type
Read-write property

Syntax
	Visual Basic

	Public Property WarnNoSavePrg() As Long


See Also
ApplicationSettings Object 

	WarnOkMovPh9 Property  XE "WarnOkMovPh9 Property" 


Description
Read/Write: 

Property Type
Read-write property

Syntax
	Visual Basic

	Public Property WarnOkMovPh9() As Long


See Also
ApplicationSettings Object 

	WarnOkRotPh9 Property  XE "WarnOkRotPh9 Property" 


Description
Read/Write: 

Property Type
Read-write property

Syntax
	Visual Basic

	Public Property WarnOkRotPh9() As Long


See Also
ApplicationSettings Object 

	WarnOverwritingAlignment Property  XE "WarnOverwritingAlignment Property" 


Description
Read/Write: 

Property Type
Read-write property

Syntax
	Visual Basic

	Public Property WarnOverwritingAlignment() As Long


See Also
ApplicationSettings Object 

	ArrayIndex Object  XE "ArrayIndex Object" 


Description
The ArrayIndex object is used to set up multi-dimensional feature arrays in PC-DMIS. Methods are provided to add, remove, or edit array upper and lower bounds for array indices.

See Also
ArrayIndex Members 

	ArrayIndex Object Members  XE "ArrayIndex Object Members" 


Methods

	AddIndexSet Method  XE "AddIndexSet Method" 


Description
Adds an array dimension upper/lower bound set 

Adds the supplied index set to the array index command.

Syntax
	Visual Basic

	Public Function AddIndexSet( _

   ByVal LowerBound As Long, _

   ByVal UpperBound As Long _

) As Boolean


Parameters
LowerBound

Required Long parameter representing the lower bound of the index set to be added.

UpperBound

Required Long parameter representing the lower bound of the index set to be added.

See Also
ArrayIndex Object 

	GetLowerBound Method  XE "GetLowerBound Method" 


Description
Returns the indexed array dimension lower bound 

Retrieves the lower bound of the specified index set.

Syntax
	Visual Basic

	Public Function GetLowerBound( _

   ByVal index As Long _

) As Long


Parameters
index

Required Long parameter that specifies which index set to use in retrieving the lower bound.

See Also
ArrayIndex Object 

	GetUpperBound Method  XE "GetUpperBound Method" 


Description
Returns the indexed array dimension upper bound 

Retrieves the lower bound of the specified index set.

Syntax
	Visual Basic

	Public Function GetUpperBound( _

   ByVal index As Long _

) As Long


Parameters
index

Required Long parameter that specifies which index set to use in retrieving the lower bound.

See Also
ArrayIndex Object 

	RemoveIndexSet Method  XE "RemoveIndexSet Method" 


Description
Removes the indexed array dimension set 

Removes the index set specified by index from the array index object.

Syntax
	Visual Basic

	Public Function RemoveIndexSet( _

   ByVal index As Long _

) As Boolean


Parameters
index

Required Long parameter that specifies which index set to remove.

See Also
ArrayIndex Object 

	SetLowerBound Method  XE "SetLowerBound Method" 


Description
Sets the indexed array dimension lower bound 

Sets the lower bound of the specified index set.

Syntax
	Visual Basic

	Public Function SetLowerBound( _

   ByVal index As Long, _

   ByVal LowerBound As Long _

) As Boolean


Parameters
index

Required Long parameter that specifies which index set to use in setting the lower bound.

LowerBound

See Also
ArrayIndex Object 

	SetUpperBound Method  XE "SetUpperBound Method" 


Description
Sets the indexed array dimension upper bound Sets the upper bound of the specified index set.

Syntax
	Visual Basic

	Public Function SetUpperBound( _

   ByVal index As Long, _

   ByVal UpperBound As Long _

) As Boolean


Parameters
index

Required Long parameter that specifies which index set to use in setting the upper bound.

UpperBound

See Also
ArrayIndex Object 
	Attach Object  XE "Attach Object" 


Description
The Attach object attaches part programs to the current part program. The current part program can then access objects from the attached part programs.

See Also
Attach Members 

	Attach Object Members  XE "Attach Object Members" 


Properties

	AttachedAlign Property  XE "AttachedAlign Property" 


Description
ID associated with an alignment in the attached program that corresponds with an alignment in the attaching program.

Property Type
Read-write property

Syntax
	Visual Basic

	Public Property AttachedAlign() As String


Return Type
Read/write String.

See Also
Attach Object | LocalAlign Property 

	EXECUTE Property  XE "EXECUTE Property" 


Description
Read/Write: Indicates whether attached program should be executed at attachment point 

This returns or sets a BOOLEAN value that determines whether or not the attached part program should be executed when PC-DMIS encounters the attached program.

Property Type
Read-write property

Syntax
	Visual Basic

	Public Property EXECUTE() As Boolean


Return Type
Read/write Boolean
See Also
Attach Object 

	ID Property  XE "ID Property" 


Description
Read/Write: ID to be used when referencing attached part program 

ID associated with the attached part program. This ID identifies items in the attached part program. For example, if the ID for the attach statement is "PART2", then feature "F1" in the attached program can be referred to as "F1:PART2".

Property Type
Read-write property

Syntax
	Visual Basic

	Public Property ID() As String


Return Type
Read/write String
See Also
Attach Object 

	LocalAlign Property  XE "LocalAlign Property" 


Description
ID associated with an alignment in the attaching program that corresponds to an alignment in the attached program.

Property Type
Read-write property

Syntax
	Visual Basic

	Public Property LocalAlign() As String


Return Type
Read/write String
See Also
Attach Object 

	PartName Property  XE "PartName Property" 


Description
Read/Write: Filename of part program to attach File name of the attached part program.

Property Type
Read-write property

Syntax
	Visual Basic

	Public Property PartName() As String


Return Type
Read/write String.

See Also
Attach Object 

	Autotrigger Object  XE "Autotrigger Object" 


Description
The Autotrigger object automatically takes hits when the probe enters a specified zone.

See Also
Autotrigger Members 

	Autotrigger Object Members  XE "Autotrigger Object Members" 


Properties XE "Properties" 
	autotriggeron Property  XE "autotriggeron Property" 


Description
Read/Write: Autotrigger ON/OFF Determines whether or not the Autotrigger feature is used when measuring.

Property Type
Read-write property

Syntax
	Visual Basic

	Public Property autotriggeron() As Long


Return Type
Read/write Boolean.

See Also
Autotrigger Object 

	beepingon Property  XE "beepingon Property" 


Description
Read/Write: Autotrigger Beeping ON/OFF Determines whether or not the Beeping feature is used when the probe approaches the target. The closer you get to your target the more frequently you will hear the beeps.

Property Type
Read-write property

Syntax
	Visual Basic

	Public Property beepingon() As Long


Return Type
Read/write Boolean.

See Also
Autotrigger Object 

	Radius Property  XE "Radius Property" 


Description
Read/Write: Tolerance radius Determines the size of the radius, or tolerance zone that surrounds the original hit location. When the probe enters this tolerance zone it will automatically take a hit.

Property Type
Read-write property

Syntax
	Visual Basic

	Public Property Radius() As Double


Return Type
Read/write Double.

See Also
Autotrigger Object 
	BasicScan Object  XE "BasicScan Object" 


Description

BasicScan objects are created from more generic Command objects to pass information specific to the scan command back and forth. At present only DCC basic scans are user accessible.

Object Model

	[image: image99]
[image: image100]

 INCLUDEPICTURE "Images/pcdlrn~methodstart_(pointdata)~258.gif" \* MERGEFORMAT \d [image: image101]
[image: image102]

 INCLUDEPICTURE "Images/pcdlrn~methodend_(pointdata)~258.gif" \* MERGEFORMAT \d [image: image103]
[image: image104]

 INCLUDEPICTURE "Images/pcdlrn~methodinittouch_(pointdata)~258.gif" \* MERGEFORMAT \d [image: image105]
[image: image106]

 INCLUDEPICTURE "Images/pcdlrn~methodendtouch_(pointdata)~258.gif" \* MERGEFORMAT \d [image: image107]
[image: image108]

 INCLUDEPICTURE "Images/pcdlrn~methodinitdir_(pointdata)~258.gif" \* MERGEFORMAT \d [image: image109]
[image: image110]

 INCLUDEPICTURE "Images/pcdlrn~methodinittopsurf_(pointdata)~258.gif" \* MERGEFORMAT \d [image: image111]
[image: image112]

 INCLUDEPICTURE "Images/pcdlrn~methodcutplane_(pointdata)~258.gif" \* MERGEFORMAT \d [image: image113]
[image: image114]

 INCLUDEPICTURE "Images/pcdlrn~boundaryconditioncenter_(pointdata)~258.gif" \* MERGEFORMAT \d [image: image115]
[image: image116]

 INCLUDEPICTURE "Images/pcdlrn~boundaryconditionplanev_(pointdata)~258.gif" \* MERGEFORMAT \d [image: image117]
[image: image118]

 INCLUDEPICTURE "Images/pcdlrn~boundaryconditionaxisv_(pointdata)~258.gif" \* MERGEFORMAT \d [image: image119]
[image: image120]

 INCLUDEPICTURE "Images/pcdlrn~boundaryconditionendapproach_(pointdata)~258.gif" \* MERGEFORMAT \d [image: image121]
[image: image122]

 INCLUDEPICTURE "Images/pcdlrn~getcontrolpoint_(controlpoint)~258.gif" \* MERGEFORMAT \d [image: image123]


Remarks

The tables below describes the different combination of Objects that can be used to create and execute a Basic Scan. The Methods will only work with the combination of different of Objects selected from this table (i.e. if you decide to set a method type of BSCANMETH_CIRCLE, then you have to use a Filter type of BSF_DISTANCE etc).

Table 1
	Method
	Filters

	BSCANMETH_LINEAR
	BSF_DISTANCE

BSF_BODYAXISDISTANCE

BSF_VARIABLEDISTANCE

	BSCANMETH_EDGE
	BSF_DISTANCE

BSF_VARIABLEDISTANCE

	BSCANMETH_CIRCLE
	BSF_DISTANCE

	BSCANMETH_CYLINDER
	BSF_DISTANCE

	BSCANMETH_STRAIGHTLINE
	BSF_DISTANCE

	BSCANMETH_CENTER
	BSF_DISTANCE


Table 2
	Method
	NominalMode

	BSCANMETH_LINEAR
	BSCANNMODE_FINDCADNOMINAL  BSCANNMODE_MASTERDATA

	BSCANMETH_EDGE
	BSCANNMODE_FINDCADNOMINAL  BSCANNMODE_MASTERDATA

	BSCANMETH_CIRCLE
	BSCANNMODE_FINDCADNOMINAL  BSCANNMODE_MASTERDATA

	BSCANMETH_CYLINDER
	BSCANNMODE_FINDCADNOMINAL  BSCANNMODE_MASTERDATA

	BSCANMETH_STRAIGHTLINE
	BSCANNMODE_FINDCADNOMINAL  BSCANNMODE_MASTERDATA

	BSCANMETH_CENTER
	BSCANNMODE_FINDCADNOMINAL  BSCANNMODE_MASTERDATA


Table 3
	Method
	OperationMode

	BSCANMETH_LINEAR
	BSCANOPMODE_REGULARLEARN  BSCANOPMODE_DEFINEPATHFROMHITS   

BSCANOPMODE_NORMALEXECUTION

	BSCANMETH_EDGE
	BSCANOPMODE_REGULARLEARN  

BSCANOPMODE_NORMALEXECUTION

	BSCANMETH_CIRCLE
	BSCANOPMODE_HIGHSPEEDFEATUREBASED

BSCANOPMODE_NORMALEXECUTION

	BSCANMETH_CYLINDER
	BSCANOPMODE_HIGHSPEEDFEATUREBASED

BSCANOPMODE_NORMALEXECUTION 

	BSCANMETH_STRAIGHTLINE
	BSCANOPMODE_HIGHSPEEDFEATUREBASED

BSCANOPMODE_NORMALEXECUTION

	BSCANMETH_CENTER
	BSCANOPMODE_REGULARLEARN  

BSCANOPMODE_NORMALEXECUTION


Table 4
	Method
	HitType

	BSCANMETH_LINEAR
	BSCANHIT_VECTOR

BSCANHIT_SURFACE

	BSCANMETH_EDGE
	BSCANHIT_EDGE

	BSCANMETH_CIRCLE
	BSCANHIT_VECTOR

	BSCANMETH_CYLINDER
	BSCANHIT_VECTOR

	BSCANMETH_STRAIGHTLINE
	BSCANHIT_VECTOR

	BSCANMETH_CENTER
	BSCANHIT_VECTOR


Table 5 

	Method
	BoundaryCondition

	BSCANMETH_LINEAR
	BSBOUNDCOND_SPHENTRY  BSBOUNDCOND_PLANECROSS  BSBOUNDCOND_CYLINDER

BSBOUNDCOND_CONE

	BSCANMETH_EDGE
	BSBOUNDCOND_SPHENTRY  BSBOUNDCOND_PLANECROSS  BSBOUNDCOND_CYLINDER

BSBOUNDCOND_CONE

	BSCANMETH_CIRCLE
	None

	BSCANMETH_CYLINDER
	None

	BSCANMETH_STRAIGHTLINE
	None

	BSCANMETH_CENTER
	None


See Also

BasicScan Members | BasicScanCommand Property 

	BasicScan Object Members  XE "BasicScan Object Members" 


Methods

	AddControlPoint Method  XE "AddControlPoint Method" 


Description

Adds a control point to a scan.

Syntax

	Visual Basic

	Public Function AddControlPoint( _

   ByVal ControlPoint As ControlPoint _

) As Boolean


Parameters

ControlPoint

Expression that evaluates to a ControlPoint object.

Return Type

Boolean value. If the value is 1 (true), it adds a control point to the scan.

See Also

BasicScan Object 

	CreateBasicScan Method  XE "CreateBasicScan Method" 


Description

Used for DCC and Manual Scans to cause creation of basic scan object. This method creates a basic scan object.

Syntax

	Visual Basic

	Public Function CreateBasicScan() As Boolean


Return Type

Boolean value. If the value is 1 (or true), it causes DCC and Manual Scans to create a basic scan object.

See Also

BasicScan Object 

	GenerateScan Method  XE "GenerateScan Method" 


Description

Generates the points for the scan 

Syntax

	Visual Basic

	Public Function GenerateScan() As Boolean


See Also

BasicScan Object 

	GetBoundaryConditionParams Method  XE "GetBoundaryConditionParams Method" 


Description

Gets the boundary condition parameters 

Syntax

	Visual Basic

	Public Function GetBoundaryConditionParams( _

   ByRef nCrossings As Long, _

   ByRef dRadius As Double, _

   ByRef dHalfAngle As Double _

) As Boolean


Parameters

nCrossings

Required Long variable that gets the number of crossings for this boundary condition. The scan would stop after the probe crosses (breaks) the Boundary Condition like a Sphere, Cylinder, Cone, or a Plane the given number of times.

dRadius

Required Double variable that gets the radius of the boundary condition. This is used by the Spherical and Cylindrical Boundary Conditions.

dHalfAngle

Required Double variable that gets the half-angle of the cone-type boundary condition, or gets zero if the boundary condition is not of cone type.

Return Type

Boolean value. This returns true if the function succeeds, false if it fails.

Remarks

 

	Boundary Condition
	GetBoundaryConditionParams(nCrossings, dRadius, dHalfAngle)

	Plane
	nCrossings

	Cone
	nCrossings, ,dHalfAngle

	Cylinder
	nCrossings, dRadius

	Sphere
	nCrossings, dRadius


See Also

BasicScan Object 

	GetBoundaryPoint Method  XE "GetBoundaryPoint Method" 


Description

Returns the boundary point specified by the index 

Syntax

	Visual Basic

	Public Function GetBoundaryPoint( _

   ByVal index As Long, _

   ByRef X As Double, _

   ByRef Y As Double, _

   ByRef Z As Double _

) As Boolean


Parameters

index

Required Long which indicates which boundary point to get.

X

Required Long variable that will hold the X value of the boundary point.

Y

Required Long variable that will hold the Y value of the boundary point.

Z

Required Long variable that will hold the Z value of the boundary point.

Return Type

Boolean value. Boolean returns true if the function succeeds, false if it fails.

Remarks

This function works with patch scans. Use the BoundaryPointCount property to determine how many boundary points are available.

See Also

BasicScan Object 

	GetControlPoint Method  XE "GetControlPoint Method" 


Description

Returns the control point specified by the index. Returns the control point specified by the index.

Syntax

	Visual Basic

	Public Function GetControlPoint( _

   ByVal index As Long _

) As ControlPoint


Parameters

index

Long value which indicates which control point to return.

Return Type

ControlPoint object.

See Also

BasicScan Object 

	GetFilterParams Method  XE "GetFilterParams Method" 


Description

Gets parameters used in filtering of scan data 

Syntax

	Visual Basic

	Public Function GetFilterParams( _

   ByRef dCutAxisLocation As Double, _

   ByRef nAxis As Long, _

   ByRef dMaxIncrement As Double, _

   ByRef dMinIncrement As Double, _

   ByRef dMaxAngle As Double, _

   ByRef dMinAngle As Double _

) As Boolean


Parameters

dCutAxisLocation

nAxis

Required Long variable that gets the cut axis. Returns non-zero only for axis filters. For axis filters, 0 means the X axis, 1 means the Y-axis, and 2 means the Z-axis.

dMaxIncrement

Required Double variable that gets the maximum increment. For fixed-length filters, this is simply the fixed increment for Variable Distance Filters.

dMinIncrement

Required Double variable that gets the minimum increment.

dMaxAngle

Required Double variable that gets the maximum angle used in Variable Distance Filters.

dMinAngle

Required Double variable that gets the minimum angle used in Variable Distance Filters.

Return Type

Boolean value. Boolean returns true if the function succeeds, false if it fails.

Remarks

	Filter
	GetFilterParams (dCutAxisLocation, nAxis, dMaxIncrement, dMinIncrement, dMaxAngle, dMinAngle)

	Distance
	,,dMaxIncrement

	BodyAxisDistance
	,nAxis, dMaxIncrement

	VariableDistance
	,,dMaxIncrement, dMinIncrement, dMaxAngle, dMinAngle


See Also

BasicScan Object 

	GetHitParams Method  XE "GetHitParams Method" 


Description

Gets parameters for the hit type used in the scan 

Syntax

	Visual Basic

	Public Function GetHitParams( _

   ByRef nInitSamples As Long, _

   ByRef nPermSamples As Long, _

   ByRef dSpacer As Double, _

   ByRef dIndent As Double, _

   ByRef dDepth As Double _

) As Boolean


Parameters

nInitSamples

Required Long variable that gets the number of initial sample hits for the hits in this scan. It always returns zero for basic hits and vector hits.

nPermSamples

Required Long variable that gets the number of permanent sample hits for the hits in this scan. It always returns zero for basic hits and vector hits.

dSpacer

Required Double variable that gets the spacing of the sample hits from the hit center. It always returns zero for basic hits and vector hits.

dIndent

Required Double variable that gets the indent of the sample hits from the hit center. It always returns zero for basic hits, vector hits, and surface.

dDepth

Required Double variable that gets the depth of the sample hits from the hit center. It always returns zero for basic hits, vector hits, and surface.

Return Type

Boolean value. Boolean returns true if the function succeeds, false if it fails.

See Also

BasicScan Object 

	GetHitTValue Method  XE "GetHitTValue Method" 


Description

Returns T deviation values for specified scansion hit 

Syntax

	Visual Basic

	Public Function GetHitTValue( _

   ByVal index As Long, _

   ByRef T As Double _

) As Boolean


Parameters

index

See Also

BasicScan Object 

	GetMethodParams Method  XE "GetMethodParams Method" 


Description

Gets the scan method parameters 

Syntax

	Visual Basic

	Public Function GetMethodParams( _

   ByRef bIn As ENUM_SCAN_INOUT_TYPES, _

   ByRef bCenteringType As Boolean, _

   ByRef nCenteringDirection As Long, _

   ByRef dDiameter As Double, _

   ByRef dArcAngle As Double, _

   ByRef dDepth As Double, _

   ByRef dPitch As Double _

) As Boolean


Parameters

bIn
Use an item from the ENUM_SCAN_INOUT_TYPES enumeration table located at the end of this documentation.
bCenteringType

Required variable for Centering Scans that gets 0 for Axis Centering and 1 for Plane centering.

nCenteringDirection

Required Long variable that takes a +1 for measurement with the direction of the probe and -1 for against the direction of probe.

dDiameter

Required Double variable that gets the diameter of the circle or cylinder scan, and zero otherwise.

dArcAngle

Required Double variable that gets arc angle for circle and cylinder scans.

dDepth

Required Double variable that gets the depth for cylinder scans, and zero otherwise.

dPitch

Required Double variable that gets a pitch for cylinder scans.

Return Type

Boolean value. Boolean returns true if the function succeeds, false if it fails.

Remarks

	Method
	GetMethodParams (bIn, bCenteringType, nCenteringDirection, dDiameter, dArcAngle, dDepth, dPitch)

	Linear
	None

	Edge
	None

	Circle
	bIn, , , dDiameter, dArcAngle, dDepth

	Cylinder
	bIn, , , dDiameter, dArcAngle, dDepth, dPitch

	Straight Line
	None

	Center
	, bCenteringType, nCenteringDirection


See Also

BasicScan Object 

	GetMethodPointData Method  XE "GetMethodPointData Method" 


Description

Gets scan points and vectors via pointdata objects. This method is provided as a shortcut to getting these commonly used scan parameters all at once.

Syntax

	Visual Basic

	Public Function GetMethodPointData( _

   ByVal MethodStart As PointData, _

   ByVal MethodEnd As PointData, _

   ByVal MethodInitTouch As PointData, _

   ByVal MethodEndTouch As PointData, _

   ByVal MethodInitDir As PointData, _

   ByVal MethodInitTopSurf As PointData, _

   ByVal MethodCutPlane As PointData _

) As Boolean


Parameters

MethodStart

Required PointData object that gets the MethodStart property.

MethodEnd

Required PointData object that gets the MethodEnd property.

MethodInitTouch

Required PointData object that gets the MethodInitTouch property.

MethodEndTouch

Required PointData object that gets the MethodEndTouch property.

MethodInitDir

Required PointData object that gets the MethodInitDir property.

MethodInitTopSurf

MethodCutPlane

Required PointData object that gets the MethodCutPlane property.

Return Type

Boolean value. Boolean returns true if the function succeeds, false if it fails.

Remarks

If scan is a BasicScanCommand object, and MS, ME, MIT, MET, MID, and MCP are all Dimensioned as Object, the following are equivalent:

scan.GetMethodParams MS,ME,MIT,MET,MID,MCP

set MS = scan.MethodStart
set ME = scan.MethodEnd
set MIT = scan.MethodInitTouch
set MET = scan.MethodEndTouch
set MID = scan.MethodInitDir
set MCP = scan.MethodCutPlane

Example

See Also

BasicScan Object | Scan Object 

	GetNomsParams Method  XE "GetNomsParams Method" 


Description

Gets the parameters used in finding of scan nominals 

Syntax

	Visual Basic

	Public Function GetNomsParams( _

   ByRef dFindNomsTolerance As Double, _

   ByRef dSurfaceThickness As Double, _

   ByRef dEdgeThickness As Double _

) As Boolean


Parameters

dFindNomsTolerance

Required Double variable that gets the Find Noms tolerance and is used only when the NominalMode property is BSCANNMODE_FINDCADNOMINAL.

dSurfaceThickness

Required Double variable that gets the surface thickness and is used only when the NominalMode property is BSCANNMODE_FINDCADNOMINAL.

dEdgeThickness

Required Double variable that gets the edge thickness and is used only when the NominalMode property is BSCANNMODE_FINDCADNOMINAL and when the Method property is BSCANMETH_EDGE.

Return Type

Boolean value. Boolean returns true if the function succeeds, false if it fails.

See Also

BasicScan Object 

	GetParams Method  XE "GetParams Method" 


Description

Gets the basic scanning parameters of the scan. This method is provided as a shortcut to getting commonly used scan parameters all at once.

Syntax

	Visual Basic

	Public Function GetParams( _

   ByRef Method As Long, _

   ByRef Filter As Long, _

   ByRef OperationMode As Long, _

   ByRef HitType As Long, _

   ByRef NominalMode As Long, _

   ByRef BoundaryCondition As Long _

) As Boolean


Parameters

Method

Required Long variable that gets the Method property.

Filter

Required Long variable that gets the Filter property.

OperationMode

Required Long variable that gets the OperationMode property.

HitType

Required Long variable that gets the HitType property.

NominalMode

Required Long variable that gets the NominalMode property.

BoundaryCondition

Required Long variable that gets the BoundaryCondition property.

Return Type

Boolean value. Boolean returns true if the function succeeds, false if it fails.

Remarks

If scan is a BasicScanCommand object, and M, F, O, H, N,and B are all Dimensioned as Object, the following are equivalent:

scan.GetParams M, F, O, H, N, B

M = scan.Method
F = scan.Filter
O = scan.OperationMode
H = scan.HitType
N = scan.NominalMode
B = scan.BoundaryCondition

See Also

BasicScan Object 

	RemoveControlPoint Method  XE "RemoveControlPoint Method" 


Description

Removes the control point at the specified index. Removes a control point.

Syntax

	Visual Basic

	Public Function RemoveControlPoint( _

   ByVal index As Long _

) As Boolean


Parameters

index

Required Long value which indicates which control point to remove.

Return Type

Boolean value. If set to 1 (true), the control point is removed at the specified index.

See Also

BasicScan Object 

	SetBoundaryConditionParams Method  XE "SetBoundaryConditionParams Method" 


Description

Sets the boundary condition parameters Boolean value. Boolean returns true if the function succeeds, false if it fails.

Syntax

	Visual Basic

	Public Function SetBoundaryConditionParams( _

   ByVal nCrossings As Long, _

   ByVal dRadius As Double, _

   ByVal dHalfAngle As Double _

) As Boolean


Parameters

nCrossings

Required Long that sets the number of crossings for this boundary condition.

dRadius

Required Double that sets the radius of the boundary condition.

dHalfAngle

Required Double that sets the half-angle of the cone-type boundary condition, or is ignored if the boundary condition is not of cone type.

Remarks

	Boundary Condition
	SetBoundaryConditionParams (nCrossings, dRadius, dHalfAngle)

	Plane
	Ncrossings

	Cone
	NCrossings,, dHalfAngle

	Cylinder
	NCrossings, dRadius

	Sphere
	NCrossings, dRadius


See Also

BasicScan Object 

	SetBoundaryPoint Method  XE "SetBoundaryPoint Method" 


Description

Sets the boundary point specified by the index parameter. Sets a boundary point.

Syntax

	Visual Basic

	Public Function SetBoundaryPoint( _

   ByVal index As Long, _

   ByVal X As Double, _

   ByVal Y As Double, _

   ByVal Z As Double _

) As Boolean


Parameters

index

Required Long which indicates which boundary point to set.

X

Required Long that indicates the X value of the boundary point.

Y

Required Long that indicates the Y value of the boundary point.

Z

Required Long that indicates the Z value of the boundary point.

Remarks

This function works with patch scans. Use the BoundaryPointCount property to set the number of boundary points.

See Also

BasicScan Object 

	SetControlPoint Method  XE "SetControlPoint Method" 


Description

Sets the control point at the specified index. Sets a control point at the specified index.

Syntax

	Visual Basic

	Public Function SetControlPoint( _

   ByVal index As Long, _

   ByVal ControlPoint As ControlPoint _

) As Boolean


Parameters

index

Required Long value which indicates which control point to set.

ControlPoint

Return Type

Boolean value. If set to 1 (true), the control point is set at the specified index.

See Also

BasicScan Object 

	SetFilterParams Method  XE "SetFilterParams Method" 


Description

Sets parameters for filtering scan data. This method is provided as a shortcut to set these commonly used scan parameters all at once.

Syntax

	Visual Basic

	Public Function SetFilterParams( _

   ByVal dCutAxisLocation As Double, _

   ByVal nAxis As Long, _

   ByVal dMaxIncrement As Double, _

   ByVal dMinIncrement As Double, _

   ByVal dMaxAngle As Double, _

   ByVal dMinAngle As Double _

) As Boolean


Parameters

dCutAxisLocation

nAxis

Required Long that sets the cut axis. It is used only for axis filters. For axis filters, 0 means the X axis, 1 means the Y-axis, and 2 means the Z-axis.

dMaxIncrement

Required Double that sets the maximum increment. For fixed-length filters, this is simply the fixed increment

dMinIncrement

Required Double that sets the minimum increment.

dMaxAngle

Required Double that sets the maximum angle.

dMinAngle

Required Double that sets the minimum angle.

Return Type

Boolean value. Boolean returns true if the function succeeds, false if it fails.

Remarks

	Filter
	SetFilterParams (dCutAxisLocation, nAxis, dMaxIncrement, dMinIncrement, dMaxAngle, dMinAngle)

	Distance
	,,dMaxIncrement

	BodyAxisDistance
	,nAxis, dMaxIncrement

	VariableDistance
	,,dMaxIncrement, dMinIncrement, dMaxAngle, dMinAngle


See Also

BasicScan Object 

	SetHitParams Method  XE "SetHitParams Method" 


Description

Sets parameters for the hit type used in the scan. This method is provided as a shortcut to set these commonly used scan parameters all at once.

Syntax

	Visual Basic

	Public Function SetHitParams( _

   ByVal nInitSamples As Long, _

   ByVal nPermSamples As Long, _

   ByVal dSpacer As Double, _

   ByVal dIndent As Double, _

   ByVal dDepth As Double _

) As Boolean


Parameters

nInitSamples

Required Long that sets the number of initial sample hits for the hits in this scan. It is ignored for basic hits and vector hits.

nPermSamples

Required Long that sets the number of permanent sample hits for the hits in this scan. It is ignored for basic hits and vector hits.

dSpacer

Required Double that sets the spacing of the sample hits from the hit center. It is ignored for basic hits and vector hits.

dIndent

Required Double that sets the indent of the sample hits from the hit center. It is ignored for basic hits, vector hits, and surface.

dDepth

Required Double that sets the depth of the sample hits from the hit center. It is ignored for basic hits, vector hits, and surface.

Return Type

Boolean value. Boolean returns true if the function succeeds, false if it fails.

See Also

BasicScan Object 

	SetMethodParams Method  XE "SetMethodParams Method" 


Description

Sets the scan method parameters. This method is provided as a shortcut to set these commonly used scan parameters all at once.

Syntax

	Visual Basic

	Public Function SetMethodParams( _

   ByVal bIn As ENUM_SCAN_INOUT_TYPES, _

   ByVal bCenteringType As Boolean, _

   ByVal nCenteringDirection As Long, _

   ByVal dDiameter As Double, _

   ByVal dArcAngle As Double, _

   ByVal dDepth As Double, _

   ByVal dPitch As Double _

) As Boolean


Parameters

bIn
Use an item from the ENUM_SCAN_INOUT_TYPES enumeration table located at the end of this documentation.
bCenteringType

Required variable for Centering Scans that sets 0 for Axis Centering and 1 for Plane centering.

nCenteringDirection

Required Long variable that sets  +1 for measurement with the direction of the probe and -1 for against the direction of probe.

dDiameter

Required Double variable that sets the diameter of the circle or cylinder scan, and zero otherwise.

dArcAngle

Required Double variable that sets arc angle for circle and cylinder scans.

dDepth

Required Double variable that sets the depth for circle and cylinder scans, and zero otherwise.

dPitch

Required Double variable that sets Pitch for Cylinder scans.

Return Type

Boolean value. Boolean returns true if the function succeeds, false if it fails.

Example

	Method
	SetMethodParams (bIn, bCenteringType, nCenteringDirection, dDiameter, dArcAngle, dDepth, dPitch)

	Linear
	None

	Edge
	None

	Circle
	bIn, , , dDiameter, dArcAngle, dDepth

	Cylinder
	bIn, , , dDiameter, dArcAngle, dDepth, dPitch

	Straight Line
	None

	Center
	, bCenteringType, nCenteringDirection


See Also

BasicScan Object 

	SetMethodPointData Method  XE "SetMethodPointData Method" 


Description

Sets scan points and vectors via pointdata objects. This method is provided as a shortcut to set these commonly used scan parameters all at once.

Syntax

	Visual Basic

	Public Function SetMethodPointData( _

   ByVal MethodStart As PointData, _

   ByVal MethodEnd As PointData, _

   ByVal MethodInitTouch As PointData, _

   ByVal MethodEndTouch As PointData, _

   ByVal MethodInitDir As PointData, _

   ByVal MethodInitTopSurf As PointData, _

   ByVal MethodCutPlane As PointData _

) As Boolean


Parameters

MethodStart

Required PointData object that sets the MethodStart property.

MethodEnd

Required PointData object that sets the MethodEnd property.

MethodInitTouch

Required PointData object that sets the MethodInitTouch property.

MethodEndTouch

Required PointData object that sets the MethodEndTouch property.

MethodInitDir

Required PointData object that sets the MethodInitDir property.

MethodInitTopSurf

MethodCutPlane

Required PointData object that sets the MethodCutPlane property.

Return Type

Boolean value. Boolean returns true if the function succeeds, false if it fails.

Remarks

If scan is a BasicScanCommand object, and MS, ME, MIT, MET, MID, and MCP are all Dimensioned as Object, the following are equivalent:

scan.SetMethodParams MS,ME,MIT,MET,MID,MCP

set scan.MethodStart = MS
set scan.MethodEnd = ME
set scan.MethodInitTouch = MIT
set scan.MethodEndTouch = MET
set scan.MethodInitDir = MID
set scan.MethodCutPlane = MCP

See Also

BasicScan Object 

	SetNomsParams Method  XE "SetNomsParams Method" 


Description

Sets the parameters used in finding of scan nominals. This method is provided as a shortcut to set these commonly used scan parameters all at once.

Syntax

	Visual Basic

	Public Function SetNomsParams( _

   ByVal dFindNomsTolerance As Double, _

   ByVal dSurfaceThickness As Double, _

   ByVal dEdgeThickness As Double _

) As Boolean


Parameters

dFindNomsTolerance

Required Double that sets the Find Noms tolerance.

dSurfaceThickness

Required Double that sets the surface thickness.

dEdgeThickness

Required Double that sets the edge thickness.

Return Type

Boolean value. Boolean returns true if the function succeeds, false if it fails.

Remarks

If scan is a BasicScanCommand object, and M, F, O, H, N,and B are all Dimensioned as Object, the following are equivalent:

scan.SetParams M, F, O, H, N, B

scan.Method = M
scan.Filter = F
scan.OperationMode = O
scan.HitType = H
scan.NominalMode = N
scan.BoundaryCondition = B

See Also

BasicScan Object 

	SetParams Method  XE "SetParams Method" 


Description

Sets the basic scanning parameters of the scan. This method is provided as a shortcut to set these commonly used scan parameters all at once.

Syntax

	Visual Basic

	Public Function SetParams( _

   ByVal Method As Long, _

   ByVal Filter As Long, _

   ByVal OperationMode As Long, _

   ByVal HitType As Long, _

   ByVal NominalMode As Long, _

   ByVal BoundaryCondition As Long _

) As Boolean


Parameters

Method

Required Long that sets the Method property.

Filter

Required Long that sets the Filter property.

OperationMode

Required Long that sets the OperationMode property.

HitType

Required Long that sets the HitType property.

NominalMode

Required Long that sets the NominalMode property.

BoundaryCondition

Required Long that sets the BoundaryCondition property.

Remarks

If scan is a BasicScanCommand object, and M, F, O, H, N,and B are all Dimensioned as Object, the following are equivalent:

scan.SetParams M, F, O, H, N, B

scan.Method = M
scan.Filter = F
scan.OperationMode = O
scan.HitType = H
scan.NominalMode = N
scan.BoundaryCondition = B

See Also

BasicScan Object 

Properties

	AutoClearPlane Property  XE "AutoClearPlane Property" 


Description

Read/Write: Boolean value indicating if auto clear planes should be used.
Determines whether auto clearance planes mode is on or off. 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property AutoClearPlane() As Boolean


Return Type

Read/Write Boolean.

See Also

BasicScan Object 

	BoundaryCondition Property  XE "BoundaryCondition Property" 


Description

Read/Write: Boundary Condition (Sphere, Plane Cross, Cone, etc.). 

Represents the boundary condition type. 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property BoundaryCondition() As BSBOUNDCOND_ENUM


Return Type

Read/write of enumeration BSBOUNDCOND_ENUM.

Remarks

The allowable values are:

The SetBoundaryConditionParams method should be used to set the values for:

· HalfAngle

· Number of Crossings

· Diameter

See Also

BasicScan Object | SetBoundaryConditionParams Method | SetBoundaryConditionParams Method 

	BoundaryConditionAxisV Property  XE "BoundaryConditionAxisV Property" 


Description

Read/Write: Returns/Sets via point data object the boundary scan's axis vector. Represents the boundary condition axis vector. This vector is used as the axis of the Cylindrical and Conical BoundaryConditions.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property BoundaryConditionAxisV() As PointData


Return Type

Read/write PointData object.

See Also

BasicScan Object 

	BoundaryConditionCenter Property  XE "BoundaryConditionCenter Property" 


Description

Read/Write: Returns/Sets via point data object a boundary scan's center point. Represents the boundary condition center. This Point is used by all Boundary Conditions and is the location of the Boundary Condition. 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property BoundaryConditionCenter() As PointData


Return Type

Read/write PointData object.

See Also

BasicScan Object 

	BoundaryConditionEndApproach Property  XE "BoundaryConditionEndApproach Property" 


Description

Read/Write: Returns/Sets via point data object the end approach for a boundary scan. 

Represents the boundary condition end approach vector. This vector is used by all Boundary Conditions and is the Approach Vector of the Probe as it crosses the Boundary condition. 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property BoundaryConditionEndApproach() As PointData


Return Type

Read/write PointData object.

See Also

BasicScan Object 

	BoundaryConditionPlaneV Property  XE "BoundaryConditionPlaneV Property" 


Description

Read/Write: Returns/Sets via point data object the boundary scan's plane vector. 

Represents the boundary condition plane vector. This vector is the normal vector of the Plane used by the Plane and OldStyle Boundary Conditions.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property BoundaryConditionPlaneV() As PointData


Return Type

Read/write PointData object.

Remarks

	Boundary Condition
	Properties Required

	Plane
	BoundaryConditionCenter

BoundaryConditionEndApproach

BoundaryConditionPlaneV

	Cone
	BoundaryConditionCenter

BoundaryConditionEndApproach

BoundaryConditionAxisV

	Cylinder
	BoundaryConditionCenter

BoundaryConditionEndApproach

BoundaryConditionAxisV

	Sphere
	BoundaryConditionCenter

BoundaryConditionEndApproach


See Also

BasicScan Object 

	BoundaryPointCount Property  XE "BoundaryPointCount Property" 


Description

Read/Write: Long value indicating the number of boundary points for patch scans. Indicates the number of boundary points to used in a patch scan.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property BoundaryPointCount() As Long


Return Type

Read/write Long.

Remarks

Individual boundary points can be set or retrieved via the "BasicScan.GetBoundaryPoint" and "BasicScan.SetBoundaryPoint" methods.

See Also

BasicScan Object 

	DisplayHits Property  XE "DisplayHits Property" 


Description

Read/Write: Boolean value indicating whether hits should be displayed or not. 

Determines whether hits of the scan are displayed in the Edit window or not.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property DisplayHits() As Boolean


Return Type

Read/write Boolean.

See Also

BasicScan Object 

	Filter Property  XE "Filter Property" 


Description

Read/Write: Distance Filter Type Represents the filter type.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Filter() As BSF_ENUM


Return Type

Read/write enumeration of BSF_ENUM.

Remarks

The allowable values are:

See Also

BasicScan Object 

	HitType Property  XE "HitType Property" 


Description

Read/Write: Scan Hit Type (Vector, Surface, Edge) Represents the type of hit to use.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property HitType() As BSCANHIT_ENUM


Return Type

Read/write of enumeration BSCANHIT_ENUM.

Remarks

The allowable values are:

Not every hit type can be used with every method and filter combination. Consider this table.

	Method
	Edge Hit
	Vector Hit
	Surface Hit
	Basic Hit

	Linear
	-
	Y
	Y
	-

	Edge
	Y
	-
	-
	-

	Circle
	-
	Y
	-
	-

	Cylinder
	-
	Y
	-
	-

	Straight Line
	-
	Y
	-
	-

	Center
	-
	Y
	-
	-


See Also

BasicScan Object 

	Method Property  XE "Method Property" 


Description

Read/Write: Scan Type. Represents the method type for this scan.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Method() As BSCANMETH_ENUM


Return Type

Read/write of enumeration BSMETHOD_ENUM.

Remarks

The Method type defines the geometry of the feature to be scanned and has parameters that need to be set properly before scanning. The parameters can be set using the SetMethodParams method.

The allowable values are:

See Also

BasicScan Object | SetMethodParams Method 

	MethodCutPlane Property  XE "MethodCutPlane Property" 


Description

Read/Write: Returns/Sets via point data object the cut plane vector. 

Represents the method’s cut plane vector. 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property MethodCutPlane() As PointData


Return Type

Read/write PointData object.

See Also

BasicScan Object 

	MethodEnd Property  XE "MethodEnd Property" 


Description

Read/Write: Returns/Sets via point data object the ending scan point. 

Represents the scan’s end point.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property MethodEnd() As PointData


Return Type

Read/write PointData.

See Also

BasicScan Object 

	MethodEndTouch Property  XE "MethodEndTouch Property" 


Description

Read/Write: Returns/Sets via point data object the end touch vector. 

Represents the method’s end touch vector. 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property MethodEndTouch() As PointData


Return Type

Read/write PointData object.

See Also

BasicScan Object 

	MethodInitDir Property  XE "MethodInitDir Property" 


Description

Read/Write: Returns/Sets via point data object the initial scan direction vector. 

Represents the method’s initial direction vector. 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property MethodInitDir() As PointData


Return Type

Read/write PointData object.

See Also

BasicScan Object 

	MethodInitTopSurf Property  XE "MethodInitTopSurf Property" 


Description

Read/Write: Returns/Sets via point data object the initial top surface vector. 

Represents the initial Surface Vector for the Edge method. 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property MethodInitTopSurf() As PointData


Return Type

Read/write PointData object.

See Also

BasicScan Object 

	MethodInitTouch Property  XE "MethodInitTouch Property" 


Description

Read/Write: Returns/Sets via point data object the initial touch vector. 

Represents the method’s initial touch vector. 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property MethodInitTouch() As PointData


Return Type

Read/write PointData object.

See Also

BasicScan Object 

	Methodstart Property  XE "Methodstart Property" 


Description

Read/Write: Returns/Sets via point data object the starting scan point. Represents the scan’s start point.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property MethodStart() As PointData


Return Type

Read/write PointData object.

Remarks

Not following table shows the supported scan methods:

	 
	Start
	End
	CutPlane
	InitDir
	InitTouch
	InitTopSurf
	EndTouch

	Linear
	Y
	Y
	Y
	Y
	Y
	-
	Y

	Edge
	Y
	Y
	-
	Y
	Y
	Y
	Y

	Circle
	Y
	-
	Y
	-
	Y
	-
	-

	Cylinder
	Y
	-
	Y
	-
	Y
	-
	-

	Straight Line
	Y
	Y
	Y
	-
	-
	-
	-

	Center
	Y
	Y
	Y
	-
	Y
	 
	-


See Also

BasicScan Object 

	NominalMode Property  XE "NominalMode Property" 


Description

Read/Write: Find cad nominals or use master data. Represents how to determine the nominal values for this scan.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property NominalMode() As BSCANNMODE_ENUM


Return Type

Read/write of enumeration BSCANNMODE_ENUM.

Remarks

The allowable values are:

See Also

BasicScan Object 

	OperationMode Property  XE "OperationMode Property" 


Description

Read/Write: Scan Operation Mode. Represents mode of operation of the scan.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property OperationMode() As BSCANOPMODE_ENUM


Return Type

Read/write of enumeration BSOPMODE_ENUM.

Remarks

The allowable values are:

BSCANOPMODE_NORMALEXECUTION

	Method
	Regular Learn
	Defined Path
	Feature Based
	Normal

	Edge
	Y
	-
	-
	Y

	
	
	
	
	

	Linear
	Y
	-
	-
	Y

	Edge
	Y
	-
	-
	Y

	Circle
	-
	-
	Y
	Y

	Cylinder
	-
	-
	Y
	Y

	Straight Line
	-
	-
	Y
	Y

	Center
	Y
	-
	-
	Y


See Also

BasicScan Object 

	SinglePoint Property  XE "SinglePoint Property" 


Description

Read/Write: Returns/Sets Single Point Mode Flag. 

Determines whether single point mode is on or off. 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property SinglePoint() As Boolean


Return Type

Read/write Boolean.

Remarks

When set to True each point will be considered as a single measured point.

See Also

BasicScan Object 
	CadModel Object  XE "CadModel Object" 


Description

The CadModel object allows you to work with the imported CAD model in PC-DMIS' Graphics Display window.

Object Model

 

	[image: image124]
[image: image125]

 INCLUDEPICTURE "Images/pcdlrn~parent_(partprogram)~255.gif" \* MERGEFORMAT \d [image: image126]
[image: image127]

 INCLUDEPICTURE "Images/pcdlrn~cadslice_(cadpolylinesonsurface)~255.gif" \* MERGEFORMAT \d [image: image128]
[image: image129]

 INCLUDEPICTURE "Images/pcdlrn~cadcollectionslice_(cadpolylinesonsurface)~255.gif" \* MERGEFORMAT \d [image: image130]


See Also

CadModel Members 

	CadModel Object Members  XE "CadModel Object Members" 


Methods

	CadCollectionSlice Method  XE "CadCollectionSlice Method" 


Syntax

	Visual Basic

	Public Function CadCollectionSlice( _

   ByVal CADType As ENUM_CAD_COLLECTIONS, _

   ByVal PlaneAnchorX As Double, _

   ByVal PlaneAnchorY As Double, _

   ByVal PlaneAnchorZ As Double, _

   ByVal PlaneVectorI As Double, _

   ByVal PlaneVectorJ As Double, _

   ByVal PlaneVectorK As Double, _

   ByVal Tolerance As Double _

) As CadPolyLinesOnSurface


Parameters

CADType
Use an item from the ENUM_CAD_COLLECTIONS enumeration table located at the end of this documentation.
PlaneAnchorX

PlaneAnchorY

PlaneAnchorZ

PlaneVectorI

PlaneVectorJ

PlaneVectorK

Tolerance

See Also

CadModel Object 

	CADSlice Method  XE "CADSlice Method" 


Syntax

	Visual Basic

	Public Function CADSlice( _

   ByVal PlaneAnchorX As Double, _

   ByVal PlaneAnchorY As Double, _

   ByVal PlaneAnchorZ As Double, _

   ByVal PlaneVectorI As Double, _

   ByVal PlaneVectorJ As Double, _

   ByVal PlaneVectorK As Double, _

   ByVal Tolerance As Double _

) As CadPolyLinesOnSurface


Parameters

PlaneAnchorX

PlaneAnchorY

PlaneAnchorZ

PlaneVectorI

PlaneVectorJ

PlaneVectorK

Tolerance

See Also

CadModel Object 

	HighlightElement Method  XE "HighlightElement Method" 


Description

This method highlights the specified CAD element (or elements) on the CAD model in the Graphics Display window.

Syntax

	Visual Basic

	Public Function HighlightElement( _

   ByVal Name As String, _

   ByVal All As Boolean _

) As Boolean


Parameters

Name

Required case-sensitive String that indicates the CAD element to highlight.

All

Boolean value that indicates whether or not all CAD elements of that have Name should be highlighted. If set to TRUE then all elements with Name are selected. If set to FALSE, then only the first item in the list that has Name is selected.

Return Type

Boolean value. Boolean returns true if the function succeeds in highlighting the specified CAD element, false if it fails.

Remarks

Example

' Sample Code:

Dim App As PCDLRN.Application

Set App = CreateObject("PCDLRN.Application")

Dim Parts As PCDLRN.PartPrograms

Set Parts = App.PartPrograms

Dim Part As PCDLRN.PartProgram

Set Part = App.ActivePartProgram

Dim CADMod As PCDLRN.CadModel

Set CADMod = Part.CadModel

Dim strElement As String

Dim boolYesNo As Boolean

strElement = InputBox("Type the CAD element to highlight", "Highlight CAD")

boolYesNo = MsgBox("Select all?", vbYesNo, "Select All")

If CADMod.HighlightElement(strElement, boolYesNo) = False Then

    MsgBox "Element: " & strElement & " couldn't be highlighted", vbCritical, "No CAD Highlighted"

    Else

        MsgBox "Success. Element: " & strElement & " was highlighted", vbOKOnly, "CAD Highlighted"

End If

See Also

CadModel Object 

	ScaleToFit Method  XE "ScaleToFit Method" 


Description

Focus on the passed feature or dimension 

Syntax

	Visual Basic

	Public Function ScaleToFit( _

   ByVal Command As Command _

) As Boolean


Parameters

Command

See Also

CadModel Object 

	UnHighlightElement Method  XE "UnHighlightElement Method" 


Description

This method removes highlighting from the specified CAD element (or elements) on the CAD model in the Graphics Display window.

Syntax

	Visual Basic

	Public Function UnHighlightElement( _

   ByVal Name As String, _

   ByVal All As Boolean _

) As Boolean


Parameters

Name

Required case-sensitive String that indicates the CAD element from which to remove highlighting.

All

Boolean value that indicates whether or not all CAD elements of that have Name should be deselected. If set to TRUE then all elements with Name are deselected. If set to FALSE, then only the first item in the list that has Name is deselected.

Return Type

Boolean value. Boolean returns true if the function succeeds in removing the highlight from the specified CAD element, false if it fails.

Remarks

See Also

CadModel Object 

Properties

	Parent Property  XE "Parent Property" 


Description

Read Only: Returns PartProgram object Returns this objects parent object.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Parent() As PartProgram


Return Type

Returns the PartProgram object.

See Also

CadModel Object 
	CadPointOnSurface Object  XE "CadPointOnSurface Object" 


Description

CadPointOnSurface Object 

Object Model

 

	[image: image131]
[image: image132]

 INCLUDEPICTURE "Images/pcdlrn~application~173.gif" \* MERGEFORMAT \d [image: image133]
[image: image134]

 INCLUDEPICTURE "Images/pcdlrn~parent_(cadpointsonsurface)~173.gif" \* MERGEFORMAT \d [image: image135]


See Also

CadPointOnSurface Members 

	CadPointOnSurface Object Members  XE "CadPointOnSurface Object Members" 


Properties

	Application Property  XE "Application Property" 


Description

Read Only: Returns the Application Object 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Application() As Application


See Also

CadPointOnSurface Object 

	CadSurface Property  XE "CadSurface Property" 


Description

Read/Write: Returns/Sets the CadSurface ID ) 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property CadSurface() As Long


See Also

CadPointOnSurface Object 

	I Property  XE "I Property" 


Description

Read/Write: Returns/Sets the I value 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property I() As Double


See Also

CadPointOnSurface Object 

	J Property  XE "J Property" 


Description

Read/Write: Returns/Sets the J value 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property J() As Double


See Also

CadPointOnSurface Object 

	K Property  XE "K Property" 


Description

Read/Write: Returns/Sets the K value 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property K() As Double


See Also

CadPointOnSurface Object 

	Parent Property  XE "Parent Property" 


Description

Read Only: Returns CadPointsOnSurface collection object 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Parent() As CadPointsOnSurface


See Also

CadPointOnSurface Object 

	X Property  XE "X Property" 


Description

Read/Write: Returns/Sets the X value 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property X() As Double


See Also

CadPointOnSurface Object 

	Y Property  XE "Y Property" 


Description

Read/Write: Returns/Sets the Y value 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Y() As Double


See Also

CadPointOnSurface Object 

	Z Property  XE "Z Property" 


Description

Read/Write: Returns/Sets the Z value 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Z() As Double


See Also

CadPointOnSurface Object 
	CadPointsOnSurface Object  XE "CadPointsOnSurface Object" 


Description

Object for the collection of polylines on surface 

Object Model

 

	[image: image136]
[image: image137]

 INCLUDEPICTURE "Images/pcdlrn~application~185.gif" \* MERGEFORMAT \d [image: image138]
[image: image139]

 INCLUDEPICTURE "Images/pcdlrn~parent_(cadpolylineonsurface)~185.gif" \* MERGEFORMAT \d [image: image140]
[image: image141]

 INCLUDEPICTURE "Images/pcdlrn~item_(cadpointonsurface)~185.gif" \* MERGEFORMAT \d [image: image142]
[image: image143]

 INCLUDEPICTURE "Images/pcdlrn~_item_(cadpointonsurface)~185.gif" \* MERGEFORMAT \d [image: image144]


See Also

CadPointsOnSurface Members 

	CadPointsOnSurface Object Members  XE "CadPointsOnSurface Object Members" 


Methods

	_Item Method  XE "_Item Method" 


Syntax

	Visual Basic

	Public Function _Item( _

   ByVal Num As Long _

) As CadPointOnSurface


Parameters

Num

See Also

CadPointsOnSurface Object 

	Item Method  XE "Item Method" 


Description

Returns the nth CadPointOnSurface in the collection 

Syntax

	Visual Basic

	Public Function Item( _

   ByVal Num As Long _

) As CadPointOnSurface


Parameters

Num

See Also

CadPointsOnSurface Object 

Properties

	Application Property  XE "Application Property" 


Description

Read Only: Returns the Application Object 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Application() As Application


See Also

CadPointsOnSurface Object 

	Count Property  XE "Count Property" 


Description

Read Only: Returns the number CadPointOnSurface in the CAdPointsOnSurface collection 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Count() As Long


See Also

CadPointsOnSurface Object 

	Parent Property  XE "Parent Property" 


Description

Read Only: Returns CadPolyLineOnSurface Object 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Parent() As CadPolyLineOnSurface


See Also

CadPointsOnSurface Object 

	CadPolyLineOnSurface Object  XE "CadPolyLineOnSurface Object" 


Description

CadPolyLineOnSurface Object 

Object Model

 

	[image: image145]
[image: image146]

 INCLUDEPICTURE "Images/pcdlrn~application~191.gif" \* MERGEFORMAT \d [image: image147]
[image: image148]

 INCLUDEPICTURE "Images/pcdlrn~cadpoints_(cadpointsonsurface)~191.gif" \* MERGEFORMAT \d [image: image149]
[image: image150]

 INCLUDEPICTURE "Images/pcdlrn~parent_(cadpolylinesonsurface)~191.gif" \* MERGEFORMAT \d [image: image151]


See Also

CadPolyLineOnSurface Members 

	CadPolyLineOnSurface Object Members  XE "CadPolyLineOnSurface Object Members" 


Properties

	Application Property  XE "Application Property" 


Description

Read Only: Returns the Application Object 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Application() As Application


See Also

CadPolyLineOnSurface Object 

	CadPoints Property  XE "CadPoints Property" 


Description

Read Only: Returns the CadPointsOnSurface collection object 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property CadPoints() As CadPointsOnSurface


See Also

CadPolyLineOnSurface Object 

	Closed Property  XE "Closed Property" 


Description

Read/Write: Returns/sets true if is a closed polyline 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Closed() As Boolean


See Also

CadPolyLineOnSurface Object 

	Parent Property  XE "Parent Property" 


Description

Read Only: Returns CadPolyLinesOnSurface collection object 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Parent() As CadPolyLinesOnSurface


See Also

CadPolyLineOnSurface Object 
	CadPolyLinesOnSurface Object  XE "CadPolyLinesOnSurface Object" 


Description

Object for the collection of polylines on surface 

Object Model

 

	[image: image152]
[image: image153]

 INCLUDEPICTURE "Images/pcdlrn~application~182.gif" \* MERGEFORMAT \d [image: image154]
[image: image155]

 INCLUDEPICTURE "Images/pcdlrn~parent_(cadmodel)~182.gif" \* MERGEFORMAT \d [image: image156]
[image: image157]

 INCLUDEPICTURE "Images/pcdlrn~item_(cadpolylineonsurface)~182.gif" \* MERGEFORMAT \d [image: image158]
[image: image159]

 INCLUDEPICTURE "Images/pcdlrn~_item_(cadpolylineonsurface)~182.gif" \* MERGEFORMAT \d [image: image160]


See Also

CadPolyLinesOnSurface Members 

	CadPolyLinesOnSurface Object Members  XE "CadPolyLinesOnSurface Object Members" 


Methods

	_Item Method  XE "_Item Method" 


Syntax

	Visual Basic

	Public Function _Item( _

   ByVal Num As Long _

) As CadPolyLineOnSurface


Parameters

Num

See Also

CadPolyLinesOnSurface Object 

	Item Method  XE "Item Method" 


Description

Returns the nth PolyLineOnSurface in the collection 

Syntax

	Visual Basic

	Public Function Item( _

   ByVal Num As Long _

) As CadPolyLineOnSurface


Parameters

Num

See Also

CadPolyLinesOnSurface Object 

Properties

	Application Property  XE "Application Property" 


Description

Read Only: Returns the Application Object 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Application() As Application


See Also

CadPolyLinesOnSurface Object 

	Count Property  XE "Count Property" 


Description

Read Only: Returns the number PolyLineOnSurface in the PolyLinesOnSurface collection 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Count() As Long


See Also

CadPolyLinesOnSurface Object 

	Parent Property  XE "Parent Property" 


Description

Read Only: Returns CadModel object 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Parent() As CadModel


See Also

CadPolyLinesOnSurface Object 
	CadWindow Object  XE "CadWindow Object" 


Description

Cad Window Object. The CadWindow object is the one and only cad window for a part program.

Object Model

 

	[image: image161]
[image: image162]

 INCLUDEPICTURE "Images/pcdlrn~application~130.gif" \* MERGEFORMAT \d [image: image163]
[image: image164]

 INCLUDEPICTURE "Images/pcdlrn~parent_(cadwindows)~130.gif" \* MERGEFORMAT \d [image: image165]


See Also

CadWindow Members 

	CadWindow Object Members  XE "CadWindow Object Members" 


Methods

	Print Method  XE "Print Method" 


Description

Prints the current view(s) of the cad window. Prints the CAD window.

Syntax

	Visual Basic

	Public Function Print( _

   ByVal Option As ENUM_CADPRINTOPTIONS, _

   ByVal DrawRulers As Boolean _

) As Boolean


Parameters

Option

Required Long or enumerated value that indicates the type of printing to occur. Options include Scale to Fit on Single Page, Print Visible Screen Area, Print Complete Views, and Print Complete View w/ Current Scale. Print Visible Screen Area is only available one of the views are zoomed. Print Complete Views is only available when multiple views exist.
Use an item from the ENUM_CADPRINTOPTIONS enumeration table located at the end of this documentation.
DrawRulers

Required Boolean that indicates whether rulers should be included on the printout. This option is only available if rulers are currently turned on in the cad drawing.

Return Type

Boolean value. Boolean returns true if the function succeeds, false if it fails.

See Also

CadWindow Object 

Properties

	_Visible Property  XE "_Visible Property" 


Property type

Read-write property

Syntax

	Visual Basic

	Public Property _Visible() As Boolean


See Also

CadWindow Object 

	Application Property  XE "Application Property" 


Description

Read Only: Returns the Application Object. Represents the read-only PC-DMIS application. The Application object includes properties and methods that return top-level objects. For example, the ActivePartProgram property returns a PartProgram object.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Application() As Application


Return Type

Returns the Application object.

See Also

CadWindow Object 

	Height Property  XE "Height Property" 


Description

Read/Write: Returns/Sets the height of the cad window. 

The height of the Cad window in screen pixels. 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Height() As Long


Return Type

Read/write Long.

See Also

CadWindow Object 

	Left Property  XE "Left Property" 


Description

Read/Write: Returns/Sets the left coordinate of the cad window. 

The left edge of the Cad window, measured from the left edge of the Windows Desktop. 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Left() As Long


Return Type

Read/write Long.

Remarks

The Left property is measured in screen pixels.

See Also

CadWindow Object 

	Parent Property  XE "Parent Property" 


Description

Read Only: Returns the Parent CadWindows Object. Returns the parent CadWindows object.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Parent() As CadWindows


Return Type

CadWindows object.

See Also

CadWindow Object 

	Top Property  XE "Top Property" 


Description

Read/Write: Returns/Sets the top coordinate of the cad window. The top edge of the Cad window, measured from the top edge of the Windows Desktop.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Top() As Long


Return Type

Read/write Long.

Remarks

The Top property is measured in screen pixels.

See Also

CadWindow Object 

	Visible Property  XE "Visible Property" 


Description

Read/Write: Returns/Sets the visibility status of the cad window 

This property is TRUE if the Cad window is visible, FALSE otherwise. If you make the Cad window invisible, the only way to make it visible again is to set this property to TRUE.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Visible() As Boolean


Return Type

Read/write Boolean.

See Also

CadWindow Object 

	Width Property  XE "Width Property" 


Description

Read/Write: Returns/Sets the width of the cad window. The width of the Cad window in screen pixels. 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Width() As Long


Return Type

Read/write Long.

See Also

CadWindow Object 
	CadWindows Object  XE "CadWindows Object" 


Description

Cad Windows Collection Object. 

The CadWindows object is an object containing a collection of CadWindow objects currently available to a part program.

Object Model

 

	[image: image166]
[image: image167]

 INCLUDEPICTURE "Images/pcdlrn~application~132.gif" \* MERGEFORMAT \d [image: image168]
[image: image169]

 INCLUDEPICTURE "Images/pcdlrn~parent_(partprogram)~132.gif" \* MERGEFORMAT \d [image: image170]
[image: image171]

 INCLUDEPICTURE "Images/pcdlrn~item_(cadwindow)~132.gif" \* MERGEFORMAT \d [image: image172]
[image: image173]

 INCLUDEPICTURE "Images/pcdlrn~_item_(cadwindow)~132.gif" \* MERGEFORMAT \d [image: image174]


Remarks

Currently, there is exactly one CadWindow object associated with each part program, but the CADWindows object class is made available for future changes.

See Also

CadWindows Members 

	CadWindows Object Members  XE "CadWindows Object Members" 


Methods

	_Item Method  XE "_Item Method" 


Syntax

	Visual Basic

	Public Function _Item( _

   ByVal ID As String _

) As CadWindow


Parameters

See Also

CadWindows Object 

	Item Method  XE "Item Method" 


Description

Returns the Cad Window Object 

Syntax

	Visual Basic

	Public Function Item( _

   ByVal ID As String _

) As CadWindow


Parameters

Required Variant that denotes which CadWindow object to return.

Return Type

CadWindow object from the parent CadWindows object. Read-only.

Remarks

Since there is only and exactly one CadWindow object, it does not matter what you pass into the ID argument. For the sake of future compatibility, you should pass 1 into the ID.

See Also

CadWindows Object 

Properties

	Application Property  XE "Application Property" 


Description

Read Only: Returns the Application Object. 

Represents the read-only PC-DMIS application. The Application object includes properties and methods that return top-level objects. For example, the ActivePartProgram property returns a PartProgram object.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Application() As Application


Return Type

Application object.

See Also

CadWindows Object 

	Count Property  XE "Count Property" 


Description

Read Only: Returns the number of cad windows in the collection. Returns the number of CadWindow objects active in this part program.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Count() As Long


Return Type

Read-only Long.

Remarks

Currently, this property always returns 1.

See Also

CadWindows Object 

	Parent Property  XE "Parent Property" 


Description

Read Only: Returns the Parent PartProgram Object. Represents the parent PartProgram object.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Parent() As PartProgram


Return Type

PartProgram object.

See Also

CadWindows Object 
	Calibration Object  XE "Calibration Object" 


Description

The Calibration object allows for tip calibration during part program execution. This object is placed into a part program through the Add method of the Commands object and obtained from the Command object via the CalibrationCommand property.

See Also

Calibration Members 

	Calibration Object Members  XE "Calibration Object Members" 


Properties

	Moved Property  XE "Moved Property" 


Description

Read/Write: Indicates whether tool has been moved since it was calibrated. 

Determines whether or not the sphere used as the calibration tool has moved since the last tip calibration.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Moved() As Boolean


Return Type

Read/write Boolean. 

If this value is true, then the tool’s (identified by ToolID) calibration data is reset using the data from the sphere (identified by SphereID) that was just measured. 

If this value is false, then the current tool calibration data is used to calibrate the active tip.

See Also

Calibration Object 

	SphereID Property  XE "SphereID Property" 


Description

Read/Write: ID of sphere used for calibration. 

This returns or sets the ID of a sphere command that occurs prior to the calibration command. The sphere should have identical characteristics with the tool identified by ToolID.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property SphereID() As String


Return Type

Read/write String.

See Also

Calibration Object 

	ToolID Property  XE "ToolID Property" 


Description

Read/Write: ID of Tool of same dimensions as reference sphere. Returns or sets the ID of a previously defined calibration tool that is similar to the sphere identified by SphereID. The tool data is used in the tip calibration or reset depending on the value of the moved data member.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property ToolID() As String


Return Type

Read/write String.

See Also

Calibration Object 
	Color Object  XE "Color Object" 


Description

Reporting Color Object. The Color object is used to automate color settings used in PC-DMIS's report templates.

Object Model

 

	[image: image175]
[image: image176]

 INCLUDEPICTURE "Images/pcdlrn~application~94.gif" \* MERGEFORMAT \d [image: image177]
[image: image178]

 INCLUDEPICTURE "Images/pcdlrn~parent_(colors)~94.gif" \* MERGEFORMAT \d [image: image179]

 INCLUDEPICTURE "Images/paracros.gif" \* MERGEFORMAT \d [image: image180]

 INCLUDEPICTURE "Images/pcdlrn~application~94.gif" \* MERGEFORMAT \d [image: image181]


See Also

Color Members 

	Color Object Members  XE "Color Object Members" 


Methods

	DiscardChanges Method  XE "DiscardChanges Method" 


Description

Discard Color object modification and restore previous ones. All changes made to the Color object are done inside a temporary structure. To restore the saved values and overwrite any changes you made in the temporary structure, use this method.

Syntax

	Visual Basic

	Public Sub DiscardChanges() 


See Also

Color Object 

	GetType Method  XE "GetType Method" 


Description

Retrieves the low and high word parameters representing the Color object type. Returns the Command Type or Color Section to which the color is associated.

Syntax

	Visual Basic

	Public Sub GetType( _

   ByRef UID1 As {Unrecognised type 21}, _

   ByRef UID2 As {Unrecognised type 21} _

) 


Parameters

UID1

Long value specifying the Command Type ID or Color Section ID.

· If defining a specific Command Type, this is the ID from the OBTYPE enumeration.

· If defining a Color Section (from the Command Text Colors list on the Color Editor dialog box), this is the ID from the ENUM_COLOR_SECTION enumeration.

UID2

Long value specifying the second part of a 128 bit UID. UID2 is reserved for Command IDs that exists in the Toolkit environment. Since Toolkit command IDs use 128 bit values the only way to get at their data using automation is to supply two parameters. For typical automation uses (non Toolkit), you won't need this parameter and can simply supply a 0 value.

See Also

Color Object 

	Remove Method  XE "Remove Method" 


Description

Removes the Color object from the parent Colors collection object. Removes the current Color object from the Colors collection.

Syntax

	Visual Basic

	Public Sub Remove() 


See Also

Color Object 

	SaveChanges Method  XE "SaveChanges Method" 


Description

Saves Color object modification. All changes made to the Color object are done inside a temporary structure. This copies the changes made inside this temporary structure to the master structure, essentially saving your changes, making them permanent.

Syntax

	Visual Basic

	Public Sub SaveChanges() 


See Also

Color Object 

Properties

	_Standard Property  XE "_Standard Property" 


Property type

Read-write property

Syntax

	Visual Basic

	Public Property _Standard() As Long


See Also

Color Object 

	Application Property  XE "Application Property" 


Description

Read Only: Returns object pointer of type Application. Represents the read-only PC-DMIS application. The Application object includes properties and methods that return top-level objects.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Application() As Application


Return Type

Application object.

See Also

Color Object 

	ColorParentType Property  XE "ColorParentType Property" 


Description

Read Only: Returns the parent color Command type or Color Section ID. Returns the parent Command Type or Color Section ID.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property ColorParentType() As Long


See Also

Color Object 

	Debug Property  XE "Debug Property" 


Description

Read/Write: Returns/Sets the working Debug color. Returns the Debug color.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Debug() As Long


Return Type

Long value representing the Debug color.

Remarks

Note on Colors: Colors are defined by a COLORREF value. When specifying a RGB color, the COLORREF value has this hexadecimal form as a Long value:

0x00BBGGRR

where BB=blue GG=green RR=red

The maximum value for a single byte in the hexadecimal format is 0xFF (or 255 in decimal format).

See Also

Color Object 

	Marked Property  XE "Marked Property" 


Description

Read/Write: Returns/Sets the working Marked color. Returns the Marked color.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Marked() As Long


Return Type

Long value representing the Marked color.

Remarks

Note on Colors: Colors are defined by a COLORREF value. When specifying a RGB color, the COLORREF value has this hexadecimal form as a Long value:

0x00BBGGRR

where BB=blue GG=green RR=red

The maximum value for a single byte in the hexadecimal format is 0xFF (or 255 in decimal format).

See Also

Color Object 

	MarkedBackground Property  XE "MarkedBackground Property" 


Description

Read/Write: Returns/Sets the working MarkedBackground color. Returns the Marked background color

Property type

Read-write property

Syntax

	Visual Basic

	Public Property MarkedBackground() As Long


Return Type

Long value representing the Marked background color.

Remarks

Note on Colors: Colors are defined by a COLORREF value. When specifying a RGB color, the COLORREF value has this hexadecimal form as a Long value:

0x00BBGGRR

where BB=blue GG=green RR=red

The maximum value for a single byte in the hexadecimal format is 0xFF (or 255 in decimal format).

See Also

Color Object 

	OutTol Property  XE "OutTol Property" 


Description

Read/Write: Returns/Sets the working OutTol color. Returns the out-of-tolerance color.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property OutTol() As Long


Return Type

Long value representing the out-of-tolerance color.

Remarks

Note on Colors: Colors are defined by a COLORREF value. When specifying a RGB color, the COLORREF value has this hexadecimal form as a Long value:

0x00BBGGRR

where BB=blue GG=green RR=red

The maximum value for a single byte in the hexadecimal format is 0xFF (or 255 in decimal format).

See Also

Color Object 

	Parent Property  XE "Parent Property" 


Description

Read Only: Returns object pointer to the Colors object. Returns the parent Colors collection.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Parent() As Colors


Return Type

Colors object.

See Also

Color Object 

	Standard Property  XE "Standard Property" 


Description

Read/Write: Returns/Sets the working Standard color. Returns the working Standard color.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Standard() As Long


Return Type

Long value representing the working Standard color.

Remarks

Note on Colors: Colors are defined by a COLORREF value. When specifying a RGB color, the COLORREF value has this hexadecimal form as a Long value:

0x00BBGGRR

where BB=blue GG=green RR=red

The maximum value for a single byte in the hexadecimal format is 0xFF (or 255 in decimal format).

See Also

Color Object 

	StandardBackground Property  XE "StandardBackground Property" 


Description

Read/Write: Returns/Sets the working StandardBackground color. Returns the working Standard background color.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property StandardBackground() As Long


Return Type

Long value representing the working Standard background color.

Remarks

Note on Colors: Colors are defined by a COLORREF value. When specifying a RGB color, the COLORREF value has this hexadecimal form as a Long value:

0x00BBGGRR

where BB=blue GG=green RR=red

The maximum value for a single byte in the hexadecimal format is 0xFF (or 255 in decimal format).

See Also

Color Object 
	Colors Collection  XE "Colors Collection" 


Description

Reporting Colors collection. 

The Colors object allows you to work with collections of Color objects. These are used to automate color settings used in PC-DMIS's report templates. 

Object Model

 

	[image: image182]
[image: image183]

 INCLUDEPICTURE "Images/pcdlrn~item_(color)~78.gif" \* MERGEFORMAT \d [image: image184]
[image: image185]

 INCLUDEPICTURE "Images/pcdlrn~application~78.gif" \* MERGEFORMAT \d [image: image186]
[image: image187]

 INCLUDEPICTURE "Images/pcdlrn~add_(color)~78.gif" \* MERGEFORMAT \d [image: image188]


Remarks

Use Colors.Add to create a new Color object and add it to the Colors collection.

Use Colors(item) where item is the command type or color section used to access an individual Color object.

See Also

Colors Members 

	Colors Collection Members  XE "Colors Collection Members" 


Methods

	Add Method  XE "Add Method" 


Description

Adds the color object associated with CommandTypeOrColorSection parameter. If already exists the previous one is returned. 

This method creates a new color node associated with the specified Command Type ID or Color Section ID, returning a Color object for the added node. Once you add a node, you can then define the colors used for the Standard, Marked, Debug, and OutTol. 

Syntax

	Visual Basic

	Public Function Add( _

   ByVal UID1 As {Unrecognised type 21}, _

   ByVal UID2 As {Unrecognised type 21} _

) As Color


Parameters

UID1

Long value specifying the Command Type ID or Color Section ID.

· If defining a specific Command Type, this is the ID from the OBTYPE enumeration.

· If defining a Color Section (from the Command Text Colors list on the Color Editor dialog box), this is the ID from the ENUM_COLOR_SECTION enumeration.

UID2

Long value specifying the second part of a 128 bit UID. UID2 is reserved for Command IDs that exists in the Toolkit environment. Since Toolkit command IDs use 128 bit values the only way to get at their data using automation is to supply two parameters. For typical automation uses (non Toolkit), you won't need this parameter and can simply supply a 0 value.

Return Type

Color object.

See Also

Colors Collection 

	BuildColortable Method  XE "BuildColortable Method" 


Description

Rebuild Color Table using the current colors. 

Syntax

	Visual Basic

	Public Sub BuildColortable() 


See Also

Colors Collection 

	DiscardChanges Method  XE "DiscardChanges Method" 


Description

Discard Color objects modification and restore previous ones. All changes made to the Colors collection are done inside a temporary structure. To restore the saved values and overwrite any changes you made in the temporary structure, use this method.

Syntax

	Visual Basic

	Public Sub DiscardChanges() 


See Also

Colors Collection 

	GetColorTableColor Method  XE "GetColorTableColor Method" 


Description

Returns a ColorTable color. Returns the color specified by the colorIndex parameter from the template's color table.
Syntax

	Visual Basic

	Public Function GetColorTableColor( _

   ByVal colorIndex As Long _

) As Long


Parameters

colorIndex

Long value representing an index number for a color contained in the color table.

Return Type

Long value representing the color returned.

See Also

Colors Collection 

	IsAllowed Method  XE "IsAllowed Method" 


Description

Checks if CommandTypeOrColorSection parameter is allowed in current PCDMIS configuration. 
This checks whether or not the specified Command Type or Color Section ID is valid in the current PC-DMIS configuration. If it is valid, it returns TRUE.

Syntax

	Visual Basic

	Public Function IsAllowed( _

   ByVal UID1 As {Unrecognised type 21}, _

   ByVal UID2 As {Unrecognised type 21} _

) As Long


Parameters

UID1

Long value specifying the Command Type ID or Color Section ID.

· If defining a specific Command Type, this is the ID from the OBTYPE enumeration.

· If defining a Color Section (from the Command Text Colors list on the Color Editor dialog box), this is the ID from the ENUM_COLOR_SECTION enumeration.

UID2

Long value specifying the second part of a 128 bit UID. UID2 is reserved for Command IDs that exists in the Toolkit environment. Since Toolkit command IDs use 128 bit values the only way to get at their data using automation is to supply two parameters. For typical automation uses (non Toolkit), you won't need this parameter and can simply supply a 0 value.

Return Type

Long value. This returns -1 (or True) if the function succeeds and 0 (or False) if it does not.

See Also

Colors Collection 

	Item Method  XE "Item Method" 


Description

Returns color object associated with CommandTypeOrColorSection parameter. This method returns a specified color object from the color table based on the UID1 and UID2 parameters entered.

Syntax

	Visual Basic

	Public Function Item( _

   ByVal UID1 As {Unrecognised type 21}, _

   ByVal UID2 As {Unrecognised type 21} _

) As Color


Parameters

UID1

Long value specifying the Command Type ID or Color Section ID.

· If defining a specific Command Type, this is the ID from the OBTYPE enumeration.

· If defining a Color Section (from the Command Text Colors list on the Color Editor dialog box), this is the ID from the ENUM_COLOR_SECTION enumeration.

UID2

Long value specifying the second part of a 128 bit UID. UID2 is reserved for Command IDs that exists in the Toolkit environment. Since Toolkit command IDs use 128 bit values the only way to get at their data using automation is to supply two parameters. For typical automation uses (non Toolkit), you won't need this parameter and can simply supply a 0 value.

Return Type

Color object.

See Also

Colors Collection 

	SaveChanges Method  XE "SaveChanges Method" 


Description

Saves Color objects modification. 

All changes made to the Colors collection are done inside a temporary structure. This copies the changes made inside this temporary structure to the master colors structure, essentially saving your changes, making them permanent.

Syntax

	Visual Basic

	Public Sub SaveChanges() 


See Also

Colors Collection 

	UsedColor Method  XE "UsedColor Method" 


Description

Returns the effective command type or color section used. 

This returns the color currently associated with the defined Command Type ID or Color Section ID. If a color is not defined for a feature type, the parent color is recursively searched until the default color is reached.

Syntax

	Visual Basic

	Public Function UsedColor( _

   ByVal UID1 As {Unrecognised type 21}, _

   ByVal UID2 As {Unrecognised type 21} _

) As Long


Parameters

UID1

Long value specifying the Command Type ID or Color Section ID.

1. If defining a specific Command Type, this is the ID from the OBTYPE enumeration.

2. If defining a Color Section (from the Command Text Colors list on the Color Editor dialog box), this is the ID from the ENUM_COLOR_SECTION enumeration.

UID2

Long value specifying the second part of a 128 bit UID. UID2 is reserved for Command IDs that exists in the Toolkit environment. Since Toolkit command IDs use 128 bit values the only way to get at their data using automation is to supply two parameters. For typical automation uses (non Toolkit), you won't need this parameter and can simply supply a 0 value.

See Also

Colors Collection 

Properties

	Application Property  XE "Application Property" 


Description

Read Only: Returns object pointer of type Application. This property represents the read-only PC-DMIS Application object. The Application object includes properties and methods that return top-level objects.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Application() As Application


Return Type

Application object.

See Also

Colors Collection 

	Background Property  XE "Background Property" 


Description

Read/Write: Returns/Sets the Background color. This property returns or sets the Background color for the report template's color tree.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Background() As Long


Return Type

Read/write Long value.

Remarks

Note on Colors: Colors are defined by a COLORREF value. When specifying a RGB color, the COLORREF value has this hexadecimal form as a Long value:

0x00BBGGRR

where BB=blue GG=green RR=red

The maximum value for a single byte in the hexadecimal format is 0xFF (or 255 in decimal format).

See Also

Colors Collection 

	Count Property  XE "Count Property" 


Description

Read Only: Returns the number of color object defined in the collection. This property returns the number of color nodes (Color objects) defined in the Colors collection (or color tree).

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Count() As Long


Return Type

Read only Long value.

See Also

Colors Collection 

	DimensionBackground Property  XE "DimensionBackground Property" 


Description

Read/Write: Returns/Sets the Dimension background color. This property returns or sets the dimension background color for the template's color tree.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property DimensionBackground() As Long


Return Type

Read/write Long value.

Remarks

Note on Colors: Colors are defined by a COLORREF value. When specifying a RGB color, the COLORREF value has this hexadecimal form as a Long value:

0x00BBGGRR

where BB=blue GG=green RR=red

The maximum value for a single byte in the hexadecimal format is 0xFF (or 255 in decimal format).

See Also

Colors Collection 

	HighLightBackground Property  XE "HighLightBackground Property" 


Description

Read/Write: Returns/Sets the Highlight background color. This property returns or sets the highlight background color for the template's color tree.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property HighLightBackground() As Long


Return Type

Read/write Long value.

Remarks

Note on Colors: Colors are defined by a COLORREF value. When specifying a RGB color, the COLORREF value has this hexadecimal form as a Long value:

0x00BBGGRR

where BB=blue GG=green RR=red

The maximum value for a single byte in the hexadecimal format is 0xFF (or 255 in decimal format).

See Also

Colors Collection 

	Modified Property  XE "Modified Property" 


Description

Read/Write: Returns/Sets modified flag. This property returns or sets the report template's "modified" tag for its color tree.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Modified() As Long


Return Type

Read/write Boolean value.

Remarks

Note on Colors: Colors are defined by a COLORREF value. When specifying a RGB color, the COLORREF value has this hexadecimal form as a Long value:

0x00BBGGRR

where BB=blue GG=green RR=red

The maximum value for a single byte in the hexadecimal format is 0xFF (or 255 in decimal format).

See Also

Colors Collection 

	NumTableColors Property  XE "NumTableColors Property" 


Description

Read Only: Returns the Number of color defined in the color table. This property returns the number of colors defined in the report template's color table.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property NumTableColors() As Long


Return Type

Read only Long value.

See Also

Colors Collection 

	Parent Property  XE "Parent Property" 


Description

Read Only: Returns object pointer to the Parent object. This returns this object's parent object. In this case, this is the ReportTemplate object.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Parent() As Object


Return Type

ReportTemplate object.

See Also

Colors Collection 
	Colors Collection  XE "Colors Collection" 


Description

Reporting Colors collection 

The Colors object allows you to work with collections of Color objects. These are used to automate color settings used in PC-DMIS's report templates. 

Object Model

 

	[image: image189]
[image: image190]

 INCLUDEPICTURE "Images/pcdlrn~item_(color)~78.gif" \* MERGEFORMAT \d [image: image191]
[image: image192]

 INCLUDEPICTURE "Images/pcdlrn~application~78.gif" \* MERGEFORMAT \d [image: image193]
[image: image194]

 INCLUDEPICTURE "Images/pcdlrn~add_(color)~78.gif" \* MERGEFORMAT \d [image: image195]


Remarks

Use Colors.Add to create a new Color object and add it to the Colors collection.

Use Colors(item) where item is the command type or color section used to access an individual Color object.

See Also

Colors Members 

	Colors Collection Members  XE "Colors Collection Members" 


See Also

Colors Overview 

Methods

	Add Method  XE "Add Method" 


Description

Adds the color object associated with CommandTypeOrColorSection parameter. If already exists the previous one is returned. 

This method creates a new color node associated with the specified Command Type ID or Color Section ID, returning a Color object for the added node. Once you add a node, you can then define the colors used for the Standard, Marked, Debug, and OutTol. 

Syntax

	Visual Basic

	Public Function Add( _

   ByVal UID1 As {Unrecognised type 21}, _

   ByVal UID2 As {Unrecognised type 21} _

) As Color


Parameters

UID1

Long value specifying the Command Type ID or Color Section ID.

· If defining a specific Command Type, this is the ID from the OBTYPE enumeration. All the available enumeration tables are listed at the end of this documentation.

· If defining a Color Section (from the Command Text Colors list on the Color Editor dialog box), this is the ID from the ENUM_COLOR_SECTION enumeration.

UID2

Long value specifying the second part of a 128 bit UID. UID2 is reserved for Command IDs that exists in the Toolkit environment. Since Toolkit command IDs use 128 bit values the only way to get at their data using automation is to supply two parameters. For typical automation uses (non Toolkit), you won't need this parameter and can simply supply a 0 value.

Return Type

Color object.

See Also

Colors Collection 

	BuildColortable Method  XE "BuildColortable Method" 


Description

Rebuild Color Table using the current colors. 

Syntax

	Visual Basic

	Public Sub BuildColortable() 


See Also

Colors Collection 

	DiscardChanges Method  XE "DiscardChanges Method" 


Description

Discard Color objects modification and restore previous ones. All changes made to the Colors collection are done inside a temporary structure. To restore the saved values and overwrite any changes you made in the temporary structure, use this method.

Syntax

	Visual Basic

	Public Sub DiscardChanges() 


See Also

Colors Collection 

	GetColorTableColor Method  XE "GetColorTableColor Method" 


Description

Returns a ColorTable color. Returns the color specified by the colorIndex parameter from the template's color table.

Syntax

	Visual Basic

	Public Function GetColorTableColor( _

   ByVal colorIndex As Long _

) As Long


Parameters

colorIndex

Long value representing an index number for a color contained in the color table.

Return Type

Long value representing the color returned.

See Also

Colors Collection 

	IsAllowed Method  XE "IsAllowed Method" 


Description

Checks if CommandTypeOrColorSection parameter is allowed in current PCDMIS configuration. 

This checks whether or not the specified Command Type or Color Section ID is valid in the current PC-DMIS configuration. If it is valid, it returns TRUE.

Syntax

	Visual Basic

	Public Function IsAllowed( _

   ByVal UID1 As {Unrecognised type 21}, _

   ByVal UID2 As {Unrecognised type 21} _

) As Long


Parameters

UID1

Long value specifying the Command Type ID or Color Section ID.

· If defining a specific Command Type, this is the ID from the OBTYPE enumeration.

· If defining a Color Section (from the Command Text Colors list on the Color Editor dialog box), this is the ID from the ENUM_COLOR_SECTION enumeration.

UID2

Long value specifying the second part of a 128 bit UID. UID2 is reserved for Command IDs that exists in the Toolkit environment. Since Toolkit command IDs use 128 bit values the only way to get at their data using automation is to supply two parameters. For typical automation uses (non Toolkit), you won't need this parameter and can simply supply a 0 value.

Return Type

Long value. This returns -1 (or True) if the function succeeds and 0 (or False) if it does not.

See Also

Colors Collection 

	Item Method  XE "Item Method" 


Description

Returns color object associated with CommandTypeOrColorSection parameter This method returns a specified color object from the color table based on the UID1 and UID2 parameters entered.

Syntax

	Visual Basic

	Public Function Item( _

   ByVal UID1 As {Unrecognised type 21}, _

   ByVal UID2 As {Unrecognised type 21} _

) As Color


Parameters

UID1

Long value specifying the Command Type ID or Color Section ID.

· If defining a specific Command Type, this is the ID from the OBTYPE enumeration.

· If defining a Color Section (from the Command Text Colors list on the Color Editor dialog box), this is the ID from the ENUM_COLOR_SECTION enumeration.

UID2

Long value specifying the second part of a 128 bit UID. UID2 is reserved for Command IDs that exists in the Toolkit environment. Since Toolkit command IDs use 128 bit values the only way to get at their data using automation is to supply two parameters. For typical automation uses (non Toolkit), you won't need this parameter and can simply supply a 0 value.

Return Type

Color object.

See Also

Colors Collection 

	SaveChanges Method  XE "SaveChanges Method" 


Description

Saves Color objects modification. 

All changes made to the Colors collection are done inside a temporary structure. This copies the changes made inside this temporary structure to the master colors structure, essentially saving your changes, making them permanent.

Syntax

	Visual Basic

	Public Sub SaveChanges() 


See Also

Colors Collection 

	UsedColor Method  XE "UsedColor Method" 


Description

Returns the effective command type or color section used. 

This returns the color currently associated with the defined Command Type ID or Color Section ID. If a color is not defined for a feature type, the parent color is recursively searched until the default color is reached.

Syntax

	Visual Basic

	Public Function UsedColor( _

   ByVal UID1 As {Unrecognised type 21}, _

   ByVal UID2 As {Unrecognised type 21} _

) As Long


Parameters

UID1

Long value specifying the Command Type ID or Color Section ID.

· If defining a specific Command Type, this is the ID from the OBTYPE enumeration.

· If defining a Color Section (from the Command Text Colors list on the Color Editor dialog box), this is the ID from the ENUM_COLOR_SECTION enumeration.

UID2

Long value specifying the second part of a 128 bit UID. UID2 is reserved for Command IDs that exists in the Toolkit environment. Since Toolkit command IDs use 128 bit values the only way to get at their data using automation is to supply two parameters. For typical automation uses (non Toolkit), you won't need this parameter and can simply supply a 0 value.

See Also

Colors Collection 

Properties

	Application Property  XE "Application Property" 


Description

Read Only: Returns object pointer of type Application. This property represents the read-only PC-DMIS Application object. The Application object includes properties and methods that return top-level objects.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Application() As Application


Return Type

Application object.

See Also

Colors Collection 

	Background Property  XE "Background Property" 


Description

Read/Write: Returns/Sets the Background color. This property returns or sets the Background color for the report template's color tree.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Background() As Long


Return Type

Read/write Long value.

Remarks

Note on Colors: Colors are defined by a COLORREF value. When specifying a RGB color, the COLORREF value has this hexadecimal form as a Long value:

0x00BBGGRR

where BB=blue GG=green RR=red

The maximum value for a single byte in the hexadecimal format is 0xFF (or 255 in decimal format).

See Also

Colors Collection 

	Count Property  XE "Count Property" 


Description

Read Only: Returns the number of color object defined in the collection. This property returns the number of color nodes (Color objects) defined in the Colors collection (or color tree).

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Count() As Long


Return Type

Read only Long value.

See Also

Colors Collection 

	DimensionBackground Property  XE "DimensionBackground Property" 


Description

Read/Write: Returns/Sets the Dimension background color. This property returns or sets the dimension background color for the template's color tree.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property DimensionBackground() As Long


Return Type

Read/write Long value.

Remarks

Note on Colors: Colors are defined by a COLORREF value. When specifying a RGB color, the COLORREF value has this hexadecimal form as a Long value:

0x00BBGGRR

where BB=blue GG=green RR=red

The maximum value for a single byte in the hexadecimal format is 0xFF (or 255 in decimal format).

See Also

Colors Collection 

	HighLightBackground Property  XE "HighLightBackground Property" 


Description

Read/Write: Returns/Sets the Highlight background color. This property returns or sets the highlight background color for the template's color tree.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property HighLightBackground() As Long


Return Type

Read/write Long value.

Remarks

Note on Colors: Colors are defined by a COLORREF value. When specifying a RGB color, the COLORREF value has this hexadecimal form as a Long value:

0x00BBGGRR

where BB=blue GG=green RR=red

The maximum value for a single byte in the hexadecimal format is 0xFF (or 255 in decimal format).

See Also

Colors Collection 

	Modified Property  XE "Modified Property" 


Description

Read/Write: Returns/Sets modified flag. This property returns or sets the report template's "modified" tag for its color tree.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Modified() As Long


Return Type

Read/write Boolean value.

Remarks

Note on Colors: Colors are defined by a COLORREF value. When specifying a RGB color, the COLORREF value has this hexadecimal form as a Long value:

0x00BBGGRR

where BB=blue GG=green RR=red

The maximum value for a single byte in the hexadecimal format is 0xFF (or 255 in decimal format).

See Also

Colors Collection 

	NumTableColors Property  XE "NumTableColors Property" 


Description

Read Only: Returns the Number of color defined in the color table. This property returns the number of colors defined in the report template's color table.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property NumTableColors() As Long


Return Type

Read only Long value.

See Also

Colors Collection 

	Parent Property  XE "Parent Property" 


Description

Read Only: Returns object pointer to the Parent object. This returns this object's parent object. In this case, this is the ReportTemplate object.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Parent() As Object


Return Type

ReportTemplate object.

See Also

Colors Collection 
	Command Object  XE "Command Object" 


Description

PartProgram Command Object. 

The Command object represents a single command in PC-DMIS. 

Object Model

 

	[image: image196]
[image: image197]

 INCLUDEPICTURE "Images/pcdlrn~application~241.gif" \* MERGEFORMAT \d [image: image198]
[image: image199]

 INCLUDEPICTURE "Images/pcdlrn~parent_(commands)~241.gif" \* MERGEFORMAT \d [image: image200]
[image: image201]

 INCLUDEPICTURE "Images/pcdlrn~alignmentcommand_(aligncmnd)~241.gif" \* MERGEFORMAT \d [image: image202]
[image: image203]

 INCLUDEPICTURE "Images/pcdlrn~dimensioncommand_(dimensioncmd)~241.gif" \* MERGEFORMAT \d [image: image204]
[image: image205]

 INCLUDEPICTURE "Images/pcdlrn~featurecommand_(featcmd)~241.gif" \* MERGEFORMAT \d [image: image206]
[image: image207]

 INCLUDEPICTURE "Images/pcdlrn~modalcommand_(modalcmd)~241.gif" \* MERGEFORMAT \d [image: image208]
[image: image209]

 INCLUDEPICTURE "Images/pcdlrn~movecommand_(movecmd)~241.gif" \* MERGEFORMAT \d [image: image210]
[image: image211]

 INCLUDEPICTURE "Images/pcdlrn~flowcontrolcommand_(flowcontrolcmd)~241.gif" \* MERGEFORMAT \d [image: image212]
[image: image213]

 INCLUDEPICTURE "Images/pcdlrn~basicscancommand_(basicscan)~241.gif" \* MERGEFORMAT \d [image: image214]
[image: image215]

 INCLUDEPICTURE "Images/pcdlrn~calibrationcommand_(calibration)~241.gif" \* MERGEFORMAT \d [image: image216]
[image: image217]

 INCLUDEPICTURE "Images/pcdlrn~attachcommand_(attach)~241.gif" \* MERGEFORMAT \d [image: image218]
[image: image219]

 INCLUDEPICTURE "Images/pcdlrn~externalcommand~241.gif" \* MERGEFORMAT \d [image: image220]
[image: image221]

 INCLUDEPICTURE "Images/pcdlrn~optionprobecommand_(optionprobe)~241.gif" \* MERGEFORMAT \d [image: image222]
[image: image223]

 INCLUDEPICTURE "Images/pcdlrn~leapfrogcommand_(leapfrog)~241.gif" \* MERGEFORMAT \d [image: image224]
[image: image225]

 INCLUDEPICTURE "Images/pcdlrn~optmotioncommand_(optmotion)~241.gif" \* MERGEFORMAT \d [image: image226]
[image: image227]

 INCLUDEPICTURE "Images/pcdlrn~arrayindexcommand_(arrayindex)~241.gif" \* MERGEFORMAT \d [image: image228]
[image: image229]

 INCLUDEPICTURE "Images/pcdlrn~fileiocommand_(fileio)~241.gif" \* MERGEFORMAT \d [image: image230]
[image: image231]

 INCLUDEPICTURE "Images/pcdlrn~tempcompcommand_(tempcomp)~241.gif" \* MERGEFORMAT \d [image: image232]
[image: image233]

 INCLUDEPICTURE "Images/pcdlrn~displaymetafilecommand_(dispmetafile)~241.gif" \* MERGEFORMAT \d [image: image234]
[image: image235]

 INCLUDEPICTURE "Images/pcdlrn~commentcommand_(comment)~241.gif" \* MERGEFORMAT \d [image: image236]
[image: image237]

 INCLUDEPICTURE "Images/pcdlrn~statisticcommand_(statistics)~241.gif" \* MERGEFORMAT \d [image: image238]
[image: image239]

 INCLUDEPICTURE "Images/pcdlrn~tracefieldcommand_(tracefield)~241.gif" \* MERGEFORMAT \d [image: image240]
[image: image241]

 INCLUDEPICTURE "Images/pcdlrn~activetipcommand_(activetip)~241.gif" \* MERGEFORMAT \d [image: image242]
[image: image243]

 INCLUDEPICTURE "Images/pcdlrn~loadprobecommand_(loadprobe)~241.gif" \* MERGEFORMAT \d [image: image244]
[image: image245]

 INCLUDEPICTURE "Images/pcdlrn~dimformatcommand_(dimformat)~241.gif" \* MERGEFORMAT \d [image: image246]
[image: image247]

 INCLUDEPICTURE "Images/pcdlrn~diminfocommand_(diminfo)~241.gif" \* MERGEFORMAT \d [image: image248]
[image: image249]

 INCLUDEPICTURE "Images/pcdlrn~loadmachinecommand_(loadmachine)~241.gif" \* MERGEFORMAT \d [image: image250]
[image: image251]

 INCLUDEPICTURE "Images/pcdlrn~scancommand_(basicscan)~241.gif" \* MERGEFORMAT \d [image: image252]
[image: image253]

 INCLUDEPICTURE "Images/pcdlrn~datatypes~241.gif" \* MERGEFORMAT \d [image: image254]
[image: image255]

 INCLUDEPICTURE "Images/pcdlrn~dimensionendcommand_(dimensioncmd)~241.gif" \* MERGEFORMAT \d [image: image256]
[image: image257]

 INCLUDEPICTURE "Images/pcdlrn~solveexpression_(variable)~241.gif" \* MERGEFORMAT \d [image: image258]
[image: image259]

 INCLUDEPICTURE "Images/pcdlrn~optimizedsolveexpression_(variable)~241.gif" \* MERGEFORMAT \d [image: image260]


Remarks

Examples of single commands in PC-DMIS are the start of a feature, a hit, the end of a feature, a single X dimension line, an auto feature, etc. 

The Command object is also a "collection object" as it represents:

· the collection of executions of this object in the current execution.

· the collection of executions of this object in the previous execution.

See Also

Command Members 

	Command Object Members  XE "Command Object Members" 


See Also

Command Overview 

Methods

	Dialog Method  XE "Dialog Method" 


Description

Displays the edit dialog for the command object (if it exists). Opens the PC-DMIS dialog box for the corresponding command.

Syntax

	Visual Basic

	Public Function Dialog() As Boolean


Return Type

Boolean value. Boolean returns true if the function succeeds, false if it fails.

See Also

Command Object 

	Dialog2 Method  XE "Dialog2 Method" 


Description

Displays the edit dialog and sets the dialog object to the dialog (if it exists). Opens the PC-DMIS dialog for the corresponding command.

Syntax

	Visual Basic

	Public Function Dialog2( _

   ByVal DialogObject As DmisDialog _

) As Boolean


Parameters

DialogObject

Dmis dialog command object returned if the dialog is a modeless dialog.

Return Type

Boolean value. Boolean returns true if the function succeeds, false if it fails.

See Also

Command Object 

	EXECUTE Method  XE "EXECUTE Method" 


Description

Attempts to execute the current command. 

Executes the command if the command is immediately executable.

Syntax

	Visual Basic

	Public Function EXECUTE() As Boolean


Return Type

Boolean value. Boolean returns true if the function succeeds, false if it fails.

See Also

Command Object 

	GetExpression Method  XE "GetExpression Method" 


Description

Gets the expression of the indicated field of the command. Gets the expression of the indicated field of the command.

Syntax

	Visual Basic

	Public Function GetExpression( _

   ByVal FieldType As ENUM_FIELD_TYPES, _

   ByVal TypeIndex As Long _

) As String


Parameters

FieldType

Used to indicate from which field the expression is being retrieved. Type ENUM_FIELD_TYPES enumeration.

TypeIndex

Long value used to indicate which instance of the supplied field type to use when an object has more than one instance of a field type.

Return Type

String which is the expression on the given field if it has an expression. Otherwise, the string will be empty.

Remarks

Use this command to get expressions for different object fields. The ENUM_FIELD_TYPES enumeration is a large enumeration. Documentation for which field types go with which objects is not given here. You can find this information by creating the desired object in PC-DMIS, inserting the desired expression in the desired field, and exporting (posting out) the containing part program to BASIC.

See Also

Command Object | SetExpression Method | RemoveExpression Method | GetText Method 

	GetText Method  XE "GetText Method" 


Description

Returns the text used to represent a data item of the object. Gets the text of the indicated field of the command.

Syntax

	Visual Basic

	Public Function GetText( _

   ByVal DataType As ENUM_FIELD_TYPES, _

   ByVal TypeIndex As Long _

) As String


Parameters

DataType

Used to indicate the field from which the text is being retrieved. Type ENUM_FIELD_TYPES enumeration.

TypeIndex

Long value used to indicate which instance of the supplied field type to use when an object has more than one instance of a field type.

Return Type

String value containing the text of the given field.

Remarks

Use this command to get text that is displayed in the edit window for different object fields. The ENUM_FIELD_TYPES enumeration is a large enumeration. Documentation for which field types go with which objects is not given here. You can find this information by creating the desired object in PC-DMIS, inserting the desired expression in the desired field, and exporting (posting out) the containing part program to BASIC.

See Also

Command Object | PutText Method | GetExpression Method 

	GetToggleString Method  XE "GetToggleString Method" 


Description

Returns the toggle text delimited by the | symbol if the field is a toggle field, otherwise returns an empty string. Returns the string of text of a toggle field.

Syntax

	Visual Basic

	Public Function GetToggleString( _

   ByVal DataType As ENUM_FIELD_TYPES, _

   ByVal TypeIndex As Long _

) As String


Parameters

DataType

Used to indicate the field from which the text is being retrieved. Type ENUM_FIELD_TYPES enumeration.

TypeIndex

Long value used to indicate which instance of the supplied field type to use when an object has more than one instance of a field type.

Return Type

String value containing text from the field if the field is a toggle field, otherwise it returns an empty string.

See Also

Command Object 

	GetUniqueID Method  XE "GetUniqueID Method" 


Description

Retrieves the low and high parts of the 64-bit unique id of the command. This command retrieves the low and high parts of the 64-bit unique id of the command.

Syntax

	Visual Basic

	Public Sub GetUniqueID( _

   ByRef HiPart As Long, _

   ByRef LoPart As Long _

) 


Parameters

HiPart

Long value used to indicate the high part of the 64-bit unique id of the command.

LoPart

Long value used to indicate the low part of the 64-bit unique id of the command.

Return Type

None

See Also

Command Object 

	IsExpressionValid Method  XE "IsExpressionValid Method" 


Description

Returns true if expression is a valid PC-Dmis expression. Determines whether or not an expression is valid.

Syntax

	Visual Basic

	Public Function IsExpressionValid( _

   ByVal Expression As String _

) As Boolean


Parameters

Expression

Required String that is the expression to evaluate for validity.

Return Type

Boolean value. Boolean returns true if the function succeeds, false if it fails.

See Also

Command Object 

	Item Method  XE "Item Method" 


Description

Returns the execute instance of the object if the object has been executed more than once. 

Syntax

	Visual Basic

	Public Function Item( _

   ByVal Num As Long _

) As Command


Parameters

Num

Required Long that indicates which Command object to return. It is the index number of the execution in the current or previous execution

Return Type

Command object.

See Also

Command Object 

	Mark Method  XE "Mark Method" 


Description

Marks current command and dependencies or unmarks command. Marks the current object and all objects that depend on it. Optionally the features of the current alignment are also marked.

Syntax

	Visual Basic

	Public Sub Mark() 


Remarks

If the object is a measured feature, its hits are marked. If the object is a constructed feature, the features on which it depends are marked. If the object is a dimension, the dimension feature(s) being dimensioned are marked. 

See Also

Command Object 

	Next Method  XE "Next Method" 


Description

Changes current command object to point to the next command object in the collection. Accesses the next command in the parent Commands list.

Syntax

	Visual Basic

	Public Function Next() As Boolean


Return Type

Boolean value. This function returns FALSE if it is the last command in the parent Commands list, TRUE otherwise.

Remarks

If it is the last command, it remains unchanged.

See Also

Command Object | Prev Method 

	OptimizedSetExpression Method  XE "OptimizedSetExpression Method" 


Description

Like Set Expression, but optimized for speed (less accurate). 

Syntax

	Visual Basic

	Public Function OptimizedSetExpression( _

   ByVal Expression As String, _

   ByVal FieldType As ENUM_FIELD_TYPES, _

   ByVal TypeIndex As Long _

) As Boolean


Parameters

Expression
FieldType
TypeIndex

See Also

Command Object 

	OptimizedSolveExpression Method  XE "OptimizedSolveExpression Method" 


Description

Like Solve Expression, but optimized for speed (less accurate). 

Syntax

	Visual Basic

	Public Function OptimizedSolveExpression( _

   ByVal Expression As String _

) As Variable


Parameters

Expression

See Also

Command Object 

	Prev Method  XE "Prev Method" 


Description

Changes current command object to point to the previous command object in the collection Accesses the previous command in the parent Commands list.

Syntax

	Visual Basic

	Public Function Prev() As Boolean


Return Type

Boolean value. This function returns FALSE if it is the first command in the parent Commands list, TRUE otherwise.

See Also

Command Object | Next Method 

	PutText Method  XE "PutText Method" 


Description

Puts the specified text into the object data item. Puts text into the indicated field of the command.

Syntax

	Visual Basic

	Public Function PutText( _

   ByVal NewVal As String, _

   ByVal DataType As ENUM_FIELD_TYPES, _

   ByVal TypeIndex As Long _

) As Boolean


Parameters

NewVal

String value to put into the indicated field.

DataType

Used to indicate which field into which the text is being put. Type ENUM_FIELD_TYPES enumeration.

TypeIndex

Long value used to indicate which instance of the supplied field type to use when an object has more than one instance of a field type. When using the index property on a field type that can have a variable number of fields, the index must not be greater than the current number of fields (of the type being changed) + 1.

Return Type

Boolean value.

Remarks

Use this command to put text that is displayed in the Edit window for different object fields. The ENUM_FIELD_TYPES enumeration is a large enumeration. Documentation for which field types go with which objects is not given here. You can find this information by:

1. Creating the desired object in PC-DMIS

2. Inserting the desired expression in the desired field

3. Exporting (posting out) the containing part program to BASIC.

If the field already has an expression in it, the expression is removed.

See Also

Command Object 

	ReDraw Method  XE "ReDraw Method" 


Description

Redraws the command to show updated properties in the edit window. 

This method requests that the object be redrawn in the Edit window. 

Syntax

	Visual Basic

	Public Sub ReDraw() 


Return Type

None

See Also

Command Object 

	Remove Method  XE "Remove Method" 


Description

Removes the current command object from the commands collection object. Removes a command from the Commands list.

Syntax

	Visual Basic

	Public Sub Remove() 


Remarks

If there are other objects which depend on the removed command, they are also removed. For example, if the removed command is a measured feature, its hits are removed as well.

See Also

Command Object | Add Method 

	RemoveExpression Method  XE "RemoveExpression Method" 


Description

Removes any existing expression from the indicated field of the command. Removes the expression from the indicated field of the command.

Syntax

	Visual Basic

	Public Sub RemoveExpression( _

   ByVal FieldType As ENUM_FIELD_TYPES, _

   ByVal TypeIndex As Long _

) 


Parameters

FieldType

Used to indicate the field from which the expression is being removed. Type ENUM_FIELD_TYPES enumeration.

TypeIndex

Long value used to indicate which instance of the supplied field type to use when an object has more than one instance of a field type.

Remarks

Use this command to remove expressions from different object fields. The ENUM_FIELD_TYPES enumeration is a large enumeration. Documentation for which field types go with which objects is not given here. You can find this information by:

1. Creating the desired object in PC-DMIS

2. Inserting the desired expression in the desired field

3. Exporting (posting out) the containing part program to BASIC.

See Also

Command Object | SetExpression Method | GetExpression Method | PutText Method 

	SetBothArms Method  XE "SetBothArms Method" 


Description

Sets command to be executed by Both Arms, returns false if command is a two state command. 

Syntax

	Visual Basic

	Public Function SetBothArms() As Boolean


See Also

Command Object 

	SetExpression Method  XE "SetExpression Method" 


Description

Sets the expression for the indicated field of the command. Sets the expression of the indicated field of the command.

Syntax

	Visual Basic

	Public Function SetExpression( _

   ByVal Expression As String, _

   ByVal FieldType As ENUM_FIELD_TYPES, _

   ByVal TypeIndex As Long _

) As Boolean


Parameters

Expression

String to which to set the expression.

FieldType

Used to indicate which field the expression is being set for. Type ENUM_FIELD_TYPES enumeration.

TypeIndex

Long value used to indicate which instance of the supplied field type to use when an object has more than one instance of a field type.

Remarks

Use this command to set expressions for different object fields. The ENUM_FIELD_TYPES enumeration is a large enumeration. Documentation for which field types go with which objects is not given here. You can find this information by:

1. Creating the desired object in PC-DMIS

2. Inserting the desired expression in the desired field

3. Exporting (posting out) the containing part program to BASIC.

See Also

Command Object | GetExpression Method | RemoveExpression Method 

	SetMasterArm Method  XE "SetMasterArm Method" 


Description

Sets command to be executed by Master only. 

Syntax

	Visual Basic

	Public Function SetMasterArm() As Boolean


See Also

Command Object 

	SetSlaveArm Method  XE "SetSlaveArm Method" 


Description

Sets command to be executed by Slave only, returns false if command cannot be slave owned. 
Syntax

	Visual Basic

	Public Function SetSlaveArm() As Boolean


See Also

Command Object 

	SetToggleString Method  XE "SetToggleString Method" 


Description

Sets a toggle field to a numbered value in the toggle field list. This method lets you set a toggle field in a numerical, language-independent way.

Syntax

	Visual Basic

	Public Function SetToggleString( _

   ByVal ToggleIndex As Long, _

   ByVal DataType As ENUM_FIELD_TYPES, _

   ByVal TypeIndex As Long _

) As Boolean


Parameters

ToggleIndex

DataType

Indicate the toggle field being changed. Type ENUM_FIELD_TYPES enumeration.

TypeIndex

Long value indicating the instance of the supplied field type to use when an object has more than one instance of a field type.

Return Type

Boolean value. It returns true if the underlying Command object exists in PC-DMIS the appropriate DataType and TypeIndex parameters successfully set the toggle string. Otherwise, it returns false.

Example

The Measured Circle has a BF_MATH_TYPE field that takes one of "QUAD MIN", "SEP MIN", "MAX ISCR", "MIN CIRCOS", or "RAG FISSO" in Italian, or "LEAST_SQR", "MIN_SEP", "MAX_INSC", "MIN_CIRCSC", or "FIXED_RAD" in English. If we do not know which language we are importing into, we can not know which phrase to use. 

However, the ENUM_FIELD_TYPES number is the same in both languages, e.g., "MIN CIRCOS" and "MIN_CIRCSC" are both string number 4. 

The SetToggleString method can be called in the following fashion to set the BF_MATH_TYPE to use the minimum circumscribed method:

retval = DmisCommand.SetToggleString(4, BF_MATH_TYPE,0)

See Also

Command Object 

	SolveExpression Method  XE "SolveExpression Method" 


Description

Solves expression, if valid, and returns a variable object. 

SolveExpression evaluates the expression based on the objects above the command on which SolveExpression gets called.

Syntax

	Visual Basic

	Public Function SolveExpression( _

   ByVal Expression As String _

) As Variable


Parameters

Expression

String value of the expression to solve.

Return Type

This method returns a variable object if the solved expression is valid.

See Also

Command Object 

	UpdateDimensionNominals Method  XE "UpdateDimensionNominals Method" 


Description

Updates the nominals of related dimensions. 

Syntax

	Visual Basic

	Public Sub UpdateDimensionNominals() 


See Also

Command Object 

Properties

	_ID Property  XE "_ID Property" 


Property type

Read-write property

Syntax

	Visual Basic

	Public Property _ID() As String


See Also

Command Object 

	ActiveTipCommand Property  XE "ActiveTipCommand Property" 


Description

Read Only: Returns an automation active tip object if the current command object is of the correct type Returns an ActiveTip object if Command is of Type SET_ACTIVE_TIP. Nothing otherwise. Read-only.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property ActiveTipCommand() As ActiveTip


See Also

Command Object | ActiveTip Object | Type Property 

	AlignmentCommand Property  XE "AlignmentCommand Property" 


Description

Read Only: Returns the alignment command object interface for the current command if it is an alignment object. 

Returns this Command object as an AlignCmnd object if it can, Nothing otherwise.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property AlignmentCommand() As AlignCmnd


Return Type

AlignCmnd object.

Remarks

The Commands that have the following Type can become AlignCommand objects are as follows:

START_ALIGN
LEVEL_ALIGN
ROTATE_ALIGN
TRANS_ALIGN
TRANSOFF_ALIGN
ROTATEOFF_ALIGN
SAVE_ALIGN
RECALL_ALIGN
EQUATE_ALIGN
ITER_ALIGN
BF2D_ALIGN
ROTATE_CIRCLE_ALIGN
BF3D_ALIGN

See Also

Command Object | AlignCmnd Object | Type Property 

	Application Property  XE "Application Property" 


Description

Read Only: Returns the Application Object Represents the read-only PC-DMIS application. The Application object includes properties and methods that return top-level objects. For example, the ActivePartProgram property returns a PartProgram object.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Application() As Application


See Also

Command Object 

	ArrayIndexCommand Property  XE "ArrayIndexCommand Property" 


Description

Read Only: Returns an automation array index object if the current command object is of the correct type Returns an ArrayIndex object if Command is of Type ARRAY_INDEX. Returns Nothing otherwise. Read-only.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property ArrayIndexCommand() As ArrayIndex


Return Type

ArrayIndex object.

See Also

Command Object 

	AttachCommand Property  XE "AttachCommand Property" 


Description

Read Only: Returns an automation attach object if the current command object is of the correct type. Returns an Attach object if Command is of Type ATTACH_PROGRAM. Returns Nothing otherwise. Read-only.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property AttachCommand() As Attach


Return Type

Attach object.

See Also

Command Object 

	BasicScanCommand Property  XE "BasicScanCommand Property" 


Description

Read Only: Returns the basic scan command object interface for the current command if it is a basic scan object. 

Returns this Command object as a BasicScan object if it can, Nothing otherwise. Read-only.

Only Command objects of type BASIC_SCAN_OBJECT can become BasicScan objects.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property BasicScanCommand() As BasicScan


Return Type

BasicScan object.

See Also

Command Object 

	BothArms Property  XE "BothArms Property" 


Description

Read Only: Property indicating whether the command belongs to the both arms. 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property BothArms() As Boolean


See Also

Command Object 

	CalibrationCommand Property  XE "CalibrationCommand Property" 


Description

Read Only: Returns an automation calibration object if the current command object is of the correct type. Returns a Calibration object if Command is of Type CALIB_SPHERE. Otherwise it returns Nothing. Read-only.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property CalibrationCommand() As Calibration


Return Type

Calibration object.

See Also

Command Object | BasicScan Object | Type Property 

	CommentCommand Property  XE "CommentCommand Property" 


Description

Read Only: Returns an automation comment object if the current command object is of the correct type. Returns a Comment object if Command is of Type SET_COMMENT. Otherwise it returns Nothing. Read-only.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property CommentCommand() As Comment


Return Type

Comment object.

See Also

Command Object 

	CopyMeasToNom Property  XE "CopyMeasToNom Property" 


Description

Read/Write: Flag that causes measured values to be copied to nominal values after execution. 

Property used to indicate/set whether the object should execute in MASTER mode. After executing in MASTER mode, the object copies the measured vector, centroid , and other nominal information to the nominals and turns off MASTER mode. This copies the same information that gets calculated using the CalculateNominals method. 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property CopyMeasToNom() As Boolean


Return Type

Read/write Boolean.

Remarks

The nominal information that this copies includes the following:

· CENTROID

· VECTOR

· DIAMETER

· STARTPOINT

· ENDPOINT

· BALLCENTER

· LENGTH

· ELLIPSEMINORAXIS

· ANGLE

· SURFACEVECTOR

· THICKNESS

· NUMHITS

· SPACER

· INDENT

· AUTO_MOVE_DISTANCE

· DEPTH

· TARG

· SCANROWCOUNT

· ANGLE_VECTOR

· PUNCH_VECTOR

· PIN_VECTOR

· PIN_DIAMETER

· REPORT_VECTOR

· REPORT_SURF_VECTOR

· HEIGHT

· MEASURE_VECTOR

· UPDATE_VECTOR

· CORNER_RADIUS
· ANGLE2

See Also

Command Object 

	Count Property  XE "Count Property" 


Description

Read Only: The number of times the command was executed during the last execution. 

Represents the number of copies of this Command which are available. If the part program is currently being executed, it is the number of times it has been executed so far in the current execution cycle. If the part program is not currently being executed, it is the number of times it was executed during the previous execution cycle. If Command has never been executed, Count has the value one. 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Count() As Long


Return Type

Read-only Long.

See Also

Command Object 

	DataTypes Property  XE "DataTypes Property" 


Description

Read Only: Returns the data type information collection for this command. 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property DataTypes() As DataTypes


See Also

Command Object 

	DimensionCommand Property  XE "DimensionCommand Property" 


Description

Read Only: Returns the dimension command object interface for the current command if it is a dimension object. Returns this Command object as a DimensionCommand object if it can, Nothing otherwise. Read-only.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property DimensionCommand() As DimensionCmd


Remarks

The Command objects that have the following Type can become DimensionCommand objects:

DIMENSION_START_LOCATION
DIMENSION_X_LOCATION
DIMENSION_Y_LOCATION
DIMENSION_Z_LOCATION
DIMENSION_D_LOCATION
DIMENSION_R_LOCATION
DIMENSION_A_LOCATION
DIMENSION_T_LOCATION
DIMENSION_V_LOCATION
DIMENSION_L_LOCATION
DIMENSION_H_LOCATION
DIMENSION_PR_LOCATION
DIMENSION_PA_LOCATION
DIMENSION_PD_LOCATION
DIMENSION_RT_LOCATION
DIMENSION_S_LOCATION
DIMENSION_RS_LOCATION
DIMENSION_STRAIGHTNESS
DIMENSION_ROUNDNESS
DIMENSION_FLATNESS
DIMENSION_PERPENDICULARITY
DIMENSION_PARALLELISM
DIMENSION_PROFILE
DIMENSION_3D_DISTANCE
DIMENSION_2D_DISTANCE
DIMENSION_3D_ANGLE
DIMENSION_2D_ANGLE
DIMENSION_RUNOUT
DIMENSION_CONCENTRICITY
DIMENSION_ANGULARITY
DIMENSION_KEYIN
DIMENSION_TRUE_START_POSITION
DIMENSION_TRUE_X_LOCATION
DIMENSION_TRUE_Y_LOCATION
DIMENSION_TRUE_Z_LOCATION
DIMENSION_TRUE_DD_LOCATION
DIMENSION_TRUE_DF_LOCATION
DIMENSION_TRUE_PR_LOCATION
DIMENSION_TRUE_PA_LOCATION
DIMENSION_TRUE_DIAM_LOCATION
See Also

Command Object 

	DimensionEndCommand Property  XE "DimensionEndCommand Property" 


Description

Read Only: Returns the dimension end command object interface for the current command if it is a dimension end object. 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property DimensionEndCommand() As DimensionCmd


See Also

Command Object 

	DimFormatCommand Property  XE "DimFormatCommand Property" 


Description

Read Only: Returns an automation dimension format object if the current command object is of the correct type. 

Returns a DimFormat object if Command is of Type DIMENSION_FORMAT. Otherwise it returns Nothing. Read-only.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property DimFormatCommand() As DimFormat


Return Type

DimFormat object.

See Also

Command Object | DimFormat Object | Type Property 

	DimInfoCommand Property  XE "DimInfoCommand Property" 


Description

Read Only: Returns an automation dimension info object if the current command object is of the correct type. Returns a DimInfo object if Command is of Type DIMENSION_INFORMATION. Otherwise it returns Nothing. Read-only.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property DimInfoCommand() As DimInfo


Return Type

DimInfo object.

See Also

Command Object | DimInfo Object | Type Property 

	DisplayMetaFileCommand Property  XE "DisplayMetaFileCommand Property" 


Description

Read Only: Returns an automation display metafile object if the current command object is of the correct type. Returns a DispMetaFile object if Command is of Type DISPLAY_METAFILE. Otherwise it returns Nothing. Read-only.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property DisplayMetaFileCommand() As DispMetaFile


Return Type

DispMetaFile object.

See Also

Command Object | Type Property 

	ExpectsMiss Property  XE "ExpectsMiss Property" 


Description

Read/Write: Indicates whether script should plan for a miss error for this command. 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property ExpectsMiss() As Boolean


See Also

Command Object 

	ExternalCommand Property  XE "ExternalCommand Property" 


Description

Read Only: Returns an automation external command object if the current command object is of the correct type. Returns an ExternalCommand object if Command is of Type EXTERNAL_COMMAND. Otherwise it returns Nothing. Read-only.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property ExternalCommand() As ExternalCommand


Return Type

ExternalCommand object.

See Also

Command Object | Type Property 

	Feature Property  XE "Feature Property" 


Description

Read Only: Type of feature (i.e. Circle, Line, Sphere, etc.) or 0 if not a feature. Represents the kind of feature that this Command object is.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Feature() As ENUM_FEATURE_TYPES


Return Type

Read-only ENUM_FEATURE_TYPES. If it is not a feature it will return F_NONE. Otherwise it will return a value from the following list. 

	Type of Feature
	Return Value

	POINT 
	F_POINT

	CIRCLE 
	F_CIRCLE

	SPHERE 
	F_SPHERE

	LINE 
	F_LINE

	CONE 
	F_CONE

	CYLINDER 
	F_CYLINDER

	PLANE 
	F_PLANE

	CURVE 
	F_CURVE

	SLOT 
	F_SLOT

	SET 
	F_SET

	ELLIPSE 
	F_ELLIPSE

	SURFACE 
	F_SURFACE


See Also

Command Object 

	FeatureCommand Property  XE "FeatureCommand Property" 


Description

Read Only: Returns the feature command object interface for the current command if it is a feature object. 

Returns this Command object as a FeatCmd object if it can, Nothing otherwise. Read-only.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property FeatureCommand() As FeatCmd


Return Type

FeatCmd object.

Remarks

The Commands that have the following Type can become FeatCommand objects are as follows:

See Also

Command Object | Type Property 

	FileIOCommand Property  XE "FileIOCommand Property" 


Description

Read Only: Returns an automation file I/O object if the current command object is of the correct type. 

Returns a FileIO object if Command is of Type FILE_IO_OBJECT. Otherwise it returns Nothing. Read-only.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property FileIOCommand() As FileIO


Return Type

FileIO object.

See Also

Command Object | Type Property 

	FlowControlCommand Property  XE "FlowControlCommand Property" 


Description

Read Only: Returns the flow control command object interface for the current command if it is a flow control object. 

Returns this Command object as an FlowControlCmnd object if it can, Nothing otherwise. Read-only.

The  Commands that have the following Type can become FlowControlCmnd objects are as follows:

Property type

Read-write property

Syntax

	Visual Basic

	Public Property FlowControlCommand() As FlowControlCmd


Return Type

FlowControlCmd object.

See Also

Command Object | Type Property 

	GetDataTypeCount Property  XE "GetDataTypeCount Property" 


Description

Returns the number of instances of the supplied data type in command. 

Property type

Read-only property

Syntax

	Visual Basic

	Public Property GetDataTypeCount( _

   ByVal DataType As ENUM_FIELD_TYPES _

) As Long


Parameters

DataType
ENUM_FIELD_TYPES enumeration indicating the data type to count.
See Also

Command Object 

	GetFieldValue Property  XE "GetFieldValue Property" 


Description

Returns the value of the indicated field of the command. 

This read-only property returns the value of a field from a command. 

If you try to access a field that isn't supported by the command, PC-DMIS returns FALSE. This property takes two parameters, the first parameter defines the field item. You can select this item from an enumerated list or use the associated constant number. The second parameter specifies the TypeIndex.

Property type

Read-only property

Syntax

	Visual Basic

	Public Property GetFieldValue( _

   ByVal DataType As ENUM_FIELD_TYPES, _

   ByVal TypeIndex As Long _

) As Variant


Parameters

DataType

ENUM_FIELD_TYPES enumeration indicating the field from which to get the value.

TypeIndex

Long value used to indicate which instance of the supplied field type to use when an object has more than one instance of a field type. When using the index property on a field type that can have a variable number of fields, the index must not be greater than the current number of fields (of the type being changed) + 1.

Example

' Suppose your part program has a circle named CIR1. 

' This example would return the theoretical diameter of that circle:

    Set myapp = CreateObject("pcdlrn.application")

    Set myprog = myapp.ActivePartProgram

    Dim Cmds As Commands

    Set Cmds = myprog.Commands

    Dim Cmd As Command

    Set Cmd = Cmds.Item("CIR1")

    MsgBox Cmd.ID

    MsgBox Cmd.GetFieldValue(THEO_DIAM, 0)

See Also

Command Object 

	GetToggleValue Property  XE "GetToggleValue Property" 


Description

Returns 0 if the field is not a toggle otherwise returns the toggle index. 
This read-only property checks a command's field and returns 0 if it isn't a toggle field. It also returns 0 if the field doesn't exist. Otherwise, it returns a the current toggle index value, with 1 as the base index value.

It takes two parameters. The first is an enumerated field type value to determine what field to check in a command, and the second is the TypeIndex. 

Property type

Read-only property

Syntax

	Visual Basic

	Public Property GetToggleValue( _

   ByVal DataType As ENUM_FIELD_TYPES, _

   ByVal TypeIndex As Long _

) As Long


Parameters

DataType

ENUM_FIELD_TYPES enumeration indicating the field from which to get the value.

TypeIndex

Long value used to indicate which instance of the supplied field type to use when an object has more than one instance of a specified field type. In these cases, the TypeIndex must not be greater than the current number of fields of the that type + 1 and TypeIndex must be greater than 1. For fields that allow only a single value, the TypeIndex is 0.

Return Type

Long value representing the current toggle index value.

Example

' Suppose your part program has a circle named CIR1. 

' This example would return a 1 since the COORD_TYPE field is a toggle field:

    Set myapp = CreateObject("pcdlrn.application")

    Set myprog = myapp.ActivePartProgram

    Dim Cmds As Commands

    Set Cmds = myprog.Commands

    Dim Cmd As Command

    Set Cmd = Cmds.Item("CIR1")

    MsgBox Cmd.ID

    MsgBox Cmd.GetToggleValue(COORD_TYPE, 0)

See Also

Command Object 

	HasBreakpoint Property  XE "HasBreakpoint Property" 


Description

Read/Write: Flag that represents if the command has a breakpoint set. Determines whether or not the current PC-DMIS command has a breakpoint.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property HasBreakpoint() As Boolean


Return Type

Read/write Boolean.

Remarks

You can also use this property to automatically set or clear breakpoints on individual commands by setting the HasBreakPoint property for the command to TRUE or FALSE.

See Also

Command Object | ClearAllBreakpoints Method 

	HasField Property  XE "HasField Property" 


Description

Checks if the command has the indicated field. 
Property type

Read-only property

Syntax

	Visual Basic

	Public Property HasField( _

   ByVal DataType As ENUM_FIELD_TYPES, _

   ByVal TypeIndex As Long _

) As Boolean


Parameters

DataType
ENUM_FIELD_TYPES enumeration indicating the field to check for.
TypeIndex

See Also

Command Object 

	ID Property  XE "ID Property" 


Description

Read/Write: ID of the command. Represents the ID of the command.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property ID() As String


Return Type

Read/write String.

Remarks

Only objects that have ID strings can be set. If a object does not have a string, this property is the zero-length string "".

See Also

Command Object 

	IsActiveTip Property  XE "IsActiveTip Property" 


Description

Read Only: Indicates whether the command is a active tip command. Determines whether or not the command is an ActiveTip command.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property IsActiveTip() As Boolean


Return Type

Read/write Boolean.

Remarks

Commands that return TRUE for this property can successfully retrieve an ActiveTip object using the ActiveTipCommand Property.

See Also

Command Object | ActiveTip Object | ActiveTipCommand Property 

	IsAlignment Property  XE "IsAlignment Property" 


Description

Read Only: Indicates whether the command is an alignment command. Determines whether or not the command is an alignment command type.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property IsAlignment() As Boolean


Return Type

Read only Boolean.

Remarks

Commands that return TRUE for this property can successfully retrieve an Alignment Command object using the AlignmentCommand Property.

See Also

Command Object 

	IsArrayIndex Property  XE "IsArrayIndex Property" 


Description

Read Only: Indicates whether the command is a array index command. Determines whether or not the command is an ArrayIndex command.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property IsArrayIndex() As Boolean


Return Type

Read only

Remarks

Commands that return TRUE for this property can successfully retrieve an ArrayIndex object using the ArrayIndexCommand property.

See Also

Command Object | ArrayIndexCommand Property | ArrayIndex Object 

	IsAttach Property  XE "IsAttach Property" 


Description

Read Only: Indicates whether the command is a attach command. Determines whether or not the command is an Attach command.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property IsAttach() As Boolean


Return Type

Read/write Boolean.

Remarks

Commands that return TRUE for this property can successfully retrieve an Attach object using the AttachCommand property.

See Also

Command Object | Attach Object | AttachCommand Property 

	IsBasicScan Property  XE "IsBasicScan Property" 


Description

Read Only: Indicates whether the command is a basic scan command. Determines whether or not the command is a basic scan command.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property IsBasicScan() As Boolean


Return Type

Read/write Boolean.

Remarks

Commands that return TRUE for this property can successfully retrieve a BasicScan object using the BasicScanCommand property.

See Also

Command Object | BasicScan Object | BasicScanCommand Property 

	IsCalibration Property  XE "IsCalibration Property" 


Description

Read Only: Indicates whether the command is a calibration command. Determines whether or not the command is a Calibration command.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property IsCalibration() As Boolean


Return Type

Read/write Boolean.

Remarks

Commands that return TRUE for this property can successfully retrieve a Calibration object using the CalibrationCommand Property.

See Also

Command Object | CalibrationCommand Property | Calibration Object 

	IsComment Property  XE "IsComment Property" 


Description

Read Only: Indicates whether the command is a comment command.
Determines whether or not the command is a Comment command. 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property IsComment() As Boolean


Return Type

Read/write Boolean.

Remarks

Commands that return TRUE for this property can successfully retrieve a Comment object using the CommentCommand property.

See Also

Command Object | Comment Object | CommentCommand Property 

	IsConstructedFeature Property  XE "IsConstructedFeature Property" 


Description

Read Only: Indicates whether the command is a constructed feature command. Determines whether or not the command is a constructed feature.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property IsConstructedFeature() As Boolean


Return Type

Read/write Boolean.

See Also

Command Object 

	IsDCCFeature Property  XE "IsDCCFeature Property" 


Description

Read Only: Indicates whether the command is a DCC command. Determines whether or not the command is a DCC (Auto) Feature.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property IsDCCFeature() As Boolean


Return Type

Read/write Boolean.

See Also

Command Object 

	IsDimension Property  XE "IsDimension Property" 


Description

Read Only: Indicates whether the command is a dimension command. Determines whether or not the command is a Dimension command type.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property IsDimension() As Boolean


Return Type

Read/write Boolean.

Remarks

Commands that return TRUE for this property can successfully retrieve a DimensionCmd object using the DimensionCommand property.

See Also

Command Object | DimensionCommand Property | DimensionCmd Object 

	IsDimFormat Property  XE "IsDimFormat Property" 


Description

Read Only: Indicates whether the command is a dimension format command. Determines whether or not the command is a DimFormat command.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property IsDimFormat() As Boolean


Return Type

Read/write Boolean. Returns TRUE if the command is a DimFormat command.

Remarks

Commands that return TRUE for this property can successfully retrieve a DimFormat object using the DimFormatCommand Property.

See Also

Command Object | DimFormat Object | DimFormatCommand Property 

	IsDimInfo Property  XE "IsDimInfo Property" 


Description

Read Only: Indicates whether the command is a dimension info command. Determines whether or not the command is a DimInfo command.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property IsDimInfo() As Boolean


Return Type

Read/write Boolean.

Remarks

Commands that return TRUE for this property can successfully retrieve a DimInfo object using the DimInfoCommand Property.

See Also

Command Object | DimInfoCommand Property | DimInfo Object 

	IsDisplayMetaFile Property  XE "IsDisplayMetaFile Property" 


Description

Read Only: Indicates whether the command is a display metafile command. Determines whether or not the command is a DispMetaFileCommand.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property IsDisplayMetaFile() As Boolean


Return Type

Read/write Boolean.

Remarks

Commands that return TRUE for this property can successfully retrieve a DispMetaFile Command object using the DisplayMetaFileCommand Property.

See Also

Command Object | DisplayMetaFileCommand Property | DispMetaFile Object 

	IsExternalCommand Property  XE "IsExternalCommand Property" 


Description

Read Only: Indicates whether the command is a external command command. Determines whether or not the command is an ExternalCommand.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property IsExternalCommand() As Boolean


Return Type

Read/write Boolean.

Remarks

Commands that return TRUE for this property can successfully retrieve an External Command object using the ExternalCommand Property.

See Also

Command Object | ExternalCommand Object | Type Property | ExternalCommand Property 

	IsFeature Property  XE "IsFeature Property" 


Description

Read Only: Indicates whether the command is a feature command. Determines whether or not the command is a feature command type.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property IsFeature() As Boolean


Return Type

Read/write Boolean.

Remarks

Commands that return TRUE for this property can successfully retrieve a FeatureCmd object using the FeatCmd property.

See Also

Command Object | FeatureCommand Property | FeatCmd Object 

	IsFileIOCommand Property  XE "IsFileIOCommand Property" 


Description

Read Only: Indicates whether the command is a file I/O command. Determines whether or not the command is a FileIO command.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property IsFileIOCommand() As Boolean


Return Type

Read/write Boolean.

Remarks

Commands that return TRUE for this property can successfully retrieve a FileIO command object using the FileIOCommand property.

See Also

Command Object | FileIO Object | FileIOCommand Property 

	IsFlowControl Property  XE "IsFlowControl Property" 


Description

Read Only: Indicates whether the command is a flow control command. Determines whether or not the command is a flow control command type.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property IsFlowControl() As Boolean


Return Type

Read/write Boolean.

Remarks

Commands that return TRUE for this property can successfully retrieve a FlowControlCmd object using the FlowControlCommand property.

See Also

Command Object | FlowControlCommand Property | FlowControlCmd Object 

	IsHit Property  XE "IsHit Property" 


Description

Read Only: Indicates whether the command is a hit command. Determines whether or not the command is one of the hit command types.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property IsHit() As Boolean


Return Type

Read/write Boolean.

See Also

Command Object 

	IsLeapfrog Property  XE "IsLeapfrog Property" 


Description

Read Only: Indicates whether the command is a leap frog command. Determines whether or not the command is a Leapfrog command.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property IsLeapfrog() As Boolean


Return Type

Read/write Boolean.

See Also

Command Object 

	IsLoadMachine Property  XE "IsLoadMachine Property" 


Description

Read Only: Indicates whether the command is a load machine command. Determines whether or not the command is a LoadMachine command.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property IsLoadMachine() As Boolean


Return Type

Read/write Boolean.

Remarks

Commands that return TRUE for this property can successfully retrieve a LoadMachine object using the LoadProbeCommand property.

See Also

Command Object | LoadMachine Object | LoadProbeCommand Property 

	IsLoadProbe Property  XE "IsLoadProbe Property" 


Description

Read Only: Indicates whether the command is a load probe command. Determines whether or not the command is a LoadProbe command.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property IsLoadProbe() As Boolean


Return Type

Read/write Boolean.

Remarks

Commands that return TRUE for this property can successfully retrieve a LoadProbe object using the LoadProbeCommand Property.

See Also

Command Object | LoadProbeCommand Property | LoadProbe Object 

	IsMeasuredFeature Property  XE "IsMeasuredFeature Property" 


Description

Read Only: Indicates whether the command is a measured feature command. Determines whether or not the command is a Measured Feature command.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property IsMeasuredFeature() As Boolean


Return Type

Read/write Boolean.

See Also

Command Object 

	IsModal Property  XE "IsModal Property" 


Description

Read Only: Indicates whether the command is a modal command. Determines whether or not the command is a modal command type.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property IsModal() As Boolean


Return Type

Read/write Boolean.

Remarks

Commands that return TRUE for this property can successfully retrieve a ModalCmd object using the ModalCommand Property.

See Also

Command Object | ModalCmd Object | ModalCommand Property 

	IsMove Property  XE "IsMove Property" 


Description

Read Only: Indicates whether the command is a move command. Determines whether or not the command is a Move command.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property IsMove() As Boolean


Return Type

Read/write Boolean.

Remarks

Commands that return TRUE for this property can successfully retrieve a MoveCmd object using the MoveCommand Property.

See Also

Command Object | MoveCommand Property | MoveCmd Object 

	IsOptionProbe Property  XE "IsOptionProbe Property" 


Description

Read Only: Indicates whether the command is a option probe command. 

Determines whether or not the command is an option probe command.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property IsOptionProbe() As Boolean


Return Type

Read/write Boolean.

Remarks

Commands that return TRUE for this property can successfully retrieve an OptMotion object using the OptMotionCommand Property.

See Also

Command Object 

	IsOptMotion Property  XE "IsOptMotion Property" 


Description

Read Only: Indicates whether the command is a optional motion command. Determines whether or not the command is an OptMotion command.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property IsOptMotion() As Boolean


Remarks

Commands that return TRUE for this property can successfully retrieve an OptMotion object using the OptMotionCommand Property.

See Also

Command Object | OptMotionCommand Property | OptMotion Object 

	IsScan Property  XE "IsScan Property" 


Description

Read Only: Indicates whether the command is a scan command. Determines whether or not the command is a Scan command.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property IsScan() As Boolean


Return Type

Read/write Boolean.

Remarks

Commands that return TRUE for this property can successfully retrieve a Scan Command object using the ScanCommand Property.

See Also

Command Object | Scan Object | ScanCommand Property 

	IsStatistic Property  XE "IsStatistic Property" 


Description

Read Only: Indicates whether the command is a statistic command. Determines whether or not the command is a Statistics command.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property IsStatistic() As Boolean


Return Type

Read/write Boolean.

Remarks

Commands that return TRUE for this property can successfully retrieve a Statistics Command object using the StatisticCommand Property.

See Also

Command Object | StatisticCommand Property | STATISTICS Object 

	IsTempComp Property  XE "IsTempComp Property" 


Description

Read Only: Indicates whether the command is a temperature compensation command. Determines whether or not the command is a TempComp command.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property IsTempComp() As Boolean


Return Type

Read/write Boolean.

Remarks

Commands that return TRUE for this property can successfully retrieve a TempComp Command object using the TempCompCommand Property.

See Also

Command Object 

	IsTraceField Property  XE "IsTraceField Property" 


Description

Read Only: Indicates whether the command is a trace field command. Determines whether or not the command is a TraceField command.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property IsTraceField() As Boolean


Remarks

Commands that return TRUE for this property can successfully retrieve a TraceField Command object using the TraceFieldCommand Property.

See Also

Command Object | TRACEFIELD Object | TraceFieldCommand Property 

	ItemIndex Property  XE "ItemIndex Property" 


Description

Returns the execute instance index if the object has been executed more than once otherwise returns 0. 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property ItemIndex() As Long


See Also

Command Object 

	LeapfrogCommand Property  XE "LeapfrogCommand Property" 


Description

Read Only: Returns an automation leap frog object if the current command object is of the correct type. Returns a LeapFrog object if the Command is of Type LEAPFROG. Otherwise it returns Nothing. Read-only.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property LeapfrogCommand() As LEAPFROG


Return Type

LeapFrog object.

See Also

Command Object 

	LoadMachineCommand Property  XE "LoadMachineCommand Property" 


Description

Read Only: Returns an automation load machine object if the current command object is of the correct type. Returns a LoadMachine object if Command is of Type GET_MACHINE_DATA. Otherwise it returns Nothing. Read-only.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property LoadMachineCommand() As LoadMachine


See Also

Command Object 

	LoadProbeCommand Property  XE "LoadProbeCommand Property" 


Description

Read Only: Returns an automation load probe object if the current command object is of the correct type. Returns a LoadProbe object if Command is of Type GET_PROBE_DATA. Otherwise it returns Nothing. Read-only.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property LoadProbeCommand() As LoadProbe


Return Type

LoadProbe object.

See Also

Command Object 

	Marked Property  XE "Marked Property" 


Description

Read/Write: Returns/Sets the marked for execution status of the current command. 

Property used to indicate/set whether command is marked in the edit window. 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Marked() As Boolean


Return Type

Read/write Boolean.
See Also

Command Object 

	MasterArm Property  XE "MasterArm Property" 


Description

Read Only: Property indicating whether the command belongs to the master arm only. 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property MasterArm() As Boolean


See Also

Command Object 

	MissedHit Property  XE "MissedHit Property" 


Description

Read Only: Indicates whether a missed hit occurred on the last executed command. 

This property checks whether or not a missed hit occurred on the last executed instance of the specified command.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property MissedHit() As Boolean


Return Type

Read-only Boolean. PC-DMIS returns TRUE if the command missed a hit; FALSE otherwise.

See Also

Command Object 

	ModalCommand Property  XE "ModalCommand Property" 


Description

Read Only: Returns the modal command object interface for the current command if it is a modal object. 

Returns a ModalCommand object for the Command if it can, Nothing otherwise. Read-only.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property ModalCommand() As ModalCmd


Return Type

ModalCmd object.

Remarks

The  Command objects  that have the following Type can become ModalCommand objects are as follows:

CLAMP
PREHIT
RETRACT
CHECK
MOVE_SPEED
TOUCH_SPEED
SCAN_SPEED
CLEARANCE_PLANES
MAN_DCC_MODE 
DISPLAYPRECISION
PROBE_COMPENSATION
POLARVECTORCOMP
SET_WORKPLANE
RMEAS_MODE
GAP_ONLY
RETROLINEAR_ONLY
FLY_MODE
COLUMN132

See Also

Command Object 

	MoveCommand Property  XE "MoveCommand Property" 


Description

Read Only: Returns the move command object interface for the current command if it is a move object. Returns this Command object as a ModalCommand object if it can, Nothing otherwise. Read-only.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property MoveCommand() As MoveCmd


See Also

Command Object 

	OptionProbeCommand Property  XE "OptionProbeCommand Property" 


Description

Read Only: Returns an automation optional probe object if the current command object is of the correct type. Returns an OptProbe object if Command is of Type OPTIONPROBE. Otherwise it returns Nothing. Read-only.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property OptionProbeCommand() As OPTIONPROBE


Return Type

OptionProbe object.

See Also

Command Object 

	OptMotionCommand Property  XE "OptMotionCommand Property" 


Description

Read Only: Returns an automation optional motion object if the current command object is of the correct type. Returns an OptMotion object if Command is of Type OPTIONMOTION. Otherwise it returns Nothing. Read-only.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property OptMotionCommand() As OptMotion


Return Type

OptMotion object.

See Also

Command Object 

	Parent Property  XE "Parent Property" 


Description

Read Only: Returns the Parent Commands Collection Object. 

Returns the parent Commands collection object. Read-only.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Parent() As Commands


Return Type

Commands object.

See Also

Command Object 

	RecalculateINOUT Property  XE "RecalculateINOUT Property" 


Description

Read/Write: Flag that determines if the INNER/OUTER flag is recalculated after execution. 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property RecalculateINOUT() As Boolean


See Also

Command Object 

	ScanCommand Property  XE "ScanCommand Property" 


Description

Read Only: Returns an automation scan object if the current command object is of the correct type. Returns a Scan object if Command is of Type DCCSCAN_OBJECT or Type MANSCAN_OBJECT. Otherwise it returns Nothing. Read-only.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property ScanCommand() As BasicScan


Return Type

Scan object.

See Also

Command Object 

	ShowIDOnCad Property  XE "ShowIDOnCad Property" 


Description

Read/Write: Property indicating whether the command id should appear in the cad window. 

Property used to indicate/set whether the command ID should be displayed in the CAD window. 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property ShowIDOnCad() As Boolean


Return Type

Read/write Boolean.

See Also

Command Object 

	Skipped Property  XE "Skipped Property" 


Description

Read Only: Indicates whether the command has been skipped or not. 

Property used to indicate whether the a command was skipped over. 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Skipped() As Boolean


Return Type

Read-only Boolean. PC-DMIS returns FALSE if the command was not skipped and TRUE if it was.

See Also

Command Object 

	SlaveArm Property  XE "SlaveArm Property" 


Description

Read Only: Property indicating whether the command belongs to the slave arm only. 

Property used to indicate/set whether command is a slave arm object. 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property SlaveArm() As Boolean


Return Type

Read/write Boolean.

See Also

Command Object 

	SlotType Property  XE "SlotType Property" 


Description

SlotType: Property indicating whether a command is a slot of a certain type. 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property SlotType() As Long


See Also

Command Object 

	StatisticCommand Property  XE "StatisticCommand Property" 


Description

Read Only: Returns an automation statistic object if the current command object is of the correct type. Returns a Statistics object if Command is of Type STATISTICS. Otherwise it returns Nothing. Read-only.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property StatisticCommand() As STATISTICS


Return Type

Statistics object.

See Also

Command Object 

	TempCompCommand Property  XE "TempCompCommand Property" 


Description

Read Only: Returns an automation temperature compensation object if the current command object is of the correct type. Returns a TempComp object if Command is of Type TEMP_COMP. Otherwise it returns Nothing. Read-only.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property TempCompCommand() As TempComp


Return Type

TempComp object.

See Also

Command Object 

	TraceFieldCommand Property  XE "TraceFieldCommand Property" 


Description

Read Only: Returns an automation trace field object if the current command object is of the correct type. Returns a TraceField object if Command is of Type TRACEFIELD. Otherwise it returns Nothing. Read-only.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property TraceFieldCommand() As TRACEFIELD


Return Type

Tracefield object.

See Also

Command Object 

	TracksErrors Property  XE "TracksErrors Property" 


Description

Read/Write: Indicates whether script will handle errors for this command. Property used to determine whether or not the script will handle errors for the specified command.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property TracksErrors() As Boolean


Return Type

Read/write Boolean. PC-DMIS returns TRUE if error handling is turned on for the specified command; FALSE otherwise.

See Also

Command Object 

	Type Property  XE "Type Property" 


Description

Read Only: Returns the type of the Command. 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Type() As OBTYPE


Return Type

Read-only OBTYPE.

Remarks

The returned type is the same as the type argument to Commands.Add.

See Also

Command Object 

	TypeDescription Property  XE "TypeDescription Property" 


Description

Read Only: Returns string describing object type. Returns a human-readable description of Type of the object. For example, an object of type CONST_OFF_PLANE has the string "Constructed Offset Plane" returned by this function.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property TypeDescription() As String


Return Type

Read-only String.

Remarks

See Also

Command Object | Type Property 

	UnexpectedHit Property  XE "UnexpectedHit Property" 


Description

Read Only: Indicates whether an unexpected hit occurred. 

This property checks whether or not an unexpected hit occurred on the last executed instance of the specified command. 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property UnexpectedHit() As Boolean


Return Type

Read-only Boolean. PC-DMIS returns TRUE if it detects an unexpected hit for the command; FALSE otherwise.

See Also

Command Object 

	UserDefinedUniqueID Property  XE "UserDefinedUniqueID Property" 


Description

Read/Write: Gets/Sets user defined unique id. 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property UserDefinedUniqueID() As Long


See Also

Command Object 

	Commands Object  XE "Commands Object" 


Description

Part Program Commands Collection Object. The Commands object contains all the Command objects in a part program.

Object Model

 

	[image: image261]
[image: image262]

 INCLUDEPICTURE "Images/pcdlrn~application~178.gif" \* MERGEFORMAT \d [image: image263]
[image: image264]

 INCLUDEPICTURE "Images/pcdlrn~parent_(partprogram)~178.gif" \* MERGEFORMAT \d [image: image265]
[image: image266]

 INCLUDEPICTURE "Images/pcdlrn~lastcommand_(command)~178.gif" \* MERGEFORMAT \d [image: image267]
[image: image268]

 INCLUDEPICTURE "Images/pcdlrn~currentcommand_(command)~178.gif" \* MERGEFORMAT \d [image: image269]
[image: image270]

 INCLUDEPICTURE "Images/pcdlrn~add_(command)~178.gif" \* MERGEFORMAT \d [image: image271]
[image: image272]

 INCLUDEPICTURE "Images/pcdlrn~item_(command)~178.gif" \* MERGEFORMAT \d [image: image273]
[image: image274]

 INCLUDEPICTURE "Images/pcdlrn~findbyuniqueid_(command)~178.gif" \* MERGEFORMAT \d [image: image275]
[image: image276]

 INCLUDEPICTURE "Images/pcdlrn~_item_(command)~178.gif" \* MERGEFORMAT \d [image: image277]


Remarks

Use Commands(index) where index is the index number to return a single Command object.

See Also

Commands Members 

See Also

Commands Overview 

Methods

	_Item Method  XE "_Item Method" 


Syntax

	Visual Basic

	Public Function _Item( _

   ByVal NameOrNum As Variant _

) As Command


Parameters

NameOrNum

See Also

Commands Object 

	Add Method  XE "Add Method" 


Description

Adds a new command to the command collection. This method adds a Command.

Syntax

	Visual Basic

	Public Function Add( _

   ByVal Type As OBTYPE, _

   ByVal AutoPosition As Boolean _

) As Command


Parameters

Type
Required LONG in the OBTYPE enumeration that denotes what type of object to create. Use an item from the OBTYPE enumeration table located at the end of this documentation.

AutoPosition

Required Boolean that determines what should happen when the new Command object is being inserted in an inappropriate place in the part program.

· If AutoPosition is FALSE, it will not be inserted at all. 

· If it is TRUE, the new Command will be inserted at the new appropriate position.

Return Type

Command object.

Remarks

PC-DMIS only supports one way for adding commands while executing a part program in PC-DMIS: Insert a script command (select Insert | Basic Script from within PC-DMIS) that points to the BASIC script containing the Add method. Otherwise, you will need to run your script with the Add method first and control part program execution from within your script.

Example

Sub main()

' This sample script shows how to add a GROUP/ and ENDGROUP/ command into the end of your part program.

    Dim pcd As Object

    Dim pp As Object

    Dim cmds As Object

    Dim cmd As Object

    Dim start_grp As Object

    Dim end_grp As Object

    Dim uidstr As String

    Dim RetVal As Boolean

    Set pcd = CreateObject("PCDLRN.Application.4.2")

    Set pp = pcd.ActivePartProgram

    Set cmds = pp.Commands

    Set cmd = cmds.LastCommand

    cmds.InsertionPointAfter cmd

    Set start_grp = cmds.Add(752, True)

    start_grp.ID = "I"

    start_grp.ReDraw

    cmds.InsertionPointAfter start_grp

    Set end_grp = cmds.Add(753, True)

    end_grp.ReDraw

    uidstr = end_grp.GetText(PCDLRN.uid, 0)

    RetVal = start_grp.PutText(uidstr, PCDLRN.REF_UID, 0)

    uidstr = start_grp.GetText(PCDLRN.uid, 0)

    RetVal = end_grp.PutText(uidstr, PCDLRN.REF_UID, 0)

    pp.RefreshPart

End Sub

See Also

Commands Object | Remove Method 

	ClearAllBreakpoints Method  XE "ClearAllBreakpoints Method" 


Description

Clears all commands of their breakpoints. Clears all the breakpoints on all Command objects in the collection. You should use this method if you don’t want to step through the execution of a part program.

Syntax

	Visual Basic

	Public Function ClearAllBreakpoints() As Boolean


Return Type

Boolean value. Boolean returns true if the function succeeds, false if it fails.

See Also

Commands Object 

	ClearMarked Method  XE "ClearMarked Method" 


Description

Clears all commands from being marked for execution. Clears all marked Command objects in the collection. ClearMarked always returns TRUE.

Syntax

	Visual Basic

	Public Function ClearMarked() As Boolean


Return Type

Boolean value. Boolean returns true if the function succeeds, false if it fails.

See Also

Commands Object 

	FindByUniqueID Method  XE "FindByUniqueID Method" 


Description

Finds the command identified by the unique id formed from low and high parts. Finds a command identified by the HiPart and LoPart parameters.

Syntax

	Visual Basic

	Public Function FindByUniqueID( _

   ByVal HiPart As Long, _

   ByVal LoPart As Long _

) As Command


Parameters

HiPart

This parameter is a long value that should come from a call to GetUniqueID made previously on the desired command object.

LoPart

This parameter is a long value that should come from a call to GetUniqueID made previously on the command object.

Return Type

Command object.

See Also

Commands Object 

	InsertionPointAfter Method  XE "InsertionPointAfter Method" 


Description

Sets the insertion point for new command object after the specified object. Sets the insertion point after a specified command.

Syntax

	Visual Basic

	Public Function InsertionPointAfter( _

   ByVal Command As Command _

) As Boolean


Parameters

Command

Required Command object that indicates which command after which to set the insertion point.

Return Type

Boolean value. This function returns TRUE if the insertion point was successfully set, FALSE otherwise.

See Also

Commands Object 

	Item Method  XE "Item Method" 


Description

Returns the command object specified by name or number from the commands collection. Returns a specific Command object from a Commands collection.

Syntax

	Visual Basic

	Public Function Item( _

   ByVal NameOrNum As Variant _

) As Command


Parameters

NameOrNum

Required Long that indicates which Command object to return. It is the index number of the desired Command in the Commands collection.

Return Type

Command object.

See Also

Commands Object 

	MarkAll Method  XE "MarkAll Method" 


Description

Marks all commands for execution except for manual alignment features if flag set. Marks all the commands in a Commands collection.

Syntax

	Visual Basic

	Public Function MarkAll( _

   ByVal MarkManual As Boolean _

) As Boolean


Parameters

MarkManual

Required Boolean that indicates whether or not to mark manual alignment features.

Return Type

Boolean value. Boolean returns true if the function succeeds, false if it fails.

See Also

Commands Object 

Properties

	Application Property  XE "Application Property" 


Description

Read Only: Returns the Application Object 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Application() As Application


See Also

Commands Object 

	Count Property  XE "Count Property" 


Description

Read Only: Returns the number of commands in the commands collection. Represents the number of Command objects in the parent PartProgram object.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Count() As Long


Return Type

Read-only Long.

See Also

Commands Object 

	CurrentCommand Property  XE "CurrentCommand Property" 


Description

Read Only: Returns the current command. 

Returns a Command object representing the current PC-DMIS command. Note that if you use the Commands.Add method prior to this property, the current command returned will be the last added command from the Add method. Read-only Command object.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property CurrentCommand() As Command


Return Type

Command object.

See Also

Commands Object 

	LastCommand Property  XE "LastCommand Property" 


Description

Read Only: Returns the last command. 

Returns a Command object representing the last command in the part program. Read-only Command object.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property LastCommand() As Command


Return Type

Command object.

Remarks

This gives you a faster way of getting the last command. Before you had to use this syntax:

Commands.Item(Commands.Count).

See Also

Commands Object 

	Parent Property  XE "Parent Property" 


Description

Read Only: Returns the parent PartProgram Object. Returns the parent PartProgram object. Read-only.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Parent() As PartProgram


Return Type

PartProgram object.

See Also

Commands Object 
	DimensionCmd Object  XE "DimensionCmd Object" 


Description

Dimension Command Object. DimensionCmd objects are created from more generic Command objects to pass information specific to the dimension command back and forth.

Object Model

 

	[image: image278]
[image: image279]

 INCLUDEPICTURE "Images/pcdlrn~parent_(command)~116.gif" \* MERGEFORMAT \d [image: image280]


See Also

DimensionCmd Members 

	DimensionCmd Object Members  XE "DimensionCmd Object Members" 


See Also

DimensionCmd Overview 

Methods

	AddAxes Method  XE "AddAxes Method" 


Description

Add default location axes for End Location command. 

Syntax

	Visual Basic

	Public Sub AddAxes() 


See Also

DimensionCmd Object 

	Evaluate Method  XE "Evaluate Method" 


Description

Evaluates the dimension. Evaluates a dimension’s data from its feature data.

Syntax

	Visual Basic

	Public Sub Evaluate() 


Return Type

Boolean value indicating success or failure in evaluating the dimension.

Remarks

Some dimension commands exist as command blocks inside of PC-DMIS. Because of this, the Evaluate method only works on a command block if you call the method from the very first item of the block. Calls made from other items of a dimension’s command block won’t function.

See Also

DimensionCmd Object 

Properties

	Angle Property  XE "Angle Property" 


Description

Read/Write: Angle value for angularity dimensions. Represents the theoretical angle of a DIMENSION_ANGULARITY dimension.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Angle() As Double


Return Type

Read/write Double.

Remarks

This function only works for objects of type DIMENSION_ANGULARITY. If used on any other object type, setting this variable will do nothing, and getting this variable will return zero.

See Also

DimensionCmd Object 

	ArrowMultiplier Property  XE "ArrowMultiplier Property" 


Description

Read/Write: Returns/Sets arrow multiplier. 

Multiplier for display arrows of dimension. 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property ArrowMultiplier() As Double


Remarks

Read/write Double.
See Also

DimensionCmd Object 

	AXIS Property  XE "AXIS Property" 


Description

Read/Write: Returns/Sets axis value. 

Axis used with dimension. Possible values include the following:

Property type

Read-write property

Syntax

	Visual Basic

	Public Property AXIS() As ENUM_DIM_AXISTYPE


Return Type

Read/write Enum_Dim_AxisType Enumeration.

Remarks

This function only works with dimensions that can accept an axis as one of the inputs.

See Also

DimensionCmd Object 

	AxisLetter Property  XE "AxisLetter Property" 


Description

Read Only: Dimension axis letter used to identify dimension type. 

Axis letter used to describe the axis or type of the dimension.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property AxisLetter() As String


Return Type

Read-only String.

See Also

DimensionCmd Object 

	Bonus Property  XE "Bonus Property" 


Description

Read Only: Bonus value for true position dimensions. Returns the bonus tolerance of a true position dimension.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Bonus() As Double


Return Type

Read-only Double.

Remarks

This function only works for single true position objects, i.e., DIMENSION_TRUE_Z_LOCATION, but not DIMENSION_TRUE_START_POSITION or DIMENSION_TRUE_END_POSITION. If used on any other object type, getting this variable will return zero.

See Also

DimensionCmd Object 

	Datum1 Property  XE "Datum1 Property" 


Description

Read/Write: First datum feature. 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Datum1() As String


See Also

DimensionCmd Object 

	Datum1Modifier Property  XE "Datum1Modifier Property" 


Description

Read/Write: First datum material condition. 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Datum1Modifier() As ENUM_DIM_TP_MATERIAL_CONDITION


See Also

DimensionCmd Object 

	DATUM2 Property  XE "DATUM2 Property" 


Description

Read/Write: Second datum feature. 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property DATUM2() As String


See Also

DimensionCmd Object 

	Datum2Modifier Property  XE "Datum2Modifier Property" 


Description

Read/Write: Second datum material condition. 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Datum2Modifier() As ENUM_DIM_TP_MATERIAL_CONDITION


See Also

DimensionCmd Object 

	Datum3 Property  XE "Datum3 Property" 


Description

Read/Write: Third datum feature. 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Datum3() As String


See Also

DimensionCmd Object 

	Datum3Modifier Property  XE "Datum3Modifier Property" 


Description

Read/Write: Third datum material condition. 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Datum3Modifier() As ENUM_DIM_TP_MATERIAL_CONDITION


See Also

DimensionCmd Object 

	DevAngle Property  XE "DevAngle Property" 


Description

Read Only: Deviation Angle Value. 

Returns the deviation angle of a dimension. 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property DevAngle() As Double


Return Type

Read/write Double.

See Also

DimensionCmd Object 

	Deviation Property  XE "Deviation Property" 


Description

Read Only: Deviation Value. 

Returns the deviation of a dimension. 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Deviation() As Double


Return Type

Read/write Double.

See Also

DimensionCmd Object 

	DimensionModifier Property  XE "DimensionModifier Property" 


Description

Read/Write: Dimension material condition. 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property DimensionModifier() As ENUM_DIM_TP_MATERIAL_CONDITION


See Also

DimensionCmd Object 

	Feat1 Property  XE "Feat1 Property" 


Description

Read/Write: First Reference feature/datum. Returns the ID of the first feature associated with a dimension.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Feat1() As String


Return Type

Read/write String.

Remarks

For location and true position dimensions, only the start object has an associated feature. For single location or true position object, i.e., DIMENSION_TRUE_Z_LOCATION or DIMENSION_Y_LOCATION, setting the Feat1 property has no effect and getting it returns the empty string. Also, objects of type DIMENSION_KEYIN have no associated features.

See Also

DimensionCmd Object 

	Feat2 Property  XE "Feat2 Property" 


Description

Read/Write: Second Reference feature/datum. Returns the ID of the second feature associated with a dimension.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Feat2() As String


Return Type

Read/write String.

Remarks

Not every dimension type has two features associated with it. Trying to set the Feat2 property of one of these types has no effect, and getting it returns the empty string.

See Also

DimensionCmd Object 

	Feat3 Property  XE "Feat3 Property" 


Description

Read/Write: Third Reference feature/datum. Returns the ID of the second feature associated with a dimension.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Feat3() As String


Return Type

Read/write String.

Remarks

Not every dimension type has three features associated with it. Trying to set the Feat3 property of one of these types has no effect, and getting it returns the empty string.

See Also

DimensionCmd Object 

	GraphicalAnalysis Property  XE "GraphicalAnalysis Property" 


Description

Read/Write: Returns/Sets graphical analysis value. 

Flag indicating whether graphical analysis is ON for the dimension. 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property GraphicalAnalysis() As Boolean


Return Type

Read/write Boolean.
See Also

DimensionCmd Object 

	ID Property  XE "ID Property" 


Description

Read/Write: Dimesion ID Returns the ID of a dimension.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property ID() As String


Return Type

Read/write String.

Remarks

For location and true position dimensions, only the start object has an id. For single location or true position object, i.e., DIMENSION_TRUE_Z_LOCATION or DIMENSION_Y_LOCATION, setting the ID property has no effect and getting it returns the empty string.

See Also

DimensionCmd Object 

	IsLocationAxis Property  XE "IsLocationAxis Property" 


Description

Read Only: Returns the setting used to identify if the axis belongs to a Location Dimension. Determines whether or not the axis is a Location axis.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property IsLocationAxis() As Boolean


Return Type

Boolean value. Returns true if the axis is a Location axis; it returns false if it isn't.

See Also

DimensionCmd Object 

	IsTruePosAxis Property  XE "IsTruePosAxis Property" 


Description

Read Only: Returns the setting used to identify if the axis belongs to a True Position Dimension. Determines whether or not the axis is a Location axis.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property IsTruePosAxis() As Boolean


Return Type

Boolean value. Returns true if the axis is a True Position axis; it returns false if it isn't.

See Also

DimensionCmd Object 

	Length Property  XE "Length Property" 


Description

Read/Write: Reference Length Value. Returns the length associated with a dimension.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Length() As Double


Return Type

Read/write Double.

See Also

DimensionCmd Object 

	Max Property  XE "Max Property" 


Description

Read Only: Dimension Max Value. 

Returns the maximum value of a dimension. 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Max() As Double


Return Type

Read-only Double.

See Also

DimensionCmd Object 

	Measured Property  XE "Measured Property" 


Description

Read Only: Dimension Measured Value. 

Returns the measured value of a dimension. 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Measured() As Double


Return Type

Read-only Double.

See Also

DimensionCmd Object 

	Min Property  XE "Min Property" 


Description

Read Only: Dimension Min Value.
Returns the minimum value of a dimension. 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Min() As Double


Return Type

Read-only Double.

See Also

DimensionCmd Object 

	Minus Property  XE "Minus Property" 


Description

Read/Write: Minus Tolerance Value. 

Represents the negative tolerance of a dimension. 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Minus() As Double


Return Type

Read/write Double.

See Also

DimensionCmd Object 

	NOMINAL Property  XE "NOMINAL Property" 


Description

Read/Write: Dimension Nominal Value. Returns the nominal associated with a dimension.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property NOMINAL() As Double


Return Type

Read/write Double.

Remarks

Only object of type DIMENSION_START_LOCATION, DIMENSION_TRUE_START_POSITION do not have a useful nominal property. For these types, setting the property has no effect, and getting it always returns zero.

See Also

DimensionCmd Object 

	OutputMode Property  XE "OutputMode Property" 


Description

Read/Write: Returns/Sets dimension output mode. 

Output mode of the dimension. 

Possible values include the following:

Property type

Read-write property

Syntax

	Visual Basic

	Public Property OutputMode() As ENUM_DIM_OUTPUTTYPE


Return Type

Read/write Enum_Dim_OutputType Enumeration. 

Remarks

The output mode determines where to send dimension data during execution.

See Also

DimensionCmd Object 

	OutTol Property  XE "OutTol Property" 


Description

Read Only: Out of Tolerance Value. 

Returns the out-of-tolerance value of a dimension. 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property OutTol() As Double


Return Type

Read-only Double.

See Also

DimensionCmd Object 

	ParallelPerpendicular Property  XE "ParallelPerpendicular Property" 


Description

Read/Write: Parallel/Perpendicular value for 2d Dimensions. 

Indicates whether calculations are performed parallel or perpendicular to input for 2-D dimensions. 

Possible values include the following:

Property type

Read-write property

Syntax

	Visual Basic

	Public Property ParallelPerpendicular() As ENUM_DIM_PERP_PARALLEL


Return Type

Read/Write Enum_Dim_Perp_Parallel Enumeration.

See Also

DimensionCmd Object 

	Parent Property  XE "Parent Property" 


Description

Read Only: Returns Parent Command Object. 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Parent() As Command


Return Type

The parent of a DimensionCmd object is the same underlying PC-DMIS object as the DimensionCmd object itself. Getting the parent allows you to access the generic Command properties and methods of a given object.

See Also

DimensionCmd Object 

	Plus Property  XE "Plus Property" 


Description

Read/Write: Plus Tolerance Value. 

Returns the positive tolerance of a dimension. Read-only Double.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Plus() As Double


See Also

DimensionCmd Object 

	Profile Property  XE "Profile Property" 


Description

Read/Write: Form/Location Setting for Profile Dimensions. 

This represents an enumerated value indicating what type of profile should be used.

Possible values include the following:

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Profile() As ENUM_DIM_PROF_TYPE


Return Type

Read/write Enum_Dim_Prof_Type Enumeration. 

See Also

DimensionCmd Object 

	RadiusType Property  XE "RadiusType Property" 


Description

Read/Write: Radius Setting for True Position Dimensions. 

Radius calculation type used with true position dimensions.

Possible values include the following:
DIM_NO_RADIUS

DIM_ADD_RADIUS

DIM_SUB_RADIUS

Property type

Read-write property

Syntax

	Visual Basic

	Public Property RadiusType() As ENUM_DIM_RADIUS_TYPE


Return Type

Read/write Enum_Dim_Radius_Type Enumeration.

See Also

DimensionCmd Object 

	TextualAnalysis Property  XE "TextualAnalysis Property" 


Description

Read/Write: Returns/Sets textual analysis value.
Flag indicating whether textual analysis is ON for the dimension. 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property TextualAnalysis() As Boolean


Return Type

Read/write Boolean.
See Also

DimensionCmd Object 

	TruePositionDatumModifier Property  XE "TruePositionDatumModifier Property" 


Description

Read/Write: True position material condition.
Property type

Read-write property

Syntax

	Visual Basic

	Public Property TruePositionDatumModifier() As ENUM_DIM_TP_MATERIAL_CONDITION


See Also

DimensionCmd Object 

	TruePositionModifier Property  XE "TruePositionModifier Property" 


Description

Read/Write: True position modifier.
Enumeration value indicating material conditions that should be used to calculate possible bonus tolerances.

Possible values include the following:

Property type

Read-write property

Syntax

	Visual Basic

	Public Property TruePositionModifier() As ENUM_DIM_TP_MODIFIER


Return Type

Read/write Enum_Dim_TP_Modifier Enumeration.

See Also

DimensionCmd Object 

	TruePosUseAxis Property  XE "TruePosUseAxis Property" 


Description

Read/Write: Use Axis setting for True Position Dimensions.
Enumeration value indicating axis type to use with true position dimension. 

Possible values include the following:

Property type

Read-write property

Syntax

	Visual Basic

	Public Property TruePosUseAxis() As ENUM_DIM_TP_USE_AXIS


Return Type

Read/write Enum_Dim_TP_Use_Axis Enumeration.

Remarks

See Also

DimensionCmd Object 

	Units Property  XE "Units Property" 


Description

Read/Write: Dimension Units.
Unit type in use by dimension. Possible values include the following:

MM (for millimeters)

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Units() As UNITTYPE


Return Type

Read/write UnitType Enumeration.

See Also

DimensionCmd Object 
	DimFormat Object 


Description

The DimFormat object gives access to the properties of the PC-DMIS Dimension Format command. For additional information on dimensions, see the topic "Dimension Options" in the PC-DMIS documentation.

See Also

DimFormat Members 

	DimFormat Object Members 


See Also

DimFormat Overview 

Methods

	GetHeadingType Method  XE "GetHeadingType Method" 


Description

Returns the indexed field type. Returns the heading type for the dimension based on an index parameter.

Syntax

	Visual Basic

	Public Function GetHeadingType( _

   ByVal index As Long _

) As DIMFORMATTYPE


Parameters

index

Required Long representing which index position to retrieve.

Return Type

DimFormatType enumeration value indicating the dimension information type of the position indicated by the index parameter.

Remarks

See Also

DimFormat Object 

	SetHeadingType Method  XE "SetHeadingType Method" 


Description

Sets the indexed field type. Sets the heading type for the dimension based on an index parameter.

Syntax

	Visual Basic

	Public Function SetHeadingType( _

   ByVal index As Long, _

   ByVal HeadingType As DIMFORMATTYPE _

) As Boolean


Parameters

index

Required long indicating the index position that is being set.

HeadingType

	Value
	Description

	PCD_NOT_USED
	 

	PCD_NOM
	 

	PCD_TOL
	 

	PCD_MEAS
	 

	PCD_MAXMIN
	 

	PCD_DEV
	 

	PCD_OUTTOL
	 

	PCD_DEVANG
	 


Required DimFormatType enumeration representing the type of value to be used at the given index position.

Return Type

Boolean value indicating success or failure in setting the heading type.

See Also

DimFormat Object 

Properties

	ShowDevSymbols Property  XE "ShowDevSymbols Property" 


Description

Read/Write: Indicates whether deviation symbols are shown. 

Determines whether or not the deviation symbols should be shown in the dimension report text.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property ShowDevSymbols() As Boolean


Return Type

Read/write Boolean.

See Also

DimFormat Object 

	ShowDimensionText Property  XE "ShowDimensionText Property" 


Description

Read/Write: Indicates whether dimension text is shown or not. Determines whether or not the top two lines of the dimension command should appear or not.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property ShowDimensionText() As Boolean


Return Type

Read/write Boolean.

See Also

DimFormat Object 

	ShowDimensionTextOptions Property  XE "ShowDimensionTextOptions Property" 


Description

Read/Write: Indicates whether various dimension options should be shown or not. Determines whether or not various dimension items such as arrow multiplier, graphical analysis, and textual analysis should appear in the dimension text or not.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property ShowDimensionTextOptions() As Boolean


Return Type

Read/write Boolean.

See Also

DimFormat Object 

	ShowHeadings Property  XE "ShowHeadings Property" 


Description

Read/Write: Indicates whether field headings are shown. Determines whether or not the dimension headings (such as NOM, MAX, MIN, DEV, OUTTOL, and so on) should appear in the dimension text or not.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property ShowHeadings() As Boolean


Return Type

Read/write Boolean.

See Also

DimFormat Object 

	ShowStdDev Property  XE "ShowStdDev Property" 


Description

Read/Write: Indicates whether the standard deviation is shown. Determines whether or not the standard deviation value should appear or not.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property ShowStdDev() As Boolean


Return Type

Read/write Boolean.

See Also

DimFormat Object 
	DimInfo Object  XE "DimInfo Object" 


Description

The DimInfo object gives access to the properties and methods of the PC-DMIS Dimension Information command. See "DIMINFO Command" in the PC-DMIS documentation for additional information.

See Also

DimInfo Members 

	DimInfo Object Members  XE "DimInfo Object Members" 


See Also

DimInfo Overview 

Methods

	GetFieldFormat Method  XE "GetFieldFormat Method" 


Description

Gets the indexed field format. Returns the dimension information type of the position indicated by index.

Syntax

	Visual Basic

	Public Function GetFieldFormat( _

   ByVal index As Long _

) As ENUM_DINFO_FIELD_TYPES


Parameters

index

Required Long representing which index position to retrieve.

Return Type

Enum_Dinfo_Field_Types enumeration value indicating the dimension information type of the position indicated by the index parameter.

See Also

DimInfo Object 

	GetLocationAxis Method  XE "GetLocationAxis Method" 


Description

Gets the indexed axis location. Returns the dimension location axis order used at the position indicated by the index parameter.

Syntax

	Visual Basic

	Public Function GetLocationAxis( _

   ByVal index As Long _

) As ENUM_DINFO_LOC_AXES


Parameters

index

Required Long representing which index position to retrieve.

Return Type

Enum_Dinfo_Loc_Axes enumeration value indicating the dimension location axis order used at the position indicated by the index parameter

Remarks

This function only works if the dimension being referenced in the command is an axis location dimension.

See Also

DimInfo Object 

	GetTruePosAxis Method  XE "GetTruePosAxis Method" 


Description

Gets the indexed true position location. Gets the dimension true position axis order used at the position indicated by the index parameter.

Syntax

	Visual Basic

	Public Function GetTruePosAxis( _

   ByVal index As Long _

) As ENUM_DINFO_TP_AXES


Parameters

index

Required Long representing which index position to retrieve.

Return Type

Enum_Dinfo_Tp_axes enumeration.

Remarks

This command only works with dimension information commands that are referencing true position dimensions.

See Also

DimInfo Object 

	SetFieldFormat Method  XE "SetFieldFormat Method" 


Description

Sets the indexed field format. Sets the format of the field.

Syntax

	Visual Basic

	Public Function SetFieldFormat( _

   ByVal index As Long, _

   ByVal FieldType As ENUM_DINFO_FIELD_TYPES _

) As Boolean


Parameters

index

Required long indicating the index position that is being set.

FieldType
Use an item from the ENUM_DINFO_FIELD_TYPES enumeration table located at the end of this documentation.

Return Type

Required Enum_Dinfo_Field_Types enumeration representing the type of value used at the given index position.

See Also

DimInfo Object 

	SetLocationAxis Method  XE "SetLocationAxis Method" 


Description

Sets the indexed axis location. 

Sets a Location dimension's axis.

Syntax

	Visual Basic

	Public Function SetLocationAxis( _

   ByVal index As Long, _

   ByVal AXIS As ENUM_DINFO_LOC_AXES _

) As Boolean


Parameters

index

Required long indicating the index position that is being set.

AXIS

	Value
	Description

	DINFO_LOC_USE_DIM_AXES
	 

	DINFO_LOC_WORST
	 

	DINFO_LOC_NOT_USED
	 

	DINFO_LOC_X
	 

	DINFO_LOC_Y
	 

	DINFO_LOC_Z
	 

	DINFO_LOC_D
	 

	DINFO_LOC_R
	 

	DINFO_LOC_V
	 

	DINFO_LOC_A
	 

	DINFO_LOC_L
	 

	DINFO_LOC_H
	 

	DINFO_LOC_PR
	 

	DINFO_LOC_PA
	 

	DINFO_LOC_T
	 

	DINFO_LOC_RT
	 

	DINFO_LOC_S
	 

	DINFO_LOC_RS
	 

	DINFO_LOC_PD
	 


Required Enum_Dinfo_Loc_Axes enumeration representing the type the axis used at the given index position.

Return Type

Boolean value indicating success or failure in setting the field type. 

Remarks

The dimension needs to be a location dimension in order for this command to succeed.

See Also

DimInfo Object 

	SetTruePosAxis Method  XE "SetTruePosAxis Method" 


Description

Sets the indexed true position location. 

Sets a True Position dimension's axis.

Syntax

	Visual Basic

	Public Function SetTruePosAxis( _

   ByVal index As Long, _

   ByVal AXIS As ENUM_DINFO_TP_AXES _

) As Boolean


Parameters

index

Required Long value indicating the index position that is being set.

AXIS

Required Enum_Dinfo_TP_Axes enumeration representing the type the axis used at the given index position.
Use an item from the Enum_Dinfo_TP_Axes enumeration table located at the end of this documentation.
Return Type

Boolean value indicating success or failure in setting the field type.

See Also

DimInfo Object 

Properties

	DimensionId Property  XE "DimensionId Property" 


Description

Read/Write: Id of dimension being referenced by dimension information object. Gets or sets the name of the dimension for which the dimension information object will be showing information.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property DimensionId() As String


Return Type

Read/write String.

See Also

DimInfo Object 

	ShowDimId Property  XE "ShowDimId Property" 


Description

Read/Write: Indicates whether the dimension ID is shown. Determines whether or not the Dimension ID should be shown in the dimension information object.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property ShowDimId() As Boolean


Return Type

Read/write Boolean.

See Also

DimInfo Object 

	ShowFeatId Property  XE "ShowFeatId Property" 


Description

Read/Write: Indicates whether the feature ID is shown. Determines whether or not PC-DMIS displays the feature id of the feature belonging to the dimension used in the dimension information command.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property ShowFeatId() As Boolean


Return Type

Read/write Boolean.

See Also

DimInfo Object 
	DispMetaFile Object 


Description

The DispMetaFile object gives access to the comment properties of the PC-DMIS Display Metafile command.

See Also

DispMetaFile Members 

	DispMetaFile Object Members 


See Also

DispMetaFile Overview 

Properties

	Comment Property  XE "Comment Property" 


Description

Read/Write: Comment for metafile. 

Gets or sets the value representing the comment to be used as a caption for the metafile object.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Comment() As String


Return Type

Read/write String.

See Also

DispMetaFile Object 
	DmisDialog Object  XE "DmisDialog Object " 


Description

The DmisDialog object represents a PC-DMIS modeless dialog and can be used to determine if the dialog is still visible. 

Remarks

A DmisDialog object can be obtained from the Dialog2 method of the command automation object. This object has one property: visible. 

If true, the dialog is still visible to the user. If false, the dialog either no longer exists or is no longer visible to the user.

See Also

DmisDialog Members 

	DmisDialog Object Members  XE "DmisDialog Object Members" 


See Also

DmisDialog Overview 

Properties

	Visible Property  XE "Visible Property" 


Description

Read Only: Indicates whether dialog is still visible to the user or not. Indicates whether or not the dialog is still visible to the user.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Visible() As Boolean


Return Type

Read-only Boolean value.

See Also

DmisDialog Object 

	DmisMatrix Object  XE "DmisMatrix Object " 


Description

The DmisMatrix object is a four by three array of doubles modeled after the transformation matrices used in PC-DMIS. The first set of three doubles represent the matrix offset. The second set of three doubles represent the X axis. The third set of three doubles represent the Y axis. The fourth set of three doubles represent the Z axis.

Object Model

 

	[image: image281]
[image: image282]

 INCLUDEPICTURE "Images/pcdlrn~primaryaxis_(pointdata)~161.gif" \* MERGEFORMAT \d [image: image283]
[image: image284]

 INCLUDEPICTURE "Images/pcdlrn~secondaryaxis_(pointdata)~161.gif" \* MERGEFORMAT \d [image: image285]
[image: image286]

 INCLUDEPICTURE "Images/pcdlrn~tertiaryaxis_(pointdata)~161.gif" \* MERGEFORMAT \d [image: image287]
[image: image288]

 INCLUDEPICTURE "Images/pcdlrn~offset_(pointdata)~161.gif" \* MERGEFORMAT \d [image: image289]


See Also

DmisMatrix Members 

	DmisMatrix Object Members  XE "DmisMatrix Object Members " 


See Also

DmisMatrix Overview 

Methods

	Item Method  XE "Item Method" 


Description

Returns the individual data element of the matrix. Returns the data item of the matrix.

Syntax

	Visual Basic

	Public Function Item( _

   ByVal Num As Long _

) As Double


Parameters

Num

Required parameter of type long between 1 and 12 inclusive from which the matrix data is copied.

Return Type

Double value.

See Also

DmisMatrix Object 

	Multiply Method  XE "Multiply Method" 


Description

Returns a matrix which is the matrix multiplied by the supplied matrix. Multiplies two matrices and returns the result as a DmisMatrix object.

Syntax

	Visual Basic

	Public Function Multiply( _

   ByVal SecondMatrix As DmisMatrix _

) As DmisMatrix


Parameters

SecondMatrix

Required parameter of type DmisMatrix representing the second matrix.

Return Type

DmisMatrix object.

See Also

DmisMatrix Object 

	Normalize Method  XE "Normalize Method" 


Description

Normalizes the matrix.

Syntax

	Visual Basic

	Public Sub Normalize() 


See Also

DmisMatrix Object 

	Reset Method  XE "Reset Method" 


Description

Resets the matrix to the identity matrix.

Syntax

	Visual Basic

	Public Sub Reset() 


See Also

DmisMatrix Object 

	RotateByAngle Method  XE "RotateByAngle Method" 


Description

Rotates the primary axis by the supplied angle relative to the supplied workplane. Rotates the matrix by the specified angle relative to the workplane.

Syntax

	Visual Basic

	Public Sub RotateByAngle( _

   ByVal Angle As Double, _

   ByVal Workplane As ENUM_PLANE_TYPE _

) 


Parameters

Angle

Required Double parameter representing the rotation angle (in degrees).

Workplane

Optional parameter that uses the ENUM_PLANE_TYPE enumeration to define which axis to rotate about.

Use an item from the ENUM_PLANE_TYPE enumeration table located at the end of this documentation.

Return Type

Rotates the matrix by the specified angle relative to the workplane.

See Also

DmisMatrix Object 

	RotateToPoint Method  XE "RotateToPoint Method" 


Description

Rotates the primary axis to the supplied point relative to the supplied workplane. 

Rotates the matrix by the calculated angle relative to the workplane.

Syntax

	Visual Basic

	Public Sub RotateToPoint( _

   ByVal X As Double, _

   ByVal Y As Double, _

   ByVal Workplane As ENUM_PLANE_TYPE _

) 


Parameters

Required Double X component used in calculating rotation angle.

Required Double Y component used in calculation rotation angle.

Workplane

Optional parameter with the ENUM_PLANE_TYPE enumeration used to define which axis to rotate about.

Use an item from the ENUM_PLANE_TYPE enumeration table located at the end of this documentation.

See Also

DmisMatrix Object 

	RotateToVector Method  XE "RotateToVector Method" 


Description

Rotates the primary axis to the supplied vector relative to the supplied workplane. 

Rotates the primary axis (as determined by the workplane parameter) to the specified vector.

Syntax

	Visual Basic

	Public Sub RotateToVector( _

   ByVal Vector As PointData, _

   ByVal Workplane As ENUM_PLANE_TYPE _

) 


Parameters

Vector

Required Pointdata parameter specifying the vector that the primary axis should be rotated to.

Workplane

Optional parameter with the ENUM_PLANE_TYPE enumeration used to define which axis to rotate about.

Use an item from the ENUM_PLANE_TYPE enumeration table located at the end of this documentation.

See Also

DmisMatrix Object 

	SetMatrix Method  XE "SetMatrix Method" 


Description

Sets the matrix orientation using the supplied vector and workplane. Sets the matrix offset using the supplied point. 

Initializes the matrix using the vector and workplane to set the matrix orientation and the point to set the matrix offset.

Syntax

	Visual Basic

	Public Sub SetMatrix( _

   ByVal Vector As PointData, _

   ByVal Point As PointData, _

   ByVal Workplane As ENUM_PLANE_TYPE _

) 


Parameters

Vector

Required Pointdata parameter used with the workplane parameter to establish the orientation of the matrix.

Point

Required Pointdata parameter used to set the matrix offset.

Workplane

Optional Long parameter used to define the direction of the primary axis.

Use an item from the ENUM_PLANE_TYPE enumeration table located at the end of this documentation.

See Also

DmisMatrix Object 

	TransformDataBack Method XE "TransformDataBack Method" 


Description

Multiplies the supplied data by the matrix. 

Syntax

	Visual Basic

	Public Sub TransformDataBack( _

   ByVal PointData As PointData, _

   ByVal TransformationType As ENUM_TRANSFORMATION_TYPES, _

   ByVal Workplane As ENUM_PLANE_TYPE _

) 


Parameters

PointData

Required PointData object parameter that is modified by multiplying the data in the point by the inverse of the matrix.

TransformationType

Optional ENUM_TRANSFORMATION_TYPES enumeration that identifies the type of transformation desired.

Use an item from the ENUM_TRANSFORMATION_TYPES enumeration table located at the end of this documentation.

Workplane

Optional parameter with the ENUM_PLANE_TYPE enumeration used to define which axis to rotate about.

Use an item from the ENUM_PLANE_TYPE enumeration table located at the end of this documentation.

This parameter is used when the MAJOR_MINOR_THIRD_ROT_AND_TRANS parameter or the MAJOR_MINOR_THIRD_ROTATE_ONLY TransformationType parameter is used. 

See Also

DmisMatrix Object 

	TransformDataForward Method  XE "TransformDataForward Method" 


Description

Multiplies the supplied data by the inverse of the matrix. 

Syntax

	Visual Basic

	Public Sub TransformDataForward( _

   ByVal PointData As PointData, _

   ByVal TransformationType As ENUM_TRANSFORMATION_TYPES, _

   ByVal Workplane As ENUM_PLANE_TYPE _

) 


Parameters

PointData

Required PointData object parameter that is modified by multiplying the data in the point by the matrix.

TransformationType

Optional Long parameter that identifies the type of transformation desired.

Use an item from the ENUM_TRANSFORMATION_TYPES enumeration table located at the end of this documentation.

Workplane

Optional parameter with the ENUM_PLANE_TYPE enumeration used to define which axis to rotate about. 

Use an item from the ENUM_PLANE_TYPE enumeration table located at the end of this documentation.

This parameter is used when the MAJOR_MINOR_THIRD_ROT_AND_TRANS parameter or the MAJOR_MINOR_THIRD_ROTATE_ONLY transformation type parameter is used.

See Also

DmisMatrix Object 

Properties

	_Copy Property  XE "_Copy Property" 


Property type

Read-write property

Syntax

	Visual Basic

	Public Property _Copy() As DmisMatrix


See Also

DmisMatrix Object 

	Copy Property  XE "Copy Property" 


Description

Read Only: Returns a copy of the matrix to make assignment possible. Returns a copy of the matrix.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Copy() As DmisMatrix


Return Type

Read-only DmisMatrix object.

See Also

DmisMatrix Object 

	Inverse Property  XE "Inverse Property" 


Description

Read Only: Returns the inverse of the matrix in a new matrix. The original matrix remains constant.
Property type

Read-write property

Syntax

	Visual Basic

	Public Property Inverse() As DmisMatrix


Return Type

Read-only DmisMatrix object.

See Also

DmisMatrix Object 

	IsIdentity Property  XE "IsIdentity Property" 


Description

Read Only: Returns true if the matrix is the identity matrix. Determines whether or not the matrix is the identity matrix.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property IsIdentity() As Boolean


Return Type

Read-only Boolean.

See Also

DmisMatrix Object 

	Offset Property  XE "Offset Property" 


Description

Read/Write: Sets or gets the first triple set of doubles of the matrix. The first set of three doubles in the matrix representing the translation offset of the matrix.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Offset() As PointData


Return Type

Read/write PointData object.

See Also

DmisMatrix Object 

	PrimaryAxis Property  XE "PrimaryAxis Property" 


Description

Read/Write: Sets or gets the second triple set of doubles of the matrix. The second set of three doubles in the matrix representing the matrix's primary axis.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property PrimaryAxis() As PointData


Return Type

Read/write PointData object.

See Also

DmisMatrix Object 

	SecondaryAxis Property  XE "SecondaryAxis Property" 


Description

Read/Write: Sets or gets the third triple set of doubles of the matrix. The third set of three doubles in the matrix representing the matrix's secondary axis.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property SecondaryAxis() As PointData


Return Type

Read/write PointData object.

See Also

DmisMatrix Object 

	TertiaryAxis Property  XE "TertiaryAxis Property" 


Description

Read/Write: Sets or gets the fourth triple set of doubles of the matrix. The fourth set of three doubles in the matrix representing the matrix's tertiary axis.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property TertiaryAxis() As PointData


Return Type

Read/write PointData object.

See Also

DmisMatrix Object 

	EditWindow Object 


Description

Edit window object. The EditWindow object represents the Edit window associated with a part program. It is always present, although sometimes it is invisible. When in Command mode, the Edit window lists all the commands in the part program.

Object Model

 

	[image: image290]
[image: image291]

 INCLUDEPICTURE "Images/pcdlrn~parent_(partprogram)~132.gif" \* MERGEFORMAT \d [image: image292]
[image: image293]

 INCLUDEPICTURE "Images/pcdlrn~application~132.gif" \* MERGEFORMAT \d [image: image294]


See Also

EditWindow Members 

	EditWindow Object Members 


See Also

EditWindow Overview 

Methods

	CommandMode Method  XE "CommandMode Method" 


Description

Switches edit window to command mode. 

This function puts the Edit window into command mode.

Syntax

	Visual Basic

	Public Sub CommandMode() 


See Also

EditWindow Object 

	DMISMode Method  XE "DMISMode Method" 


Description

Switches edit window to DMIS mode. 

Syntax

	Visual Basic

	Public Sub DMISMode() 


See Also

EditWindow Object 

	GetCommandText Method  XE "GetCommandText Method" 


Description

Gets current edit window text for specified command. This function returns a string of the current command text for the specified command in Command.

Syntax

	Visual Basic

	Public Function GetCommandText( _

   ByVal Command As Command _

) As String


Parameters

Command

Required expression that evaluates to a Command object.

Return Type

String value.

See Also

EditWindow Object 

	LastExecutionReportMode Method  XE "LastExecutionReportMode Method" 


Description

Switches edit window to last execution report mode. 

Syntax

	Visual Basic

	Public Sub LastExecutionReportMode() 


See Also

EditWindow Object 

	PrintEditWindow Method  XE "PrintEditWindow Method" 


Description

Causes edit window to print current window contents. 

Syntax

	Visual Basic

	Public Sub PrintEditWindow() 


See Also

EditWindow Object 

	ReportMode Method  XE "ReportMode Method" 


Description

Switches edit window to report mode. 

This function puts the Edit window into report mode.

Syntax

	Visual Basic

	Public Sub ReportMode() 


See Also

EditWindow Object 

	SetDMISOutputOptions Method  XE "SetDMISOutputOptions Method" 


Description

Sets DMIS output options. 

This function sets output options for printing the Edit window contents as a DMIS file.

Syntax

	Visual Basic

	Public Sub SetDMISOutputOptions( _

   ByVal bEnable As Boolean, _

   ByVal FileName As String, _

   ByVal bOverwrite As ENUM_DMIS_OVERWRITE, _

   ByVal bOutputTheos As ENUM_DMIS_OUTPUT_THEOS, _

   ByVal bOutputFeatWithDimensions As Boolean _

) 


Parameters

bEnable

Boolean value that determines whether or not PC-DMIS prints the contents of the Edit window as a DMIS output file.

FileName

String value identifies the filename and path for the created DMIS output file.

bOverwrite

This parameter determines how PC-DMIS outputs the DMIS file.

Use an item from the ENUM_DMIS_OVERWRITE enumeration table located at the end of this documentation.

bOutputTheos

With this parameter you can choose to not include theoretical values in the output DMIS file (PCD_DMIS_OUTPUT_THEOS_NONE), output all theoretical values along with the measured values (PCD_DMIS_OUTPUT_THEOS_ALL), or to only output theoretical values output by the DMIS program (PCD_DMIS_OUTPUT_THEOS_USE_IMPORTED_SETTING).

Use an item from the ENUM_DMIS_OUTPUT_THEOS enumeration table located at the end of this documentation.

bOutputFeatWithDimensions

Boolean value that allows you determine whether or not to output the measured features and associated tolerances together in the output file.

See Also

EditWindow Object 

	SetPrintOptions Method  XE "SetPrintOptions Method" 


Description

Sets edit window print options. 

This function allows you to set Edit window print options.

Syntax

	Visual Basic

	Public Sub SetPrintOptions( _

   ByVal Location As PCDPRINTLOC, _

   ByVal Draft As ENUM_PCD_ON_OFF, _

   ByVal Filemode As PCDPRINTFILEMODE, _

   ByVal ExtNum As Long _

) 


Parameters

Location

Destination of printed data. Options include Off, File, or Printer

Use an item from the PCDPRINTLOC enumeration table located at the end of this documentation.

Draft

When destination is printer, specifies if printer should print in draft mode or not. Options include On and Off.

Use an item from the ENUM_PCD_ON_OFF enumeration table located at the end of this documentation.

Filemode

When destination is file, specifies file naming and writing parameters. Options include:  Append, New File, Overwrite, and Auto. Auto mode automatically increments a numeric extension for the output file.

Use an item from the PCDPRINTFILEMODE enumeration table located at the end of this documentation.

ExtNum

Return Type

Number to be used for the file extension of the output file.

See Also

EditWindow Object 

	SetPrintOptionsEx Method  XE "SetPrintOptionsEx Method" 


Description

Sets extended edit window print options. 

This function allows you to set extended Edit window print options.

Syntax

	Visual Basic

	Public Sub SetPrintOptionsEx( _

   ByVal Location As PCDPRINTLOC, _

   ByVal Draft As ENUM_PCD_ON_OFF, _

   ByVal Filemode As PCDPRINTFILEMODE, _

   ByVal ExtNum As Long, _

   ByVal FileName As String, _

   ByVal format As PCDFILEPRINTFORMAT, _

   ByVal bHyperReportsInline As Boolean _

) 


Parameters

Location

Destination of printed data. Options include Off (PCD___OFF), File (PCD_FILE), or Printer (PCD_PRINTER)

Use an item from the PCDPRINTLOC enumeration table located at the end of this documentation.

Draft

When destination is printer, specifies if printer should print in draft mode or not. Options include On (DMIS_ON) and Off (DMIS_OFF).

Use an item from the ENUM_PCD_ON_OFF enumeration table located at the end of this documentation.

Filemode

When the Location is set to PCD_FILE, this specifies file naming and writing parameters. Options include: Append (PDF_APPEND), New File (PCD_NEWFILE), Overwrite (PCD_OVERWRITE), and Auto (PCD_AUTO). Auto mode automatically increments a numeric extension for the output file.

Use an item from the PCDPRINTFILEMODE enumeration table located at the end of this documentation.

ExtNum

Number to be used for the file extension of the output file.

FileName

If PCD_FILE is selected for the Location parameter, this string value identifies the filename and path for the created file.

format

If PCD_FILE is selected for the Location parameter, the Format parameter specifies the file format for the saved file. You can print the Edit window contents to a file in either the RTF (PCD_RTF) format or the PDF (PCD_PDF) format.

Use an item from the PCDFILEPRINTFORMAT enumeration table located at the end of this documentation.

bHyperReportsInline

If PCD_PDF is selected for the Format parameter, this True or False parameter determines whether or not data from inline HyperView commands appear in the PDF generated file.

See Also

EditWindow Object 

	SummaryMode Method  XE "SummaryMode Method" 


Description

Switches edit window to summary mode. 

Syntax

	Visual Basic

	Public Sub SummaryMode() 


See Also

EditWindow Object 

Properties

	_Visible Property  XE "_Visible Property" 


Property type

Read-write property

Syntax

	Visual Basic

	Public Property _Visible() As Boolean


See Also

EditWindow Object 

	Application Property  XE "Application Property" 


Description

Read Only: Returns Application object. Represents the read-only PC-DMIS application. The Application object includes properties and methods that return top-level objects. For example, the ActivePartProgram property returns a PartProgram object.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Application() As Application


Return Type

Application object.

See Also

EditWindow Object 

	Height Property  XE "Height Property" 


Description

Read/Write: Returns/Sets the height of the edit window. 

The height of the edit window in screen pixels. 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Height() As Long


Return Type

Read/write Long.

See Also

EditWindow Object 

	Left Property  XE "Left Property" 


Description

Read/Write: Returns/Sets the left coordinate of the edit window. The left edge of the edit window, measured from the left edge of the Windows Desktop.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Left() As Long


Return Type

Read/write Long.

Remarks

The Left property is measured in screen pixels.

See Also

EditWindow Object 

	Parent Property  XE "Parent Property" 


Description

Read Only: Returns Partprogram object. Returns the parent PartProgram of this object.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Parent() As PartProgram


Return Type

Read-only PartProgram object.

See Also

EditWindow Object 

	ShowAlignments Property  XE "ShowAlignments Property" 


Description

Read/Write: Returns/Sets show alignments status of edit window. 

This property is TRUE if alignments are being shown in the edit window, FALSE otherwise. 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property ShowAlignments() As Boolean


Return Type

Read/write Boolean.

See Also

EditWindow Object 

	ShowComments Property  XE "ShowComments Property" 


Description

Read/Write: Returns/Sets show comments status of edit window. 

This property is TRUE if comments are being shown in the edit window, FALSE otherwise. 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property ShowComments() As Boolean


Return Type

Read/write Boolean.

See Also

EditWindow Object 

	ShowDimensions Property  XE "ShowDimensions Property" 


Description

Read/Write: Returns/Sets show dimensions status of edit window. 

This property is TRUE if dimensions are being shown in the edit window, FALSE otherwise. 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property ShowDimensions() As Boolean


Return Type

Read/write Boolean.

See Also

EditWindow Object 

	ShowFeatures Property  XE "ShowFeatures Property" 


Description

Read/Write: Returns/Sets show features status of edit window.
This property is TRUE if features are being shown in the edit window, FALSE otherwise. 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property ShowFeatures() As Boolean


Return Type

Read/write Boolean.

See Also

EditWindow Object 

	ShowHeaderFooter Property  XE "ShowHeaderFooter Property" 


Description

Read/Write: Returns/Sets show header/footer status of edit window. 

This property is TRUE if headers and footers are being shown in the edit window, FALSE otherwise. 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property ShowHeaderFooter() As Boolean


Return Type

Read/write Boolean.

See Also

EditWindow Object 

	ShowHits Property  XE "ShowHits Property" 


Description

Read/Write: Returns/Sets show hits status of edit window. 

This property is TRUE if hits are being shown in the edit window, FALSE otherwise. 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property ShowHits() As Boolean


Return Type

Read/write Boolean.

See Also

EditWindow Object 

	ShowMoves Property  XE "ShowMoves Property" 


Description

Read/Write: Returns/Sets show moves status of edit window.
This property is TRUE if moves are being shown in the edit window, FALSE otherwise. 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property ShowMoves() As Boolean


Return Type

Read/write Boolean.

See Also

EditWindow Object 

	ShowOutTolOnly Property  XE "ShowOutTolOnly Property" 


Description

Read/Write: Returns/Sets show out of tolerance status of edit window. 

This property is TRUE if only out-of-tolerance dimensions are being shown in the edit window, FALSE otherwise. If ShowDimensions is FALSE, this property is ignored. 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property ShowOutTolOnly() As Boolean


Return Type

Read/write Boolean.

See Also

EditWindow Object 

	ShowTips Property  XE "ShowTips Property" 


Description

Read/Write: Returns/Sets show tips status of edit window. 

This property is TRUE if tips are being shown in the edit window, FALSE otherwise. 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property ShowTips() As Boolean


Return Type

Read/write Boolean.

See Also

EditWindow Object 

	Top Property  XE "Top Property" 


Description

Read/Write: Returns/Sets the top coordinate of the edit window. The top edge of the edit window, measured from the top edge of the Windows Desktop.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Top() As Long


Return Type

Read/write Long.

Remarks

The Top property is measured in screen pixels.

See Also

EditWindow Object 

	Visible Property  XE "Visible Property" 


Description

Read/Write: Returns/Sets edit window visibility status. 

This property is TRUE if the edit window is visible, FALSE otherwise. 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Visible() As Boolean


Return Type

Read/write Boolean.

See Also

EditWindow Object 

	Width Property  XE "Width Property" 


Description

Read/Write: Returns/Sets the width of the edit window. 

The width of the edit window in screen pixels. 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Width() As Long


Return Type

Read/write Long.

See Also

EditWindow Object 
	ExecutedCommands Object 


Description

Part Program Executed Commands Collection Object. The ExecutedCommands object acts much like the Commands object except that it only contains a collection of the executed commands from the last part program execution, while the Commands object contains all the commands in the part program.

Object Model

 

	[image: image295]
[image: image296]

 INCLUDEPICTURE "Images/pcdlrn~application~167.gif" \* MERGEFORMAT \d [image: image297]
[image: image298]

 INCLUDEPICTURE "Images/pcdlrn~parent_(partprogram)~167.gif" \* MERGEFORMAT \d [image: image299]
[image: image300]

 INCLUDEPICTURE "Images/pcdlrn~item_(command)~167.gif" \* MERGEFORMAT \d [image: image301]
[image: image302]

 INCLUDEPICTURE "Images/pcdlrn~findbyuniqueid_(command)~167.gif" \* MERGEFORMAT \d [image: image303]
[image: image304]

 INCLUDEPICTURE "Images/pcdlrn~_item_(command)~167.gif" \* MERGEFORMAT \d [image: image305]


See Also

ExecutedCommands Members 

	ExecutedCommands Object Members 


See Also

ExecutedCommands Overview 

Methods

	_Item Method  XE "_Item Method" 


Syntax

	Visual Basic

	Public Function _Item( _

   ByVal Identifier As Variant _

) As Command


Parameters

Identifier

See Also

ExecutedCommands Object 

	FindByUniqueID Method  XE "FindByUniqueID Method" 


Description

Finds the command identified by the unique id formed from low and high parts. 

Finds a command by a unique ID using HighPart and LoPart parameters.

Syntax

	Visual Basic

	Public Function FindByUniqueID( _

   ByVal HiPart As Long, _

   ByVal LoPart As Long _

) As Command


Parameters

HiPart

This parameter is a Long value that should come from a call to GetUniqueID made previously on the desired command object.

LoPart

This parameter is a Long value that should come from a call to GetUniqueID made previously on the command object.

Return Type

Command object.

Remarks

You will need to use the GetUniqueID method in order to get the HiPart and LoPart parameter values.

Example

Dim App As PCDLRN.Application

' Get the application object via CreateObject

Set App = CreateObject("PCDLRN.Application") 

Dim Part As PCDLRN.PartProgram

' Assume part program is already open

Set Part = App.ActivePartProgram

' Get the entire list of commands in the part program

Dim Cmds As PCDLRN.Commands

Set Cmds = Part.Commands

Dim Cmd As PCDLRN.Command

' Declare variables for holding the unique id values

Dim HiPart As Long, LoPart As Long

' Loop through all of the commands in the part program

For Each Cmd In Cmds

' Find the first assignment command in the part program

' And save off the unique id for that command

If Cmd.Type = ASSIGNMENT Then

Cmd.GetUniqueID HiPart, LoPart

Exit For

End If

Next Cmd

' Execute the part program

Part.EXECUTE

Dim ExecutedCmds As PCDLRN.ExecutedCommands

' Obtain the set of execute commands

Set ExecutedCmds = Part.ExecutedCommands

' Check to see if assignment executed

Set Cmd = ExecutedCmds.FindByUniqueID(HiPart, LoPart)

If Not Cmd Is Nothing Then

MsgBox "Assignment command executed"

End If

See Also

ExecutedCommands Object | GetUniqueID Method 

	Item Method  XE "Item Method" 


Description

Returns the nth command from the last execution. The Item method returns the executed command specified by the provided index number in Num.

Syntax

	Visual Basic

	Public Function Item( _

   ByVal Num As Long _

) As Command


Parameters

Num

Required Long value that indicates which executed command to return. This is the index number of the executed command in the ExecutedCommands collection. For example, if you pass 5 in, the 5th command to execute from the last execution would be returned.

Return Type

Command object.

See Also

ExecutedCommands Object 

Properties

	Application Property  XE "Application Property" 


Description

Read Only: The Application property returns the Application object.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Application() As Application


Return Type

Application object.

See Also

ExecutedCommands Object 

	Count Property  XE "Count Property" 


Description

Read Only: Returns the number of commands in the commands collection. 

The Count property returns a number indicating how many commands were executed.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Count() As Long


Return Type

Long value.

See Also

ExecutedCommands Object 

	Parent Property  XE "Parent Property" 


Description

Read Only: Returns the parent PartProgram Object. The Parent property returns the parent PartProgram object.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Parent() As PartProgram


Return Type

PartProgram object.

See Also

ExecutedCommands Object 
	ExternalCommand Object 


Description

The ExternalCommand object causes PC-DMIS to launch an external program during part program execution. This object has one property: The command property. This property consists of a string value used to execute the external command.

See Also

ExternalCommand Members 

	ExternalCommand Object Members 


See Also

ExternalCommand Overview 

Properties

	Command Property  XE "Command Property" 


Description

Read/Write: External command string. 

This property returns or sets the string value of the command to be executed. 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Command() As String


Return Type

Read/write String value.

Remarks

This string should be in the same format as a string entered into Window's Run Dialog box (i.e. The string should include full pathname and executable name of the external command to be executed).

See Also

ExternalCommand Object 
	FeatCmd Object 


Description

Feature Command Object. FeatCmd are created from more generic Command objects to pass information specific to the feature command back and forth.

Object Model

 

	[image: image306]
[image: image307]

 INCLUDEPICTURE "Images/pcdlrn~parent_(command)~177.gif" \* MERGEFORMAT \d [image: image308]
[image: image309]

 INCLUDEPICTURE "Images/pcdlrn~targets~177.gif" \* MERGEFORMAT \d [image: image310]
[image: image311]

 INCLUDEPICTURE "Images/pcdlrn~gethit_(pointdata)~177.gif" \* MERGEFORMAT \d [image: image312]
[image: image313]

 INCLUDEPICTURE "Images/pcdlrn~getsamplehit_(pointdata)~177.gif" \* MERGEFORMAT \d [image: image314]
[image: image315]

 INCLUDEPICTURE "Images/pcdlrn~getcircmoveitem_(pointdata)~177.gif" \* MERGEFORMAT \d [image: image316]


See Also

FeatCmd Members 

	FeatCmd Object Members 


See Also

FeatCmd Overview 

Methods

	AddInputFeat Method  XE "AddInputFeat Method" 


Description

Appends to list of Input Features. Adds a feature to set of input features used in constructed features.

Syntax

	Visual Basic

	Public Function AddInputFeat( _

   ByVal ID As String _

) As Boolean


Parameters

Required String that is the ID of the feature to add to the set of input features.

Return Type

Boolean value. Boolean returns true if the function succeeds, false if it fails.

Remarks

This function only tries to add ID to a FeatCmd object representing a constructed feature if the two features exist and ID precedes the FeatCmd object in the command list. If the FeatCmd is not a constructed feature, this function will fail.

See Also

FeatCmd Object 

	AddManualScanHit Method  XE "AddManualScanHit Method" 


Description

Adds a hit to a manual scan command. 

Syntax

	Visual Basic

	Public Function AddManualScanHit( _

   ByVal X As Double, _

   ByVal Y As Double, _

   ByVal Z As Double, _

   ByVal I As Double, _

   ByVal J As Double, _

   ByVal K As Double _

) As Boolean


Parameters

See Also

FeatCmd Object 

	CalculateNominals Method  XE "CalculateNominals Method" 


Description

Recalculate the feature nominals. This method recalculates feature nominals for a measured feature.

Syntax

	Visual Basic

	Public Function CalculateNominals() As Boolean


Return Type

Boolean value. Boolean returns true if the function succeeds and feature nominals are recalculated, false if it fails.

See Also

FeatCmd Object | CopyMeasToNom Property 

	CountHits Method  XE "CountHits Method" 


Description

Recount the hits for a measured feature. Recounts the hits for a measured feature.

Syntax

	Visual Basic

	Public Function CountHits() As Boolean


Return Type

Boolean value. Boolean returns true if the function succeeds and recounts the hits, false if it fails.

See Also

FeatCmd Object 

	Evaluate Method  XE "Evaluate Method" 


Description

Evaluates the feature. 

Forces an evaluation of a feature without executing it. This takes one parameter that specifies the type of feature evaluation to perform.

Syntax

	Visual Basic

	Public Function Evaluate( _

   ByVal MeasNominal As EVALUATION_TYPES _

) As Boolean


Parameters

MeasNominal

This specifies the type of evaluation to perform.

Use an item from the EVALUATION_TYPES enumeration table located at the end of this documentation.

See Also

FeatCmd Object 

	GenerateHits Method  XE "GenerateHits Method" 


Description

Generates hits for measured features. 

Syntax

	Visual Basic

	Public Function GenerateHits() As Boolean


Return Type

Boolean value. Boolean returns true if the function succeeds, false if it fails.

Remarks

This function tries to add evenly spaced hits to the FeatCmd object. If the FeatCmd object is not a measured feature, this function will fail.

See Also

FeatCmd Object 

	GetCircMoveItem Method  XE "GetCircMoveItem Method" 


Description

Returns Point Data Object with interpolated circular move item data. 

Syntax

	Visual Basic

	Public Function GetCircMoveItem( _

   ByVal CircMove_Index As Long, _

   ByVal Move_index As Long, _

   ByVal CoordSystem As FDATA_COORDSYS, _

   ByVal Alignment As String, _

   ByVal Workplane As ENUM_PLANE_TYPE _

) As PointData


Parameters

CircMove_Index

Move_index

CoordSystem

Use an item from the FDATA_COORDSYS enumeration table located at the end of this documentation.

Alignment

Workplane

Use an item from the ENUM_PLANE_TYPE enumeration table located at the end of this documentation.

See Also

FeatCmd Object 

	GetData Method  XE "GetData Method" 


Description

Gets feature data relative to provided parameters.
Syntax

	Visual Basic

	Public Function GetData( _

   ByVal PointData As PointData, _

   ByVal DataType As FDATA_TYPES, _

   ByVal TheoMeas As FDATA_DATASET, _

   ByVal CoordSystem As FDATA_COORDSYS, _

   ByVal AlignID As String, _

   ByVal Workplane As ENUM_PLANE_TYPE _

) As Boolean


Parameters

PointData

Required PointData object into which the data is stored.

DataType

Optional enumerated or Long value.

Use an item from the FDATA_TYPES enumeration table located at the end of this documentation.

TheoMeas

Optional Long that is one of FDATA_THEO, FDATA_MEAS, or FDATA_TARG. 

If no value is supplied, the default value is FDATA_MEAS.

Use an item from the FDATA_DATASET enumeration table located at the end of this documentation.

CoordSystem

Optional Long that denotes the coordinate system in which to report. If no value is supplied, the default value is FDATA_PART.

Use an item from the FDATA_COORDSYS enumeration table located at the end of this documentation.

AlignID

Optional String that denotes what alignment to use. You can pass the empty string to denote the current alignment.

Workplane

Optional parameter with the ENUM_PLANE_TYPE enumeration for the PARTMM3 and POLAR coordinate system to denote the workplane to be used.

Use an item from the ENUM_PLANE_TYPE enumeration table located at the end of this documentation.

Return Type

This function returns TRUE if the data was successfully retrieved from FeatCmd object, FALSE otherwise.

Remarks

Not every data type can be used with every feature type. Some data types return a single value, some data types return multiple values. Some data types return both depending on the feature. For example, a cone will return two diameters in the first and second data fields of the point object while only returning one diameter for a circle object. Use the FDATA_THEO flag if you want theoretical data, FDATA_MEAS if you want measured data.

See Also

FeatCmd Object | PutData Method 

	GetFormError Method  XE "GetFormError Method" 


Description

Returns Y14.5.1 Form error if applicable, else 0.0 

Syntax

	Visual Basic

	Public Function GetFormError() As Double


See Also

FeatCmd Object 

	GetHit Method  XE "GetHit Method" 


Description

Returns Point Data Object with hit data. Returns a PointData object with the values of the sample hit.

Syntax

	Visual Basic

	Public Function GetHit( _

   ByVal index As Long, _

   ByVal DataType As FHITDATA_TYPES, _

   ByVal MeasOrTheo As FDATA_DATASET, _

   ByVal CoordSystem As FDATA_COORDSYS, _

   ByVal Alignment As String, _

   ByVal Workplane As ENUM_PLANE_TYPE _

) As PointData


Parameters

index

The index number of the desired sample hit object to retrieve.

DataType

Optional Long value. If no value is supplied, the default value is FHITDATA_CENTROID.

Use an item from the FHITDATA_TYPES enumeration table located at the end of this documentation.

MeasOrTheo

Optional Long value. If no value is supplied, the default value is FDATA_MEAS.

Use an item from the FDATA_DATASET enumeration table located at the end of this documentation.

CoordSystem

Optional Long value that denotes the coordinate system in which to report. An empty value of "" will use the current alignment.

Use an item from the FDATA_COORDSYS enumeration table located at the end of this documentation.

Alignment

Optional String that denotes what alignment to use. You can pass the empty string to denote the current alignment. 

If no value is supplied, the default value is an empty string which causes the current alignment to be used.

Workplane

Optional parameter with the ENUM_PLANE_TYPE enumeration for the PARTMM3 and POLAR coordinate system to denote the workplane to be used.

Use an item from the ENUM_PLANE_TYPE enumeration table located at the end of this documentation.

Return Type

PointData object.

Remarks

Use this function to obtain hit information from individual objects. This command works with objects that the hits are supplied by the user and with objects in which the hits are generated by the object itself.

See Also

FeatCmd Object | PutData Method 

	GetInputID Method  XE "GetInputID Method" 


Description

Gets ID of Input Feature. 

Syntax

	Visual Basic

	Public Function GetInputID( _

   ByVal index As Long _

) As String


Parameters

index

See Also

FeatCmd Object 

	GetInputOffset Method  XE "GetInputOffset Method" 


Description

Gets Offset value for corresponding offset feature in constructed offset features

Syntax

	Visual Basic

	Public Function GetInputOffset( _

   ByVal index As Long _

) As Double


Parameters

index

Required Long between one and FeadCmd.NumHits.

Return Type

Double offset value.

Remarks

Use this function with constructed features that have offset values from input features.

See Also

FeatCmd Object | NumHits Property | SetInputOffset Method 

	GetPoint Method  XE "GetPoint Method" 


Description

Returns values for specified feature point type. This method retrieves point information for individual objects.

Syntax

	Visual Basic

	Public Function GetPoint( _

   ByVal PointType As FPOINT_TYPES, _

   ByVal TheoMeas As FDATA_DATASET, _

   ByRef X As Double, _

   ByRef Y As Double, _

   ByRef Z As Double _

) As Boolean


Parameters

PointType

Use an item from the FPOINT_TYPES enumeration table located at the end of this documentation.

TheoMeas

Enumerated Long value.

X

Variable of type double that will hold the X data for the point.

Y

Variable of type double that will hold the Y data for the point.

Z

Variable of type double that will hold the Z data for the point.

Use an item from the FDATA_DATASET enumeration table located at the end of this documentation.

Return Type

Boolean value indicating success or failure of the call.

See Also

FeatCmd Object | PutPoint Method 

	GetSampleHit Method  XE "GetSampleHit Method" 


Description

Returns Point Data Object with sample hit data. Returns a PointData object with the values of the sample hit.

Syntax

	Visual Basic

	Public Function GetSampleHit( _

   ByVal index As Long, _

   ByVal DataType As FHITDATA_TYPES, _

   ByVal MeasOrTheo As FDATA_DATASET, _

   ByVal CoordSystem As FDATA_COORDSYS, _

   ByVal Alignment As String, _

   ByVal Workplane As ENUM_PLANE_TYPE _

) As PointData


Parameters

index

The index number of the desired hit object to retrieve.

DataType

Optional Long value. If no value is supplied, the default value is HITDATA_CENTROID.

Use an item from the FHITDATA_TYPES enumeration table located at the end of this documentation.

MeasOrTheo

Optional Long value. If no value is supplied, the default value is FDATA_MEAS.

Use an item from the FDATA_DATASET enumeration table located at the end of this documentation.

CoordSystem

Optional Long that denotes the coordinate system in which to report. An empty value of "" will use the current alignment.

Use an item from the FDATA_COORDSYS enumeration table located at the end of this documentation.

Alignment

Optional String that denotes what alignment to use. You can pass the empty string to denote the current alignment. 

If no value is supplied, the default value is an empty string which causes the current alignment to be used.

Workplane

Optional parameter with the ENUM_PLANE_TYPE enumeration for the PARTMM3 and POLAR coordinate system to denote the workplane to be used.

Use an item from the ENUM_PLANE_TYPE enumeration table located at the end of this documentation.

Return Type

PointData object.

Remarks

Use this function to obtain sample hit information from Auto Feature commands.

See Also

FeatCmd Object 

	GetSurfaceVectors Method  XE "GetSurfaceVectors Method" 


Description

Gets Values of Surface Vectors for Auto Edge Feature. This method gets the surface vectors of an angle hit function.

Syntax

	Visual Basic

	Public Function GetSurfaceVectors( _

   ByVal TheoMeas As FDATA_DATASET, _

   ByRef I1 As Double, _

   ByRef J1 As Double, _

   ByRef K1 As Double, _

   ByRef I2 As Double, _

   ByRef J2 As Double, _

   ByRef K2 As Double _

) As Boolean


Parameters

TheoMeas

Long value.

Use an item from the FDATA_DATASET enumeration table located at the end of this documentation.

I1

Variable of type double that will hold the I component of the first vector.

J1

Variable of type double that will hold the J component of the first vector.

K1

Variable of type double that will hold the K component of the first vector.

I2

Variable of type double that will hold the I component of the second vector.

J2

Variable of type double that will hold the J component of the second vector.

K2

Variable of type double that will hold the K component of the second vector.

Return Type

Boolean value indicating success or failure of the call.

See Also

FeatCmd Object | PutSurfaceVectors Method 

	GetVector Method  XE "GetVector Method" 


Description

Returns values for specified feature vector. This method retrieves vector components of individual objects.

Syntax

	Visual Basic

	Public Function GetVector( _

   ByVal VectorType As FVECTOR_TYPES, _

   ByVal TheoMeas As FDATA_DATASET, _

   ByRef I As Double, _

   ByRef J As Double, _

   ByRef K As Double _

) As Boolean


Parameters

VectorType

Use an item from the FVECTOR_TYPES enumeration table located at the end of this documentation. 

TheoMeas

Long value.

Use an item from the FDATA_DATASET enumeration table located at the end of this documentation.

I

Variable of type double that will hold the I component of the vector.

J

Variable of type double that will hold the J component of the vector.

K

Variable of type double that will hold the K component of the vector.

Return Type

Boolean value indicating success or failure of the call.

See Also

FeatCmd Object | PutVector Method 

	PutData Method  XE "PutData Method" 


Description

Puts feature data relative to provided parameters. This function returns TRUE if the data was successfully retrieved from expression, FALSE otherwise.

Syntax

	Visual Basic

	Public Function PutData( _

   ByVal Data As PointData, _

   ByVal DataType As FDATA_TYPES, _

   ByVal TheoMeas As FDATA_DATASET, _

   ByVal CoordSystem As FDATA_COORDSYS, _

   ByVal AlignID As String, _

   ByVal Workplane As ENUM_PLANE_TYPE _

) As Boolean


Parameters

Data

Required PointData object from which the data is taken to set values in the corresponding object.

DataType

Optional Long value. If no value is supplied, the default value is FDATA_CENTROID.

Use an item from the FDATA_TYPES enumeration table located at the end of this documentation.

TheoMeas

Optional Long value. If no value is supplied, the default value is FDATA_MEAS.

Use an item from the FDATA_DATASET enumeration table located at the end of this documentation.

CoordSystem

Optional Long that denotes the coordinate system in which to report. If no value is supplied, the default value is FDATA_PART.

Use an item from the FDATA_COORDSYS enumeration table located at the end of this documentation.

AlignID

Optional String that denotes what alignment to use. You can pass the empty string to denote the current alignment. 

If no value is supplied, the default value is an empty string which causes the current alignment to be used.

Workplane

Optional parameter with the ENUM_PLANE_TYPE enumeration for the PARTMM3 and POLAR coordinate system to denote the workplane to be used.

Use an item from the ENUM_PLANE_TYPE enumeration table located at the end of this documentation.

Return Type

Boolean value.

Remarks

Not every data type can be used with every feature type. Some data types take a single value, some data types take multiple values. Some data types take one or more depending on the feature. For example, a cone can take two diameters in the first and second data fields of the point object while the circle object only takes one diameter. 

Use the FDATA_THEO flag if you want theoretical data, FDATA_MEAS if you want measured data

See Also

FeatCmd Object | GetData Method 

	PutPoint Method  XE "PutPoint Method" 


Description

Sets feature point data for specified point type. Sets point information for individual objects.

Syntax

	Visual Basic

	Public Function PutPoint( _

   ByVal PointType As FPOINT_TYPES, _

   ByVal TheoMeas As FDATA_DATASET, _

   ByVal X As Double, _

   ByVal Y As Double, _

   ByVal Z As Double _

) As Boolean


Parameters

PointType

FPOINT_TYPES enumeration.

Use an item from the FPOINT_TYPES enumeration table located at the end of this documentation.

TheoMeas

Long value.

Use an item from the FDATA_DATASET enumeration table located at the end of this documentation.

X

Double representing X value of the point.

Y

Double representing Y value of the point.

Z

Double representing Z value of the point.

Return Type

Boolean value indicating success or failure of the call.

See Also

FeatCmd Object | GetPoint Method 

	PutSurfaceVectors Method  XE "PutSurfaceVectors Method" 


Description

Sets Values of Surface Vectors for Auto Edge Feature.

Sets the surface vectors for an angle hit object.

Syntax

	Visual Basic

	Public Function PutSurfaceVectors( _

   ByVal TheoMeas As FDATA_DATASET, _

   ByVal I1 As Double, _

   ByVal J1 As Double, _

   ByVal K1 As Double, _

   ByVal I2 As Double, _

   ByVal J2 As Double, _

   ByVal K2 As Double _

) As Boolean


Parameters

TheoMeas

	Value
	Description

	FDATA_THEO
	 

	FDATA_MEAS
	 

	FDATA_TARG
	 

	FDATA_ALL
	 


Long value.

I1

Double representing the I component of the first vector.

J1

Double representing the J component of the first vector.

K1

Double representing the K component of the first vector.

I2

Double representing the I component of the second vector.

J2

Double representing the J component of the second vector.

K2

Double representing the K component of the second vector.

Return Type

Boolean value indicating success or failure of the call.

See Also

FeatCmd Object | GetSurfaceVectors Method 

	PutVector Method  XE "PutVector Method" 


Description

Sets vector values for specified feature vector. Sets vector components of individual objects. 
Syntax

	Visual Basic

	Public Function PutVector( _

   ByVal VectorType As FVECTOR_TYPES, _

   ByVal TheoMeas As FDATA_DATASET, _

   ByVal I As Double, _

   ByVal J As Double, _

   ByVal K As Double _

) As Boolean


Parameters

VectorType

Use an item from the FVECTOR_TYPES enumeration table located at the end of this documentation.

TheoMeas

Long value.

Use an item from the FDATA_DATASET enumeration table located at the end of this documentation.

I

Double indicating the I component of the vector.

J
Double indicating the J component of the vector.

K
Double indicating the K component of the vector.

Return Type

Boolean value indicating success or failure of the call.

See Also

FeatCmd Object | GetVector Method 

	RemoveInputFeat Method  XE "RemoveInputFeat Method" 


Description

Removes Constructed Feature Input Feature. Removes the feature at the specified index position.

Syntax

	Visual Basic

	Public Function RemoveInputFeat( _

   ByVal index As Long _

) As Boolean


Parameters

index

Required Long between one and expression.NumHits

Return Type

Boolean value. This function returns TRUE if FeatCmd is a constructed object and Index is the index of a input feature.

Remarks

When successful, this function removes the feature at the specified index position.

See Also

FeatCmd Object | NumHits Property 

	RemoveManualScanHits Method  XE "RemoveManualScanHits Method" 


Description

Deletes hits from a manual scan command. 

Syntax

	Visual Basic

	Public Function RemoveManualScanHits( _

   ByVal StartingIndex As Long, _

   ByVal Count As Long _

) As Boolean


Parameters

StartingIndex

Count

See Also

FeatCmd Object 

	SetHit Method  XE "SetHit Method" 


Description

Sets hit data of specified hit using part coordinates relative to the current alignment. Sets the hit data of a specified hit. It uses the part coordinate system relative to the current alignment.

Syntax

	Visual Basic

	Public Function SetHit( _

   ByVal index As Long, _

   ByVal DataType As FHITDATA_TYPES, _

   ByVal MeasOrTheo As FDATA_DATASET, _

   ByVal X As Double, _

   ByVal Y As Double, _

   ByVal Z As Double _

) As Boolean


Parameters

index

Integer representing the hit number.

DataType

Enumerated data type that specifies what type of data you are setting. This can be Centroid, Vector, or BallCenter.

Use an item from the FHITDATA_TYPES enumeration table located at the end of this documentation.

MeasOrTheo

Enumerated value that indentifies the portion of the hit getting set.

Use an item from the FDATA_DATASET enumeration table located at the end of this documentation.

X

The X value for the point / vector being set.

Y

The Y value for the point / vector being set.

Z

The Z value for the point / vector being set.

Return Type

Boolean value. This function returns TRUE if the hit or vector gets successfully set, FALSE otherwise.

See Also

FeatCmd Object | SetHit2 Method 

	SetHit2 Method  XE "SetHit2 Method" 


Description

Sets hit data of specified hit. 

This method works just like the SetHit method; it sets the hit data of a specified hit, but it uses a specified coordinate system and alignment.

Syntax

	Visual Basic

	Public Function SetHit2( _

   ByVal index As Long, _

   ByVal DataType As FHITDATA_TYPES, _

   ByVal MeasOrTheo As FDATA_DATASET, _

   ByVal CoordSystem As FDATA_COORDSYS, _

   ByVal Alignment As String, _

   ByVal Workplane As ENUM_PLANE_TYPE, _

   ByVal X As Double, _

   ByVal Y As Double, _

   ByVal Z As Double _

) As Boolean


Parameters

index

Integer representing the hit number.

DataType

Enumerated data type that specifies what type of data you are setting. This can be Centroid, Vector, or BallCenter.

Use an item from the FHITDATA_TYPES enumeration table located at the end of this documentation.

MeasOrTheo

Enumerated value that indentifies the portion of the hit getting set. The possible enumerated values for all, measured, theoretical, or targets.

Use an item from the FDATA_DATASET enumeration table located at the end of this documentation.

CoordSystem

Enumerated value that indentifies the type of coordinate system to use (Cad, Machine, Part, PartMM3, or Polar).

Use an item from the FDATA_COORDSYS enumeration table located at the end of this documentation.

Alignment

String value representing the ID of the alignment to use.

Workplane

Optional parameter with the ENUM_PLANE_TYPE enumeration that denotes the workplane.

Use an item from the ENUM_PLANE_TYPE enumeration table located at the end of this documentation.

X

X value for the point / vector being set.

Y

Y value for the point / vector being set.

Z

Z value for the point / vector being set.

See Also

FeatCmd Object | SetHit Method 

	SetInputFeat Method  XE "SetInputFeat Method" 


Description

Sets Constructed Feature Input Feature. Replaces the input feature at position Index in FeatCmd object's list of input features with ID.

Syntax

	Visual Basic

	Public Function SetInputFeat( _

   ByVal ID As String, _

   ByVal index As Long _

) As Boolean


Parameters

Required String that is the ID of a feature.

index

Required Long between one and FeatCmd.NumHits. The index value must be less than the value returned by the NumHits property (you can use the NumHits property with constructed features to determine the number of inputs. For adding inputs you will need to use the AddInputFeat method).

Return Type

Boolean value. This function returns TRUE if FeadCmd is a constructed feature and ID is the ID of a valid input feature, and Index is the index of a input feature, FALSE otherwise.

See Also

FeatCmd Object | NumHits Property 

	SetInputOffset Method  XE "SetInputOffset Method" 


Description

Sets Offset value for corresponding offset feature in constructed offset features.
Syntax

	Visual Basic

	Public Function SetInputOffset( _

   ByVal index As Long, _

   ByVal Offset As Double _

) As Boolean


Parameters

index

Required Long between one and FeatCmd.NumHits

Offset

Required Double which specifies the offset value

Return Type

Boolean value.

Remarks

Use this function with constructed features to set the offset values for input features.

See Also

FeatCmd Object | NumHits Property | GetInputOffset Method 

Properties

	AlignWorkPlane Property  XE "AlignWorkPlane Property" 


Description

Read/Write: Workplane for Constructed Alignment Plane and Line Workplane value for constructed alignment planes and lines.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property AlignWorkPlane() As ENUM_ALIGN_WORKPLANE


Return Type

ENUM_ALIGN_WORKPLANE enumerated value.

Remarks

This property applies only to PC-DMIS constructed features that have a workplane field.

See Also

FeatCmd Object | Command Object 

	AutoCircularMove Property  XE "AutoCircularMove Property" 


Description

Read/Write: Flag indicating if circular moves should be used during measurement. Flag indicating whether circular moves should be used between hits.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property AutoCircularMove() As Boolean


Return Type

Read/write Boolean value.

Remarks

This property applies only to PC-DMIS commands that have an auto circular move field.

See Also

FeatCmd Object | Command Object 

	AutoClearPlane Property  XE "AutoClearPlane Property" 


Description

Read/Write: Flag indicating if clearance planes should automatically be used with the feature. Flag indicating whether clearance planes should automatically be used with the feature.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property AutoClearPlane() As Boolean


Return Type

Read/write Boolean value.

Remarks

This property applies only to PC-DMIS commands that have an auto clearplane field.

See Also

FeatCmd Object | Command Object 

	AutoMove Property  XE "AutoMove Property" 


Description

Read/Write: Use Auto Move Setting. Auto Move Flag.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property AutoMove() As Boolean


Return Type

Read/write Boolean value.

Remarks

This property applies only to PC-DMIS commands that have an auto move field.

See Also

FeatCmd Object | Command Object 

	AutoMoveDistance Property  XE "AutoMoveDistance Property" 


Description

Read/Write: Auto Move Distance used in calculating auto move.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property AutoMoveDistance() As Double


Return Type

Read/write Double value.

Remarks

This property applies only to PC-DMIS commands that have an auto move distance field.

See Also

FeatCmd Object | Command Object 

	AutoPH9 Property  XE "AutoPH9 Property" 


Description

Read/Write: Flag indicating if the selected tip should be adjusted automatically. Flag indicating if selected tip should be automatically adjusted during measurement of feature.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property AutoPH9() As Boolean


Return Type

Read/write Boolean value.

Remarks

This property applies only to PC-DMIS commands that have an AutoPH9 field.

See Also

FeatCmd Object | Command Object 

	AutoReadPos Property  XE "AutoReadPos Property" 


Description

Read/Write: Auto Read Position. Setting Auto Read Position Flag.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property AutoReadPos() As Boolean


Return Type

Read/write Boolean value.

Remarks

This property applies only to PC-DMIS commands that have an auto read pos field.

See Also

FeatCmd Object | Command Object 

	BestFitMathType Property  XE "BestFitMathType Property" 


Description

Read/Write: Type of math algorithm used to best fit the feature. Value representing the best fit math algorithm to be used in calculating the measured feature values based on the measured hits. Possible values include the following.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property BestFitMathType() As ENUM_BEST_FIT_MATH_TYPES


Return Type

Read/write ENUM_BEST_FIT_MATH_TYPES enumeration.

Remarks

This property applies only to the circle and cylinder measured features and best fit constructed features.

See Also

FeatCmd Object | Command Object 

	Bound Property  XE "Bound Property" 


Description

Read/Write: Flag indicating whether object is bound or unbound. Flag indicating whether or not feature is bound.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Bound() As Boolean


Return Type

Read/write Boolean value.

Remarks

This property applies only to PC-DMIS commands that have a bound/unbound field.

See Also

FeatCmd Object | Command Object 

	BoxLength Property  XE "BoxLength Property" 


Description

Read/Write: Auto High Point Box Length. Box length value for auto high point.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property BoxLength() As Double


Return Type

Read/write Double value.

Remarks

This property is only applicable for the PC-DMIS auto high point command.

See Also

FeatCmd Object | Command Object 

	BoxWidth Property  XE "BoxWidth Property" 


Description

Read/Write: Auto High Point Box Width. Box width value for auto high point.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property BoxWidth() As Double


Return Type

Read/write Double value.

Remarks

This property is only applicable for the PC-DMIS auto high point command.

See Also

FeatCmd Object | Command Object 

	CircularRadiusIn Property  XE "CircularRadiusIn Property" 


Description

Read/Write: Auto High Point Inner Circular Radius. Inside circular radius value for auto high point.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property CircularRadiusIn() As Double


Return Type

Read/write Double value.

Remarks

This property is only applicable for the PC-DMIS auto high point command.

See Also

FeatCmd Object | Command Object 

	CircularRadiusOut Property  XE "CircularRadiusOut Property" 


Description

Read/Write: Auto High Point Outer Circular. Radius Outside circular radius value for auto high point.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property CircularRadiusOut() As Double


See Also

FeatCmd Object | Command Object 

	CornerRadius Property  XE "CornerRadius Property" 


Description

Read/Write: Auto Notch and Auto Square Slot Corner Radius. Corner radius value for auto square slot and auto notch objects.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property CornerRadius() As Double


Return Type

Read/write Double value.

Remarks

This property is only applicable for the PC-DMIS auto square slot and auto notch commands.

See Also

FeatCmd Object | Command Object 

	DCCFindNomsMode Property  XE "DCCFindNomsMode Property" 


Description

Read/Write: Flag indicating whether measurement occurs in findnoms mode Indicates if the measurement mode for an auto feature should be done in find nominals mode or not.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property DCCFindNomsMode() As Boolean


Return Type

Read/write Boolean value.

Remarks

This property applies only to PC-DMIS auto features with a find nominals measurement field.

See Also

FeatCmd Object | Command Object 

	DCCMeasureInMasterMode Property  XE "DCCMeasureInMasterMode Property" 


Description

Read/Write: Flag indicating whether measurement occurs in master mode. Indicates if the measurement mode for an auto feature should be done in master mode or not.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property DCCMeasureInMasterMode() As Boolean


Return Type

Read/write Boolean value.

Remarks

This property applies only to PC-DMIS auto features with a master mode measurement field.

See Also

FeatCmd Object | Command Object 

	Depth Property  XE "Depth Property" 


Description

Read/Write: Auto feature depth. Gets or sets a depth value for a feature command.
Property type

Read-write property

Syntax

	Visual Basic

	Public Property Depth() As Double


Return Type

Read/write Double value.

Remarks

This property applies only to PC-DMIS commands that have a depth field.. 

The Command object allows you to also use the Indent property for setting a feature’s depth for compatibility purposes with older scripts, but you should use the newer Depth property for any current implementation. 

See Also

FeatCmd Object | Command Object | Indent Property | Depth Property 

	Deviation Property  XE "Deviation Property" 


Description

Read/Write: Auto sphere deviation value.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Deviation() As Double


Return Type

Read/write Double value.

Remarks

This property applies only to the PC-DMIS auto sphere command.

See Also

FeatCmd Object | Command Object 

	DisplayConeAngle Property  XE "DisplayConeAngle Property" 


Description

Read/Write: Flag indicating whether angle or length is displayed for cone. Flag indicating whether or not to display the angle of the cone. If this value is false, then the cone length is displayed.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property DisplayConeAngle() As Boolean


Return Type

Read/write Boolean value.

Remarks

This property applies only to PC-DMIS cone commands that have a display option on angle vs. length.

See Also

FeatCmd Object | Command Object 

	EdgeMeasureOrder Property  XE "EdgeMeasureOrder Property" 


Description

Read/Write: Auto Edge Measure Order. Measure order for edge points.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property EdgeMeasureOrder() As EDGE_MEASURE_TYPES


Return Type

Read/write Edge_Measure_Types enumeration.

Remarks

This property applies only to PC-DMIS edge commands.

See Also

FeatCmd Object | Command Object 

	EdgeThickness Property  XE "EdgeThickness Property" 


Description

Read/Write: Auto Edge Thickness. Thickness value for edge points.
Property type

Read-write property

Syntax

	Visual Basic

	Public Property EdgeThickness() As Double


Return Type

Read/write Double value.

Remarks

This property is only applicable for PC-DMIS edge commands.

See Also

FeatCmd Object | Command Object 

	EndAngle Property  XE "EndAngle Property" 


Description

Read/Write: Feature End Angle. End Angle value.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property EndAngle() As Double


Return Type

Read/write Double value.

Remarks

This property applies only to PC-DMIS commands that have an end angle field.

See Also

FeatCmd Object | Command Object 

	EndAngle2 Property  XE "EndAngle2 Property" 


Description

Read/Write: End Angle 2. Second End Angle value.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property EndAngle2() As Double


Return Type

Rea/write Double value.

Remarks

This property applies only to PC-DMIS commands that have a second end angle field.

See Also

FeatCmd Object | Command Object 

	FilterType Property  XE "FilterType Property" 


Description

Read/Write: Filter Object Linear/Polar. Setting Filter object filter type.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property FilterType() As ENUM_FILTER_TYPES


Return Type

Read/write Enum_Filter_Types enumeration.

Remarks

This property is only applicable for the PC-DMIS filter command.

See Also

FeatCmd Object | Command Object 

	FindHole Property  XE "FindHole Property" 


Description

Read/Write: Use Find Hole Routine. Flag indicating whether or not to use the Find Hole routine. If this value is true, then the Find Hole routine is used.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property FindHole() As Boolean


Return Type

Read/write Boolean value.

See Also

FeatCmd Object | Command Object 

	GenericAlignMode Property  XE "GenericAlignMode Property" 


Description

Read/Write: Generic Feature Alignment Dependence Value. Generic alignment mode.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property GenericAlignMode() As ENUM_GENERIC_ALIGN


Return Type

Read/write Enum_Generic_Align enumeration.

Remarks

This property is only applicable for the PC-DMIS generic feature command.

See Also

FeatCmd Object | Command Object 

	GenericDisplayMode Property  XE "GenericDisplayMode Property" 


Description

Read/Write: Generic Feature Diameter/Radius Display Type. Generic display mode.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property GenericDisplayMode() As ENUM_GENERIC_DISPLAY


Return Type

Read/write Enum_Generic_Display enumeration.

Remarks

This property is only applicable for the PC-DMIS generic feature command.

See Also

FeatCmd Object | Command Object 

	GenericType Property  XE "GenericType Property" 


Description

Read/Write: Generic Feature Type.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property GenericType() As ENUM_GENERIC_TYPES


Return Type

Read/write Enum_Generic_Types enumeration.

Remarks

This property is only applicable for the PC-DMIS generic feature command.

See Also

FeatCmd Object | Command Object 

	HighPointSearchMode Property  XE "HighPointSearchMode Property" 


Description

Read/Write: Auto High Point Search Mode.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property HighPointSearchMode() As HIGH_POINT_SEARCH_MODES


Return Type

Read/write High_Point_Search_Modes enumeration.

Remarks

This property is only applicable for the PC-DMIS auto high point command.

See Also

FeatCmd Object | Command Object 

	ID Property  XE "ID Property" 


Description

Read/Write: Feature ID Represents the ID of the feature.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property ID() As String


Return Type

Read/write String value.

Remarks

The IDs of the various objects in a part program should be unique.

See Also

FeatCmd Object 

	Increment Property  XE "Increment Property" 


Description

Read/Write: Auto High Point Increment Value.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Increment() As Double


Return Type

Read/write Double value.

Remarks

This property is only applicable for the PC-DMIS auto high point command.

See Also

FeatCmd Object | Command Object 

	Indent Property  XE "Indent Property" 


Description

Read/Write: Auto feature indent value. Indent distance (used with sample hits).

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Indent() As Double


Return Type

Read/write Double value.

Remarks

This property applies only to PC-DMIS commands that have an indent field.

Note: For compatibility purposes with older scripts, the Command object allows you to use Indent to set an auto circle’s depth, however, for any new scripts you should use the newer Depth property to do this. 

See Also

FeatCmd Object | Command Object | Depth Property 

	Indent2 Property  XE "Indent2 Property" 


Description

Read/Write: Auto Feature Indent 2 Value. Second indent distance (used with sample hits).

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Indent2() As Double


Return Type

Read/write Double value.

Remarks

This property applies only to PC-DMIS commands that have a second indent field.

See Also

FeatCmd Object | Command Object 

	Indent3 Property  XE "Indent3 Property" 


Description

Read/Write: Auto Feature Indent 3 Value. Third indent distance (used with sample hits).

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Indent3() As Double


Return Type

Read/write Double value.

Remarks

This property applies only to PC-DMIS commands that have a third indent field.

See Also

FeatCmd Object | Command Object 

	InitHits Property  XE "InitHits Property" 


Description

Read/Write: Number of initial sample hits.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property InitHits() As Double


Return Type

Read/write Double value.

Remarks

This property applies only to PC-DMIS commands that have a working initial hits field. These include:

· AUTO Angle

· AUTO Circle

· AUTO Cylinder

· AUTO Edge

· AUTO Ellipse

· AUTO Notch

· AUTO Round Slot

· AUTO Sphere

· AUTO Square Slot

· AUTO Surface

· Angle Hit

· Edge Hit

All other features only allow a read-only zero for initial hits.

See Also

FeatCmd Object | Command Object 

	Inner Property  XE "Inner Property" 


Description

Read/Write: Inside/Outside Feature Indicates whether the feature is a hole (inner) or a stud (outer).

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Inner() As Boolean


Return Type

Read/write Boolean value.

Remarks

This property applies only to PC-DMIS commands that can be either inside or outside features.

See Also

FeatCmd Object | Command Object 

	InteriorHit Property  XE "InteriorHit Property" 


Description

Read/Write: Flag indicating whether hits are exterior or interior hits. Flag used to indicate type of hit for objects that can have interior/exterior hits.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property InteriorHit() As Boolean


Return Type

Read/write Boolean value.

Remarks

This property applies only to PC-DMIS commands that have an interior/exterior hit field.

See Also

FeatCmd Object | Command Object 

	Line3D Property  XE "Line3D Property" 


Description

Read/Write: Flag indicating whether line is two dimensional or three dimensional. Indicates whether the feature is a three dimensional line or a two dimensional line. A value of false indicates a two dimensional line.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Line3D() As Boolean


Return Type

Read/write Boolean value.

Remarks

This property applies only to PC-DMIS lines features with and 2D/3D field.

See Also

FeatCmd Object | Command Object 

	ManualPrePosition Property  XE "ManualPrePosition Property" 


Description

Read/Write: Manual PrePosition 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property ManualPrePosition() As Boolean


See Also

FeatCmd Object 

	MeasAngle Property  XE "MeasAngle Property" 


Description

Read Only: Measured Angle Measured angle value.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property MeasAngle() As Double


Return Type

Read only Double value.

Remarks

This property applies only to PC-DMIS commands that have an angle field.

See Also

FeatCmd Object | Comment Object 

	MeasDiam Property  XE "MeasDiam Property" 


Description

Read Only: Measured Diameter Measured diameter value.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property MeasDiam() As Double


Return Type

Read only Double value.

Remarks

This property applies only to PC-DMIS commands that have a diameter field.

See Also

FeatCmd Object | Command Object 

	MeasHeight Property  XE "MeasHeight Property" 


Description

Read Only: Measured Height. This property applies only to PC-DMIS commands that have a height field.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property MeasHeight() As Double


Return Type

Read only Double value.

Remarks

This property applies only to PC-DMIS commands that have a height field.

See Also

FeatCmd Object | Command Object 

	MeasLength Property  XE "MeasLength Property" 


Description

Read Only: Measured Length. This property applies only to PC-DMIS commands that have a length field.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property MeasLength() As Double


Return Type

Read only Double value.

Remarks

This property applies only to PC-DMIS commands that have a length field.

See Also

FeatCmd Object | Command Object 

	MeasMajorAxis Property  XE "MeasMajorAxis Property" 


Description

Read Only: Auto Ellipse Measured Major Axis. Measured major axis length value (ellipse).

Property type

Read-write property

Syntax

	Visual Basic

	Public Property MeasMajorAxis() As Double


Return Type

Read only Double value.

Remarks

This property applies only to PC-DMIS commands that have a major axis field.

See Also

FeatCmd Object | Command Object 

	MeasMinorAxis Property  XE "MeasMinorAxis Property" 


Description

Read Only: Auto Ellipse Measured Minor Axis. Measured minor axis length value (ellipse).

Property type

Read-write property

Syntax

	Visual Basic

	Public Property MeasMinorAxis() As Double


Return Type

Read only Double value.

Remarks

This property applies only to PC-DMIS commands that have a minor axis field.

See Also

FeatCmd Object | Command Object 

	MeasPinDiam Property  XE "MeasPinDiam Property" 


Description

Read Only: Measure Pin Diameter. Measured pin diameter value.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property MeasPinDiam() As Double


Return Type

Read only Double value.

Remarks

This property applies only to PC-DMIS commands that have a pin diameter field.

See Also

FeatCmd Object | Command Object 

	MeasSmallLength Property  XE "MeasSmallLength Property" 


Description

Read Only: Measured Small Length. Measured shorter length value.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property MeasSmallLength() As Double


Return Type

Read only Double value.

Remarks

This property applies only to PC-DMIS commands that have a small length field.

See Also

FeatCmd Object | Command Object 

	MeasureSlotWidth Property  XE "MeasureSlotWidth Property" 


Description

Read/Write: Measure Slot Width flag indicating whether the slot width should be measured.
Property type

Read-write property

Syntax

	Visual Basic

	Public Property MeasureSlotWidth() As Boolean


Return Type

Read/write Boolean value.

Remarks

This property applies only to PC-DMIS commands that have a measure slot width flag.

See Also

FeatCmd Object | Command Object 

	NumHits Property  XE "NumHits Property" 


Description

Read/Write: Number of hits. Represents the number of inputs in the feature.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property NumHits() As Long


Return Type

Read/write Long value.

Remarks

If this feature is constructed, it reports the number of input features.

See Also

FeatCmd Object 

	NumHitsPerRow Property  XE "NumHitsPerRow Property" 


Description

Read/Write: Number of hits per row. Represents the number of hits on each row of the feature.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property NumHitsPerRow() As Long


Return Type

Read/write Long value.

Remarks

You can use this variable only with features that have rows (such as spheres and cylinders).

See Also

FeatCmd Object 

	NumRows Property  XE "NumRows Property" 


Description

Read/Write: Number of rows. Represents the number of rows in the feature.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property NumRows() As Long


Return Type

Read/write Long value.

Remarks

You can use this variable only with features that have rows (such as spheres and cylinders).

See Also

FeatCmd Object 

	Parent Property  XE "Parent Property" 


Description

Read Only: Parent Command Object. Returns the parent Command object.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Parent() As Command


Return Type

Read only Command object.

Remarks

The parent of a FeatCmd object is the same underlying PC-DMIS object as the FeatCmd object itself. Getting the parent allows you to access the generic Command properties and methods of a given object.

See Also

FeatCmd Object 

	PermHits Property  XE "PermHits Property" 


Description

Read/Write: Auto feature permanent hits. Number of permanent sample hits.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property PermHits() As Double


Return Type

Read/write Double value.

Remarks

This property applies only to PC-DMIS commands that have a working permanent hits field. These include

· AUTO Angle

· AUTO Circle

· AUTO Cylinder

· AUTO Edge

· AUTO Ellipse

· AUTO Notch

· AUTO Round Slot

· AUTO Sphere

· AUTO Square Slot

· AUTO Surface

· Angle Hit

· Edge Hit

All other features only allow a read-only zero for permanent hits.

See Also

FeatCmd Object | Command Object 

	Polar Property  XE "Polar Property" 


Description

Read/Write: Flag indicating whether polar coordinates are used on the feature. Usually defaults to false.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Polar() As Boolean


Return Type

Read/write Boolean value.

Remarks

This property applies only to PC-DMIS commands that have support for polar coordinates.

See Also

FeatCmd Object | Command Object 

	ReferenceID Property  XE "ReferenceID Property" 


Description

Read/Write: Name of reference feature when reference type is feature ID of the feature to be used when the "ReferenceType" property is set to FEATREF_FEATURE. This property is used with measured lines or measured circles.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property ReferenceID() As String


Return Type

Read/write String value.

Remarks

This property applies only to measured lines and circles that have the projection reference type set to feature.

See Also

FeatCmd Object | Command Object 

	ReferenceType Property  XE "ReferenceType Property" 


Description

Read/Write: Reference type for measured circles and lines. Reference type used with measured circles and measured lines.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property ReferenceType() As ENUM_FEATREF_TYPES


Return Type

Read/write ENUM_FEATREF_TYPES enumeration.

Remarks

This property applies only to PC-DMIS measured line and measured circle commands. Possible value include the following:

· FEATREF_FEATURE  = -3 (Use ReferenceID Property to specify feature)

· FEATREF_3D = -2,  (Feature is a 3D feature, no projections)

· FEATREF_CURRENT_WORKPLANE = -1,

· FEATREF_XPLUS = 1,

· FEATREF_YPLUS = 2,

· FEATREF_ZMINUS = 3,

· FEATREF_XMINUS = 4,

· FEATREF_YMINUS = 5

See Also

FeatCmd Object | Command Object 

	RMeasFeature Property  XE "RMeasFeature Property" 


Description

Read/Write: Relative Measure Feature. ID of the feature to be used for relative measurement.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property RMeasFeature() As String


Return Type

Read/write String value.

Remarks

This property applies only to PC-DMIS commands that support relative measurement

See Also

FeatCmd Object | Command Object 

	Spacer Property  XE "Spacer Property" 


Description

Read/Write: Auto feature spacer distance (Usually used with sample hits).
Property type

Read-write property

Syntax

	Visual Basic

	Public Property Spacer() As Double


Return Type

Read/write Double value.

Remarks

This property applies only to PC-DMIS commands that have a spacer field.

See Also

FeatCmd Object | Command Object 

	StartAngle Property  XE "StartAngle Property" 


Description

Read/Write: Feature Start Angle. Start Angle value.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property StartAngle() As Double


Return Type

Read/write Double value.

Remarks

This property applies only to PC-DMIS commands that have a start angle field.

See Also

FeatCmd Object | Command Object 

	StartAngle2 Property  XE "StartAngle2 Property" 


Description

Read/Write: Start Angle 2. Second Start Angle value.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property StartAngle2() As Double


Return Type

Read/write Double value.

Remarks

This property applies only to PC-DMIS commands that have a second start angle field.

See Also

FeatCmd Object | Command Object 

	Targets Property  XE "Targets Property" 


Description

Read Only: Returns the child Targets Collection Object of a vision feature .
Property type

Read-write property

Syntax

	Visual Basic

	Public Property Targets() As Targets


See Also

FeatCmd Object 

	TheoAngle Property  XE "TheoAngle Property" 


Description

Read/Write: Theoretical angle value.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property TheoAngle() As Double


Return Type

Read/write Double value.

Remarks

This property applies only to PC-DMIS commands that have an angle field.

See Also

FeatCmd Object | Command Object 

	TheoDiam Property  XE "TheoDiam Property" 


Description

Read/Write: Theoretical diameter value.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property TheoDiam() As Double


Return Type

Read/write Double value.

Remarks

This property applies only to PC-DMIS commands that have a diameter field.

See Also

FeatCmd Object | Command Object 

	TheoHeight Property  XE "TheoHeight Property" 


Description

Read/Write: Theoretical height value.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property TheoHeight() As Double


Return Type

Read/write Double value.

Remarks

This property applies only to PC-DMIS commands that have a height field.

See Also

FeatCmd Object | Command Object 

	TheoLength Property  XE "TheoLength Property" 


Description

Read/Write: Theoretical length value.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property TheoLength() As Double


Return Type

Read/write Double value.

Remarks

This property applies only to PC-DMIS commands that have a length field. These include:

· Lines

· Cylinders

· Cones

· Slots

· Notches

· Generic Features

See Also

FeatCmd Object | Command Object 

	TheoMajorAxis Property  XE "TheoMajorAxis Property" 


Description

Read/Write: Auto Ellipse Theoretical Major Axis. Theoretical major axis length value (ellipse).

Property type

Read-write property

Syntax

	Visual Basic

	Public Property TheoMajorAxis() As Double


Return Type

Read/write Double value.

Remarks

This property applies only to PC-DMIS commands that have a major axis field.

See Also

FeatCmd Object | Command Object 

	TheoMinorAxis Property  XE "TheoMinorAxis Property" 


Description

Read/Write: Auto Ellipse Theoretical Minor Axis. Theoretical minor axis length value (ellipse).

Property type

Read-write property

Syntax

	Visual Basic

	Public Property TheoMinorAxis() As Double


Return Type

Read/write Double value.

Remarks

This property applies only to PC-DMIS commands that have a minor axis field.

See Also

FeatCmd Object | Command Object 

	TheoPinDiam Property  XE "TheoPinDiam Property" 


Description

Read/Write: Theoretical Pin diameter value.
Property type

Read-write property

Syntax

	Visual Basic

	Public Property TheoPinDiam() As Double


Return Type

Read/write Double value.

Remarks

This property applies only to PC-DMIS commands that have a pin diameter field.

See Also

FeatCmd Object | Command Object 

	TheoSmallLength Property  XE "TheoSmallLength Property" 


Description

Read/Write: Theoretical Small Length. Theoretical shorter length value.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property TheoSmallLength() As Double


Return Type

Read/write Double value.

Remarks

This property applies only to PC-DMIS commands that have a small length field.

See Also

FeatCmd Object | CadWindow Object 

	Thickness Property  XE "Thickness Property" 


Description

Read/Write: Auto feature thickness. Sheet metal (material) thickness.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Thickness() As Double


Return Type

Read/write Double value.

Remarks

This property applies only to PC-DMIS commands that have a thickness field.

See Also

FeatCmd Object | Command Object 

	Tolerance Property  XE "Tolerance Property" 


Description

Read/Write: Auto High Point Tolerance Value. Tolerance value for auto high point.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Tolerance() As Double


Return Type

Read/write Double value.

Remarks

This property applies only to the PC-DMIS auto high point command.

See Also

FeatCmd Object | Command Object 

	UsePin Property  XE "UsePin Property" 


Description

Read/Write: Use Pin Vector Setting. Indicates whether pin information should be used during measurement.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property UsePin() As Boolean


Return Type

Read/write Boolean value.

Remarks

This property applies only to PC-DMIS commands that have a use pin field.

See Also

FeatCmd Object | Command Object 

	UseTheoValuesForBestfit Property  XE "UseTheoValuesForBestfit Property" 


Description

Read/Write: Use theo values to solve feature. 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property UseTheoValuesForBestfit() As Boolean


See Also

FeatCmd Object 

	VisionMag Property  XE "VisionMag Property" 


Description

Read/Write: Vision Feature Magnification. 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property VisionMag() As Double


See Also

FeatCmd Object 

	VisionTargetColor Property  XE "VisionTargetColor Property" 


Description

Read/Write: Vision Feature Target Color. 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property VisionTargetColor() As Integer


See Also

FeatCmd Object 

	VisionTargetType Property  XE "VisionTargetType Property" 


Description

Read/Write: Vision Feature Target Type. 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property VisionTargetType() As ENUM_VISION_TARGET_TYPE


See Also

FeatCmd Object 

	FeatData Object  XE "FeatData Object" 


Description

Feature Data Object. 

The FeatData object is similar to a type as defined in the Example below.

It is be used to pass feature data in automation functions that accept this type

Example

Type FeatData

                X as Double
                Y as Double
                Z as Double
                I as Double
                J as Double
                K as Double
                DIAM as Double
                LENGTH as Double
                ANGLE as Double
                SmallDiam as Double
                StartAngle as Double
                EndAngle as Double
                StartAngle2 as Double
                EndAngle2 as Double
                F as Double
                TP as Double
                P1 as Double
                P2 as Double
                ID as String

End Type

See Also

FeatData Members 

	FeatData Object Members  XE "FeatData Object Members" 


See Also

FeatData Overview 

Properties

	_ID Property  XE "_ID Property" 


Property type

Read-write property

Syntax

	Visual Basic

	Public Property _ID() As String


See Also

FeatData Object 

	Angle Property  XE "Angle Property" 


Description

Read/Write: Returns/Sets the ANGLE value of the feature data object. Represents the ANGLE member of this object.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Angle() As Double


Return Type

Read/write Double value.

See Also

FeatData Object 

	diam Property  XE "diam Property" 


Description

Read/Write: Returns/Sets the DIAM value of the feature data object. Represents the diameter of this object.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property diam() As Double


Return Type

Read/write Double value.

See Also

FeatData Object 

	EndAngle Property  XE "EndAngle Property" 


Description

Read/Write: Returns/Sets the EndAngle value of the feature data object. Represents the EndAngle member of this object.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property EndAngle() As Double


Return Type

Read/write Double value.

See Also

FeatData Object 

	EndAngle2 Property  XE "EndAngle2 Property" 


Description

Read/Write: Returns/Sets the EndAngle2 value of the feature data object. Represents the EndAngle2 member of this object.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property EndAngle2() As Double


Return Type

Read/write Double value.

See Also

FeatData Object 

	F Property  XE "F Property" 


Description

Read/Write: Returns/Sets the F value of the feature data object. Represents the F member of this object.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property F() As Double


Return Type

Read/write Double value.

See Also

FeatData Object 

	I Property  XE "I Property" 


Description

Read/Write: Returns/Sets the I value of the feature data object. Represents the I member of this object.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property I() As Double


Return Type

Read/write Double value.

See Also

FeatData Object 

	ID Property  XE "ID Property" 


Description

Read/Write: Returns/Sets the ID value of the feature data object. Represents the ID member of this object.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property ID() As String


Return Type

Read/write String value.

Remarks

The ID member is the default property.

The ID member is the default 

See Also

FeatData Object 

	J Property  XE "J Property" 


Description

Read/Write: Returns/Sets the J value of the feature data object. Represents the J member of this object.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property J() As Double


Return Type

Read/write Double value.

See Also

FeatData Object 

	K Property  XE "K Property" 


Description

Read/Write: Returns/Sets the K value of the feature data object. Represents the K member of this object.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property K() As Double


Return Type

Read/write Double value.

See Also

FeatData Object 

	Length Property  XE "Length Property" 


Description

Read/Write: Returns/Sets the LENGTH value of the feature data object. Represents the LENGTH member of this object.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Length() As Double


Return Type

Read/write Double value.

See Also

FeatData Object 

	P1 Property  XE "P1 Property" 


Description

Read/Write: Returns/Sets the P1 value of the feature data object. Represents the P1 member of this object.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property P1() As Double


Return Type

Read/write Double value.

Remarks

The P1 member is never set or used by PC-DMIS. It is available for the programmer to use as he wishes.

See Also

FeatData Object 

	P2 Property  XE "P2 Property" 


Description

Read/Write: Returns/Sets the P2 value of the feature data object. Represents the P2 member of this object.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property P2() As Double


Return Type

Read/write Double value.

Remarks

The P2 member is never set or used by PC-DMIS. It is available for the programmer to use as he wishes.

See Also

FeatData Object 

	SmallDiam Property  XE "SmallDiam Property" 


Description

Read/Write: Returns/Sets the SmallDiam value of the feature data object. 

Represents the SmallDiam member of this object. 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property SmallDiam() As Double


Return Type

Read/write Double value.

See Also

FeatData Object 

	StartAngle Property  XE "StartAngle Property" 


Description

Read/Write: Returns/Sets the StartAngle value of the feature data object. Represents the StartAngle member of this object.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property StartAngle() As Double


Return Type

Read/write Double value.

See Also

FeatData Object 

	StartAngle2 Property  XE "StartAngle2 Property" 


Description

Read/Write: Returns/Sets the StartAngle2 value of the feature data object. 

Represents the StartAngle2 member of this object. 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property StartAngle2() As Double


Return Type

Read/write Double value.

See Also

FeatData Object 

	TP Property  XE "TP Property" 


Description

Read/Write: Returns/Sets the TP value of the feature data object. Represents the TP member of this object.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property TP() As Double


Return Type

Read/write Double value.

See Also

FeatData Object 

	X Property  XE "X Property" 


Description

Read/Write: Returns/Sets the X value of the feature data object. Represents the X member of this object.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property X() As Double


Return Type

Read/write Double value.

See Also

FeatData Object 

	Y Property  XE "Y Property" 


Description

Read/Write: Returns/Sets the Y value of the feature data object. Represents the Y member of this object.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Y() As Double


Return Type

Read/write Double value.

See Also

FeatData Object 

	Z Property  XE "Z Property" 


Description

Read/Write: Returns/Sets the Z value of the feature data object. 

Represents the Z member of this object. 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Z() As Double


Return Type

Read/write Double value.

See Also

FeatData Object 

	FileIO Object  XE "FileIO Object" 


Description

The FileIO object is used to access the PC-DMIS File I/O object. 

Remarks

This object's properties provide access to the file mode (open, close, readline, and so on), the expression to write or read, the filename, and so forth. 

For additional information, see the "Using File Input / Output" section in the PC-DMIS Help File.

See Also

FileIO Members 

	FileIO Object Members  XE "FileIO Object Members" 


See Also

FileIO Overview 

Properties

	BufferSize Property  XE "BufferSize Property" 


Description

Read/Write: Buffersize used in ReadBlock command. Indicates the buffer size used with the Read Block File I/O command.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property BufferSize() As Long


Return Type

Read/write Long value.

See Also

FileIO Object 

	Expression Property  XE "Expression Property" 


Description

Read/Write: Expression to read to or write from file. Indicates the buffer size used with the Read Block File I/O command.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Expression() As String


Return Type

Read/write Long value.

See Also

FileIO Object 

	FailIfExists Property  XE "FailIfExists Property" 


Description

Read/Write: Indicates whether copy fails if destination file already exists. Indicates whether or not a file copy operation should fail or not if the destination file already exists.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property FailIfExists() As Boolean


Return Type

Read/write Boolean.

See Also

FileIO Object 

	FileIOType Property  XE "FileIOType Property" 


Description

Read/Write: The File IO type (i.e. Open, Close, etc.). Value of ENUM_FILE_IO_TYPES enumeration type which specifies the type of File I/O operation the object will perform.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property FileIOType() As ENUM_FILE_IO_TYPES


Remarks

Value of ENUM_FILE_IO_TYPES enumeration type which specifies the type of File I/O operation the object will perform. Possible values include the following:

· PCD_FILE_CLOSE = 1

· PCD_FILE_WRITELINE = 2

· PCD_FILE_READLINE = 3

· PCD_FILE_WRITECHARACTER = 4

· PCD_FILE_READCHARACTER = 5

· PCD_FILE_WRITEBLOCK = 6

· PCD_FILE_READBLOCK = 7

· PCD_FILE_REWIND = 8

· PCD_FILE_SAVEPOSITION = 9

· PCD_FILE_RECALLPOSITION = 10

· PCD_FILE_COPY = 11

· PCD_FILE_MOVE = 12

· PCD_FILE_DELETE = 13

· PCD_FILE_EXISTS = 14

· PCD_FILE_DIALOG = 15

Read/write Enum_File_IO_Types enumeration.

See Also

FileIO Object 

	FileName1 Property  XE "FileName1 Property" 


Description

Read/Write: Filename. 

Represents the file name to be used in the File I/O operation. This parameter is used with the File Open, File Copy, File Move, File Delete, and File Exists File I/O types.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property FileName1() As String


Return Type

Read/write String value.

See Also

FileIO Object 

	FileName2 Property  XE "FileName2 Property" 


Description

Read/Write: Filename two. Represents the second filename to be used in the File I/O operation. This parameter is used as the destination file in the File Copy and File Move File I/O commands.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property FileName2() As String


Return Type

Read/write String value.

See Also

FileIO Object 

	FileOpenType Property  XE "FileOpenType Property" 


Description

Read/Write: File Open Type (i.e. Read, Write, Append). Value of ENUM_FILE_OPEN_TYPES enumeration type which specifies the file open mode used in opening a file.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property FileOpenType() As ENUM_FILE_OPEN_TYPES


Return Type

Read/write Enum_File_Open_Types enumeration.

See Also

FileIO Object 

	FilePointerID Property  XE "FilePointerID Property" 


Description

Read/Write: Name of file pointer used in referencing file. Represents the file pointer Id to be used in the File I/O operation. The file pointer ID is established and linked to a specific file in the File Open command.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property FilePointerID() As String


Return Type

Read/write String value.

See Also

FileIO Object 

	VariableID Property  XE "VariableID Property" 


Description

Read/Write: ID of variable that stores result of file command execution. Represents the name of the variable to be used to hold the results of the File I/O operation of the File I/O command.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property VariableID() As String


Return Type

Read/write String value.

See Also

FileIO Object

	FlowControlCmd Object  XE "FlowControlCmd Object" 


Description

FlowControlCmd objects are created from more generic Command objects to pass information specific to the flow control command back and forth.

See Also

FlowControlCmd Members 

	FlowControlCmd Object Members  XE "FlowControlCmd Object Members" 


See Also

FlowControlCmd Overview 

Methods

	AddArgument Method  XE "AddArgument Method" 


Description

Adds argument to argument list. Adds or replaces an argument in objects of type CALL_SUBROUTINE and START_SUBROUTINE. When used with objects of other types, it has no effect.

Syntax

	Visual Basic

	Public Function AddArgument( _

   ByVal Position As Long, _

   ByVal Argument As String, _

   ByVal Name As String, _

   ByVal DESCRIPTION As String _

) As Boolean


Parameters

Position

Required Long that indicates the index of the argument to add in the list of arguments.

Argument

Name

Required String that indicates the name of the argument to be added.

Required String that is the description of the argument to be added.

Return Type

Boolean value. This function returns TRUE if the argument was added successfully, FALSE otherwise.

Remarks

When used with objects of type CALL_SUBROUTINE, the Name and Description fields are ignored.

If Position is equal to 1 + FlowControlCmd.NumArguments, an argument is added to the tail of the list of arguments. If Position is between 1 and FlowControlCmd.NumArguments, the current argument is replaced. To completely remove an argument, use DimensionCommand.RemoveArgument.

See Also

FlowControlCmd Object | Type Property | RemoveArgument Method | NumArguments Property 

	AddSkipNum Method  XE "AddSkipNum Method" 


Description

Adds a number to be skipped to an object of type LOOP_START. For objects of other types, it does nothing.

This function returns TRUE if Number was successfully added to the LOOP_START object’s skip list, FALSE otherwise.

Syntax

	Visual Basic

	Public Function AddSkipNum( _

   ByVal Number As Long _

) As Boolean


Parameters

Number

Required Long that indicates the number to skip.

Return Type

Boolean value. Boolean returns true if the function succeeds, false if it fails.

See Also

FlowControlCmd Object | Type Property 

	GetArgumentDescription Method  XE "GetArgumentDescription Method" 


Description

Gets description of specified argument. Returns the description of an argument to an object of type START_SUBROUTINE. For objects of other types, it returns the empty string.

Syntax

	Visual Basic

	Public Function GetArgumentDescription( _

   ByVal Position As Long _

) As String


Parameters

Position

Required Long that indicates the number of the argument from which to obtain the description.

Return Type

String value.

See Also

FlowControlCmd Object | Type Property 

	GetArgumentExpression Method  XE "GetArgumentExpression Method" 


Description

Gets expression text of specified argument. Returns the value or default value of an argument to an object of type CALL_SUBROUTINE or START_SUBROUTINE, respectively. For objects of other types, it returns the empty string.

Syntax

	Visual Basic

	Public Function GetArgumentExpression( _

   ByVal Position As Long _

) As String


Parameters

Position

Required Long that indicates the number of the argument from which to obtain the argument's value.

Return Type

String value.

See Also

FlowControlCmd Object | Type Property 

	GetArgumentName Method  XE "GetArgumentName Method" 


Description

Returns name of specified argument. Returns the name of an argument to an object of type START_SUBROUTINE. For objects of other types, it returns the empty string.

Syntax

	Visual Basic

	Public Function GetArgumentName( _

   ByVal Position As Long _

) As String


Parameters

Position

Required Long that indicates the number of the argument from which to obtain the argument's name.

Return Type

String value.

See Also

FlowControlCmd Object | Type Property 

	GetLeftSideOfExpression Method  XE "GetLeftSideOfExpression Method" 


Description

Gets expression text for left side of assignment. For FlowControlCmd objects of type ASSIGNMENT, this function returns the name of the variable being assigned to. For other types of objects, it returns an empty string.

Syntax

	Visual Basic

	Public Function GetLeftSideOfExpression() As String


Return Type

String value.

See Also

FlowControlCmd Object | Type Property 

	GetRightSideOfExpression Method  XE "GetRightSideOfExpression Method" 


Description

Gets expression text for right side of assignment. For FlowControlCmd objects of type ASSIGNMENT, this function returns the value being assigned to the variable. For other types of objects, it returns an empty string.

Syntax

	Visual Basic

	Public Function GetRightSideOfExpression() As String


Return Type

String value.

See Also

FlowControlCmd Object | Type Property 

	GetSkipNum Method  XE "GetSkipNum Method" 


Description

Get skip number value. This function returns an integer. The integer is the nth skip number where n is indicated by the value of index.

Syntax

	Visual Basic

	Public Function GetSkipNum( _

   ByVal index As Long _

) As Long


Parameters

index

Required Long that indicates which skip number of the set of skip numbers to retrieve.

Return Type

Integer value.

See Also

FlowControlCmd Object | Type Property 

	IsExpressionValid Method  XE "IsExpressionValid Method" 


Description

Determines whether provided expression text is valid. Tests whether or not the Expression is valid.

Syntax

	Visual Basic

	Public Function IsExpressionValid( _

   ByVal Expression As String _

) As Boolean


Parameters

Expression

Required String that is the expression to evaluate for validity.

Return Type

Boolean value. Boolean returns true if the function succeeds, false if it fails.

See Also

FlowControlCmd Object | Type Property 

	IsValidLeftHandValue Method  XE "IsValidLeftHandValue Method" 


Description

Determines if expression if a valid expression for left side of assignment command. 

This function returns TRUE if the expression can be used as a valid left hand value (i.e. can be used on the left-hand side of an assignment statement), and FALSE otherwise.

Syntax

	Visual Basic

	Public Function IsValidLeftHandValue( _

   ByVal Expression As String _

) As Boolean


Parameters

Expression

Required String that is the expression to evaluate for validity.

Return Type

Boolean value.

See Also

FlowControlCmd Object 

	IsValidSubroutineArgumentName Method  XE "IsValidSubroutineArgumentName Method" 


Description

Determines if expression a is valid name for subroutine argument. 

This function returns TRUE if the expression can be used as a valid subroutine argument name, and FALSE otherwise.

Syntax

	Visual Basic

	Public Function IsValidSubroutineArgumentName( _

   ByVal Expression As String _

) As Boolean


Parameters

Expression

Required String that is the argument name to evaluate for validity.

Return Type

Boolean value. Boolean returns true if the function succeeds, false if it fails.

See Also

FlowControlCmd Object 

	RemoveArgument Method  XE "RemoveArgument Method" 


Description

Removes argument. 

This function removes an argument from an object of type CALL_SUBROUTINE or START_SUBROUTINE. It returns TRUE if an argument is removed successfully, FALSE otherwise.

Syntax

	Visual Basic

	Public Function RemoveArgument( _

   ByVal Position As Long _

) As Boolean


Parameters

Position

Required Long that indicates which argument to remove. This argument should be between one and FlowControlCmd.NumArguments.

Return Type

Boolean value. Boolean returns true if the function succeeds, false if it fails.

Remarks

This function has an effect only on objects of type CALL_SUBROUTINE and START_SUBROUTINE. It has no effect on objects of other types. If used on other types it returns FALSE even if nothing is being done.

See Also

FlowControlCmd Object | Type Property | NumArguments Property 

	RemoveSkipNum Method  XE "RemoveSkipNum Method" 


Description

This function removes one of the skip numbers for the Loop Start object from the list of skip numbers. The number removed is determined by the index parameter.

Syntax

	Visual Basic

	Public Function RemoveSkipNum( _

   ByVal index As Long _

) As Boolean


Parameters

index

Required Long that indicates which argument to remove. This argument should be between one and FlowControlCmd.SkipCount.

Return Type

Read/write Boolean value.

See Also

FlowControlCmd Object | SkipCount Property 

	SetArgumentDescription Method  XE "SetArgumentDescription Method" 


Description

Sets description of specified argument. This function sets the description of an argument of an object of type START_SUBROUTINE. It does nothing and returns FALSE if the object is not of this type. The function returns TRUE if the description was set successfully, FALSE otherwise.

Syntax

	Visual Basic

	Public Function SetArgumentDescription( _

   ByVal Position As Long, _

   ByVal DESCRIPTION As String _

) As Boolean


Parameters

Position

Required Long that indicates the number of the argument description to set.

Required String that is the text of the description to set.

Return Type

Boolean value.

See Also

FlowControlCmd Object 

	SetArgumentExpression Method  XE "SetArgumentExpression Method" 


Description

Sets expression text of specified argument. This function sets the value or default value of an argument of an object of type CALL_SUBROUTINE or START_SUBROUTINE, respectively. It does nothing and returns FALSE if the object is not one of these types.

Syntax

	Visual Basic

	Public Function SetArgumentExpression( _

   ByVal Position As Long, _

   ByVal Expression As String _

) As Boolean


Parameters

Position

Required Long that indicates the number of the argument value to set.

Expression

Required String that indicates the argument value to set.

Return Type

Boolean value. Boolean returns true if the function succeeds, false if it fails.

See Also

FlowControlCmd Object | Type Property 

	SetArgumentName Method  XE "SetArgumentName Method" 


Description

Sets name of specified argument. This function sets the name of an argument of an object of type START_SUBROUTINE. It does nothing and returns FALSE if the object is not of this type.

Syntax

	Visual Basic

	Public Function SetArgumentName( _

   ByVal Position As Long, _

   ByVal Name As String _

) As Boolean


Parameters

Position

Required Long that indicates the number of the argument value to set.

Name

Required String that indicates the argument name to set.

Return Type

Boolean value. Boolean returns true if the function succeeds, false if it fails.

See Also

FlowControlCmd Object | Type Property 

	SetLeftSideOfAssignment Method  XE "SetLeftSideOfAssignment Method" 


Description

Sets expression for left side of assignment command. The function sets the left-hand side of the Assign statement to the expression passed in. Use the function IsValidLeftHandValue to determine validity of expression for a left-hand side before using this function.

Syntax

	Visual Basic

	Public Sub SetLeftSideOfAssignment( _

   ByVal Expression As String _

) 


Parameters

Expression

Required String that indicates the expression to be used for the left side of the assignment.

Return Type

String value.

See Also

FlowControlCmd Object | Type Property 

	SetRightSideOfAssignment Method  XE "SetRightSideOfAssignment Method" 


Description

Sets expression for right side of assignment command. The function sets the right-hand side of the Assign statement to the expression passed in. Use the function IsExpressionValid to determine validity of expression before using this function.

Syntax

	Visual Basic

	Public Sub SetRightSideOfAssignment( _

   ByVal Expression As String _

) 


Parameters

Expression

Required String that indicates the expression to be used for the right side of the assignment.

Return Type

String value.

See Also

FlowControlCmd Object | Type Property 

Properties

	AngleOffset Property  XE "AngleOffset Property" 


Description

Read/Write: Loop Angle Offset. Represents the angular offset of a LOOP_START object.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property AngleOffset() As Double


Return Type

Read/write Double value.

Remarks

This property only affects objects of type LOOP_START. For other objects, setting the property has no effect, and getting it always returns zero.

See Also

FlowControlCmd Object | Type Property 

	EndNum Property  XE "EndNum Property" 


Description

Read/Write: Loop Ending Number. 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property EndNum() As Long


See Also

FlowControlCmd Object 

	ErrorMode Property  XE "ErrorMode Property" 


Description

Read/Write: On Error Error Mode. Represents the error mode of a ONERROR object.
Property type

Read-write property

Syntax

	Visual Basic

	Public Property ErrorMode() As ENUM_ERROR_MODES


Return Type

Read/write Long.

Remarks

This property only affects objects of type ONERROR. For other objects, setting the property has no effect, and getting it always returns zero.

The valid values for ErrorMode: 0 for off, 1 for jump to label, and 2 for set a variable.

See Also

FlowControlCmd Object | Type Property 

	ErrorType Property  XE "ErrorType Property" 


Description

Read/Write: On Error Error Type. Represents the error mode of a ONERROR object.
Property type

Read-write property

Syntax

	Visual Basic

	Public Property ErrorType() As ENUM_ERROR_TYPES


Return Type

Read/write Long value.

Remarks

This property only affects objects of type ONERROR. For other objects, setting the property has no effect, and getting it always returns zero.

The valid values for ErrorMode: 0 for off, 1 for jump to label, and 2 for set a variable.

See Also

FlowControlCmd Object | Type Property 

	Expression Property  XE "Expression Property" 


Description

Read/Write: Expression Represents the test expression of an IF_COMMAND object.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Expression() As String


Return Type

Read/write String.

Remarks

This property only affects objects of type IF_COMMAND. For other objects, setting the property has no effect, and getting it always returns the empty string.

See Also

FlowControlCmd Object | Type Property 

	FileName Property  XE "FileName Property" 


Description

Read/Write: Filename Represents the file name of an external subroutine in a CALL_SUBROUTINE object.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property FileName() As String


Return Type

Read/write String.

Remarks

This property only affects objects of type CALL_SUBROUTINE. For other objects, setting the property has no effect, and getting it always returns the empty string.

This property only returns the name of the file, not its full path. The path is determined by the settings in PC-DMIS’s Search Directory dialog.

See Also

FlowControlCmd Object | Type Property 

	ID Property  XE "ID Property" 


Description

Read/Write: Flow Control Command ID Represents the id of a CALL_SUBROUTINE object.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property ID() As String


Return Type

Read/write String.

Remarks

This property only affects objects of type CALL_SUBROUTINE. For other objects, setting the property has no effect, and getting it always returns the empty string.

See Also

FlowControlCmd Object | Type Property 

	Label Property  XE "Label Property" 


Description

Read/Write: Label ID Represents the label associated with an object.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Label() As String


Return Type

Read/write String.

Remarks

This property only affects objects of type GOTO, IF_COMMAND, ONERROR, and LABEL. For other objects, setting the property has no effect, and getting it always returns the empty string.

For objects of type LABEL, this property is the id of the object. For the other valid types, this property is the label to which execution is redirected when the appropriate conditions are met. For GOTO, redirection always occurs. For IF_COMMAND, the redirection occurs only when the expression is TRUE. For ONERROR, the redirection happens when the error condition is met.

See Also

FlowControlCmd Object | Type Property 

	NumArguments Property  XE "NumArguments Property" 


Description

Read Only: Number of Arguments. Returns the number of arguments in a START_SUBROUTINE or CALL_SUBROUTINE object.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property NumArguments() As Long


Return Type

Read only Long value.

Remarks

This property only affects objects of type START_SUBROUTINE and CALL_SUBROUTINE. For other objects it always returns zero.

See Also

FlowControlCmd Object | Type Property 

	ReportAutoPrint Property  XE "ReportAutoPrint Property" 


Description

Read/Write: Hyper Report Auto Print Setting. Returns True if you have Hyper Report's Auto Print checkbox selected. False otherwise.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property ReportAutoPrint() As Boolean


Return Type

Boolean value.

See Also

FlowControlCmd Object | Type Property 

	SkipCount Property  XE "SkipCount Property" 


Description

Read Only: Number of skip numbers in loop command. Returns the number of skipped numbers in a LOOP_START object.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property SkipCount() As Long


Return Type

Read-only Long value.

Remarks

This property only affects objects of type LOOP_START. For other objects it always returns zero.

See Also

FlowControlCmd Object | Type Property 

	StartNum Property  XE "StartNum Property" 


Description

Read/Write: Loop Starting Number. Represents the start number of a LOOP_START object.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property StartNum() As Long


Return Type

Read/write Long value.

Remarks

This property only affects objects of type LOOP_START. For other objects, setting the property has no effect, and getting it always returns zero.

See Also

FlowControlCmd Object | Type Property 

	SubName Property  XE "SubName Property" 


Description

Read/Write: Subroutine Name. Represents the subroutine name of a START_SUBROUTINE and CALL_SUBROUTINE object.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property SubName() As String


Return Type

Read/write String value.

Remarks

This property only affects objects of type START_SUBROUTINE and CALL_SUBROUTINE. For other objects, setting the property has no effect, and getting it always returns the empty string.

For the START_SUBROUTINE object, it is the name of the subroutine. For the CALL_SUBROUTINE, it is the name of the called subroutine.

See Also

FlowControlCmd Object | Type Property 

	XAxisOffset Property  XE "XAxisOffset Property" 


Description

Read/Write: Loop X Axis Offset. Represents the X-axis offset of a LOOP_START object.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property XAxisOffset() As Double


Return Type

Read/write Long value.

Remarks

This property only affects objects of type LOOP_START. For other objects, setting the property has no effect, and getting it always returns zero.

See Also

FlowControlCmd Object | Type Property 

	YAxisOffset Property  XE "YAxisOffset Property" 


Description

Read/Write: Loop Y Axis Offset. Represents the Y-axis offset of a LOOP_START object.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property YAxisOffset() As Double


Return Type

Read/write Long value.

Remarks

This property only affects objects of type LOOP_START. For other objects, setting the property has no effect, and getting it always returns zero.

See Also

FlowControlCmd Object | Type Property 

	ZAxisOffset Property  XE "ZAxisOffset Property" 


Description

Read/Write: Loop Z Axis Offset. Represents the Z-axis offset of a LOOP_START object.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property ZAxisOffset() As Double


Return Type

Read/write Long value.

Remarks

This property only affects objects of type LOOP_START. For other objects, setting the property has no effect, and getting it always returns zero.

See Also

FlowControlCmd Object | Type Property 

	FPanel Object  XE "FPanel Object" 


Description

The FPanel object contains properties that allow you to work with an F-Panel controller and interface.

Object Model

 

	[image: image317]
[image: image318]

 INCLUDEPICTURE "Images/pcdlrn~parent_(machine)~106.gif" \* MERGEFORMAT \d [image: image319]


See Also

FPanel Members 

	FPanel Object Members  XE "FPanel Object Members" 


See Also

FPanel Overview 

Properties

	PanelSelector Property  XE "PanelSelector Property" 


Description

Write Only: Let PC-DMIS know the state of the panel selector. 

This write-only property allows you to set whether the F-Panel is in automatic or manual mode. 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property PanelSelector() As Long


Remarks

For Manual, set PanelSelector equal to 1

For Automatic, set PanelSelector equal to 2

Two different computers control the FPanel interface. In the original DEA software, these computers talked to each other and passed this parameter around on their own.  PC-DMIS, however, only reads from one computer, and so you need to let PC-DMIS know whether or not the other controller is set to manual or automatic mode. You should be able to look and see on the panel in front of them whether they are in manual or automatic mode. Once you let PC-DMIS know by setting this property to either 1 or 2, PC-DMIS passes the information to the other controller and changes its status.

See Also

FPanel Object 

	Parent Property  XE "Parent Property" 


Description

Read Only: Returns Machine pointer. This read-only property returns the parent Machine object from which the FPanel object was created.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Parent() As Machine


Return Type

Machine object.

See Also

FPanel Object 

	LabelControls Object  XE "LabelControls Object" 


Description

The LabelControls object gives you access to a variety of controls such as buttons, text boxes, and other items that you can add to, remove, and otherwise manipulate on a label template.

Object Model

 

	[image: image320]
[image: image321]

 INCLUDEPICTURE "Images/pcdlrn~application~143.gif" \* MERGEFORMAT \d [image: image322]
[image: image323]

 INCLUDEPICTURE "Images/pcdlrn~parent_(labeltemplate)~143.gif" \* MERGEFORMAT \d [image: image324]


See Also

LabelControls Members 

	LabelControls Object Members  XE "LabelControls Object Members" 


See Also

LabelControls Overview 

Methods

	_Item Method  XE "_Item Method" 


Syntax

	Visual Basic

	Public Function _Item( _

   ByVal NameOrNumber As Variant _

) As Object


Parameters

NameOrNumber

See Also

LabelControls Object 

	Add Method  XE "Add Method" 


Description

Adds a new control to the label template. The Add function creates a new Label template in PC-DMIS.

Syntax

	Visual Basic

	Public Function Add( _

   ByVal ObjectType As ENUM_REPORT_TEMPLATE_OBJECTS, _

   ByVal Left As Long, _

   ByVal Top As Long, _

   ByVal Right As Long, _

   ByVal Bottom As Long _

) As Object


Parameters

ObjectType

This can be a constant value or an enumerated value.

Use an item from the REPORT_TEMPLATE_OBJECTS enumeration table located at the end of this documentation.

Left

This Long value sets the location of the left side of the control from the left side of the editor.

Top

This Long value sets the top location of the control from the top side of the editor.

Right

This Long value sets the right location of the control from the left side of the editor.

Bottom

This Long value sets the bottom location of the control from the top side of the editor.

Remarks

The Add method inserts a new control of a defined location and size into the current label template. To find out what properties are available to a control, in PC-DMIS's Label Template editor, insert the control and then access its properties sheet.

Example

Private Sub Add_Arc()

    Set ArcControl = LabelObjects.Add(ID_HOB_ARC, 10, 10, 200, 200)

    ArcControl.Bottom = 100

    ArcControl.Left = 10

    ArcControl.LineStyle = 2

    ArcControl.LineWidth = 1

    ArcControl.Right = 790

    ArcControl.Top = 20

    ArcControl.Visible = False

End Sub

See Also

LabelControls Object 

	Item Method  XE "Item Method" 


Description

returns the given named or numbered control. This method returns an Object of the control identified by the name or number in the NameOrNum parameter.

Syntax

	Visual Basic

	Public Function Item( _

   ByVal NameOrNumber As Variant _

) As Object


Parameters

NameOrNumber

Required Variant that indicates which control to return. It can be either a Long or a String. If it is a Long, it is the index number given the control within the LabelControls collection of controls. If it is a String, it is the ID, (or ObjectCode property in the template editor) of the control.

Return Type

The Item method returns an Object of the control with the given name or number.

Remarks

This method returns an Object of the control identified by the name or number in the NameOrNum parameter. 

To manipulate existing label template objects, you will need use this method. Once you establish a pointer to an object, you can get or set any of its properties (similar to the LabelControls.Add method). To find the available properties, consult the dockable Properties dialog box inside PC-DMIS.

See Also

LabelControls Object | Add Method 

	Remove Method  XE "Remove Method" 


Description

Removes the specified named or numbered control from the label template. 

This deletes the specified control from the current label template.

Syntax

	Visual Basic

	Public Function Remove( _

   ByVal NameOrNumber As Variant _

) As Long


Parameters

NameOrNumber

Required Variant that indicates which control to remove. It can be either a Long or a String. If it is a Long, it is the index number given the control within the LabelControls collection of controls. If it is a String, it is the ID, (or ObjectCode property in the template editor) of the control.

Return Type

Boolean value containing the result of the removal. If True, the control was removed. If False, it wasn't.

See Also

LabelControls Object 

Properties

	Application Property  XE "Application Property" 


Description

Read Only: Returns the Application Object. This property returns the PC-DMIS Application object.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Application() As Application


Return Type

Application object.

See Also

LabelControls Object 

	Count Property  XE "Count Property" 


Description

Read Only: Number of report controls on section/page. This property counts all the controls in the current label template and returns it as a Long value.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Count() As Long


Return Type

Long value.

See Also

LabelControls Object 

	Parent Property  XE "Parent Property" 


Description

Read Only: Returns the parent Feature Object. 

This property returns this object's parent object, the LabelTemplate object.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Parent() As LabelTemplate


See Also

LabelControls Object 

	LabelTemplate Object  XE "LabelTemplate Object" 


Description

The LabelTemplate object allows you to get or set various settings for a label template.

Object Model

 

	[image: image325]
[image: image326]

 INCLUDEPICTURE "Images/pcdlrn~labelcontrols~149.gif" \* MERGEFORMAT \d [image: image327]
[image: image328]

 INCLUDEPICTURE "Images/pcdlrn~application~149.gif" \* MERGEFORMAT \d [image: image329]
[image: image330]

 INCLUDEPICTURE "Images/pcdlrn~parent_(labeltemplates)~149.gif" \* MERGEFORMAT \d [image: image331]


See Also

LabelTemplate Members 

	LabelTemplate Object Members  XE "LabelTemplate Object Members" 


See Also

LabelTemplate Overview 

Methods

	Close Method  XE "Close Method" 


Description

Closes the label template. This subroutine closes the label template. To first save any unsaved changes, use the Save method.

Syntax

	Visual Basic

	Public Sub Close() 


See Also

LabelTemplate Object 

	Save Method  XE "Save Method" 


Description

This subroutine saves the label template with its already existing name. If the template has not been saved before use the SaveAs method instead, and specify a filename.

Syntax

	Visual Basic

	Public Function Save() As Boolean


Return Type

Boolean value. It returns True if the template was saved, or False if not.

See Also

LabelTemplate Object | SaveAs Method 

	SaveAs Method  XE "SaveAs Method" 


Description

Saves the label template with the given file name. 

This method saves the label template.

Syntax

	Visual Basic

	Public Function SaveAs( _

   ByVal FileName As String _

) As Boolean


Parameters

FileName

Required expression that evaluates to a String. This is the pathway and file name to which you will save the label template.

Return Type

Boolean value. Boolean returns true if the function succeeds, false if it fails. TRUE if the part was saved successfully, FALSE otherwise.

See Also

LabelTemplate Object 

Properties

	_Name Property  XE "_Name Property" 


Property type

Read-write property

Syntax

	Visual Basic

	Public Property _Name() As String


See Also

LabelTemplate Object 

	Application Property  XE "Application Property" 


Description

Read Only: Returns the Application Object. This property represents the read-only PC-DMIS Application object. The Application object includes properties and methods that return top-level objects.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Application() As Application


Return Type

Application object.

See Also

LabelTemplate Object 

	FullName Property  XE "FullName Property" 


Description

Read Only: Returns the full path name. This property returns a read-only string of the full path and filename of the label template.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property FullName() As String


Return Type

Read-only String value.

See Also

LabelTemplate Object 

	LabelControls Property  XE "LabelControls Property" 


Description

Read Only: Returns the ReportControls object for this label template. This property returns a read-only LabelControls object for this label template.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property LabelControls() As LabelControls


Return Type

Read-only LabelControls object.

See Also

LabelTemplate Object 

	Name Property  XE "Name Property" 


Description

Read Only: Returns the file name. This property returns a read-only string of the label template's filename.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Name() As String


Return Type

Read-only String.

See Also

LabelTemplate Object 

	Parent Property  XE "Parent Property" 


Description

Read Only: Returns the parent Reports Object. This property returns the label template's parent object, which is the read-only LabelTemplates object.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Parent() As LabelTemplates


Return Type

LabelTemplates object.

See Also

LabelTemplate Object 

	Visible Property  XE "Visible Property" 


Description

Read/Write: Returns/Sets template editor visibility status. This returns or sets the visibility status of the Label Template editor. If True then it is visible, if False then it is hidden.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Visible() As Boolean


Return Type

Boolean value.

See Also

LabelTemplate Object 

	LabelTemplates Object  XE "LabelTemplates Object" 


Description

The LabelTemplates object contains all open label templates in PC-DMIS's Label Template editor. 

Object Model

 

	[image: image332]
[image: image333]

 INCLUDEPICTURE "Images/pcdlrn~application~140.gif" \* MERGEFORMAT \d [image: image334]
[image: image335]

 INCLUDEPICTURE "Images/pcdlrn~parent_(application)~140.gif" \* MERGEFORMAT \d [image: image336]
[image: image337]

 INCLUDEPICTURE "Images/pcdlrn~open_(labeltemplate)~140.gif" \* MERGEFORMAT \d [image: image338]
[image: image339]

 INCLUDEPICTURE "Images/pcdlrn~add_(labeltemplate)~140.gif" \* MERGEFORMAT \d [image: image340]
[image: image341]

 INCLUDEPICTURE "Images/pcdlrn~item_(labeltemplate)~140.gif" \* MERGEFORMAT \d [image: image342]
[image: image343]

 INCLUDEPICTURE "Images/pcdlrn~_item_(labeltemplate)~140.gif" \* MERGEFORMAT \d [image: image344]


Remarks

Use Add.Label to create a new label template and add it to the LabelTemplates collection.

Use LabelTemplates(index) where index is the label template name or index number to access an individual label template.

See Also

LabelTemplates Members 

	LabelTemplates Object Members  XE "LabelTemplates Object Members" 


See Also

LabelTemplates Overview 

Methods

	_Item Method  XE "_Item Method" 


Syntax

	Visual Basic

	Public Function _Item( _

   ByVal NameOrNumber As Variant _

) As LabelTemplate


Parameters

NameOrNumber

See Also

LabelTemplates Object 

	Add Method  XE "Add Method" 


Description

Creates a new label template. The Add function creates a new Label template in PC-DMIS.

Syntax

	Visual Basic

	Public Function Add() As LabelTemplate


Return Type

LabelTemplate object.

Example

Sub Label_Template_Creation()

    ' This test subroutine was created to show how label templates can be

    ' automatically generated using PC-DMIS Automation

    ' This was created inside Microsoft Excel

    ' Make sure PC-DMIS is running

    If MsgBox("This example will use your existing part program and create an automatic Label Template. Is PC-DMIS running and is your part program loaded?", vbYesNo, "Automated Label Template Creation") = vbNo Then

        MsgBox "Closing this example. Try again once PC-DMIS is running and a part program is loaded.", vbExclamation

        Exit Sub

    End If

    ' Create the PC-DMIS Application

    Dim PCDApp As PCDLRN.Application

    Set PCDApp = CreateObject("Pcdlrn.Application")

    ' Open a Part Program

    Dim PP As PartProgram

    Set PP = PCDApp.ActivePartProgram

    Dim LabelTemplates As LabelTemplates

    Set LabelTemplates = PCDApp.LabelTemplates

    Dim LabelTemplate As LabelTemplate

    ' Add a new Label Template

    Set LabelTemplate = LabelTemplates.Add

    ' Add a TextObject into a Label Template

    Set TextObj = LabelTemplate.LabelControls.Add(ID_HOB_TEXT, 0, 0, 50, 30)

    TextObj.Font = 16

    TextObj.Alignment = 1 ' To center it

    TextObj.BackColor = RGB(128, 0, 64)

    TextObj.ForeColor = RGB(255, 255, 255)

    TextObj.Text = "=ID" ' Code to display specified Feature ID or Dimension ID

    ' Save the changes to the Report Template

    LabelTemplate.SaveAs "d:\temp\TestLabelTemplate.lbl"

    MsgBox "The Label Template is now created. You can open it up inside of PC-DMIS to see what it looks like.", vbInformation, "Label Template Finished"

    LabelTemplate.Close

End Sub

See Also

LabelTemplates Object 

	Item Method  XE "Item Method" 


Description

Returns the label template with the given name or number. Item function returns the LabelTemplate Object with the given name or number.

Syntax

	Visual Basic

	Public Function Item( _

   ByVal NameOrNumber As Variant _

) As LabelTemplate


Parameters

NameOrNumber

Required Variant that indicates which LabelTemplates object to return. It can be either a Long or a String. If it is a Long, it is the index number of the LabelTemplate object in the LabelTemplates collection. If it is a String, it is the ID of the LabelTemplate object.

Return Type

LabelTemplate object.

Remarks

Since the Item method is the default, the function name can be omitted.

See Also

LabelTemplates Object 

	Open Method  XE "Open Method" 


Description

Opens the specified existing label template. 

The Open Function activates the Label template stored in the file FileName. If the template file does not exist, nothing happens.

Syntax

	Visual Basic

	Public Function Open( _

   ByVal FileName As String _

) As LabelTemplate


Parameters

FileName

Required String. The file name of the LabelTemplate to open.

Return Type

LabelTemplate object. If the template does not exist, the function returns Nothing.
Remarks

The Open Function activates the Label template stored in the file FileName. If the template file does not exist, nothing happens.

See Also

LabelTemplates Object 

Properties

	Application Property  XE "Application Property" 


Description

Read Only: Returns the Application Object. This property represents the read-only PC-DMIS Application object. The Application object includes properties and methods that return top-level objects.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Application() As Application


Return Type

Application object.

See Also

LabelTemplates Object 

	Count Property  XE "Count Property" 


Description

Read Only: Returns the number of open labels. This property returns a read-only number of open label templates.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Count() As Long


Return Type

Long value.

See Also

LabelTemplates Object 

	Parent Property  XE "Parent Property" 


Description

Read Only: Returns the Application Object. 

This returns the read-only PC-DMIS Application object which is the parent object of the LabelTemplates object. 

See the "Automation Objects Hierarchy Charts" for more information.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Parent() As Application


Return Type

Application object.

See Also

LabelTemplates Object 

	LEAPFROG Object  XE "LEAPFROG Object" 


Description

The Leapfrog object contains three leapfrog properties that will allow you to define how to use PC-DMIS's Leapfrog option (available in PC-DMIS Versions 3.0 and above) to translate along a part as well as the numbers of hits to use for each feature. 

For information on Leapfrog, see the "Performing a LeapFrog Operation” topic in the PC-DMIS Help File.

See Also

LEAPFROG Members 

	LEAPFROG Object Members  XE "LEAPFROG Object Members" 


See Also

LEAPFROG Overview 

Properties

	full Property  XE "full Property" 


Description

Read/Write: Full or partial leapfrog Determines whether or not the leapfrog will be full (1) or partial (0). For more information on this, see the "Creating and Using Alignments" topic in the .

Property type

Read-write property

Syntax

Return Type

Read/write Long.

See Also

LEAPFROG Object 

	leapfrogtype Property  XE "leapfrogtype Property" 


Description

Read/Write: Type of Leapfrog to be performed. Integer value that defines the type of feature used to translate the CMM along the part.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property leapfrogtype() As Integer


Return Type

Read/write Integer.

Remarks

0                     Sphere

1                     Point Sets (Psets)

2                     Points

3                     Off

See Also

LEAPFROG Object 

	NumHits Property  XE "NumHits Property" 


Description

Read/Write: Number of hits. 

Integer value that determines the number of hits used for the feature types described in the LeapFrogType property. The feature type determines if the number of hits are useful or not.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property NumHits() As Integer


Return Type

Read/write Integer value.

Remarks

If LeapfrogType = 0 then useful values of NumHits are between 5 and 50

If LeapfrogType = 1 then useful values of NumHits are greater than two

If LeapfrogType = 2 or 3 then useful values of NumHits are ignored.

See Also

LEAPFROG Object | leapfrogtype Property 

	LoadMachine Object  XE "LoadMachine Object" 


Description

The LoadMachine object gives access to the machine name property of the PC-DMIS Load Machine command.

See Also

LoadMachine Members 

	LoadMachine Object Members  XE "LoadMachine Object Members" 


See Also

LoadMachine Overview 

Properties

	MachineName Property  XE "MachineName Property" 


Description

Read/Write: Name of machine to be loaded. 

Returns or sets the name of the machine to be loaded.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property MachineName() As String


Return Type

Read/write String value.

See Also

LoadMachine Object 

	LoadProbe Object 


Description

The LoadProbe object gives access to the filename property of the PC-DMIS Load Probe command.

See Also

LoadProbe Members 

	LoadProbe Object Members 


See Also

LoadProbe Overview 

Properties

	FileName Property  XE "FileName Property" 


Description

Read/Write: Probe filename.
Returns or sets the name of the probe file to be loaded.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property FileName() As String


Return Type

Read/write String value.

See Also

LoadProbe Object 

	OldBasic Object 


Description

Object providing access to the previous basic command set. 

These PC-DMIS OldBasic functions were made available in previous version of PC-DMIS basic and are provided here, listed in alphabetical order, for backwards compatibility.

Object Model

 

	[image: image345]
[image: image346]

 INCLUDEPICTURE "Images/pcdlrn~parent_(partprogram)~132.gif" \* MERGEFORMAT \d [image: image347]
[image: image348]

 INCLUDEPICTURE "Images/pcdlrn~application~132.gif" \* MERGEFORMAT \d [image: image349]


Remarks

Important Notes:
· Functions that return type Object are invalid.

· Only OldBasic classes support optional parameters.

Miscellaneous Programming Notes:
· Using Parentheses in BASIC Scripts: For information on when to use or omit parentheses, please refer to your BASIC Language documentation; generally however, for methods and properties you should only use parentheses if you're receiving a value.

· Invalid Function Return Type: Be aware that objects are not a valid return type for functions.

See Also

OldBasic Members 

	OldBasic Object Members  XE "OldBasic Object Members" 


See Also

OldBasic Overview 

Methods

	AddBoundaryPoint Method  XE "AddBoundaryPoint Method" 


Description

Adds a boundary point to a scan. This function is used to add the initial point, end point, and other boundary points in the case of patch scans. It should be called for each boundary point to be added. It should not be called more than num_bnd_pnts times (as specified in the call to StartScan).

Syntax

	Visual Basic

	Public Sub AddBoundaryPoint( _

   ByVal X As Double, _

   ByVal Y As Double, _

   ByVal Z As Double _

) 


Parameters

X

Double value representing the X value of the boundary point.

Y

Double value representing the Y value of the boundary point.

Z

Double value representing the Z value of the boundary point.

See Also

OldBasic Object 

	AddFeature Method  XE "AddFeature Method" 


Description

Adds a feature to the input set for a constructed feature. This function is used for constructed features only. The parameters off1, off2, and off3 are only used in the case of offset points, planes, or lines.

Syntax

	Visual Basic

	Public Sub AddFeature( _

   ByVal ID As String, _

   ByVal off1 As Double, _

   ByVal off2 As Double, _

   ByVal off3 As Double _

) 


Parameters

ID

ID string of the feature to add.

off1

X offset for an offset point. Single offset for this feature for an offset plane or line.

off2

Y offset for an offset point.

off3

Z offset for an offset point.

See Also

OldBasic Object 

	AddLevelFeat Method  XE "AddLevelFeat Method" 


Description

Adds a feature for leveling to the primary axis for an iterative alignment. 

This function is used in conjunction with the iterate alignment command.

Syntax

	Visual Basic

	Public Sub AddLevelFeat( _

   ByVal ID As String _

) 


Parameters

ID

Name of level feature to be added.

See Also

OldBasic Object 

	AddOriginFeat Method  XE "AddOriginFeat Method" 


Description

Adds a feature for locating the origin to an iterative alignment. 

This function is used in conjunction with the iterate alignment command.

Syntax

	Visual Basic

	Public Sub AddOriginFeat( _

   ByVal ID As String _

) 


Parameters

ID

Name of origin feature to be added

See Also

OldBasic Object 

	AddRotateFeat Method  XE "AddRotateFeat Method" 


Description

Adds a feature for the rotation of the secondary axis to an iterative alignment. This function is used in conjunction with the iterate alignment command.
Syntax

	Visual Basic

	Public Sub AddRotateFeat( _

   ByVal ID As String _

) 


Parameters

ID

Name of rotation feature to be added.

See Also

OldBasic Object 

	ArcCos Method  XE "ArcCos Method" 


Description

Returns the ArcCosine (in degrees) of x. 

Return the arc cosine of x in degrees.

Syntax

	Visual Basic

	Public Function ArcCos( _

   ByVal X As Double _

) As Double


Parameters

X

See Also

OldBasic Object 

	ArcSin Method  XE "ArcSin Method" 


Description

Returns the ArcSince (in degrees) of y. 

Returns the arc sine of x in degrees.

Syntax

	Visual Basic

	Public Function ArcSin( _

   ByVal X As Double _

) As Double


Parameters

X

See Also

OldBasic Object 

	BestFit2D Method  XE "BestFit2D Method" 


Description

Creates a best fit 2d alignment. 

Syntax

	Visual Basic

	Public Sub BestFit2D( _

   ByVal num_inputs As Long, _

   ByVal Workplane As WPLANETYPE _

) 


Parameters

num_inputs

The number of features to use to create the best fit alignment. There must be a corresponding number of calls to Feature before the call to EndAlign.

Workplane

This parameter specifies the workplane of the 2D alignment. Options come from the WPLANETYPE enumeration. These include PCD_TOP, PCD_BOTTOM, PCD_FRONT, PCD_BACK, PCD_LEFT, or PCD_RIGHT.

Use an item from the WPLANETYPE enumeration table located at the end of this documentation.

See Also

OldBasic Object 

	BestFit3D Method  XE "BestFit3D Method" 


Description

Creates a best fit 3d alignment. 

Syntax

	Visual Basic

	Public Sub BestFit3D( _

   ByVal num_inputs As Long _

) 


Parameters

num_inputs

The number of features to use to create the best fit alignment. There must be a corresponding number of calls to Feature before the call to EndAlign.

See Also

OldBasic Object 

	Calibrate Method  XE "Calibrate Method" 


Description

Creates a probe calibration command. 

Syntax

	Visual Basic

	Public Sub Calibrate( _

   ByVal sphere As String, _

   ByVal tool As String, _

   ByVal Moved As PCDYESNO _

) 


Parameters

sphere

Id of measured sphere used in calibration.

tool

Id of tool object used in calibration.

Moved

Toggle indicating whether first hit should be taken manually or not. Can be either PCD_NO or PCD_YES.

Use an item from the PCDYESNO enumeration table located at the end of this documentation.

See Also

OldBasic Object 

	CatchMotionError Method  XE "CatchMotionError Method" 


Description

Turns On/Off Catching of CMM motion errors. 

Syntax

	Visual Basic

	Public Sub CatchMotionError( _

   ByVal tog As CATCHTYPE, _

   ByRef catch_error As Long _

) 


Parameters

tog

Use an item from the CATCHTYPE enumeration table located at the end of this documentation.

catch_error

A reference to the integer that will be set to a non-zero value if a CMM error occurs. When error catching is turned on, this integer is automatically initialized to zero. Only used when tog is set to PCD_CATCH_IN_INTEGER.

See Also

OldBasic Object 

	Check Method  XE "Check Method" 


Description

Creates a check distance object. 

Syntax

	Visual Basic

	Public Sub Check( _

   ByVal DISTANCE As Double _

) 


Parameters

DISTANCE

The new check distance as a Double value.

See Also

OldBasic Object 

	ClearPlane Method  XE "ClearPlane Method" 


Description

Creates a clearplane settings object. 

Syntax

	Visual Basic

	Public Sub ClearPlane( _

   ByVal plane1 As WPLANETYPE, _

   ByVal val1 As Double, _

   ByVal plane2 As WPLANETYPE, _

   ByVal val2 As Double _

) 


Parameters

plane1

Clearance plane. Use an item from the WPLANETYPE enumeration table located at the end of this documentation.

val1

Double value representing the height of the workplane.

plane2

Pass through plane. Use an item from the WPLANETYPE enumeration table located at the end of this documentation.

val2

Double value representing the height of the pass through plane.

See Also

OldBasic Object 

	CloseCommConnection Method  XE "CloseCommConnection Method" 


Description

Closes port opened with OpenCommConnection. Command Closes the port opened with the OpenCommConnection command.

Syntax

	Visual Basic

	Public Function CloseCommConnection( _

   ByVal port As Long _

) As Long


Parameters

port

Long value representing the comm port to close.

See Also

OldBasic Object 

	Column132 Method  XE "Column132 Method" 


Description

Creates a column 132 dimension display object. Turns on or off 132 column mode.

Syntax

	Visual Basic

	Public Sub Column132( _

   ByVal tog As PCDONOFF _

) 


Parameters

tog

Use an item from the PCDONOFF enumeration table located at the end of this documentation.

See Also

OldBasic Object 

	Comment Method  XE "Comment Method" 


Description

Creates a part program comment object. 

Syntax

	Visual Basic

	Public Sub Comment( _

   ByVal ctype As PCDCOMMENT, _

   ByVal Comment As String _

) 


Parameters

ctype

Use an item from the PCDCOMMENT enumeration table located at the end of this documentation.

Comment

The comment string.

See Also

OldBasic Object 

	CreateID Method  XE "CreateID Method" 


Description

Generates and returns an Id based on part program generation settings. 

Syntax

	Visual Basic

	Public Sub CreateID( _

   ByRef ID As String, _

   ByVal ftype As CREATEIDTYPE _

) 


Parameters

Reference to a string to hold the newly created ID.

Ftype

Use an item from the CREATEIDTYPE enumeration table located at the end of this documentation.

See Also

OldBasic Object 

	DefaultAxes Method  XE "DefaultAxes Method" 


Description

Generates automatic dimensioning axes based on dimension type. 

This command is used only for location and true position dimensions. If present, the default dimension axes are created. Calls to SetNoms with other axes passed as the dtype parameter will have no effect if this command is used.

Syntax

	Visual Basic

	Public Sub DefaultAxes() 


See Also

OldBasic Object 

	DefaultHits Method  XE "DefaultHits Method" 


Description

Generates hit values automatically for feature. 

This command is used within a Startfeature - EndFeature block and is used to cause the hits specified in the hits parameter of the StartFeature command to be automatically generated.

Syntax

	Visual Basic

	Public Sub DefaultHits() 


See Also

OldBasic Object 

	DimFormat Method  XE "DimFormat Method" 


Description

Creates a DimFormat command. 

Syntax

	Visual Basic

	Public Sub DimFormat( _

   ByVal flags As DIMFORMATFLAG, _

   ByVal heading1 As DIMFORMATTYPE, _

   ByVal heading2 As DIMFORMATTYPE, _

   ByVal heading3 As DIMFORMATTYPE, _

   ByVal heading4 As DIMFORMATTYPE, _

   ByVal heading5 As DIMFORMATTYPE, _

   ByVal heading6 As DIMFORMATTYPE _

) 


Parameters

flags

Use an item from the DIMFORMATFLAG enumeration table located at the end of this documentation.

heading1

Use an item from the DIMFORMATTYPE enumeration table located at the end of this documentation.

heading2

Use an item from the DIMFORMATTYPE enumeration table located at the end of this documentation.

heading3

Use an item from the DIMFORMATTYPE enumeration table located at the end of this documentation.

heading4

Use an item from the DIMFORMATTYPE enumeration table located at the end of this documentation.

heading5

Use an item from the DIMFORMATTYPE enumeration table located at the end of this documentation.

heading6

Use an item from the DIMFORMATTYPE enumeration table located at the end of this documentation.

See Also

OldBasic Object 

	EndAlign Method  XE "EndAlign Method" 


Description

Marks the end of the block started with StartAlign. 

This function must be called to end an alignment block.

Syntax

	Visual Basic

	Public Sub EndAlign() 


See Also

OldBasic Object 

	EndDim Method  XE "EndDim Method" 


Description

Marks the end of the block started with StartDimension. 

EndDim takes no parameters, but must be called to finish off the dimension block.

Syntax

	Visual Basic

	Public Sub EndDim() 


See Also

OldBasic Object 

	EndFeature Method  XE "EndFeature Method" 


Description

Marks the end of the block started with StartFeature. 

This function ends a measured, constructed, or auto feature block. It must always be present as the last function call in a feature block.

Syntax

	Visual Basic

	Public Sub EndFeature() 


See Also

OldBasic Object 

	EndGetFeatPoint Method  XE "EndGetFeatPoint Method" 


Description

Frees memory allocated by StartGetFeatPoint. 

Use this command to release the memory allocated for use by the StartGetFeatPoint and GetFeatPoint commands.

Syntax

	Visual Basic

	Public Sub EndGetFeatPoint() 


See Also

OldBasic Object 

	EndScan Method  XE "EndScan Method" 


Description

Marks end of block started with StartScan command. 

Call this when all of the other scan functions needed have been called.

The scan object is inserted in the command list with a call to this function.

Syntax

	Visual Basic

	Public Sub EndScan() 


See Also

OldBasic Object 

	EquateAlign Method  XE "EquateAlign Method" 


Description

Creates Equate Alignment Command. Creates Equate alignment object
Syntax

	Visual Basic

	Public Sub EquateAlign( _

   ByVal align1 As String, _

   ByVal align2 As String _

) 


Parameters

align1

String value of the first alignment.

align2

String value of the second alignment.

See Also

OldBasic Object 

	Feature Method  XE "Feature Method" 


Description

Identifies Feature to be used by BF2d, BF3d, or Iterative Alignment. 

This function must only be called after a call to BestFit2D, BestFit3D, or Iterate.
Syntax

	Visual Basic

	Public Sub Feature( _

   ByVal ID As String, _

   ByVal pnt_tol As Double _

) 


Parameters

ID

String value of the ID string of the feature to add as an input for a best fit or iterative alignment.

pnt_tol

Double value of the point tolerance of the feature. Only used with best fit alignments.

See Also

OldBasic Object 

	Flatness Method  XE "Flatness Method" 


Description

Returns flatness information for command of specified ID This function was added for the tutor translator, and should be used with caution.

Syntax

	Visual Basic

	Public Function Flatness( _

   ByVal ID As String, _

   ByVal out_zone As Double _

) As Long


Parameters

ID

String value of the string ID of the object to query.

out_zone

Double value of the output zone.

Return Type

Non-zero if successful. Zero if the object with the given ID string cannot be found.

See Also

OldBasic Object 

	GapOnly Method  XE "GapOnly Method" 


Description

Creates Gap Only Dimension Object. 

Syntax

	Visual Basic

	Public Sub GapOnly( _

   ByVal tog As PCDONOFF _

) 


Parameters

tog

Use an item from the PCDONOFF enumeration table located at the end of this documentation. 

See Also

OldBasic Object 

	GetDimData Method  XE "GetDimData Method" 


Description

Get dimension data from dimension specified by ID. 

Syntax

	Visual Basic

	Public Sub GetDimData( _

   ByVal ID As String, _

   ByVal buffer As DimData, _

   ByVal dtype As DIMAXISTYPE _

) 


Parameters

ID

The ID string of the dimension to access.

buffer

A record variable of type DimData in which to put the retrieved values. See below for a description of the DimData structure.

dtype

The type of data to retrieve for location or true position dimensions. Not needed for any other dimension type.

Use an item from the DIMAXISTYPE enumeration table located at the end of this documentation.

For location: PCD_X, PCD_Y, PCD_Z, PCD_D, PCD_R, PCD_A, PCD_T, PCD_PA, PCD_PR, PCD_V, PCD_L

For true position: PCD_X, PCD_Y, PCD_Z, PCD_DD, PCD_DF, PCD_PA, PCD_PR, PCD_TP

Remarks

The definition of the DimData record type is as follows:

Type DimData

Nom As Double
Plus As Double
Minus As Double
Meas As Double
Max As Double
Min As Double
Dev As Double
Out As Double
Dev_Angle As Double
Bonus As Double

End Type

Note: The GetDimData function may not be called mid block.

Note: The GetDimData function should only be called on dimensions. It is up to the user to make sure that the ID string passed in does not belong to a feature or an alignment. For retrieving data from features, use GetFeatData.

See Also

OldBasic Object 

	GetDimOutTol Method  XE "GetDimOutTol Method" 


Description

Returns number of features that are out of tolerance. 

Returns the number of features that are out of tolerance at the time that this command is executed.

Syntax

	Visual Basic

	Public Function GetDimOutTol() As Long


See Also

OldBasic Object 

	GetFeatData Method  XE "GetFeatData Method" 


Description

Gets feature data from command with specified ID. 

Syntax

	Visual Basic

	Public Sub GetFeatData( _

   ByVal ID As String, _

   ByVal buffer As FeatData, _

   ByVal dtype As PCDMEASTHEO, _

   ByVal XYZ As XYZTYPES, _

   ByVal IJK As IJKTYPES _

) 


Parameters

ID

The ID string of the feature to access.

buffer

A record variable of type FeatData in which to put the retrieved values. See below for a description of the FeatData structure.

dtype

The type of data to retrieve. Use an item from the PCDMEASTHEO enumeration table located at the end of this documentation.

XYZ

Type of data to put in xyz. Use an item from the XYZTYPES enumeration table located at the end of this documentation.

IJK

Type of data to put in ijk. Use an item from the IJKTYPES enumeration table located at the end of this documentation.

Return Type

The definition of the FeatData record type is as follows:

Type FeatData

X As Double
Y As Double
Z As Double
I As Double
J As Double
K As Double
Diam As Double
Length As Double
Angle  As Double
Small_Diam As Double
Start_Angle As Double
End_Angle As Double
Start_Angle2 As Double
End_Angle2 As Double
F As Double
TP As Double
P1 As Double
P2 As Double
ID As String

End Type

Note: The GetFeatData function may not be called mid block.

Note: The GetFeatData function should only be called on measured, constructed, and auto features. It is up to the user to make sure that the ID string passed in does not belong to a dimension or an alignment. For retrieving data from dimensions, use GetDimData.

See Also

OldBasic Object 

	GetFeatID Method  XE "GetFeatID Method" 


Description

Returns id of indexed feature. 

Syntax

	Visual Basic

	Public Function GetFeatID( _

   ByVal index As Long, _

   ByRef ID As String, _

   ByVal Type As GETIDTYPE _

) As Long


Parameters

index

The count backwards that should be used to find the next item with an id.

This string is filled in with the id of the nth object back from the current point when n is specified by index.

Type

Type of object to be considered. Use an item from the GETIDTYPE enumeration table located at the end of this documentation.

See Also

OldBasic Object 

	GetFeatPoint Method  XE "GetFeatPoint Method" 


Description

Fills buffer with hit data for command specified in StartGetFeatPoint Command. This function is called after a call to StartGetFeatPoint to retrieve the actual points.

Syntax

	Visual Basic

	Public Function GetFeatPoint( _

   ByVal buffer As PointData, _

   ByVal index As Long _

) As Long


Parameters

buffer

A record variable of type PointData in which to put the retrieved point.

index

The 1 based index of the point to retrieve.

Remarks

The definition of the PointData record type is as follows:

Type PointData

X As Double
Y As Double
Z As Double

End Type

See Also

OldBasic Object 

	GetFeature Method  XE "GetFeature Method" 


Description

Returns feature type (i.e. Circle, Line, Point...). 

Syntax

	Visual Basic

	Public Function GetFeature( _

   ByVal ID As String _

) As Long


Parameters

ID

The string ID of the object to query.

Return Type

The feature type of the object, or 0 if unsuccessful.

Remarks

This function was added for the tutor translator, and should be used with caution.

See Also

OldBasic Object 

	GetPH9Status Method  XE "GetPH9Status Method" 


Description

Returns 1 if a PH9 is available. 

Syntax

	Visual Basic

	Public Function GetPH9Status() As Long


Return Type

Returns 1 if the probe has a PH9 and 0 if no PH9 is available.

See Also

OldBasic Object 

	GetProbeOffsets Method  XE "GetProbeOffsets Method" 


Description

Returns the current probe offsets. 

Syntax

	Visual Basic

	Public Sub GetProbeOffsets( _

   ByVal buffer As PointData _

) 


Parameters

buffer

A record of type pointdata that receives the values of the current xyz offset from the probe base.

See Also

OldBasic Object 

	GetProbeRadius Method  XE "GetProbeRadius Method" 


Description

Returns the current probe radius. 

Syntax

	Visual Basic

	Public Function GetProbeRadius() As Double


See Also

OldBasic Object 

	GetProgramOption Method  XE "GetProgramOption Method" 


Description

Returns the status of the application setting option. 

Syntax

	Visual Basic

	Public Function GetProgramOption( _

   ByVal opt As RPROGOPTIONSTYPE _

) As Long


Parameters

opt

The option’s status that is being checked. Use an item from the RPROGOPTIONSTYPE enumeration table located at the end of this documentation.

Return Type

 Returns 1 if the option is on and 0 if the option is off

See Also

OldBasic Object 

	GetProgramValue Method  XE "GetProgramValue Method" 


Description

Returns the value of the application setting. 

Syntax

	Visual Basic

	Public Function GetProgramValue( _

   ByVal opt As RPROGVALUESTYPE _

) As Double


Parameters

opt

The option’s value that is being retrieved. Use an item from the RPROGVALUESTYPE enumeration table located at the end of this documentation.

Return Type

Returns the current value of the given option.

See Also

OldBasic Object 

	GetTopMachineSpeed Method  XE "GetTopMachineSpeed Method" 


Description

Returns the top machine speed value. Returns the top machine speed of the CMM.

Syntax

	Visual Basic

	Public Function GetTopMachineSpeed() As Double


See Also

OldBasic Object 

	GetType Method  XE "GetType Method" 


Description

Returns the type of command with the specified ID. Returns the type of the object.

Syntax

	Visual Basic

	Public Function GetType( _

   ByVal ID As String _

) As Long


Parameters

ID

The string ID of the object to query.

Return Type

The type of the object, or 0 if unsuccessful. Possible types are any of the types passed to StartFeature or StartDim.

Remarks

This function was added for the tutor translator, and should be used with caution.

See Also

OldBasic Object 

	GetUnits Method  XE "GetUnits Method" 


Description

Indicates whether units are metric or English. The units of the current part program.

Syntax

	Visual Basic

	Public Function GetUnits() As Long


Return Type

A value of 1 is returned when units are in inches and 0 when units are in millimeters.

See Also

OldBasic Object 

	Hit Method  XE "Hit Method" 


Description

Used in feature block to add a hit to an object. 

Syntax

	Visual Basic

	Public Sub Hit( _

   ByVal X As Double, _

   ByVal Y As Double, _

   ByVal Z As Double, _

   ByVal I As Double, _

   ByVal J As Double, _

   ByVal K As Double _

) 


Parameters
X

Double X value for the hit.

Y

Double Y value for the hit.

Z

Double Z value for the hit.

I

Double I value for the approach vector.

J

Double J value for the approach vector.

K

Double K value for the approach vector.

Remarks

This function is used for measured features only. It may be omitted on measured circles, cones, cylinders, spheres and points as these features generate default hits. However, if circular moves are required between each hit, the hit function should be provided as a place holder. The parameters may be eliminated, in which case the default hit x, y, z and i, j, k are used.

See Also

OldBasic Object 

	IgnoreMotionError Method  XE "IgnoreMotionError Method" 


Description

Sets recalculation of nominals mode. 

Syntax

	Visual Basic

	Public Sub IgnoreMotionError( _

   ByVal tog As Long _

) 


Parameters

tog

TRUE (1) or FALSE (0). TRUE indicates that we wish to begin ignoring CMM motion errors. FALSE means we wish to stop ignoring CMM motion errors.

See Also

OldBasic Object 

	Iterate Method  XE "Iterate Method" 


Description

Creates Iterative Alignment Command. 

Syntax

	Visual Basic

	Public Sub Iterate( _

   ByVal pnt_tol As Double, _

   ByVal flags As ITERATEFLAGS _

) 


Parameters

pnt_tol

The point tolerance.

flags

Use an item from the ITERATEFLAGS enumeration table located at the end of this documentation.

See Also

OldBasic Object 

	Level Method  XE "Level Method" 


Description

Creates Level Alignment Command. 

Syntax

	Visual Basic

	Public Sub Level( _

   ByVal AXIS As WAXISTYPE, _

   ByVal feat As String _

) 


Parameters

AXIS

Axis to level. Use an item from the WAXISTYPE enumeration table located at the end of this documentation.

feat

ID string of the feature to level to.

See Also

OldBasic Object 

	LoadProbe Method  XE "LoadProbe Method" 


Description

Creates Load Probe Command.
Syntax

	Visual Basic

	Public Sub LoadProbe( _

   ByVal probe As String _

) 


Parameters

probe

The probe to load.

See Also

OldBasic Object 

	MaxMinAve Method  XE "MaxMinAve Method" 


Description

Returns maximum, minimum, or average information for command of specified id. 

Syntax

	Visual Basic

	Public Function MaxMinAve( _

   ByVal ID As String, _

   ByVal in_vect As PointData, _

   ByRef out_max As Double, _

   ByRef out_min As Double, _

   ByRef out_ave As Double _

) As Long


Parameters

ID

The string ID of the object to query.

in_vect

Input vector.

out_max

A reference to a double to hold the output maximum.

out_min

A reference to a double to hold the output minimum.

out_ave

A reference to a double to hold the output average.

Return Type

Long value. Non-zero if successful. Zero if the object with the given ID string cannot be found.

Remarks

This function was added for the tutor translator, and should be used with caution.

See Also

OldBasic Object 

	Mode Method  XE "Mode Method" 


Description

Creates DCC / Manual Mode Command. 

Syntax

	Visual Basic

	Public Sub Mode( _

   ByVal Mode As DCCMODE _

) 


Parameters

Mode

Use an item from the DCCMODE enumeration table located at the end of this documentation.

See Also

OldBasic Object 

	Move Method  XE "Move Method" 


Description

Creates Move (Probe or Rotary Table) Command. 

Syntax

	Visual Basic

	Public Sub Move( _

   ByVal tog As MOVETYPE, _

   ByVal X As Double, _

   ByVal Y As Double, _

   ByVal Z As Double, _

   ByVal Direction As MOVEDIRECTION _

) 


Parameters

tog

Use an item from the MOVETYPE enumeration table located at the end of this documentation.

X

X value of point or increment.

Y

Y value of point or increment.

Z

Z value of point or increment.

Direction

Use an item from the MOVEDIRECTION enumeration table located at the end of this documentation.

See Also

OldBasic Object 

	MoveSpeed Method  XE "MoveSpeed Method" 


Description

Creates Move Speed Command. 

Syntax

	Visual Basic

	Public Sub MoveSpeed( _

   ByVal percent As Double _

) 


Parameters

percent

Move speed of the probe as a percentage of the maximum probe speed.

See Also

OldBasic Object 

	OpenCommConnection Method  XE "OpenCommConnection Method" 


Description

Opens a communication port for reading and writing. Opens a connection to the specified comm port.

Syntax

	Visual Basic

	Public Function OpenCommConnection( _

   ByVal port As Long, _

   ByVal baud As PCDBAUD, _

   ByVal parity As PCDPARITY, _

   ByVal Data As PCDDATABITS, _

   ByVal stop As PCDSTOPBITS, _

   ByVal flow As PCDHANDSHAKE _

) As Long


Parameters

port

The comm port to open. Required.

baud

The baud rate at which to communicate with the port. Optional. Use an item from the PCDBAUD enumeration table located at the end of this documentation. Default is PCD_BAUD_9600. 

parity

Optional. Use an item from the PCDPARITY enumeration table located at the end of this documentation. Default is PCD_NOPARITY.

Data

Data Bits. Optional. Use an item from the PCDDATABITS enumeration table located at the end of this documentation. Default is PCD_DATA8.

stop

Stop bits. Optional. Use an item from the PCDSTOPBITS enumeration table located at the end of this documentation. Default is PCD_ONESTOPBIT.

flow

Flow control. Optional. Use an item from the PCDHANDSHAKE enumeration table located at the end of this documentation. Default is PCD_RTSCTS.

Return Type

Long value. 0 if successful, -1 on error.

See Also

OldBasic Object 

	PreHit Method  XE "PreHit Method" 


Description

Creates Prehit Distance Command. 

Syntax

	Visual Basic

	Public Sub PreHit( _

   ByVal DISTANCE As Double _

) 


Parameters

New prehit distance.

See Also

OldBasic Object 

	ProbeComp Method  XE "ProbeComp Method" 


Description

Creates Probe Compensation Command. 

Syntax

	Visual Basic

	Public Sub ProbeComp( _

   ByVal tog As PCDONOFF _

) 


Parameters

tog

Turns probe compensation on or off. Use an item from the PCDONOFF enumeration table located at the end of this documentation.

See Also

OldBasic Object 

	PutFeatData Method  XE "PutFeatData Method" 


Description

Puts feature data into the command specified by the ID. 

Syntax

	Visual Basic

	Public Sub PutFeatData( _

   ByVal ID As String, _

   ByVal buffer As FeatData, _

   ByVal dtype As PCDMEASTHEO, _

   ByVal XYZ As XYZTYPES, _

   ByVal IJK As IJKTYPES _

) 


Parameters

ID

buffer

dtype

Use an item from the PCDMEASTHEO enumeration table located at the end of this documentation.

XYZ

Use an item from the XYZTYPES enumeration table located at the end of this documentation.

IJK

Use an item from the IJKTYPES enumeration table located at the end of this documentation.

Remarks

Parameters, allowed values, and limitations are identical to those of GetFeatData. The data currently in buffer is stored in the feature identified by the ID string.

See Also

OldBasic Object 

	ReadCommBlock Method  XE "ReadCommBlock Method" 


Description

Reads data from an opened communications port. Reads characters from the comm port specified.

Syntax

	Visual Basic

	Public Function ReadCommBlock( _

   ByVal port As Long, _

   ByRef buffer As String, _

   ByVal Count As Long _

) As Long


Parameters

port

The comm port from which to read. Required.

buffer

The string in which to put the read characters. Required.

Count

The maximum number of characters to read from the port. Required.

See Also

OldBasic Object 

	RecallEx Method  XE "RecallEx Method" 


Description

Creates Recall Alignment Command for External Alignments. 

Syntax

	Visual Basic

	Public Sub RecallEx( _

   ByVal recallID As String, _

   ByVal fname As String _

) 


Parameters

recallID

String ID of external alignment to recall.

fname

Remarks

This function does not need to be called within an alignment block.

See Also

OldBasic Object 

	RecallIn Method  XE "RecallIn Method" 


Description

Creates Recall Alignment Command for Internal Alignments. 

Syntax

	Visual Basic

	Public Sub RecallIn( _

   ByVal recallID As String _

) 


Parameters

recallID

String ID of internal alignment to recall.

Remarks

This function does not need to be called within an alignment block.

See Also

OldBasic Object 

	Retract Method  XE "Retract Method" 


Description

Creates a Retract Distance Command. 

Syntax

	Visual Basic

	Public Sub Retract( _

   ByVal DISTANCE As Double _

) 


Parameters

New retract distance.

See Also

OldBasic Object 

	RetroOnly Method  XE "RetroOnly Method" 


Description

Creates a Retrolinear Only Dimension Command. 

Syntax

	Visual Basic

	Public Sub RetroOnly( _

   ByVal tog As PCDONOFF _

) 


Parameters

tog

Use an item from the PCDONOFF enumeration table located at the end of this documentation.

See Also

OldBasic Object 

	Rotate Method  XE "Rotate Method" 


Description

Creates a Rotate Alignment Command. 

Syntax

	Visual Basic

	Public Sub Rotate( _

   ByVal axis1 As WAXISTYPE, _

   ByVal feat As String, _

   ByVal axis2 As WAXISTYPE _

) 


Parameters

axis1

Axis to rotate. Use an item from the WAXISTYPE enumeration table located at the end of this documentation.

feat

ID string of the feature to rotate to.

axis2

Axis to rotate about. Use an item from the WAXISTYPE enumeration table located at the end of this documentation.

See Also

OldBasic Object 

	RotateCircle Method  XE "RotateCircle Method" 


Description

Creates a Circular Rotation Alignment Command. 

Syntax

	Visual Basic

	Public Sub RotateCircle( _

   ByVal Feat1 As String, _

   ByVal Feat2 As String, _

   ByVal axis1 As WAXISTYPE, _

   ByVal axis2 As WAXISTYPE _

) 


Parameters

Feat1

ID string of circle.

Feat2

ID string of second circle.

axis1

Axis to rotate. Use an item from the WAXISTYPE enumeration table located at the end of this documentation.

axis2

Axis to rotate about. Use an item from the WAXISTYPE enumeration table located at the end of this documentation.

See Also

OldBasic Object 

	RotateOffset Method  XE "RotateOffset Method" 


Description

Creates a Rotational Offset Command. 

Syntax

	Visual Basic

	Public Sub RotateOffset( _

   ByVal Offset As Double, _

   ByVal AXIS As WAXISTYPE _

) 


Parameters

Offset

Offset value.

AXIS

Use an item from the WAXISTYPE enumeration table located at the end of this documentation.

See Also

OldBasic Object 

	Roundness Method  XE "Roundness Method" 


Description

Returns roundness information for command of specified ID. 

Syntax

	Visual Basic

	Public Function Roundness( _

   ByVal ID As String, _

   ByRef out_zone As Double _

) As Long


Parameters

ID

The string ID of the object to query.

out_zone

A reference to a double to hold the output zone.

Return Type

Non-zero if successfull. Zero if the object with the given ID string cannot be found.

Remarks

This function was added for the tutor translator, and should be used with caution.

See Also

OldBasic Object 

	RunOut Method  XE "RunOut Method" 


Description

Returns runout information for command of specified ID. 

Syntax

	Visual Basic

	Public Function RunOut( _

   ByVal ID As String, _

   ByVal in_datumxyz As PointData, _

   ByVal in_datumijk As PointData, _

   ByRef out_zone As Double _

) As Long


Parameters

ID

The string ID of the object to query.

in_datumxyz

Input xyz.

in_datumijk

Input ijk.

out_zone

A reference to a double to hold the output zone.

Return Type

Non-zero if successfull. Zero if the object with the given ID string cannot be found.

Remarks

This function was added for the tutor translator, and should be used with caution.

See Also

OldBasic Object 

	SaveAlign Method  XE "SaveAlign Method" 


Description

Creates a Save Alignment Command. 

Syntax

	Visual Basic

	Public Sub SaveAlign( _

   ByVal AlignID As String, _

   ByVal fname As String _

) 


Parameters

AlignID

ID string of the alignment to save.

fname

File in which to save the alignment.

See Also

OldBasic Object 

	SetAutoParams Method  XE "SetAutoParams Method" 


Description

Sets Auto Feature Parameters inside StartFeature Block. 

Syntax

	Visual Basic

	Public Sub SetAutoParams( _

   Optional ByVal INIT_HITS As Variant, _

   Optional ByVal PERM_HITS As Variant, _

   Optional ByVal Depth As Variant, _

   Optional ByVal Height As Variant, _

   Optional ByVal wdth As Variant, _

   Optional ByVal Radius As Variant, _

   Optional ByVal Spacer As Variant, _

   Optional ByVal Indent As Variant, _

   Optional ByVal Thickness As Variant, _

   Optional ByVal DISTANCE As Variant, _

   Optional ByVal major As Variant, _

   Optional ByVal minor As Variant _

) 


Parameters

INIT_HITS

Sample hits for initial execution

PERM_HITS

Sample hits for subsequent executions

Depth

Sheet metal measuring depth

Height

Height of stud for a sheet metal circle, sheet metal cylinder or sheet metal ellipse; or the long length of a slot

wdth

Short width of a slot.

Radius

Corner radius of a square slot.

Spacer

Distance from the nominal feature or nominal feature edge where sample hits are taken.

Indent

Like spacer but in a different direction. Used in edge points, corner points, and angle points.
Thickness

Thickness of  the sheetmetal.

DISTANCE

major

Major axis of ellipse.

minor

Minor axis of ellipse.

Remarks

This function is used for auto features only.

See Also

OldBasic Object 

	SetAutoVector Method  XE "SetAutoVector Method" 


Description

Sets Auto Vector Components (used inside StartFeature Block). 

Syntax

	Visual Basic

	Public Sub SetAutoVector( _

   ByVal index As AUTOVECTORTYPES, _

   ByVal I As Double, _

   ByVal J As Double, _

   ByVal K As Double _

) 


Parameters

index

Determines the vector to set. Axis to rotate about. Use an item from the AUTOVECTORTYPES enumeration table located at the end of this documentation.

I

Double I value for the vector.

J

Double J value for the vector.

K

Double K value for the vector.

Remarks

This function is used for auto features only.

See Also

OldBasic Object 

	SetNoms Method  XE "SetNoms Method" 


Description

Set nominal values for dimension (used inside StartDimension Block). 

Syntax

	Visual Basic

	Public Sub SetNoms( _

   ByVal dtype As DIMAXISTYPE, _

   Optional ByVal nom As Variant, _

   Optional ByVal plus_tol As Variant, _

   Optional ByVal minus_tol As Variant, _

   Optional ByVal multiplier As Variant _

) 


Parameters

dtype

Use an item from the DIMAXISTYPE enumeration table located at the end of this documentation.

nom

Double value indicating nominal. May be omitted when no nominal is needed.

plus_tol

Double value indicating plus tolerance.

minus_tol

Double value indicating minus tolerance. May be omitted when no minus tolerance is needed.

multiplier

Arrow multiplier for dimension. Optional. Defaults to 1.0.

Remarks

When the DefaultAxes command is not used for dimensions of type location and true position, an axis corresponding to the dtype parameter is added for every call to SetNoms.

See Also

OldBasic Object 

	SetPrintOptions Method  XE "SetPrintOptions Method" 


Description

Sets application printing options. 

Syntax

	Visual Basic

	Public Sub SetPrintOptions( _

   ByVal Location As PCDPRINTLOC, _

   ByVal Draft As PCDONOFF, _

   ByVal Filemode As PCDPRINTFILEMODE, _

   ByVal ExtNum As Long _

) 


Parameters

Location

Location of outpout. Use an item from the PCDPRINTLOC enumeration table located at the end of this documentation.

Draft

Mode of output to printer. Use an item from the PCDONOFF enumeration table located at the end of this documentation.

Filemode

Naming mode for output file. Use an item from the PCDPRINTFILEMODE enumeration table located at the end of this documentation.

ExtNum

Used with PCD_AUTO mode naming scheme for output file

See Also

OldBasic Object 

	SetProgramOption Method  XE "SetProgramOption Method" 


Description

Sets application program option. 

Syntax

	Visual Basic

	Public Sub SetProgramOption( _

   ByVal opt As WPROGOPTIONSTYPE, _

   ByVal tog As PCDONOFF _

) 


Parameters

opt

Program option to set. Use an item from the WPROGOPTIONSTYPE enumeration table located at the end of this documentation.

tog

Specifies whether option should be turned on or off. Use an item from the PCDONOFF enumeration table located at the end of this documentation.

See Also

OldBasic Object 

	SetProgramValue Method  XE "SetProgramValue Method" 


Description

Sets application program value.
Syntax

	Visual Basic

	Public Sub SetProgramValue( _

   ByVal opt As WPROGVALUESTYPE, _

   ByVal val As Double _

) 


Parameters

opt

Program value to set. Use an item from the WPROGVALUESTYPE enumeration table located at the end of this documentation.

val

New value for program value being set.

See Also

OldBasic Object 

	SetReportOptions Method  XE "SetReportOptions Method" 


Description

Sets application reporting settings. 

Syntax

	Visual Basic

	Public Sub SetReportOptions( _

   ByVal opt As PCDREPORTSETTINGS _

) 


Parameters

opt

Use an item from the PCDREPORTSETTINGS enumeration table located at the end of this documentation.

Any of these combined flags can be used to turn on or off the reporting object types.

See Also

OldBasic Object 

	SetRMeasMode Method  XE "SetRMeasMode Method" 


Description

Sets Relative Measure mode to Relative or Absolute. 

Syntax

	Visual Basic

	Public Sub SetRMeasMode( _

   ByVal Mode As Long _

) 


Parameters

Mode

The mode to be used for auto features using the RMEAS functionality. PCD_RELATIVE or PCD_ABSOLUTE.

See Also

OldBasic Object 

	SetScanHitParams Method  XE "SetScanHitParams Method" 


Description

Sets scan hit parameters (used in StartScan block). 

Syntax

	Visual Basic

	Public Sub SetScanHitParams( _

   ByVal htype As PCDSCANHITTYPE, _

   ByVal INIT_HITS As Long, _

   ByVal PERM_HITS As Long, _

   ByVal Spacer As Double, _

   ByVal Depth As Double, _

   ByVal Indent As Double, _

   ByVal flags As PCDSCANHITFLAG _

) 


Parameters

htype

Use an item from the PCDSCANHITTYPE enumeration table located at the end of this documentation.

INIT_HITS

Number of init sample hits to use. Optional.

PERM_HITS

Number of permanent hits. Optional.

Spacer

Spacer value. Optional.

Depth

Depth value. Optional.

Indent

Indent value. Optional.

flags

Use an item from the PCDSCANHITFLAG enumeration table located at the end of this documentation. For now, just PCD_EXTERIOR or PCD_INTERIOR. Default is PCD_EXTERIOR. Optional.

Remarks

This function is only used for DCC scans and should not be called for manual scans.

See Also

OldBasic Object 

	SetScanHitVectors Method  XE "SetScanHitVectors Method" 


Description

Sets hit vector components of scan (used in StartScan block). 

Syntax

	Visual Basic

	Public Sub SetScanHitVectors( _

   ByVal Vector As PCDSCANVECTORSURF, _

   ByVal I As Long, _

   ByVal J As Long, _

   ByVal K As Long _

) 


Parameters

Vector

Hit vector to set. Use an item from the PCDSCANVECTORSURF enumeration table located at the end of this documentation.

I

Long I of the hit vector.

J

Long J of the hit vector.

K

Long K of the hit vector.

See Also

OldBasic Object 

	SetScanParams Method  XE "SetScanParams Method" 


Description

Sets scan parameters (used in StartScan block). 

Syntax

	Visual Basic

	Public Sub SetScanParams( _

   ByVal incr As Double, _

   ByVal AXIS As PAXISTYPE, _

   ByVal max_incr As Double, _

   ByVal min_incr As Double, _

   ByVal MAX_ANGLE As Double, _

   ByVal MIN_ANGLE As Double, _

   ByVal delta As Double, _

   ByVal DISTANCE As Double, _

   ByVal incr2 As Double, _

   ByVal axis2 As PAXISTYPE, _

   ByVal surf_thickness As Double _

) 


Parameters

incr

Increment value for LINE, BODY, and CUTAXIS scan techniques. Optional.

AXIS

Axis for BODY and CUTAXIS scan techniques. Use an item from the PAXISTYPE enumeration table located at the end of this documentation. PCD_XAXIS, PCD_YAXIS, PCD_ZAXIS. Optional. 

max_incr

For VARIABLE scan techniques. Optional.

min_incr

For VARIABLE scan techniques. Optional.

MAX_ANGLE

For VARIABLE scan techniques. Optional.

MIN-ANGLE

For VARIABLE scan techniques. Optional.

delta

Distance delta for FIXED_DELTA scans, time delta for VARIABLE_DELTA and TIME_DELTA scans. Optional.

DISTANCE

Drop point distance for VARIABLE_DELTA scan, distance for CUTAXIS scan. Optional.

incr2

Increment value in second direction for a patch scan. Optional.

axis2

Second axis value for a patch scan (BODY scan technique only). Optional. Use an item from the PAXISTYPE enumeration table located at the end of this documentation.

surf_thickness

Surface thickness used to offset centroid calculation if necessary. Optional.

See Also

OldBasic Object 

	SetScanVectors Method  XE "SetScanVectors Method" 


Description

Sets vector components of scan (used in StartScan block). 

Syntax

	Visual Basic

	Public Sub SetScanVectors( _

   ByVal Vector As PCDSCANVECTOR, _

   ByVal I As Double, _

   ByVal J As Double, _

   ByVal K As Double _

) 


Parameters

Vector

Vector to set. Use an item from the PCDSCANVECTOR enumeration table located at the end of this documentation.

I

Double I value of the vector.

J

Double J value of the vector.

K

Double K value of the vector.

See Also

OldBasic Object 

	SetSlaveMode Method  XE "SetSlaveMode Method" 


Description

Turns on/turns off slave mode (subsequent objects are slave object/master objects). 

Syntax

	Visual Basic

	Public Sub SetSlaveMode( _

   ByVal tog As PCDONOFF _

) 


Parameters

tog

Turns slave mode off or on for all subsequent created commands. PCD_ON or PCD_OFF. Use an item from the PCDONOFF enumeration table located at the end of this documentation.

See Also

OldBasic Object 

	SetTheos Method  XE "SetTheos Method" 


Description

Sets theoretical values for feature (used in StartFeature block). 

Syntax

	Visual Basic

	Public Sub SetTheos( _

   Optional ByVal X As Variant, _

   Optional ByVal Y As Variant, _

   Optional ByVal Z As Variant, _

   Optional ByVal I As Variant, _

   Optional ByVal J As Variant, _

   Optional ByVal K As Variant, _

   Optional ByVal diam As Variant, _

   Optional ByVal Length As Variant, _

   Optional ByVal Angle As Variant, _

   Optional ByVal small_diam As Variant, _

   Optional ByVal start_angle As Variant, _

   Optional ByVal end_angle As Variant, _

   Optional ByVal start_angle2 As Variant, _

   Optional ByVal end_angle2 As Variant _

) 


Parameters

X

Y

Z

diam

Diameter of a circle, cylinder, or sphere. Big diameter of a cone.

Length

Length of a cylinder.

Angle

Angle of a cone.

small_diam

Small diameter of a cone.

start_angle

Starting angles for circles, cylinders, and spheres.

end_angle

Ending angles for circles, cylinders, and spheres.

start_angle2

Second starting angle for spheres.

end_angle2

Second ending angles for spheres.

Remarks

A call to SetTheos is mandatory for all measured features.

See Also

OldBasic Object 

	ShowXYZWindow Method  XE "ShowXYZWindow Method" 


Description

Shows or Hides the probe readouts window. 

Syntax

	Visual Basic

	Public Sub ShowXYZWindow( _

   ByVal show As Long _

) 


Parameters

show

Show or hides the probe position window. PCD_ON or PCD_OFF.

See Also

OldBasic Object 

	Sleep Method  XE "Sleep Method" 


Description

Wait until execution catches up to script, then wait for a number of seconds Pauses execution for the specified number of seconds after the previous feature has finished executing.

Syntax

	Visual Basic

	Public Sub Sleep( _

   ByVal seconds As Single _

) 


Parameters

seconds

The number of seconds to pause. Any precision beyond milliseconds is ignored.

Remarks

Sleep calls the Wait function to ensure that the sleeping does not begin before all previous features have been executed.

See Also

OldBasic Object 

	StartAlign Method  XE "StartAlign Method" 


Description

Starts Alignment block and sets alignment parameters. 

Syntax

	Visual Basic

	Public Sub StartAlign( _

   ByVal ID As String, _

   ByVal recallID As String _

) 


Parameters

ID

ID string of the alignment to create.

recallID

ID string of the alignment to recall.

See Also

OldBasic Object 

	StartDim Method  XE "StartDim Method" 


Description

Starts Dimension block and sets dimension parameters. 

Syntax

	Visual Basic

	Public Sub StartDim( _

   ByVal dtype As PCDDIMTYPES, _

   ByVal ID As String, _

   ByVal Feat1 As String, _

   ByVal Feat2 As String, _

   ByVal Feat3 As String, _

   ByVal AXIS As PAXISTYPE, _

   ByVal Length As Double, _

   ByVal Angle As Double, _

   ByVal flags As PCDSTARTDIMFLAGS _

) 


Parameters

dtype

ID string of the dimension to create. Use an item from the PCDDIMTYPES enumeration table located at the end of this documentation.

ID

Feat1

ID string of the Of Feature or From Feature.

Feat2

ID string of the To Feature.

Feat3

ID string of the third feature, if any.

AXIS

Only needed for dimensions using an axis or workplane. Use an item from the PAXISTYPE enumeration table located at the end of this documentation.

Length

Extended length for angularity, profile, perpendicularity, or parallelism.

Angle

Angle for angularity.

flags

Use OR for multiple values.  For example, PCD_ADD_RADIUS Or PCD_PAR_TO. Use an item from the PCDSTARTDIMFLAGS enumeration table located at the end of this documentation.

Remarks

The datum computation type comes first. For example, PCD_RFS_LMC specifies RFS for the datum and LMC for the feature.

See Also

OldBasic Object 

	StartFeature Method  XE "StartFeature Method" 


Description

Starts Feature block and sets feature parameters. 

Syntax

	Visual Basic

	Public Sub StartFeature( _

   ByVal ftype As PCDSTARTFEATTYPES, _

   ByVal ID As String, _

   ByVal RefID As String, _

   ByVal hits As Long, _

   ByVal rows As Long, _

   ByVal inputs As Long, _

   ByVal flags As PCDSTARTFEATFLAGS, _

   ByVal RefPlane As WPLANETYPE _

) 


Parameters

ftype

ID string of the feature. Use an item from the PCDSTARTFEATTYPES enumeration table located at the end of this documentation.

ID

RefID

hits

Measured and auto features only. The number of hits to take to  measure the feature.

rows

inputs

Constructed features only. The number of features that will be used in the construction. There must be a corresponding number of calls to AddFeature before the EndFeature statement.

flags

You can use OR to use any of the flags together. Use an item from the PCDSTARTFEATFLAGS enumeration table located at the end of this documentation.

RefPlane

Use an item from the WPLANETYPE enumeration table located at the end of this documentation.

See Also

OldBasic Object 

	StartGetFeatPoint Method  XE "StartGetFeatPoint Method" 


Description

Sets aside memory buffer of hit data for use with the GetFeatPoint command. This function is used to retrieve the hit or input data from constructed, measured, and auto features, as well as the hit data for scans. To retrieve the actual points, subsequent calls to GetFeatPoint must be made. When all of the needed point values have been retrieved, a call to EndGetFeatPoint must be made to free the memory allocated for  the points.

Syntax

	Visual Basic

	Public Function StartGetFeatPoint( _

   ByVal ID As String, _

   ByVal dtype As PCDMEASTHEO, _

   ByVal XYZ As PCDGETPOINTSTYPES _

) As Long


Parameters

ID

The ID string of the feature to access.

dtype

The type of data to retrieve. Use an item from the PCDMEASTHEO enumeration table located at the end of this documentation.

XYZ

Type of data to put in xyz. Use an item from the PCDGETPOINTSTYPES enumeration table located at the end of this documentation.

Return Type

The number of points retrieved from the object.

Remarks

The StartGetFeatPoint function may not be called mid block.

See Also

OldBasic Object 

	StartScan Method  XE "StartScan Method" 


Description

Starts Scan block and sets scan parameters. 

Syntax

	Visual Basic

	Public Sub StartScan( _

   ByVal ID As String, _

   ByVal Mode As DCCMODE, _

   ByVal stype As PCDSTARTSCANTYPES, _

   ByVal dir1 As PCDSCANDIR1, _

   ByVal dir2 As PCDSCANDIR2, _

   ByVal technique As PCDSCANTECHNIQUE, _

   ByVal num_bnd_pnts As Long, _

   ByVal flags As PCDSTARTSCANFLAGS _

) 


Parameters

ID

ID string of the scan.

Mode

Mode of the scan. Use an item from the DCCMODE enumeration table located at the end of this documentation.

stype

Type of scan. For DCC scans, stype must be PCD_LINEAR_OPEN, PCD_LINEAR_CLOSED, PCD_SECTION, PCD_PERIMETER, or PCD_PATCH. For manual scans, stype must  be PCD_MANUALTTP or PCD_HPROBE. 

Use an item from the appropriate PCDSTARTSCANTYPES table located at the end of this documentation.

dir1

Only used for DCC scans. Optional. Use an item from the PCDSCANDIR1 enumeration table located at the end of this documentation.

dir2

Only used for DCC patch scans. Optional. Use an item from the PCDSCANDIR2 enumeration table located at the end of this documentation.

technique

Only used for manual scans. Optional. Use an item from the PCDSCANTECHNIQUE enumeration table located at the end of this documentation.

num_bnd_pnts

Number of points defining the boundary for the scan. Only used for DCC patch scans. Optional.

flags

Special scan flags. Any of these values may be combined using OR. Optional. Use an item from the PCDSTARTSCANFLAGS enumeration table located at the end of this documentation.

See Also

OldBasic Object 

	Stats Method  XE "Stats Method" 


Description

Creates Stats On/Off command. 

Syntax

	Visual Basic

	Public Sub Stats( _

   ByVal tog As PCDONOFF, _

   ByVal dbase_dir As String, _

   ByVal read_lock As Long, _

   ByVal write_lock As Long, _

   ByVal mem_page As Long, _

   ByVal flags As PCDSTATSFLAGS _

) 


Parameters

tog 

Indicates whether stats is on or off. Use an item from the PCDONOFF enumeration table located at the end of this documentation.

dbase_dir

Database directory. Optional. 

read_lock

Optional.

write_lock

Optional.

mem_page

Optional.

flags

Optional. Use an item from the PCDSTATSFLAGS enumeration table located at the end of this documentation.

See Also

OldBasic Object 

	Straitness Method  XE "Straitness Method" 


Description

Returns straightness information for command of specified ID. 

Syntax

	Visual Basic

	Public Function Straitness( _

   ByVal ID As String, _

   ByRef out_zone As Double _

) As Long


Parameters

ID

The string ID of the object to query.

out_zone

A reference to a double to hold the output zone.

Return Type

Non-zero if successful. Zero if the object with the given ID string cannot be found.

Remarks

This function was added for the tutor translator, and should be used with caution.

See Also

OldBasic Object 

	Tip Method  XE "Tip Method" 


Description

Creates Tip command. The tip to load.

Syntax

	Visual Basic

	Public Sub Tip( _

   ByVal Tip As String, _

   ByVal I As Double, _

   ByVal J As Double, _

   ByVal K As Double, _

   ByVal Angle As Double _

) 


Parameters

Tip

I

J

K

Angle

See Also

OldBasic Object 

	Touchspeed Method  XE "Touchspeed Method" 


Description

Creates touch speed command. 

Syntax

	Visual Basic

	Public Sub Touchspeed( _

   ByVal percent As Double _

) 


Parameters

percent

Touchspeed of the probe as a percentage of the maximum probe speed.

See Also

OldBasic Object 

	Trace Method  XE "Trace Method" 


Description

Creates trace field command. 

Syntax

	Visual Basic

	Public Sub Trace( _

   ByVal field As String _

) 


Parameters

field

Name of the field to trace.

See Also

OldBasic Object 

	Translate Method  XE "Translate Method" 


Description

Creates translation alignment command.
Syntax

	Visual Basic

	Public Sub Translate( _

   ByVal AXIS As PAXISTYPE, _

   ByVal feat As String _

) 


Parameters

AXIS

Use an item from the PAXISTYPE enumeration table located at the end of this documentation.

feat

ID string of feature to translate to.

See Also

OldBasic Object 

	TranslateOffset Method  XE "TranslateOffset Method" 


Description

Creates a translation offset command. 

Syntax

	Visual Basic

	Public Sub TranslateOffset( _

   ByVal Offset As Double, _

   ByVal AXIS As PAXISTYPE _

) 


Parameters

Offset

Value of offset.

AXIS

Use an item from the PAXISTYPE enumeration table located at the end of this documentation.

See Also

OldBasic Object 

	Wait Method  XE "Wait Method" 


Description

Wait until execution catches up to script. 

Waits until all preceding commands have been executed. The basic script creates commands and places them on the execute list more rapidly than the commands are executed. In a script it is often useful to pop up a dialog box for input after a certain series of commands has been executed. The script commands may complete long before the actual commands have been executed. The Wait command is useful to prevent the dialog box from popping up prematurely.

Syntax

	Visual Basic

	Public Sub Wait() 


See Also

OldBasic Object 

	Workplane Method  XE "Workplane Method" 


Description

Creates a workplane object or gets the current workplane.
Syntax

	Visual Basic

	Public Function Workplane( _

   ByVal plane As WPLANETYPE _

) As Long


Parameters

plane

Optional. Use an item from the WPLANETYPE enumeration table located at the end of this documentation. If not provided, the current workplane is returned but no new workplane is set. 

See Also

OldBasic Object 

	WriteCommBlock Method  XE "WriteCommBlock Method" 


Description

Writes data to an opened communications port. Writes characters to the specified comm port.

Syntax

	Visual Basic

	Public Function WriteCommBlock( _

   ByVal port As Long, _

   ByVal buffer As String, _

   ByVal Count As Long _

) As Long


Parameters

port

The comm port to close. Required.

buffer

The string to write to the port. Required.

Count

The number of characters to write to the port. Optional. Defaults to the length of the buffer string.

Return Type

0 if successfull, -1 on error.

See Also

OldBasic Object 

Properties

	Application Property  XE "Application Property" 


Description

Read Only: Returns Application object. 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Application() As Application


See Also

OldBasic Object 

	Parent Property  XE "Parent Property" 


Description

Read Only: Returns Partprogram object. 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Parent() As PartProgram


See Also

OldBasic Object 

	OPTIONPROBE Object  XE "OPTIONPROBE Object" 


Description

The OPTIONPROBE object provides support for the Optional Probe command.

Remarks

Through this object you can get and set various properties of an option probe command in PC-DMIS. For more information on the option probe command, see the "Parameter Settings: Optional Probe tab" topic of the "Setting Your Preferences" of the PC-DMIS Help File.

See Also

OPTIONPROBE Members 

	OPTIONPROBE Object Members  XE "OPTIONPROBE Object Members" 


See Also

OPTIONPROBE Overview 

Properties

	LowForce Property  XE "LowForce Property" 


Description

Read/Write: Low force setting. Double value used to set or get the probe low force setting.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property LowForce() As Double


Return Type

Read/write Double value.

See Also

OPTIONPROBE Object 

	ManFineProbing Property  XE "ManFineProbing Property" 


Description

Read/Write: Man Fine Probing. 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property ManFineProbing() As Long


See Also

OPTIONPROBE Object 

	MaxForce Property  XE "MaxForce Property" 


Description

Read/Write: Maximum force setting. Double value used to set or get the probe max force setting.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property MaxForce() As Double


Return Type

Read/write Double value.

See Also

OPTIONPROBE Object 

	PositionalAccuracy Property  XE "PositionalAccuracy Property" 


Description

Read/Write: Positional Accuracy. Double value used to set or get the positional accuracy setting.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property PositionalAccuracy() As Double


Return Type

Read/write Double value.

See Also

OPTIONPROBE Object 

	ProbeAccuracy Property  XE "ProbeAccuracy Property" 


Description

Read/Write: Probe Accuracy setting. Double value used to set or get the probe accuracy setting.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property ProbeAccuracy() As Double


Return Type

Read/write Double value.

See Also

OPTIONPROBE Object 

	ProbingMode Property  XE "ProbingMode Property" 


Description

Read/Write: Probing Mode. 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property ProbingMode() As String


See Also

OPTIONPROBE Object 

	ReturnData Property  XE "ReturnData Property" 


Description

Read/Write: Return data setting. Double value used to set or get the probe return data value.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property ReturnData() As Double


Return Type

Read/write Double value.

See Also

OPTIONPROBE Object 

	ReturnSpeed Property  XE "ReturnSpeed Property" 


Description

Read/Write: Return speed setting. Double value used to set or get the probe return data value.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property ReturnSpeed() As Double


Return Type

Read/write Double value.

See Also

OPTIONPROBE Object 

	ScanAcceleration Property  XE "ScanAcceleration Property" 


Description

Read/Write: Scan Acceleration. 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property ScanAcceleration() As Double


See Also

OPTIONPROBE Object 

	ScanOffsetForce Property  XE "ScanOffsetForce Property" 


Description

Read/Write: Scan Offset Force. 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property ScanOffsetForce() As Double


See Also

OPTIONPROBE Object 

	ScanPointDensity Property  XE "ScanPointDensity Property" 


Description

Read/Write: Scan Point Density. Double value used to set or get the probe scan point density setting.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property ScanPointDensity() As Double


Return Type

Read/write Double value.

See Also

OPTIONPROBE Object 

	TriggerForce Property  XE "TriggerForce Property" 


Description

Read/Write: Trigger force setting. Double value used to set or get the probe scan point density setting.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property TriggerForce() As Double


Return Type

Read/write Double value.

See Also

OPTIONPROBE Object 

	UpperForce Property  XE "UpperForce Property" 


Description

Read/Write: Upper force setting. Double value used to set or get the probe upper force setting.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property UpperForce() As Double


Return Type

Read/write Double value.

See Also

OPTIONPROBE Object 

	OptMotion Object  XE "OptMotion Object" 


Description

The OptMotion command object is used to change optional motion settings for the PC-DMIS probe motion command object.

Remarks

This section does not define the meaning of the different properties. Additional information on the properties can be found in the "Setting Your Preferences" of the PC-DMIS Help File, under the title "Parameter Settings: Acceleration tab".

See Also

OptMotion Members 

	OptMotion Object Members  XE "OptMotion Object Members" 


See Also

OptMotion Overview 

Properties

	MaxXAcceleration Property  XE "MaxXAcceleration Property" 


Description

Read/Write: Maximum X Acceleration. Double value used to set or get the maximum acceleration in X setting.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property MaxXAcceleration() As Double


Return Type

Read/write Double value.

See Also

OptMotion Object 

	MaxYAcceleration Property  XE "MaxYAcceleration Property" 


Description

Read/Write: Maximum Y Acceleration. Double value used to set or get the maximum acceleration in Y setting.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property MaxYAcceleration() As Double


Return Type

Read/write Double value.

See Also

OptMotion Object 

	MaxZAcceleration Property  XE "MaxZAcceleration Property" 


Description

Read/Write: Maximum Z Acceleration. Double value used to set or get the maximum acceleration in Z setting.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property MaxZAcceleration() As Double


Return Type

Read/write Double value.

See Also

OptMotion Object 

	Page Object  XE "Page Object" 


Description

This object contains information about a specific page in the Report window.

Object Model

 

	[image: image350]
[image: image351]

 INCLUDEPICTURE "Images/pcdlrn~reportcontrols~94.gif" \* MERGEFORMAT \d [image: image352]
[image: image353]

 INCLUDEPICTURE "Images/pcdlrn~application~94.gif" \* MERGEFORMAT \d [image: image354]
[image: image355]

 INCLUDEPICTURE "Images/pcdlrn~parent_(pages)~94.gif" \* MERGEFORMAT \d [image: image356]


Example

Sub Main 

' This example loads a report template and then writes properties of each page to 

' a text file in the same directory that contains this script.

' Modify the pathway and filename used for the LoadReportTemplate statement.

Dim App As Object

Dim PartProg As Object

Dim RepWin As Object

Dim Pages As Object

Dim Page As Object

Dim ReportControls As Object

Set App = CreateObject("Pcdlrn.Application")

Set PartProg = App.ActivePartProgram

Set RepWin = PartProg.ReportWindow

Set Pages = RepWin.Pages

RepWin.LoadReportTemplate "C:\PCDMIS43RC2\REPORTING\TEXTONLY.RTP"

RepWin.RefreshReport

Dim i,intWidth,intHeight As Integer

i = 1

Open "page_properties.txt" For Append As #1 ' This creates the file if it doesn't exist.

Write #1, "----- Page Results for " & RepWin.CurrentReport & " on " & Date() & " at " & Time() & " -----"

While i <= Pages.Count

Write #1, "==Page #" & i &" =="

If Pages.Item(i).LandScape <> 0 Then

Write #1, "Page is landscape"

Else

Write #1, "Page is not landscape"

End If

intWidth = Pages.Item(i).Width

intHeight = Pages.Item(i).Height

Write #1,"Page height is " & intHeight

Write #1,"Page width is " & intWidth

Write #1,"Page is in section: " & Pages.Item(i).Section

Write #1,"Page is custom: " & Pages.Item(i).Custom

Write #1,"Page is duplicated: " & Pages.Item(i).Duplicated

Write #1,"Page has this number of controls: " & Pages.Item(i).ReportControls.Count

i = i + 1

Wend

Close #1

End Sub

See Also

Page Members 

	Page Object Members  XE "Page Object Members" 


See Also

Page Overview 

Properties

	_Number Property  XE "_Number Property" 


Property type

Read-write property

Syntax

	Visual Basic

	Public Property _Number() As Long


See Also

Page Object 

	Application Property  XE "Application Property" 


Description

Read Only: Returns the Application Object. 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Application() As Application


See Also

Page Object 

	Custom Property  XE "Custom Property" 


Description

Read Only: Returns the Custom page information. This read-only property determines whether or not the Page object is from a Custom Report or not.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Custom() As Long


Return Type

Read-only Long value. This returns -1 (or True) if it is a Custom Report and 0 (or False) if it is not.

See Also

Page Object 

	Duplicated Property  XE "Duplicated Property" 


Description

Read Only: returns the page Duplicated index. This read-only property determines whether or not the page is the original page or a duplicate page.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Duplicated() As Long


Return Type

Read-only Long value. It returns 0 if it is the original page. Any number greater than 0 represents a duplicate page index value.

See Also

Page Object 

	Height Property  XE "Height Property" 


Description

Read Only: returns the page Height in pixels. This property returns the number of pixels making up the height of a page.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Height() As Long


Return Type

Read-only Long value representing the page's height in pixels.

See Also

Page Object 

	LandScape Property  XE "LandScape Property" 


Description

Read Only: returns the page Orientation. This read-only property returns the page's orientation.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property LandScape() As Long


Return Type

Read-only Long value. It returns 0 if it is not a landscape orientation. It returns -1 if it is a landscape orientation.

See Also

Page Object 

	Number Property  XE "Number Property" 


Description

Read Only: returns the number of the page. This read-only property returns this page's page number.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Number() As Long


Return Type

Long value representing the page number.

Remarks

This property starts counting at 0. So to get the actual page number you will need to increment this value by 1.

See Also

Page Object 

	Parent Property  XE "Parent Property" 


Description

Read Only: returns the parent Pages object. Returns the parent Pages object.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Parent() As Pages


Return Type

Pages object.

See Also

Page Object 

	ReportControls Property  XE "ReportControls Property" 


Description

Read Only: returns the ReportControls object for this section. This returns the ReportControls object for the page.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property ReportControls() As ReportControls


Remarks

This functions like the corresponding ReportControls property in the Section object.

See Also

Page Object | Section Object | ReportControls Property 

	Section Property  XE "Section Property" 


Description

Read Only: Returns the page Section. This read-only property returns the section index number that the page lies within.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Section() As Long


Return Type

Read-only Long value representing the section that the page is in.

Remarks

The first section returns 0.

See Also

Page Object 

	Width Property  XE "Width Property" 


Description

Read Only: returns the page Width in pixels. This property returns the number of pixels making up the width of a page.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Width() As Long


Return Type

Read-only Long value representing the page's width in pixels.

See Also

Page Object 

	Pages Object  XE "Pages Object" 


Description

This object contains a collection of the Page objects that appear in the Report window.

Object Model

 

	[image: image357]
[image: image358]

 INCLUDEPICTURE "Images/pcdlrn~application~142.gif" \* MERGEFORMAT \d [image: image359]
[image: image360]

 INCLUDEPICTURE "Images/pcdlrn~parent_(reportwindow)~142.gif" \* MERGEFORMAT \d [image: image361]
[image: image362]

 INCLUDEPICTURE "Images/pcdlrn~item_(page)~142.gif" \* MERGEFORMAT \d [image: image363]
[image: image364]

 INCLUDEPICTURE "Images/pcdlrn~_item_(page)~142.gif" \* MERGEFORMAT \d [image: image365]


Remarks

You can use Pages.Item to return a specific Page object.

See Also

Pages Members 

	Pages Object Members  XE "Pages Object Members" 


See Also

Pages Overview 

Methods

	_Item Method  XE "_Item Method" 


Syntax

	Visual Basic

	Public Function _Item( _

   ByVal Num As Long _

) As Page


Parameters

Num

See Also

Pages Object 

	Item Method  XE "Item Method" 


Description

Returns the page with the given number. Returns a specific Page object from the number of Pages in the Report window.

Syntax

	Visual Basic

	Public Function Item( _

   ByVal Num As Long _

) As Page


Parameters

Num

Long value representing the specific page to return from the report window

Return Type

Page object.

See Also

Pages Object 

Properties

	Application Property  XE "Application Property" 


Description

Read Only: Returns the Application Object. 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Application() As Application


See Also

Pages Object 

	Count Property  XE "Count Property" 


Description

Read Only: Returns the number pages. 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Count() As Long


Return Type

Long value representing the total number of pages in the Report window.

See Also

Pages Object 

	Parent Property  XE "Parent Property" 


Description

Read Only: Returns the ReportWindow Parent object. 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Parent() As ReportWindow


Return Type

ReportWindow object.

See Also

Pages Object 

	PartProgram Object  XE "PartProgram Object" 


Description

PC-Dmis Part Program Object. The PartProgram object represents a part program currently available in PC-DMIS. This is the main object used to manipulate part programs.

Object Model

 

	[image: image366]
[image: image367]

 INCLUDEPICTURE "Images/pcdlrn~application~205.gif" \* MERGEFORMAT \d [image: image368]
[image: image369]

 INCLUDEPICTURE "Images/pcdlrn~parent_(partprograms)~205.gif" \* MERGEFORMAT \d [image: image370]
[image: image371]

 INCLUDEPICTURE "Images/pcdlrn~editwindow~205.gif" \* MERGEFORMAT \d [image: image372]
[image: image373]

 INCLUDEPICTURE "Images/pcdlrn~commands~205.gif" \* MERGEFORMAT \d [image: image374]
[image: image375]

 INCLUDEPICTURE "Images/pcdlrn~oldbasic~205.gif" \* MERGEFORMAT \d [image: image376]
[image: image377]

 INCLUDEPICTURE "Images/pcdlrn~cadwindows~205.gif" \* MERGEFORMAT \d [image: image378]
[image: image379]

 INCLUDEPICTURE "Images/pcdlrn~tools~205.gif" \* MERGEFORMAT \d [image: image380]
[image: image381]

 INCLUDEPICTURE "Images/pcdlrn~probes~205.gif" \* MERGEFORMAT \d [image: image382]
[image: image383]

 INCLUDEPICTURE "Images/pcdlrn~activemachine_(machine)~205.gif" \* MERGEFORMAT \d [image: image384]
[image: image385]

 INCLUDEPICTURE "Images/pcdlrn~masterslavedlg~205.gif" \* MERGEFORMAT \d [image: image386]
[image: image387]

 INCLUDEPICTURE "Images/pcdlrn~cadmodel~205.gif" \* MERGEFORMAT \d [image: image388]
[image: image389]

 INCLUDEPICTURE "Images/pcdlrn~partprogramsettings~205.gif" \* MERGEFORMAT \d [image: image390]
[image: image391]

 INCLUDEPICTURE "Images/pcdlrn~executedcommands~205.gif" \* MERGEFORMAT \d [image: image392]
[image: image393]

 INCLUDEPICTURE "Images/pcdlrn~reportwindow~205.gif" \* MERGEFORMAT \d [image: image394]
[image: image395]

 INCLUDEPICTURE "Images/pcdlrn~quickstart~205.gif" \* MERGEFORMAT \d [image: image396]
[image: image397]

 INCLUDEPICTURE "Images/pcdlrn~getvariablevalue_(variable)~205.gif" \* MERGEFORMAT \d [image: image398]
[image: image399]

 INCLUDEPICTURE "Images/pcdlrn~calcadjusttransform_(dmismatrix)~205.gif" \* MERGEFORMAT \d [image: image400]
[image: image401]

 INCLUDEPICTURE "Images/pcdlrn~guess_(command)~205.gif" \* MERGEFORMAT \d [image: image402]


See Also

PartProgram Members 

	PartProgram Object Members  XE "PartProgram Object Members" 


See Also

PartProgram Overview 

Methods

	Activate Method  XE "Activate Method" 


Description

Makes part program the active part program. 

Syntax

	Visual Basic

	Public Sub Activate() 


See Also

PartProgram Object 

	AsyncExecute Method  XE "AsyncExecute Method" 


Description

This function starts execution of the part program and then returns immediately, allowing for asynchronous execution.

Syntax

	Visual Basic

	Public Function AsyncExecute() As Boolean


Return Type

Boolean value. Boolean returns true if the function succeeds, false if it fails. TRUE if the execution of the part program and the return of control was successful, FALSE otherwise.

See Also

PartProgram Object 

	AutoCreateGroupsForAudiMessPrograms Method  XE "AutoCreateGroupsForAudiMessPrograms Method" 


Description

Converts AudiMess programs into groups. 

Syntax

	Visual Basic

	Public Function AutoCreateGroupsForAudiMessPrograms( _

   ByVal bUseDimensionName As Long _

) As Boolean


Parameters

bUseDimensionName

See Also

PartProgram Object 

	CalcAdjustTransform Method  XE "CalcAdjustTransform Method" 


Description

Calculates part adjustment transformation in machine coordinates. 

Syntax

	Visual Basic

	Public Function CalcAdjustTransform( _

   ByVal Part1AlignID As String, _

   ByVal Part2AlignID As String _

) As DmisMatrix


Parameters

Part1AlignID

Part2AlignID

See Also

PartProgram Object 

	ClearAllTADs Method  XE "ClearAllTADs Method" 


Description

Clears the persistent User Assigned Properties data for all reports. 

Syntax

	Visual Basic

	Public Function ClearAllTADs() As Boolean


See Also

PartProgram Object 

	ClearExecutionBlock Method  XE "ClearExecutionBlock Method" 


Description

Clears the start and end commands set by SetExecutionBlock. This clears the start and end commands set by the SetExecutionBlock method.

Syntax

	Visual Basic

	Public Sub ClearExecutionBlock() 


See Also

PartProgram Object | Command Object | SetExecutionBlock Method 

	ClearTADs Method  XE "ClearTADs Method" 


Description

Clears the persistent User Assigned Properties data for the current report. 

Syntax

	Visual Basic

	Public Function ClearTADs() As Boolean


See Also

PartProgram Object 

	ClearVerifyFeaturesFlag Method  XE "ClearVerifyFeaturesFlag Method" 


Description

Clear the VerifyFeatures Flag. 

Syntax

	Visual Basic

	Public Function ClearVerifyFeaturesFlag() As Boolean


See Also

PartProgram Object 

	Close Method  XE "Close Method" 


Description

Closes and saves the part program - object becomes invalid. 

This subroutine saves, closes, and deactivates the part program.

Syntax

	Visual Basic

	Public Sub Close() 


See Also

PartProgram Object 

	DmisOut Method  XE "DmisOut Method" 


Description

Outputs DMIS results to a file. This function outputs DMIS results to a file.

Syntax

	Visual Basic

	Public Function DmisOut( _

   ByVal bExecOrder As Long, _

   ByVal FileName As String _

) As Boolean


Parameters

bExecOrder

FileName

Return Type

Boolean value. Boolean returns TRUE if the expression succeeds, FALSE otherwise.

See Also

PartProgram Object 

	DmisOut2 Method  XE "DmisOut2 Method" 


Description

Outputs DMIS results to a file; option for output last instance only. 

Syntax

	Visual Basic

	Public Function DmisOut2( _

   ByVal bExecOrder As Long, _

   ByVal FileName As String, _

   ByVal bOutputLastInstanceOnly As Long _

) As Boolean


Parameters

bExecOrder

FileName

bOutputLastInstanceOnly

See Also

PartProgram Object 

	EditRulesFile Method  XE "EditRulesFile Method" 


Description

Edits basic script rules file for default parameter management (Inspection Planner). 

Syntax

	Visual Basic

	Public Sub EditRulesFile( _

   ByVal FileName As String _

) 


Parameters

FileName

See Also

PartProgram Object 

	EXECUTE Method  XE "EXECUTE Method" 


Description

Executes the part program. This function executes the part program.

Syntax

	Visual Basic

	Public Function EXECUTE() As Boolean


Return Type

Boolean value. Boolean returns true if the function succeeds, false if it fails. TRUE if the execution of the part program was successful, FALSE otherwise.

See Also

PartProgram Object 

	Export Method  XE "Export Method" 


Description

Exports part program to another format. 

This function exports CAD or part data from the part program to the indicated file. The export format is determined by the file name extension of Name. 

Syntax

	Visual Basic

	Public Function Export( _

   ByVal Name As String _

) As Boolean


Parameters

Name

Required String that denotes the file name to which to export.

See Also

PartProgram Object 

	ExternalCommandEvent Method  XE "ExternalCommandEvent Method" 


Description

ExternalCommandEvent 

Syntax

	Visual Basic

	Public Sub ExternalCommandEvent( _

   ByVal CommandId As Integer, _

   ByVal EventId As Integer _

) 


Parameters

CommandId

EventId

See Also

PartProgram Object 

	GetVariableValue Method  XE "GetVariableValue Method" 


Description

This method returns a variable object specified by the string in VarName if it exists.

Syntax

	Visual Basic

	Public Function GetVariableValue( _

   ByVal VarName As String _

) As Variable


Parameters

VarName

String value representing a variable object.

Return Type

Variable object.

Remarks

PC-DMIS variables only hold values during execution; at learn time PC-DMIS variables have a value of zero. The GetVariableValue and SetVariableValue methods only change a variable's value during the script's execution. If you want to permanently change a value of a variable inside PC-DMIS, you should use the PutText method instead.

Example

See Sample Automation Script 1 

See Also

PartProgram Object | SetVariableValue Method | PutText Method | PCDLRN Project 

	Guess Method  XE "Guess Method" 


Description

Tries to guess what command has just been measured. 

Syntax

	Visual Basic

	Public Function Guess( _

   ByVal featType As GUESSTYPE, _

   ByVal addFeat As Long _

) As Command


Parameters

featType

Use an item from the GUESSTYPE enumeration table located at the end of this documentation.

addFeat

See Also

PartProgram Object 

	IgnoreLearnModeHits Method  XE "IgnoreLearnModeHits Method" 


Description

IgnoreLearnModeHits 

Syntax

	Visual Basic

	Public Function IgnoreLearnModeHits( _

   ByVal bState As Long _

) As Boolean


Parameters

bState

See Also

PartProgram Object 

	Import Method  XE "Import Method" 


Description

Imports from another format into the partprogram. 

This function imports CAD or part data from the indicated file to the part program. The file format is determined by the file name extension of Name. 

Syntax

	Visual Basic

	Public Function Import( _

   ByVal Name As String _

) As Boolean


Parameters

Name

Required String that denotes the file name from which to import.

Return Type

Boolean value. Boolean returns true if the function succeeds, false if it fails.

See Also

PartProgram Object 

	ImportUGDCI Method  XE "ImportUGDCI Method" 


Description

ImportUGDCI 

Syntax

	Visual Basic

	Public Function ImportUGDCI( _

   ByVal Name As String _

) As Boolean


Parameters

Name

See Also

PartProgram Object 

	IsProbeAnalog Method  XE "IsProbeAnalog Method" 


Description

Returns true if the current probe on the selected arm is analog. 

Returns TRUE if the current loaded probe in a part program is an analog probe; it returns FALSE otherwise. If you have multiple probe types defined for a part program, the return value will depend, of course, on the location of the insertion point in the part program.

Syntax

	Visual Basic

	Public Function IsProbeAnalog( _

   ByVal ArmNumber As Long _

) As Boolean


Parameters

ArmNumber

Return Type

Boolean value.

See Also

PartProgram Object 

	LoadLayout Method  XE "LoadLayout Method" 


Description

Loads a layout file. The LoadLayout method loads a customized PC-DMIS user-interface layout as if it were selected from the Windows Layout toolbar inside PC-DMIS. Also, if a layout has been created and moved to a different directory, you can access it by specifying the absolute or relative file name. For information on using this toolbar, see the "Using Toolbars" inside your 

Syntax

Parameters

LayoutFileName

Required String that indicates the file the layout should be read from. This can be an absolute path, a relative path, or the name the user typed in when creating the layout in PC-DMIS.

Return Type

Dim Part As PCDLRN.PartProgram

' loads the first layout from the current user's setup information directory

Part.LoadLayout "layout1.dat" 

' loads the layout in the specified file

Part.LoadLayout "c:\mylayout.dat" 

' loads the layout named "Learn", if it exists

Part.LoadLayout "Learn" 

See Also

PartProgram Object 

	MessageBox Method  XE "MessageBox Method" 


Description

Prompts user with message box above the part program. 

This function uses the PC-DMIS message box function. It includes all functionality including cancelling of execution tied to the Cancel button.

Syntax

	Visual Basic

	Public Function MessageBox( _

   ByVal Message As String, _

   ByVal TITLE As String, _

   ByVal Type As ENUM_PCDMSG_TYPES _

) As ENUM_PCDMSG_RETVALS


Parameters

Message

Required String that is the message of the message box

Optional String that is the title of the message box. If omitted, the title will be the name and version of PC-DMIS.

TITLE

Type

Optional Long used to indicate the button types to be used in the message box. Examples include, "OK", "Cancel", "Retry", "Yes", "No" etc. If omitted, the default is "OK". Use an item from the ENUM_PCDMSG_TYPES enumeration table located at the end of this documentation.

Return Type

Integer value of the button chosen by the user. The value is from ENUM_PCDMSG_RETVALS enumeration.

See Also

PartProgram Object 

	OverrideExecuteSpeed Method  XE "OverrideExecuteSpeed Method" 


Description

Overrides the current execution speed. 

Syntax

	Visual Basic

	Public Function OverrideExecuteSpeed( _

   ByVal NewSpeed As Long _

) As Long


Parameters

NewSpeed

See Also

PartProgram Object 

	Quit Method  XE "Quit Method" 


Description

Quits the part program without saving. 

This subroutine closes and deactivates the part program without saving.

Syntax

	Visual Basic

	Public Function Quit() As Boolean


Return Type

Boolean value. Boolean returns true if the function succeeds, false if it fails. TRUE if the part was quit successfully, FALSE otherwise.

See Also

PartProgram Object 

	RefreshPart Method  XE "RefreshPart Method" 


Description

Refreshes the Part (Edit/CAD Window). Refreshes the display of the Part in the Edit window and in the CAD window.

Syntax

	Visual Basic

	Public Sub RefreshPart() 


See Also

PartProgram Object 

	RemoveLastLearnHit Method  XE "RemoveLastLearnHit Method" 


Description

Removes the last learn-mode hit. 

Syntax

	Visual Basic

	Public Function RemoveLastLearnHit() As Boolean


See Also

PartProgram Object 

	RunJournalFile Method  XE "RunJournalFile Method" 


Description

Executes the part program with Journal File data. 

This executes the part program using point data collected from a journal file. 

Syntax
	Visual Basic

	Public Function RunJournalFile() As Boolean


Parameters

lpszJFileName

String value representing the journal file to use.

Return Type

Boolean value. This method returns TRUE if the part program successfully executes; FALSE otherwise.

Remarks

This is the same as a normal execution of a part program except that the point data comes from the specified journal file. Journal files are used with PC-DMIS/NC, a specialized version of PC-DMIS that executes part programs with CNC (Computer Numeric Control) machines. For more information see the PC-DMIS/NC .
See Also

PartProgram Object 

	Save Method  XE "Save Method" 


Description

Saves the part program. 

This subroutine saves the part program. If the part program has not been saved before, it opens a Save As Dialog box which requires that you name the file.

Syntax

	Visual Basic

	Public Function Save() As Boolean


Return Type

Boolean value. Boolean returns true if the function succeeds, false if it fails. TRUE if the part was saved successfully, FALSE otherwise.

See Also

PartProgram Object 

	SaveAs Method  XE "SaveAs Method" 


Description

Saves the part program with the provided name. 

Syntax

	Visual Basic

	Public Function SaveAs( _

   ByVal Name As String _

) As Boolean


Parameters

Name

Optional String value of the file name to which to save.

Return Type

Boolean value. Boolean returns true if the function succeeds, false if it fails. TRUE if the part was saved successfully, FALSE otherwise.

See Also

PartProgram Object 

	SetExecutionBlock Method  XE "SetExecutionBlock Method" 


Description

Sets the start and end commands for block execution, calls to Execute or AsyncExecute will used until cleared. This method defines a block of commands to execute. Calls are made to the Execute or AsyncExecute functions until the execution block is cleared with the ClearExecutionBlock method.

Syntax

	Visual Basic

	Public Function SetExecutionBlock( _

   ByVal StartCommand As Command, _

   ByVal EndCommand As Command _

) As Boolean


Parameters

StartCommand

This is the first command to execute (as a Command object) in the command block.

EndCommand

This is the last command to execute (as a Command object) in the command block.

Return Type

Boolean value. This method returns TRUE if the block of commands successfully executes; FALSE otherwise.

See Also

PartProgram Object 

	SetVariableValue Method  XE "SetVariableValue Method" 


Description

Sets the variable value of specified name, if valid and can be set. This method sets the value defined in Value for the variable specified by the string in VarName. 
Syntax

	Visual Basic

	Public Function SetVariableValue( _

   ByVal VarName As String, _

   ByVal Value As Variable _

) As Boolean


Parameters

VarName

String value representing a variable.

Value

Variable value representing the new value the variable will take.

Return Type

Boolean value: TRUE if the variable was set, FALSE otherwise.

Remarks

PC-DMIS variables only hold values during execution; at learn time PC-DMIS variables have a value of zero. The GetVariableValue and SetVariableValue methods only change a variable's value during the script's execution. If you want to permanently change a value of a variable inside PC-DMIS, you should use the PutText method instead.

See Also

PartProgram Object | GetVariableValue Method | PutText Method 

	SetVerifyFeaturesFlag Method  XE "SetVerifyFeaturesFlag Method" 


Description

Set the VerifyFeatures Flag. 

Syntax

	Visual Basic

	Public Function SetVerifyFeaturesFlag() As Boolean


See Also

PartProgram Object 

	ToggleMasterSlaveMode Method  XE "ToggleMasterSlaveMode Method" 


Description

Enters/Exits Master-Slave Mode.
Syntax

	Visual Basic

	Public Sub ToggleMasterSlaveMode() 


See Also

PartProgram Object 

	WaitUntilExecuted Method  XE "WaitUntilExecuted Method" 


Description

Delays script execution until command is executed. 

This method waits until the specified Command object executes, or until Timeout seconds pass.

Syntax

	Visual Basic

	Public Function WaitUntilExecuted( _

   ByVal Command As Command, _

   ByVal timeout As Long, _

   ByVal Arm As Long _

) As Boolean


Parameters

Command

This is an expression that evaluates to a Command object. This is the command that is waited for.

timeout

This is the number of seconds (a Long value) to wait for the command to finish execution. If you have a non-positive value, the method waits indefinitely.

Arm

Return Type

Boolean value. This methods immediately returns FALSE if the part program is not executing. It returns TRUE if the specified Command executes before Timeout seconds pass. It returns FALSE if the Command does not execute before Timeout seconds pass. If Timeout is a non-positive value, and the Command never executes, this function never returns a value.

See Also

PartProgram Object 

Properties

	_Name Property  XE "_Name Property" 


Property type

Read-write property

Syntax

	Visual Basic

	Public Property _Name() As String


See Also

PartProgram Object 

	ActiveMachine Property  XE "ActiveMachine Property" 


Description

Read Only: Returns the machine object in use by part program - CMM or Offline Returns the Machine object associated with this part program.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property ActiveMachine() As Machine


Return Type

Read-only Machine object.

See Also

PartProgram Object 

	Application Property  XE "Application Property" 


Description

Read Only: Returns object pointer of type Application. Represents the read-only PC-DMIS application. The Application object includes properties and methods that return top-level objects. For example, the ActivePartProgram property returns a PartProgram object.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Application() As Application


Return Type

Application object.

See Also

PartProgram Object 

	CadModel Property  XE "CadModel Property" 


Description

Read Only: Returns Cad Model Object. 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property CadModel() As CadModel


Return Type

Read-only CadModel object.

See Also

PartProgram Object 

	CadWindows Property  XE "CadWindows Property" 


Description

Read Only: Returns object pointer of type CadWindows. Returns the CadWindows object associated with this part program.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property CadWindows() As CadWindows


Return Type

CadWindows object.

See Also

PartProgram Object 

	Commands Property  XE "Commands Property" 


Description

Read Only: Returns object pointer of type Commands - access partprogram command list. Returns the Commands collection object of this part program.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Commands() As Commands


Return Type

Read-only Command object.

See Also

PartProgram Object 

	ConnectedInDriveMode Property  XE "ConnectedInDriveMode Property" 


Description

Read Only: Returns true when computer connected as driving computer. 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property ConnectedInDriveMode() As Boolean


See Also

PartProgram Object 

	ConnectedInRelayMode Property  XE "ConnectedInRelayMode Property" 


Description

Read Only: Returns true when computer connected as relay computer. 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property ConnectedInRelayMode() As Boolean


See Also

PartProgram Object 

	ConnectedToMaster Property  XE "ConnectedToMaster Property" 


Description

Read Only: Returns true if connected to master computer as slave. 

Returns TRUE if the part program is on the master computer but is running as the slave part program. Returns FALSE otherwise. 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property ConnectedToMaster() As Boolean


Return Type

Read-only Boolean value.

See Also

PartProgram Object 

	ConnectedToSlave Property  XE "ConnectedToSlave Property" 


Description

Read Only: Returns true if connected to slave computer as master. Returns TRUE if the part program is on the slave computer but is running as the master part program. Returns FALSE otherwise.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property ConnectedToSlave() As Boolean


Return Type

Read-only Boolean.

See Also

PartProgram Object 

	CurrentArm Property  XE "CurrentArm Property" 


Description

Read/Write: Returns/Sets the current arm environment. This read/write property returns or sets the active arm when using PC-DMIS in multiple arm mode.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property CurrentArm() As Long


Return Type

Read/write Long value.

Example

Sub Main

' This script queries the system for the 

' active arm number, displays the active arm,

' and asks you if it should be changed.

' If you click Yes, then an input box

' appears allowing you to type the 

' new active arm number. The script then

' updates the software to use the newly

' specified arm. 

  Dim App As Object

  Set App = CreateObject ("PCDLRN.Application")

  Dim Part As Object

  Set Part = App.ActivePartProgram

  Dim intNumArm As Integer

  Dim intResponse As Integer

  intNumArm = Part.CurrentArm

  intResponse = MsgBox("The current active arm is " & intNumArm & ". Do you want to change the active arm?",4+32+0,"Change Active Arm?")

  If intResponse = "6" Then

    intNumArm = InputBox("Type the new active arm number (1 or 2): ")

    Part.CurrentArm = intNumArm

    MsgBox "Your active arm has been changed to " & intNumArm

  Else

    MsgBox "Nothing has changed. Closing script."

  End If

End Sub 

See Also

PartProgram Object 

	CurrentProbeName Property  XE "CurrentProbeName Property" 


Description

Read: Returns the Name of current probe file. 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property CurrentProbeName() As String


See Also

PartProgram Object 

	EditWindow Property  XE "EditWindow Property" 


Description

Read Only: Returns object pointer of type EditWindow. Returns the Editwindow object associated with this part program.
Property type

Read-write property

Syntax

	Visual Basic

	Public Property EditWindow() As EditWindow


Return Type

Read-only EditWindow object.

See Also

PartProgram Object 

	EditWindowTextAll Property  XE "EditWindowTextAll Property" 


Description

Read Only: Returns the edit window text in the current mode. 

Returns a single string containing all the text of the entire Edit window as seen in the Edit window's command mode. Read only.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property EditWindowTextAll() As String


Return Type

Read-only String value.

See Also

PartProgram Object 

	ExecutedCommands Property  XE "ExecutedCommands Property" 


Description

Read Only: Returns the set of commands from the last execution. The ExecutedCommands property returns the ExecutedCommands object. This object contains a collection class of those commands last executed for the current part program.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property ExecutedCommands() As ExecutedCommands


Return Type

ExecutedCommands object.

See Also

PartProgram Object 

	ExecuteDialogVisible Property  XE "ExecuteDialogVisible Property" 


Description

Read/Write: Gives status / makes execute dialog visible or hidden. 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property ExecuteDialogVisible() As Boolean


See Also

PartProgram Object 

	ExecutionWasCancelled Property  XE "ExecutionWasCancelled Property" 


Description

Read Only: Returns true if the last execution run was cancelled. 

Returns TRUE if, during part program execution, the execution is cancelled. Otherwise it returns FALSE. The default value is FALSE. 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property ExecutionWasCancelled() As Boolean


Return Type

Read-only Boolean value.

See Also

PartProgram Object 

	FullName Property  XE "FullName Property" 


Description

Read Only: Full filename for part program - includes path. 

Returns the part program’s full file path and name. 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property FullName() As String


Return Type

Read-only String.

Remarks

If the file name of the part program is C:\PCDMISW\PARTS\1.PRG, the FullName returns "C:\PCDMISW\PARTS\1.PRG".

See Also

PartProgram Object 

	MasterSlaveDlg Property  XE "MasterSlaveDlg Property" 


Description

Read Only: Returns the Master/Slave Calibration Dialog Object. This returns a read-only pointer to the Master/Slave Calibration dialog box, opening the dialog box if necessary.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property MasterSlaveDlg() As MasterSlaveDlg


Return Type

MasterSlaveDlg object.

See Also

PartProgram Object 

	Name Property  XE "Name Property" 


Description

Read Only: Filename of part program - not including path. 

Returns the part program’s file name. 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Name() As String


Return Type

Read only String value.

Remarks

If the file name of the part program is C:\PCDMISW\PARTS\1.PRG, the Name returns "1.PRG".

See Also

PartProgram Object 

	NoActiveProbesObject Property  XE "NoActiveProbesObject Property" 


Description

Read: Property indicating no Probes object are instantiated. 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property NoActiveProbesObject() As Boolean


See Also

PartProgram Object 

	OldBasic Property  XE "OldBasic Property" 


Description

Read Only: Old Basic object - gives access to old basic commands - v2.x. 

Returns this part program’s OldBasic object. The OldBasic object contains all of the methods from the old basic command set used in previous versions of PC-DMIS.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property OldBasic() As OldBasic


Return Type

Read-only OldBasic object.

See Also

PartProgram Object 

	Parent Property  XE "Parent Property" 


Description

Read Only: Returns object pointer to PartPrograms Object. Returns the PartPrograms collection object to which this part program belongs.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Parent() As PartPrograms


Return Type

Read-only PartPrograms object.

See Also

PartProgram Object 

	PartName Property  XE "PartName Property" 


Description

Read/Write: PartName property of part program. Represents the part name of the part program.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property PartName() As String


Return Type

Read/write String value.

Remarks

The part name is not the same as the file name. You can view and set the part name in the Properties of the file containing the part program, as well as at the top of the edit window within PC-DMIS.

See Also

PartProgram Object 

	PartProgramSettings Property  XE "PartProgramSettings Property" 


Description

Read Only: Returns object pointer to PartProgramSettings Object. 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property PartProgramSettings() As PartProgramSettings


See Also

PartProgram Object 

	Path Property  XE "Path Property" 


Description

Read Only: Path where part program is located. 

Returns the part program’s file path.  

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Path() As String


Return Type

Read-only String value.

Remarks

If the file name of the part program is C:\PCDMISW\PARTS\1.PRG, the Path returns "C:\PCDMISW\PARTS\".

See Also

PartProgram Object 

	Probes Property  XE "Probes Property" 


Description

Read Only: Returns object pointer to probe files. The Probes property returns this part program’s Probes collection object.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Probes() As Probes


Return Type

Read-only Probes object.

See Also

PartProgram Object 

	QuickStart Property  XE "QuickStart Property" 


Description

Read Only: Returns object pointer to QuickStart Object. 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property QuickStart() As QuickStart


See Also

PartProgram Object 

	ReportWindow Property  XE "ReportWindow Property" 


Description

Read Only: Returns object pointer of type ReportWindow.
Property type

Read-write property

Syntax

	Visual Basic

	Public Property ReportWindow() As ReportWindow


See Also

PartProgram Object 

	RevisionNumber Property  XE "RevisionNumber Property" 


Description

Read/Write: Revision Number of part program. Represents the part program’s revision number.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property RevisionNumber() As String


Return Type

Read/write String value.

Remarks

You can view and set the revision number in the Properties of the file containing the part program, as well as at the top of the edit window within PC-DMIS.

See Also

PartProgram Object 

	SerialNumber Property  XE "SerialNumber Property" 


Description

Read/Write: Serial Number of part program. Represents the part program’s serial number.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property SerialNumber() As String


Return Type

Read/write String.

Remarks

You can view and set the serial number in the Properties of the file containing the part program, as well as at the top of the edit window within PC-DMIS.

See Also

PartProgram Object 

	ShowAllIDs Property  XE "ShowAllIDs Property" 


Description

Read/Write: Property indicating whether to show all IDs in the CAD Window. 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property ShowAllIDs() As Boolean


See Also

PartProgram Object 

	Speed Property  XE "Speed Property" 


Description

Read Only: Returns Execution speed (0 if not executing). 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Speed() As Long


See Also

PartProgram Object 

	StatsCount Property  XE "StatsCount Property" 


Description

Read/Write: Returns/Sets the current Stats Count; number of parts run Returns or sets the stats count for the current part program. Read/Write Long.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property StatsCount() As Long


Return Type

Read/write Long value.

Remarks

You can view and set the stats count number in the Properties of the file containing the part program, as well as at the top of the edit window within PC-DMIS.

See Also

PartProgram Object 

	Tools Property  XE "Tools Property" 


Description

Read Only: Returns object pointer to tools (i.e. calibration tools). The Tools property returns this part program’s  Tools collection object.
Property type

Read-write property

Syntax

	Visual Basic

	Public Property Tools() As Tools


Return Type

Read-only Tools object.

See Also

PartProgram Object 

	Units Property  XE "Units Property" 


Description

Read Only: Returns the unit type. Returns the measurement unit type used in the part program. Either inches or millimeters.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Units() As UNITTYPE


Return Type

Read-only UNITTYPE object.

See Also

PartProgram Object 

	Visible Property  XE "Visible Property" 


Description

Read/Write: Gives status / Makes part program visible. 

Represents the part program’s visibility status. 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Visible() As Boolean


Example

Read/write Boolean. 

See Also

PartProgram Object 

Events

	OnAddObject Event  XE "OnAddObject Event" 


Description

Event fired when command is added to part program. 

This event gets launched when the specified Command gets added to the part program.

Syntax

	Visual Basic

	Public Event OnAddObject( _

   ByVal Command As Command _

)


Parameters

Command

Command object to determine the command for which this event should wait.

See Also

PartProgram Object 

	OnEndExecution Event  XE "OnEndExecution Event" 


Description

Event fired when part program execution ends. 

This event gets launched when PC-DMIS finishes executing the part program. PC-DMIS determines it has finished execution based on the termination type. 

Syntax

	Visual Basic

	Public Event OnEndExecution( _

   ByVal TerminationType As Long _

)


Parameters

TerminationType

Long number that determines the termination type used by this event.

See Also

PartProgram Object 

	OnExecuteDialogErrorMsg Event  XE "OnExecuteDialogErrorMsg Event" 


Description

Event fired when error message sent to execute dialog. 

This event gets launched when the Execution Mode Options dialog box displays ErrorMsg. 

Syntax

	Visual Basic

	Public Event OnExecuteDialogErrorMsg( _

   ByVal ErrorMsg As String _

)


Parameters

ErrorMsg

String value representing the error message sent to the Machine Errors list in the Execution Mode Options dialog box.

See Also

PartProgram Object 

	OnExecuteDialogStatusMsg Event  XE "OnExecuteDialogStatusMsg Event" 


Description

Event fired when status message sent to execute dialog. 

This event gets launched when the Execution Mode Options dialog box displays StatusMsg. 

Syntax

	Visual Basic

	Public Event OnExecuteDialogStatusMsg( _

   ByVal StatusMsg As String _

)


Parameters

StatusMsg

String value representing the status message sent to the Machine Commands list in the Execution Mode Options dialog box.

See Also

PartProgram Object 

	OnGuess Event  XE "OnGuess Event" 


Description

Event fired when PC-DMIS guesses the feature being measured. 

Syntax

	Visual Basic

	Public Event OnGuess( _

   ByVal Command As Command, _

   ByVal Arm As Long _

)


Parameters

Command

Arm

See Also

PartProgram Object 

	OnObjectAboutToExecute Event  XE "OnObjectAboutToExecute Event" 


Description

Event fired before command is executed. 

This event gets launched immediately before the specified Command gets executed.

Syntax

	Visual Basic

	Public Event OnObjectAboutToExecute( _

   ByVal Command As Command _

)


Parameters

Command

Command object that determines the command about to be executed.

See Also

PartProgram Object 

	OnObjectAboutToExecute2 Event  XE "OnObjectAboutToExecute2 Event" 


Description

Event fired before command is executed for dual arm systems. 

This event gets launched immediately before the specified Command gets executed on a specified Arm of a multiple arm system.

Syntax

	Visual Basic

	Public Event OnObjectAboutToExecute2( _

   ByVal Command As Command, _

   ByVal Arm As Long _

)


Parameters

Command

Command object that determines the command about to be executed.

Arm

Long value representing the arm on a multiple arm machine that is about to execute the command causing the event to launch.

See Also

PartProgram Object 

	OnObjectExecuted Event  XE "OnObjectExecuted Event" 


Description

Event fired when command finishes execution. 

This event gets launched immediately after the specified Command gets executed.

Syntax

	Visual Basic

	Public Event OnObjectExecuted( _

   ByVal Command As Command _

)


Parameters

Command

Command object that determines the command that gets executed.

See Also

PartProgram Object 

	OnObjectExecuted2 Event  XE "OnObjectExecuted2 Event" 


Description

Event fired when command finishes execution for dual arm systems. 

This event gets launched immediately after the specified Command gets executed on a specified Arm of a multiple arm system.

Syntax

	Visual Basic

	Public Event OnObjectExecuted2( _

   ByVal Command As Command, _

   ByVal Arm As Long _

)


Parameters

Command

Command object that determines the command that gets executed.

Arm

Long value representing the arm on a multiple arm machine that executes the Command causing the event to launch.

See Also

PartProgram Object 

	OnReadCncVar Event  XE "OnReadCncVar Event" 


Description

Event fired when program reads CNC Variable. 

Syntax

	Visual Basic

	Public Event OnReadCncVar( _

   ByVal index As Integer, _

   ByRef pval As Double _

)


Parameters

index

pval

See Also

PartProgram Object 

	OnStartExecution Event  XE "OnStartExecution Event" 


Description

Event fired when part program execution begins. 

Syntax

	Visual Basic

	Public Event OnStartExecution()


See Also

PartProgram Object 

	OnToolOffset Event  XE "OnToolOffset Event" 


Description

Event fired when program updates CNC ToolOffset. 

Syntax

	Visual Basic

	Public Event OnToolOffset( _

   ByVal dd As Double, _

   ByVal dl As Double, _

   ByVal file As String, _

   ByVal progname As String, _

   ByVal toolNumber As String _

)


Parameters

dd

dl

file

progname

toolNumber

See Also

PartProgram Object 

	OnWorkOffset Event  XE "OnWorkOffset Event" 


Description

Event fired when program updates CNC WorkOffset. 

This event gets called when PC-DMIS/NC executes WorkOffset command. PC-DMIS/NC is a specialized version of PC-DMIS that allows you to execute part programs using your CNC (Computer Numeric Control) machine. For more information on PC-DMIS/NC, see the PC-DMIS NC .

Syntax

	Visual Basic

	Public Event OnWorkOffset( _

   ByVal dX As Double, _

   ByVal dY As Double, _

   ByVal dZ As Double, _

   ByVal rx As Double, _

   ByVal ry As Double, _

   ByVal rz As Double, _

   ByVal file As String, _

   ByVal progname As String, _

   ByVal gcode As String _

)


Parameters

dX

Double value that represents the change in translation in X from the base alignment to the finished alignment.

dY

Double value that represents the change in translation in Y from the base alignment to the finished alignment.

dZ

Double value that represents the change in translation in Z from the base alignment to the finished alignment.

rx

Double value that represents the change in rotation for X from the base alignment to the finished alignment.

ry

Double value that represents the change in rotation for Y from the base alignment to the finished alignment.

rz

Double value that represents the change in rotation for Z from the base alignment to the finished alignment.

file

String value representing the NC formatted file that gets created if the NC interface is unidirectional.

progname

String value representing the program name assigned to the generated program

gcode

String value representing the G code to send to the controller. This code can be G54 through G59.

See Also

PartProgram Object 

	OnWriteCncVar Event  XE "OnWriteCncVar Event" 


Description

Event fired when program writes CNC Variable. 

Syntax

	Visual Basic

	Public Event OnWriteCncVar( _

   ByVal index As Integer, _

   ByVal val As Double _

)


Parameters

index

val

See Also

PartProgram Object 

	PartPrograms Object  XE "PartPrograms Object" 


Description

Object for the collection of open part programs. 

The PartPrograms object contains all the open part programs in PC-DMIS. 

Object Model

 

	[image: image403]
[image: image404]

 INCLUDEPICTURE "Images/pcdlrn~application~129.gif" \* MERGEFORMAT \d [image: image405]
[image: image406]

 INCLUDEPICTURE "Images/pcdlrn~parent_(application)~129.gif" \* MERGEFORMAT \d [image: image407]
[image: image408]

 INCLUDEPICTURE "Images/pcdlrn~item_(partprogram)~129.gif" \* MERGEFORMAT \d [image: image409]
[image: image410]

 INCLUDEPICTURE "Images/pcdlrn~open_(partprogram)~129.gif" \* MERGEFORMAT \d [image: image411]
[image: image412]

 INCLUDEPICTURE "Images/pcdlrn~add_(partprogram)~129.gif" \* MERGEFORMAT \d [image: image413]
[image: image414]

 INCLUDEPICTURE "Images/pcdlrn~_item_(partprogram)~129.gif" \* MERGEFORMAT \d [image: image415]


Remarks

Use Add to create a fresh new part program and add it to the PartPrograms collection.

Use PartPrograms(index) where index is the part name or index number to access an individual part program.

See Also

PartPrograms Members 

	PartPrograms Object Members  XE "PartPrograms Object Members" 


See Also

PartPrograms Overview 

Methods

	_Item Method  XE "_Item Method" 


Syntax

	Visual Basic

	Public Function _Item( _

   ByVal NameOrNum As Variant _

) As PartProgram


Parameters

NameOrNum

See Also

PartPrograms Object 

	Add Method  XE "Add Method" 


Description

Creates a new part program and adds it to the PartPrograms collection. The Add function creates a new part program and activates it in PC-DMIS. If a part program named FileName exists, it is loaded and the Units parameter is ignored.

Syntax

	Visual Basic

	Public Function Add( _

   ByVal Name As String, _

   ByVal Units As UNITTYPE, _

   ByVal Machine As String, _

   ByVal ProbeFile As String _

) As PartProgram


Parameters

Name

Required String. The file name in which to store the new PartProgram.

Units

Required UNITTYPE enumeration. Use an item from the UNITTYPE enumeration table located at the end of this documentation.

Machine

Required String. The identifying string for your machine. If you're running in offline mode, use "Offline". If you're running in online mode use "CMM1".

ProbeFile

Required String. The identifying string for the probe (.prb) file to use in the part program.

See Also

PartPrograms Object 

	CloseAll Method  XE "CloseAll Method" 


Description

Closes all PartPrograms in the collection. Closes and deactivates all active part programs in PC-DMIS.
Syntax

	Visual Basic

	Public Sub CloseAll() 


See Also

PartPrograms Object 

	Item Method  XE "Item Method" 


Description

Returns partprogram object from partprograms collection by name or number. Returns a specific PartProgram object from the collection in the PartPrograms object.

Syntax

	Visual Basic

	Public Function Item( _

   ByVal NameOrNum As Variant _

) As PartProgram


Parameters

NameOrNum

Required Variant that indicates which PartProgram object to return. It can be either a Long or a String. If it is a Long, it is the index number of the PartProgram object in the PartPrograms collection. If it is a String, it is the ID of the PartProgram object.

Return Type

PartProgram object.

Remarks

Since the Item method is the default, the function name can be omitted if desired.

See Also

PartPrograms Object 

	Open Method  XE "Open Method" 


Description

Opens an existing part program and adds it to the partprograms collection. The Open function activates the part program stored in the file FileName. If the file does not exist, nothing happens.

Syntax

	Visual Basic

	Public Function Open( _

   ByVal FileName As String, _

   ByVal MachineName As String _

) As PartProgram


Parameters

FileName

Required String. The file name of the PartProgram to open.

MachineName

Required String. The identifying string for your machine. If you're running in offline mode, use "Offline". If you're running in online mode use "CMM1".

See Also

PartPrograms Object 

	Remove Method  XE "Remove Method" 


Description

Closes the part program specified by name or number. The Remove function saves, closes, and deactivates the indicated part program. That part program is no longer active in PC-DMIS.

Syntax

	Visual Basic

	Public Function Remove( _

   ByVal NameOrNum As Variant _

) As Boolean


Parameters

NameOrNum

Required Variant that indicates which PartProgram object to return. It can be either a Long or a String. If it is a Long, it is the index number of the PartProgram object in the PartPrograms collection. If it is a String, it is the ID of the PartProgram object.

Return Type

Boolean value. Boolean returns true if the function succeeds, false if it fails. If the function was able to close a part program, it returns TRUE, otherwise FALSE.

See Also

PartPrograms Object 

Properties

	Application Property  XE "Application Property" 


Description

Read Only: Returns Application Object. Represents the read-only PC-DMIS application. The Application object includes properties and methods that return top-level objects. For example, the ActivePartProgram property returns a PartProgram object.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Application() As Application


Return Type

Application object.

See Also

PartPrograms Object 

	Count Property  XE "Count Property" 


Description

Read Only: Number of open part programs. Returns the number of part programs active in PC-DMIS.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Count() As Long


Return Type

Read-only Long value.

See Also

PartPrograms Object 

	Parent Property  XE "Parent Property" 


Description

Read Only: Returns Application Object. Returns the parent object, in this case the Application object.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Parent() As Application


Return Type

Application object. The Application object includes properties and methods that return top-level objects. For example, the ActivePartProgram property returns a PartProgram object.

See Also

PartPrograms Object 

	PartProgramSettings Object  XE "PartProgramSettings Object" 


Description

The PartProgramSettings object allows you to get or set various part program settings.

See Also

PartProgramSettings Members 

	PartProgramSettings Object Members  XE "PartProgramSettings Object Members" 


See Also

PartProgramSettings Overview 

Properties

	AutoAdjustPh9 Property  XE "AutoAdjustPh9 Property" 


Description

Read/Write: Returns the check box value or sets the Automatically Adjust Probe Head Wrist check box from the General tab of the SetUp Options dialog box.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property AutoAdjustPh9() As Long


Return Type

Read/write Long value.

Remarks

If you set this property a non-zero value or True, then PC-DMIS selects this check box.

If you set this property to a zero value or False, then PC-DMIS deselects this check box.

See Also

PartProgramSettings Object 

	AutoLabelPosition Property  XE "AutoLabelPosition Property" 


Description

Read/Write: Returns the check box value or sets the Automatic Label Positioning check box from the General tab of the SetUp Options dialog box.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property AutoLabelPosition() As Long


Return Type

Read/write Long value.

Remarks

If you set this property a non-zero value or True, then PC-DMIS selects this check box.

If you set this property to a zero value or False, then PC-DMIS deselects this check box.

See Also

PartProgramSettings Object 

	PointOnlyMode Property  XE "PointOnlyMode Property" 


Description

Read/Write: Point Only Mode. 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property PointOnlyMode() As Long


See Also

PartProgramSettings Object 

	WarnLoadProbe Property  XE "WarnLoadProbe Property" 


Description

Read/Write: Returns the check box value or sets the Please Load Probe = %s warning check box found in the Warnings Display Options dialog box.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property WarnLoadProbe() As Long


Return Type

Read/write Long value.

Remarks

If you set this property a non-zero value or True, then PC-DMIS selects this check box.

If you set this property to a zero value or False, then PC-DMIS deselects this check box.

See Also

PartProgramSettings Object 

	PictureData Object  XE "PictureData Object" 


Description

Picture Data Object. 

See Also

PictureData Members 

	PictureData Object Members  XE "PictureData Object Members" 


See Also

PictureData Overview 

Methods

	GetBitmapData Method  XE "GetBitmapData Method" 


Description

Get the bitmap data. 

Syntax

	Visual Basic

	Public Sub GetBitmapData( _

   ByRef buffer As Variant _

) 


Parameters

buffer

See Also

PictureData Object 

	GetBitmapDataSize Method  XE "GetBitmapDataSize Method" 


Description

Get the buffer size of the bitmap data.
Syntax

	Visual Basic

	Public Function GetBitmapDataSize() As Long


See Also

PictureData Object 

	PointData Object  XE "PointData Object" 


Description

Point Data Object. 

Remarks

The PointData object is similar to a type defined as follows:

Type PointData

                X as Double
                Y as Double
                Z as Double

End Type

It is be used to pass points and vectors in automation functions that accept this type

Example

See Also

PointData Members 

	PointData Object Members  XE "PointData Object Members" 


See Also

PointData Overview 

Methods

	IJK Method  XE "IJK Method" 


Description

Sets the I, J, K values as a triplet. 

Syntax

	Visual Basic

	Public Sub IJK( _

   ByVal I As Double, _

   ByVal J As Double, _

   ByVal K As Double _

) 


Parameters

See Also

PointData Object 

	XYZ Method  XE "XYZ Method" 


Description

Sets the X, Y, Z values as a triplet. 

Syntax

	Visual Basic

	Public Sub XYZ( _

   ByVal X As Double, _

   ByVal Y As Double, _

   ByVal Z As Double _

) 


Parameters

See Also

PointData Object 

Properties

	I Property  XE "I Property" 


Description

Read/Write: Returns/Sets the I value (Same as X property). 

This property is exactly the same as the X property, but was included for semantic reasons when working with vectors.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property I() As Double


Return Type

Double value.

See Also

PointData Object 

	J Property  XE "J Property" 


Description

Read/Write: Returns/Sets the J value (Same as Y property). 

This property is exactly the same as the Y property, but was included for semantic reasons when working with vectors.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property J() As Double


Return Type

Double value.

See Also

PointData Object 

	K Property  XE "K Property" 


Description

Read/Write: Returns/Sets the K value (Same as Z property). 

This property is exactly the same as the Z property, but was included for semantic reasons when working with vectors.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property K() As Double


Return Type

Double value.

See Also

PointData Object 

	X Property  XE "X Property" 


Description

Read/Write: Returns/Sets the X value (Same as I property). 

Represents the X member of this object. 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property X() As Double


Return Type

Read/write Double.

See Also

PointData Object 

	Y Property  XE "Y Property" 


Description

Read/Write: Returns/Sets the Y value (Same as J property). 

Represents the Y member of this object. 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Y() As Double


Return Type

Read/write Double.

See Also

PointData Object 

	Z Property  XE "Z Property" 


Description

Read/Write: Returns/Sets the Z value (Same as K property). 

Represents the Z member of this object.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Z() As Double


Return Type

Read/write Double.

See Also

PointData Object 

	probe Object  XE "probe Object" 


Description

Probe Object. The Probe object provides information about a given probe description file. It also allows you to manipulate the Probe dialog in PC-DMIS.

Object Model

 

	[image: image416]
[image: image417]

 INCLUDEPICTURE "Images/pcdlrn~application~125.gif" \* MERGEFORMAT \d [image: image418]
[image: image419]

 INCLUDEPICTURE "Images/pcdlrn~parent_(probes)~125.gif" \* MERGEFORMAT \d [image: image420]
[image: image421]

 INCLUDEPICTURE "Images/pcdlrn~tips~125.gif" \* MERGEFORMAT \d [image: image422]
[image: image423]

 INCLUDEPICTURE "Images/pcdlrn~qualificationsettings~125.gif" \* MERGEFORMAT \d [image: image424]


See Also

probe Members 

	probe Object Members  XE "probe Object Members" 


See Also

probe Overview 

Methods

	ClearAllTips Method  XE "ClearAllTips Method" 


Description

Clears all tips selected for qualification. Use the "Probe.SelectAllTips" function to select all tips. Use the "Tip.Selected" property of the tip object to select or deselect individual tips for probe qualification.

Syntax

	Visual Basic

	Public Sub ClearAllTips() 


See Also

probe Object 

	ComponentDescription Method  XE "ComponentDescription Method" 


Description

Returns the ComponentDescription referenced by the item parameter. This function returns a string which is the nth component description of the component list box as determined by the Item parameter.

Syntax

	Visual Basic

	Public Function ComponentDescription( _

   ByVal Item As Long _

) As String


Parameters

Item

Required Long. The zero-based index of the string from the list box to return. This must be between 0 and probe.ComponentCount-1.

Return Type

String value.

See Also

probe Object 

	ConnectionDescription Method  XE "ConnectionDescription Method" 


Description

Returns the ConnectionDescription referenced by the item parameter. Returns the Item number string in the connection drop down list.

Syntax

	Visual Basic

	Public Function ConnectionDescription( _

   ByVal Item As Long _

) As String


Parameters

Item

Required Long. The zero-based index of the string from the drop down list to return. This must be between 0 and probe.ConnectionCount-1.

Return Type

String value.

See Also

probe Object 

	Dialog Method  XE "Dialog Method" 


Description

Displays the probes dialog. 

Opens the PC-DMIS Probe Utilities dialog box.

Syntax

	Visual Basic

	Public Function Dialog() As Boolean


Return Type

Boolean value. Boolean returns true if the function succeeds, false if it fails.

See Also

probe Object 

	Qualify Method  XE "Qualify Method" 


Description

Begins calibration process of probes in current probe file. 
Qualifies all of the probe's tips.

Syntax

	Visual Basic

	Public Sub Qualify() 


See Also

probe Object 

	Qualify2 Method  XE "Qualify2 Method" 


Description

Calibrates probes using settings passed in via Qualify Settings Object. Calibrates the probe tips using settings passed in via the QualificationSettings object.

Syntax

	Visual Basic

	Public Function Qualify2( _

   ByVal Settings As QualificationSettings _

) As Boolean


Parameters

Settings

Values passed in from the QualificationSettings object.

Return Type

QualificationSettings object.

See Also

probe Object 

	SelectAllTips Method  XE "SelectAllTips Method" 


Description

Selects all tips for qualification. 

Selects all tips in tip list for qualification. 

Syntax

	Visual Basic

	Public Sub SelectAllTips() 


Remarks

Use the Probe.ClearAllTips function to clear all selected tips. Use the Tip.Selected property of the tip object to select or deselect individual tips for probe qualification.

See Also

probe Object | SelectAllTips Method | Selected Property 

Properties

	ActiveComponent Property  XE "ActiveComponent Property" 


Description

Read/Write: Returns/Sets the current component for the current connection. Represents the highlighted probe component in PC-DMIS’s Probe dialog box.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property ActiveComponent() As Long


Return Type

Read/write Long value.

Example

The following VB code illustrates how to create a probe containing a PH9, a TP2, and a 5 mm tip, from scratch in the active part program.

Option Explicit

Dim DmisApp As PCDLRN.Application

Dim DmisPart As PCDLRN.PartProgram

Dim DmisProbes As PCDLRN.Probes

Dim DmisProbe As PCDLRN.probe

Dim DmisTips As PCDLRN.Tips

Dim DmisTip As PCDLRN.Tip

Sub BuildProbe()

    Dim iCnt As Long

    Dim sProbe As String

    sProbe = "VGS102"

    Set DmisApp = CreateObject("PCDLRN.Application")

    If DmisApp Is Nothing Then

        MsgBox ("DmisApp is Nothing")

        Exit Sub

    End If

    Set DmisPart = DmisApp.ActivePartProgram

    If DmisPart Is Nothing Then

        MsgBox ("DmisPart is Nothing")

        Exit Sub

    End If

    Set DmisProbes = DmisPart.Probes

    If DmisProbes Is Nothing Then

        MsgBox ("DmisProbes is Nothing")

        Exit Sub

    End If

    DmisPart.Probes.Add (sProbe)

    Set DmisProbe = DmisProbes.Item(sProbe)

        If DmisProbe Is Nothing Then

        MsgBox ("DmisProbe is Nothing")

        Exit Sub

    End If

    DmisProbe.ActiveComponent = 0

    DmisProbe.ActiveConnection = 0

    For iCnt = 1 To DmisProbe.ComponentCount

        If (DmisProbe.ComponentDescription(iCnt) = "PROBEPH9") Then

            DmisProbe.ActiveComponent = iCnt

            Exit For

        End If

    Next iCnt

    For iCnt = 1 To DmisProbe.ComponentCount

        If (DmisProbe.ComponentDescription(iCnt) = "PROBETP2") Then

            DmisProbe.ActiveComponent = iCnt

            Exit For

        End If

    Next iCnt

    For iCnt = 1 To DmisProbe.ComponentCount

        If (DmisProbe.ComponentDescription(iCnt) = "TIP5BY50MM") Then

            DmisProbe.ActiveComponent = iCnt

            Exit For

        End If

    Next iCnt

End Sub

Private Sub Command1_Click()

    BuildProbe

End Sub

See Also

probe Object 

	ActiveConnection Property  XE "ActiveConnection Property" 


Description

Read/Write: Returns/Sets the current connection. 

Represents the highlighted probe connection in PC-DMIS’s Probe dialog’s connection drop-down list. 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property ActiveConnection() As Long


Return Type

Read/write Long value.

See Also

probe Object 

	Application Property  XE "Application Property" 


Description

Read Only: Returns the Application Object. Represents the read-only PC-DMIS application. The Application object includes properties and methods that return top-level objects. For example, the ActivePartProgram property returns a PartProgram object.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Application() As Application


Return Type

Read/write Application object.

See Also

probe Object 

	ComponentCount Property  XE "ComponentCount Property" 


Description

Read Only: Returns the current number of available components for the current connection. 

Returns the number of components in the component list box. There is always at least one, even when it appears that there are no entries. In that case, the one entry is invisible, but it can still be made active.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property ComponentCount() As Long


Return Type

Long value.

See Also

probe Object 

	ConnectionCount Property  XE "ConnectionCount Property" 


Description

Read Only: Returns the current number of available connections. Returns the number of connections in the connection drop-down list. The contents of this list depend on which component is active.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property ConnectionCount() As Long


Return Type

Long value.

See Also

probe Object 

	FullName Property  XE "FullName Property" 


Description

Read Only: Returns the path and filename of the probe file. 

Returns the full name of the file containing this probe’s information. 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property FullName() As String


Return Type

Read-only String value.

Remarks

If the fully qualified path name is C:\PCDMISW\PROBE\SP600.PRB, FullName returns "C:\PCDMISW\PROBE\SP600.PRB".

See Also

probe Object 

	Name Property  XE "Name Property" 


Description

Read Only: Returns the filename only (no path) of the probe file. 

Returns the name of the file containing this probe’s information.  

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Name() As String


Return Type

Read-only String value.

Remarks

If the fully qualified path name is C:\PCDMISW\PROBE\SP600.PRB, FullName returns "SP600.PRB".

See Also

probe Object 

	Parent Property  XE "Parent Property" 


Description

Read Only: Returns the parent Probes collection object. Returns the Probes collection object to which this object belongs.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Parent() As Probes


Return Type

Probes object.

See Also

probe Object 

	Path Property  XE "Path Property" 


Description

Read Only: Returns the path of the probe file. 

Returns the path to the file containing this probe’s information. 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Path() As String


Return Type

Read-only String value.

Remarks

If the fully qualified path name is C:\PCDMISW\PROBE\SP600.PRB, Path returns "C:\PCDMISW\PROBE\".

See Also

probe Object 

	QualificationSettings Property  XE "QualificationSettings Property" 


Description

Read Only: Returns a Qualify Settings Object that can be modified and passed into the qualify 2 method. 

Returns the Qualify Settings object that can be modified and passed into the Qualify2 method. It supports these parameters:

StartA - Returns the starting A angle of the probe
EndA - Returns the ending A angle of the probe
IncrementA - Returns the increment value for automatically generated A angles between the starting A angle of the probe and the ending A angle of the probe.
StartB - Returns the starting B angle of the probe
EndB - Returns the ending B angle of the probe
IncrementB - Returns the increment value for automatically generated B angles between the starting B angle of the probe and the ending B angle of the probe.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property QualificationSettings() As QualificationSettings


See Also

probe Object | Qualify2 Method 

	Tips Property  XE "Tips Property" 


Description

Read Only: Returns the child Tips Collection Object Returns the Tips object associated with this Probe object.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Tips() As Tips


See Also

probe Object 

	UseWristMap Property  XE "UseWristMap Property" 


Description

Read/Write: Returns/Sets if the wrist map is used. 

Determines whether or not a wrist map is used. 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property UseWristMap() As Boolean


Return Type

Read/write Boolean value.  Boolean returns TRUE if the probe uses a wrist map, FALSE otherwise.

See Also

probe Object 

	Probes Object  XE "Probes Object" 


Description

Probes collection object. The Probes object is the collection of all Probe objects currently available to a part program.

Object Model

 

	[image: image425]
[image: image426]

 INCLUDEPICTURE "Images/pcdlrn~application~132.gif" \* MERGEFORMAT \d [image: image427]
[image: image428]

 INCLUDEPICTURE "Images/pcdlrn~parent_(partprogram)~132.gif" \* MERGEFORMAT \d [image: image429]
[image: image430]

 INCLUDEPICTURE "Images/pcdlrn~item_(probe)~132.gif" \* MERGEFORMAT \d [image: image431]
[image: image432]

 INCLUDEPICTURE "Images/pcdlrn~_item_(probe)~132.gif" \* MERGEFORMAT \d [image: image433]


Remarks

Use Probes (index) where index is the index number or name of the requested probe file.

See Also

Probes Members 

	Probes Object Members  XE "Probes Object Members" 


See Also

Probes Overview 

Methods

	_Item Method  XE "_Item Method" 


Syntax

	Visual Basic

	Public Function _Item( _

   ByVal NameOrNum As Variant _

) As probe


Parameters

NameOrNum

See Also

Probes Object 

	Add Method  XE "Add Method" 


Description

Creates a new probe file and makes it available to the probes collection. 

The Add function sets the probe name to FileName. This allows the user to start creating a new probe.

Syntax

	Visual Basic

	Public Function Add( _

   ByVal FileName As String _

) As Boolean


Parameters

FileName

Required String that indicates the name of the new probe.

Return Type

Boolean value. Boolean returns true if the function succeeds, false if it fails.

See Also

Probes Object 

	CancelChanges Method  XE "CancelChanges Method" 


Description

Cancels changes made to the probes collection and close the probes collection. 

The CancelChanges function cancels changes made to a probes collection and then closes the probes collection.

Syntax

	Visual Basic

	Public Sub CancelChanges() 


See Also

Probes Object 

	Item Method  XE "Item Method" 


Description

Returns a probe object based on the specified name of number. Returns the specified Probe object from the collection of Probes.

Syntax

	Visual Basic

	Public Function Item( _

   ByVal NameOrNum As Variant _

) As probe


Parameters

NameOrNum

Required Variant that indicates which Probe object to return. It can be either a Long or a String. If it is a Long, it is the index number of the Probe object in the Probes collection. If it is a String, it is the name of the Probe object.

Remarks

Since the Item method is the default, the function name can be omitted if desired.

See Also

Probes Object 

	SaveChanges Method  XE "SaveChanges Method" 


Description

Save Changes made to the probes collection and closes the probes collection. 

Syntax

	Visual Basic

	Public Sub SaveChanges() 


See Also

Probes Object 

Properties

	Application Property  XE "Application Property" 


Description

Read Only: Returns the Application Object. Represents the read-only PC-DMIS application. The Application object includes properties and methods that return top-level objects.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Application() As Application


Return Type

Application object.

See Also

Probes Object 

	Count Property  XE "Count Property" 


Description

Read Only: Returns the number of probe files available to the application. 

Represents the number of Machine objects currently active in PC-DMIS. 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Count() As Long


Return Type

Read-only Integer value.

See Also

Probes Object 

	Parent Property  XE "Parent Property" 


Description

Read Only: Returns the parent PartProgram Object. Returns the parent PartProgram of this object.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Parent() As PartProgram


Return Type

Read-only PartProgram.

See Also

Probes Object 

	Visible Property  XE "Visible Property" 


Description

Read/Write: Returns/Sets the visible status of the dialog. 

Gets or sets the current visible state of the Probes object. You can use this property to show or hide the current probe inside the Graphics Display window of PC-DMIS.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Visible() As Boolean


See Also

Probes Object 

	QualificationSettings Object  XE "QualificationSettings Object" 


Description
The QualificationSettings object specifies how to calibrate your probe. The calibration process tells PC-DMIS the location and diameter of the probe tip. For more information on calibrating the probe, see the "Defining Probes" topic in the PC-DMIS help file.

Object Model
 

	[image: image434]
[image: image435]

 INCLUDEPICTURE "Images/pcdlrn~gettool_(tool)~125.gif" \* MERGEFORMAT \d [image: image436]


See Also
QualificationSettings Members 

	QualificationSettings Object Members  XE "QualificationSettings Object Members" 


See Also
QualificationSettings Overview 

Methods

	GetTool Method  XE "GetTool Method" 


Description
This method returns a tool object.

Syntax
	Visual Basic

	Public Function GetTool() As tool


Return Type
This method returns a tool object.

Remarks
GetTool value.

See Also
QualificationSettings Object 

	SetTool Method  XE "SetTool Method" 


Description
Required expression that evaluates to a QualificationSettings object.

Syntax
	Visual Basic

	Public Function SetTool( _

   ByVal tool As tool _

) As Boolean


Parameters
tool

This method sets the current qualification tool to tool. This method returns a boolean value: TRUE if the function succeeds, FALSE otherwise.

Return Type
Boolean value.

See Also
QualificationSettings Object 

Properties

	CreateReplaceMap Property  XE "CreateReplaceMap Property" 


Description
Read/Write: Indicates if the map should be created or replaced. 

This determines whether or not a map should be created or replaced. Read/Write. 

Property type
Read-write property

Syntax
	Visual Basic

	Public Property CreateReplaceMap() As ENUM_QUAL_CREATE_REPLACE


Return Type
ENUM_QUAL_CREATE_REPLACE enumeration.

See Also
QualificationSettings Object 

	EndA Property  XE "EndA Property" 


Description
A Angle End Value. 

This determines the ending A angle to use during qualification. 

Property type
Read-write property

Syntax
	Visual Basic

	Public Property EndA() As Double


Return Type
Double value.

See Also
QualificationSettings Object 

	EndAngle Property  XE "EndAngle Property" 


Description
End Angle on Tool. 

This determines the End Angle to use on the qualification tool. 

Property type
Read-write property

Syntax
	Visual Basic

	Public Property EndAngle() As Double


Return Type
Double value.

See Also
QualificationSettings Object 

	EndB Property  XE "EndB Property" 


Description
B Angle End Value. This determines the ending B angle to use during qualification.

Property type
Read-write property

Syntax
	Visual Basic

	Public Property EndB() As Double


Return Type
Double value.

See Also
QualificationSettings Object 

	EndC Property  XE "EndC Property" 


Description
C Angle End Value. 

Property type
Read-write property

Syntax
	Visual Basic

	Public Property EndC() As Double


See Also
QualificationSettings Object 

	ExecuteMode Property  XE "ExecuteMode Property" 


Description
Type of Calibration Action to Be Taken. This determines the type of calibration action to take.

Property type
Read-write property

Syntax
	Visual Basic

	Public Property ExecuteMode() As ENUM_CALIBRATION_EXECUTE_MODE


Return Type
ENUM_CALIBRATION_EXECUTE_MODE enumeration.

See Also
QualificationSettings Object 

	IncrementA Property  XE "IncrementA Property" 


Description
A Angle Increment Value. 

This determines the angle increment to use for the A angle during qualification. 

Property type
Read-write property

Syntax
	Visual Basic

	Public Property IncrementA() As Double


Return Type
Double value.

See Also
QualificationSettings Object 

	IncrementB Property  XE "IncrementB Property" 


Description
B Angle Increment Value. 

This determines the angle increment to for the B angle during qualification. 

Property type
Read-write property

Syntax
	Visual Basic

	Public Property IncrementB() As Double


Return Type
Double value.

See Also
QualificationSettings Object 

	IncrementC Property  XE "IncrementC Property" 


Description
C Angle Increment Value. 

Property type
Read-write property

Syntax
	Visual Basic

	Public Property IncrementC() As Double


See Also
QualificationSettings Object 

	Mode Property  XE "Mode Property" 


Description
Calibration Mode: DCC or Manual. 

This determines the Calibration Mode. Either DCC or Manual. 

Property type
Read-write property

Syntax
	Visual Basic

	Public Property Mode() As QUALIFICATION_SETTINGS_MODE


Return Type
Remarks
QUALIFICATION_SETTINGS_MODE object.

See Also
QualificationSettings Object 

	MoveSpeed Property  XE "MoveSpeed Property" 


Description
Probe Move Speed During Calibration. This determines the speed the probe moves during calibration.

Property type
Read-write property

Syntax
	Visual Basic

	Public Property MoveSpeed() As Double


Return Type
Double value.

See Also
QualificationSettings Object 

	NumHits Property  XE "NumHits Property" 


Description
Number of hits around calibration tool. 

This determines the number of hits to take around the calibration tool. 

Property type
Read-write property

Syntax
	Visual Basic

	Public Property NumHits() As Long


Return Type
Long value.

See Also
QualificationSettings Object 

	NumLevels Property  XE "NumLevels Property" 


Description
Number of levels on Tool. 

This determines the number of levels that to use in the calibration process. PC-DMIS divides the number of hits by the number of levels to determine how many hits will be taken on each level of the qualification tool. 

Property type
Read-write property

Syntax
	Visual Basic

	Public Property NumLevels() As Long


Return Type
Long value.

See Also
QualificationSettings Object 

	PHSAPriority Property  XE "PHSAPriority Property" 


Description
For PHS Systems, whether A or B receives priority. 

This indicates whether angle A or B for a PHS system receives priority during the calibration process. TRUE means Angle A gets priority. FALSE means Angle B gets priority.

Property type
Read-write property

Syntax
	Visual Basic

	Public Property PHSAPriority() As Boolean


Return Type
Boolean value.

See Also
QualificationSettings Object 

	PHSTol Property  XE "PHSTol Property" 


Description
For PHS Systems, the PHS Tolerance Value. 

For PHS systems, this determines the PHS tolerance value. 

Property type
Read-write property

Syntax
	Visual Basic

	Public Property PHSTol() As Double


Return Type
Double value.

See Also
QualificationSettings Object 

	PreHit Property  XE "PreHit Property" 


Description
Prehit distance used during calibration. 

This determines the Prehit distance to use during calibration. 

Property type
Read-write property

Syntax
	Visual Basic

	Public Property PreHit() As Double


Return Type
Type Double value.

See Also
QualificationSettings Object 

	ShankCheck Property  XE "ShankCheck Property" 


Description
Boolean value indicating whether a shank check should occur. 

This determines whether or not you'll calibrate the shank of the probe as well. 

Property type
Read-write property

Syntax
	Visual Basic

	Public Property ShankCheck() As Boolean


Return Type
Boolean value.

See Also
QualificationSettings Object 

	ShankHits Property  XE "ShankHits Property" 


Description
Number of hits on shank. 

This determines the number of hits used to measure the shank. 

Property type
Read-write property

Syntax
	Visual Basic

	Public Property ShankHits() As Long


Return Type
Long value.

See Also
QualificationSettings Object 

	ShankOffset Property  XE "ShankOffset Property" 


Description
Shank Offset for calibration. 

Property type
Read-write property

Syntax
	Visual Basic

	Public Property ShankOffset() As Double


See Also
QualificationSettings Object 

	StartA Property  XE "StartA Property" 


Description
A Angle Start Value. 

This determines the starting A angle to use during qualification.

Property type
Read-write property

Syntax
	Visual Basic

	Public Property StartA() As Double


Return Type
Double value.

See Also
QualificationSettings Object 

	StartAngle Property  XE "StartAngle Property" 


Description
Start Angle on Tool. 

This determines the Start Angle to use on the qualification tool.

Property type
Read-write property

Syntax
	Visual Basic

	Public Property StartAngle() As Double


Return Type
Double value.

See Also
QualificationSettings Object 

	StartB Property  XE "StartB Property" 


Description
B Angle Start Value. This determines the starting B angle to use during qualification.

Property type
Read-write property

Syntax
	Visual Basic

	Public Property StartB() As Double


Return Type
Double value.

See Also
QualificationSettings Object 

	StartC Property  XE "StartC Property" 


Description
C Angle Start Value. 

Property type
Read-write property

Syntax
	Visual Basic

	Public Property StartC() As Double


See Also
QualificationSettings Object 

	ToolMoved Property  XE "ToolMoved Property" 


Description
Indicates whether tool moved or not or if user should be asked. 

This indicates whether a tool has moved or not or if the user should be asked. 

Property type
Read-write property

Syntax
	Visual Basic

	Public Property ToolMoved() As ENUM_TOOL_MOVED


Return Type
ENUM_TOOL_MOVED enumeration.

See Also
QualificationSettings Object 

	ToolOnRotaryTable Property  XE "ToolOnRotaryTable Property" 


Description
Indicates whether or not tool is located on rotary table. 

This indicates whether or not the tool is located on a rotary table.

Property type
Read-write property

Syntax
	Visual Basic

	Public Property ToolOnRotaryTable() As Boolean


Return Type
Boolean value.

See Also
QualificationSettings Object 

	ToolOverideI Property  XE "ToolOverideI Property" 


Description
I Vector Tool Overide Value. This determines the I value for the Tool Override's IJK vector.
Property type
Read-write property

Syntax
	Visual Basic

	Public Property ToolOverideI() As Double


Return Type
Double value.

See Also
QualificationSettings Object 

	ToolOverideJ Property  XE "ToolOverideJ Property" 


Description
J Vector Tool Overide Value. This determines the J value for the Tool Override's IJK vector.

Property type
Read-write property

Syntax
	Visual Basic

	Public Property ToolOverideJ() As Double


Return Type
Double value.

See Also
QualificationSettings Object 

	ToolOverideK Property  XE "ToolOverideK Property" 


Description
K Vector Tool Overide Value. This determines the K value for the Tool Override's IJK vector.

Property type
Read-write property

Syntax
	Visual Basic

	Public Property ToolOverideK() As Double


Return Type
Double value.

See Also
QualificationSettings Object 

	Touchspeed Property  XE "Touchspeed Property" 


Description
Probe Touch Speed used during calibration. This determines the Touch Speed to use during calibration.

Property type
Read-write property

Syntax
	Visual Basic

	Public Property Touchspeed() As Double


Return Type
Double value.

See Also
QualificationSettings Object 

	UserDefinedCalibrationMode Property  XE "UserDefinedCalibrationMode Property" 


Description
Indicates whether End Angle, Start Angle, and Numlevels is used or ignored 

This determines whether End Angle, Start Angle, and NumLevels are used in the calibration process, or if they're ignored. 

Property type
Read-write property

Syntax
	Visual Basic

	Public Property UserDefinedCalibrationMode() As Boolean


Return Type
Boolean value.

See Also
QualificationSettings Object 

	UserDefinedCalibrationOrder Property  XE "UserDefinedCalibrationOrder Property" 


Description
Indicates whether Tool Override Settings are used or ignored. 
This determines whether or not the calibration order is user defined.

Property type
Read-write property

Syntax
	Visual Basic

	Public Property UserDefinedCalibrationOrder() As Boolean


Return Type
Boolean value.

See Also
QualificationSettings Object 

	QuickStart Object  XE "QuickStart Object" 


Object Model
 

	[image: image437]
[image: image438]

 INCLUDEPICTURE "Images/pcdlrn~currenttask_(quickstarttask)~178.gif" \* MERGEFORMAT \d [image: image439]
[image: image440]

 INCLUDEPICTURE "Images/pcdlrn~begintask_(quickstarttask)~178.gif" \* MERGEFORMAT \d [image: image441]


See Also
QuickStart Members 

	QuickStart Object Members  XE "QuickStart Object Members" 


See Also
QuickStart Overview 

Methods

	BeginTask Method  XE "BeginTask Method" 


Description
Starts a new Quick Start task, returning that task if successful. 

Syntax
	Visual Basic

	Public Function BeginTask( _

   ByVal TaskNum As Long _

) As QuickStartTask


Parameters
TaskNum

See Also
QuickStart Object 

	RemoveHit Method  XE "RemoveHit Method" 


Description
Erases the last hit taken. 

Syntax
	Visual Basic

	Public Function RemoveHit() As Boolean


See Also
QuickStart Object 

Properties

	CurrentTask Property  XE "CurrentTask Property" 


Description
Read Only: Returns the current Task. 

Property type
Read-write property

Syntax
	Visual Basic

	Public Property CurrentTask() As QuickStartTask


See Also
QuickStart Object 

	QuickStartAddedCommands Object  XE "QuickStartAddedCommands Object" 


Object Model
 

	[image: image442]
[image: image443]

 INCLUDEPICTURE "Images/pcdlrn~item_(command)~167.gif" \* MERGEFORMAT \d [image: image444]
[image: image445]

 INCLUDEPICTURE "Images/pcdlrn~_item_(command)~167.gif" \* MERGEFORMAT \d [image: image446]


See Also
QuickStartAddedCommands Members 

	QuickStartAddedCommands Object Members  XE "QuickStartAddedCommands Object Members" 


See Also
QuickStartAddedCommands Overview 

Methods

	_Item Method  XE "_Item Method" 


Syntax
	Visual Basic

	Public Function _Item( _

   ByVal Num As Long _

) As Command


Parameters
Num

See Also
QuickStartAddedCommands Object 

	Item Method  XE "Item Method" 


Description
Returns command object from added commands collection by number. 

Syntax
	Visual Basic

	Public Function Item( _

   ByVal Num As Long _

) As Command


Parameters
Num

See Also
QuickStartAddedCommands Object 

Properties

	Count Property  XE "Count Property" 


Description
Read Only: Number of steps in the collection. 

Property type
Read-write property

Syntax
	Visual Basic

	Public Property Count() As Long


See Also
QuickStartAddedCommands Object 

	QuickStartStep Object  XE "QuickStartStep Object" 


See Also
QuickStartStep Members 

	QuickStartStep Object Members  XE "QuickStartStep Object Members" 


See Also
QuickStartStep Overview 

Methods

	GetControlState Method  XE "GetControlState Method" 


Description
Get a check box or radio button state by index. 

Syntax
	Visual Basic

	Public Function GetControlState( _

   ByVal Num As Long _

) As Boolean


Parameters
Num

See Also
QuickStartStep Object 

	GetControlText Method  XE "GetControlText Method" 


Description
Get a check box text value by index. 

Syntax
	Visual Basic

	Public Function GetControlText( _

   ByVal Num As Long _

) As String


Parameters
Num

See Also
QuickStartStep Object 

	GetEditText Method  XE "GetEditText Method" 


Description
Get an edit box text value by index. 

Syntax
	Visual Basic

	Public Function GetEditText( _

   ByVal Num As Long _

) As String


Parameters
Num

See Also
QuickStartStep Object 

	GetPrompt Method  XE "GetPrompt Method" 


Description
Get a prompt by index. 

Syntax
	Visual Basic

	Public Function GetPrompt( _

   ByVal Num As Long _

) As String


Parameters
Num

See Also
QuickStartStep Object 

	GetSelectionPrompt Method  XE "GetSelectionPrompt Method" 


Description
Get the combo box text. 

Syntax
	Visual Basic

	Public Function GetSelectionPrompt() As String


See Also
QuickStartStep Object 

	SetControlState Method  XE "SetControlState Method" 


Description
Set a check box or radio button state by index. 

Syntax
	Visual Basic

	Public Sub SetControlState( _

   ByVal Num As Long, _

   ByVal Value As Boolean _

) 


Parameters
Num

Value

See Also
QuickStartStep Object 

	SetEditText Method  XE "SetEditText Method" 


Description
Set an edit box text value by index. 

Syntax
	Visual Basic

	Public Sub SetEditText( _

   ByVal Num As Long, _

   ByVal Value As String _

) 


Parameters
Num

Value

See Also
QuickStartStep Object 

Properties

	CanBeCompleted Property  XE "CanBeCompleted Property" 


Description
Read Only: The Step can be completed. 

Property type
Read-write property

Syntax
	Visual Basic

	Public Property CanBeCompleted() As Boolean


See Also
QuickStartStep Object 

	ExpectsHits Property  XE "ExpectsHits Property" 


Description
Read Only: The step expects hits. 

Property type
Read-write property

Syntax
	Visual Basic

	Public Property ExpectsHits() As Boolean


See Also
QuickStartStep Object 

	ExpectsUserInput Property  XE "ExpectsUserInput Property" 


Description
Read Only: The step expects user input. 

Property type
Read-write property

Syntax
	Visual Basic

	Public Property ExpectsUserInput() As Boolean


See Also
QuickStartStep Object 

	NumHits Property  XE "NumHits Property" 


Description
Read Only: The minimum number of hits required. 

Property type
Read-write property

Syntax
	Visual Basic

	Public Property NumHits() As Long


See Also
QuickStartStep Object 

	StepHint Property  XE "StepHint Property" 


Description
Read Only: The prompt to be displayed to the user. 

Property type
Read-write property

Syntax
	Visual Basic

	Public Property StepHint() As String


See Also
QuickStartStep Object 

	QuickStartSteps Object  XE "QuickStartSteps Object" 


Object Model
 

	[image: image447]
[image: image448]

 INCLUDEPICTURE "Images/pcdlrn~item_(quickstartstep)~142.gif" \* MERGEFORMAT \d [image: image449]
[image: image450]

 INCLUDEPICTURE "Images/pcdlrn~_item_(quickstartstep)~142.gif" \* MERGEFORMAT \d [image: image451]


See Also
QuickStartSteps Members 

	QuickStartSteps Object Members  XE "QuickStartSteps Object Members" 


See Also
QuickStartSteps Overview 

Methods

	_Item Method  XE "_Item Method" 


Syntax
	Visual Basic

	Public Function _Item( _

   ByVal Num As Long _

) As QuickStartStep


Parameters
Num

See Also
QuickStartSteps Object 

	Item Method  XE "Item Method" 


Description
Returns quick start step object from steps collection by number. 

Syntax
	Visual Basic

	Public Function Item( _

   ByVal Num As Long _

) As QuickStartStep


Parameters
Num

See Also
QuickStartSteps Object 

Properties

	Count Property  XE "Count Property" 


Description
Read Only: Number of steps in the collection. 

Property type
Read-write property

Syntax
	Visual Basic

	Public Property Count() As Long


See Also
QuickStartSteps Object 

	QuickStartTask Object  XE "QuickStartTask Object" 


Object Model
 

	[image: image452]
[image: image453]

 INCLUDEPICTURE "Images/pcdlrn~steps_(quickstartsteps)~212.gif" \* MERGEFORMAT \d [image: image454]
[image: image455]

 INCLUDEPICTURE "Images/pcdlrn~nextstep_(quickstartstep)~212.gif" \* MERGEFORMAT \d [image: image456]
[image: image457]

 INCLUDEPICTURE "Images/pcdlrn~prevstep_(quickstartstep)~212.gif" \* MERGEFORMAT \d [image: image458]
[image: image459]

 INCLUDEPICTURE "Images/pcdlrn~finish_(quickstartaddedcommands)~212.gif" \* MERGEFORMAT \d [image: image460]


See Also
QuickStartTask Members 

	QuickStartTask Object Members  XE "QuickStartTask Object Members" 


See Also
QuickStartTask Overview 

Methods

	Finish Method  XE "Finish Method" 


Description
Finishes the task. 

Syntax
	Visual Basic

	Public Function Finish() As QuickStartAddedCommands


See Also
QuickStartTask Object 

	NextStep Method  XE "NextStep Method" 


Description
Advances to the next step in the task. 

Syntax
	Visual Basic

	Public Function NextStep() As QuickStartStep


See Also
QuickStartTask Object 

	PrevStep Method  XE "PrevStep Method" 


Description
Goes back to the previous step in the task. 

Syntax
	Visual Basic

	Public Function PrevStep() As QuickStartStep


See Also
QuickStartTask Object 

Properties

	NumSteps Property  XE "NumSteps Property" 


Description
Read Only: Returns the number of steps in this task. 

Property type
Read-write property

Syntax
	Visual Basic

	Public Property NumSteps() As Long


See Also
QuickStartTask Object 

	Steps Property  XE "Steps Property" 


Description
Read Only: Returns a collection containing the steps in this task.
Property type
Read-write property

Syntax
	Visual Basic

	Public Property Steps() As QuickStartSteps


See Also
QuickStartTask Object 

	RegistrySetting Object  XE "RegistrySetting Object" 


See Also

RegistrySetting Members 

	RegistrySetting Object Members  XE "RegistrySetting Object Members" 


See Also

RegistrySetting Overview 

Methods

	DeleteKey Method  XE "DeleteKey Method" 


Description

Deletes the key from use in the application. 

Syntax

	Visual Basic

	Public Sub DeleteKey() 


See Also

RegistrySetting Object 

	IsWriteable Method  XE "IsWriteable Method" 


Description

Read Only: Setting can be modified. 

Syntax

	Visual Basic

	Public Function IsWriteable() As Boolean


See Also

RegistrySetting Object 

Properties

	AccessLevel Property  XE "AccessLevel Property" 


Description

Read Only: Administrator or User. 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property AccessLevel() As RS_ACCESS


See Also

RegistrySetting Object 

	Group Property  XE "Group Property" 


Description

Read Only: Machine or User. 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Group() As RS_GROUP


See Also

RegistrySetting Object 

	KeyName Property  XE "KeyName Property" 


Description

Read Only: Section Name 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property KeyName() As String


See Also

RegistrySetting Object 

	Type Property  XE "Type Property" 


Description

Read Only: Type 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Type() As Long


See Also

RegistrySetting Object 

	Used Property  XE "Used Property" 


Description

Read Only: Used by the application 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Used() As Boolean


See Also

RegistrySetting Object 

	Value Property  XE "Value Property" 


Description

Read/Write: Entry Value 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Value() As String


See Also

RegistrySetting Object 

	ValueName Property  XE "ValueName Property" 


Description

Read Only: Entry Name 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property ValueName() As String


See Also

RegistrySetting Object 

	RegistrySettings Object  XE "RegistrySettings Object" 


Object Model

 

	[image: image461]
[image: image462]

 INCLUDEPICTURE "Images/pcdlrn~application~138.gif" \* MERGEFORMAT \d [image: image463]
[image: image464]

 INCLUDEPICTURE "Images/pcdlrn~parent_(application)~138.gif" \* MERGEFORMAT \d [image: image465]
[image: image466]

 INCLUDEPICTURE "Images/pcdlrn~item_(registrysetting)~138.gif" \* MERGEFORMAT \d [image: image467]
[image: image468]

 INCLUDEPICTURE "Images/pcdlrn~first_(registrysetting)~138.gif" \* MERGEFORMAT \d [image: image469]
[image: image470]

 INCLUDEPICTURE "Images/pcdlrn~next_(registrysetting)~138.gif" \* MERGEFORMAT \d [image: image471]


See Also

RegistrySettings Members 

	RegistrySettings Object Members  XE "RegistrySettings Object Members" 


See Also

RegistrySettings Overview 

Methods

	First Method  XE "First Method" 


Description

Returns the first registry setting.
Syntax

	Visual Basic

	Public Function First() As RegistrySetting


See Also

RegistrySettings Object 

	Item Method  XE "Item Method" 


Description

Returns the registry settings specified by composite name or number from the list of settings.
Syntax

	Visual Basic

	Public Function Item( _

   ByVal Identifier As Variant _

) As RegistrySetting


Parameters

Identifier

See Also

RegistrySettings Object 

	Next Method  XE "Next Method" 


Description

Returns the next registry setting.
Syntax

	Visual Basic

	Public Function Next( _

   ByVal Identifier As RegistrySetting _

) As RegistrySetting


Parameters

Identifier

See Also

RegistrySettings Object 

	RemoveAll Method  XE "RemoveAll Method" 


Description

Removes all of the entries from the registry.
Syntax

	Visual Basic

	Public Sub RemoveAll() 


See Also

RegistrySettings Object 

Properties

	Application Property  XE "Application Property" 


Description

Read Only: Returns the Application Object.
Property type

Read-write property

Syntax

	Visual Basic

	Public Property Application() As Application


See Also

RegistrySettings Object 

	Count Property  XE "Count Property" 


Description

Read Only: Returns the number of registry settings for the application.
Property type

Read-write property

Syntax

	Visual Basic

	Public Property Count() As Long


See Also

RegistrySettings Object 

	Parent Property  XE "Parent Property" 


Description

Read Only: Returns the parent Application Object.
Property type

Read-write property

Syntax

	Visual Basic

	Public Property Parent() As Application


See Also

RegistrySettings Object 

	ReportControls Object  XE "ReportControls Object" 


Description

The ReportControls object gives you access to a variety of controls such as buttons, text boxes, and other items that you can add to, remove, and otherwise manipulate on a particular section of a report template.

Object Model

 

	[image: image472]
[image: image473]

 INCLUDEPICTURE "Images/pcdlrn~application~94.gif" \* MERGEFORMAT \d [image: image474]


Remarks

ID_HOB_PCD_GRID_CTRL_OB (GridControlObject) Members
Inside PC-DMIS you use the Properties dialog box to set most properties of the different Reporting objects. However, for the GridControlObject, you use an additional Grid Properties dialog box to set format the grid and its cells with text, font styles, line styles, colors and so forth. You can also set these items programmatically by using these properties and methods.

	Note on Colors: Colors are defined by a COLORREF value. When specifying a RGB color, the COLORREF value has this hexadecimal form as a Long value:

0x00BBGGRR

where BB=blue GG=green RR=red

The maximum value for a single byte in the hexadecimal format is 0xFF (or 255 in decimal format).


Properties:
· NumColumns - This property of type Long defines the number of columns used in the GridControlObject.

· NumRows - This property of type Long defines the number of rows used in the GridControlObject.

Methods:
· GetCellData - This returns the current numerical (Long) value in a specified cell. It takes two Long value parameters that specify the row and the column for the cell. 
Syntax: Function GetCellData(ByVal Row as Long, ByVal Col as Long) As Long

· GetCellLeftLineColor - This retrieves the color value for a specified cell's left line. This function returns True if the color value is successfully returned or False otherwise. The COLORREF value is returned in the variable passed as the third parameter. This function takes three parameters. The first is the cell row, the second is the cell column, and the third is the color.
Syntax: Function GetCellLeftLineColor(ByVal Row As Long, ByVal Col As Long, ByVal Color As Long) As Boolean 

· GetCellLineStyle - This retrieves the line style for a specified cell. This function returns True if the line style is successfully returned or False otherwise. It takes four parameters. The first defines the cell's Row, the second defines the cell's Column, the third defines the cell's Line in the cell (1=left line, 2=top line, 3=right line 4=bottom line), the fourth defines the LineStyle (0=None, 1=Thin, 2=Thick, 3=Double, 4=Dotted). 
Syntax: Function GetCellLineStyle(ByVal Row As Long, ByVal Col As Long, ByVal Line As Long, ByVal LineStyle as Long) as Boolean 

· GetCellText - This retrieves the current text value in a specified cell. It takes two Long value parameters that specify the row number and the column number to find a particular cell.
Syntax: Function GetCellText(ByVal Row As Long, ByVal Col As Long) As String

· GetCellTextColor - This retrieves the current color for the text used in a cell. This function returns True if the color value is successfully returned or False otherwise. The color (COLORREF value) is returned in the variable passed as the third parameter. This function takes three parameters. The first is the cell row, the second is the cell column, and the third is the color. 
Syntax: Function GetCellTextColor(ByVal Row As Long, ByVal Col As Long, ByVal Color As Long) As Boolean

· GetCellTextColor - This retrieves the current color for the text used in a cell. This function returns True if the color value is successfully returned or False otherwise. The color (COLORREF value) is returned in the variable passed as the third parameter. This function takes three parameters. The first is the cell row, the second is the cell column, and the third is the color. 
Syntax: Function GetCellTextColor(ByVal Row As Long, ByVal Col As Long, ByVal Color As Long) As Boolean

· GetCellTextValue - This retrieves the current text value in a specified cell. It takes two Long value parameters that specify the row number (first parameter) and the column number (second parameter) to find a particular cell. This differs from GetCellText in that if expressions are part of the text, those expressions are solved.   
Syntax:  Function GetCellTextValue(ByVal Row As Long, ByVal Col As Long) As String

· GetCellTopLineColor - This retrieves the color value for a specified cell's top line. This function returns True if the color value is successfully returned or False otherwise. The color (COLORREF value) is returned in the variable passed as the third parameter. This function takes three parameters. The first is the cell row, the second is the cell column, and the third is the color.
Syntax: Function GetCellTopLineColor(ByVal Row As Long, ByVal Col As Long, ByVal Color As Long) As Boolean

· IsCellMerged - Returns True if the cell is merged with another cell, False if not. It takes two Long value parameters that specify the row number (first parameter) and the column number (second parameter) to find a particular cell.
Syntax: Function IsCellMerged(ByVal Row As Long, ByVal Col As Long) As Boolean

· IsCellVisible - Returns True if the cell is visible, False if hidden. It takes two Long value parameters that specify the row number (first parameter) and the column number (second parameter) to find a particular cell.
Syntax:  Function IsCellVisible(ByVal Row As Long, ByVal Col As Long) As Boolean

· IsPrimaryMergedCell - Returns True if the primary cell is merged. False if not. It takes two Long value parameters that specify the row number (first parameter) and the column number (second parameter) to find a particular cell. This differs from IsCellMerged by checking to see if the cell is the first of a merged cell. Only the contents of the primary cell are displayed in the merged cells field.
Syntax: Function IsPrimaryCellMerged(ByVal Row As Long, ByVal Col As Long) As Boolean

· MergeCells - This merges two cells together. It returns True if the two cells specified are successfully merged, False if not. It takes four Long value parameters that specify two cells to merge.
Syntax: Function MergeCells(ByVal Row As Long, ByVal Col As Long, ByVal Row2 As Long, ByVal Col2 as Long) as Boolean

· Move - This moves the object to a new position. It takes two parameters. The first defines a new X position in the editor, the second a new Y position.
Syntax: Sub Move (ByVal newX As Long, ByVal newY As Long)

· SetCellBackgroundColor - This sets the background color for the specified cell. It takes three Long value parameters. The first two specify the row number (first parameter) and the column number (second parameter) to find a particular cell. The third specifies the color.
Syntax: Function SetCellBackgroundColor(ByVal Row As Long, ByVal Col As Long, ByVal Color As Long) As Boolean

· SetCellData - This sets the specified cell's value and returns True if the cells was successfully given the new value or False otherwise. It takes three Long value parameters. The first two specify the row number (first parameter) and the column number (second parameter) to find a particular cell. The third parameter is the new value.
Syntax: Function SetCellData(ByVal Row As Long, ByVal Col As Long, ByVal Value As Long) As Boolean

· SetCellFont - This sets the font style of a particular cell, it returns True if the cell's font was successfully done, or False otherwise. This function takes four parameters. The first two are Long values that specify the cell to change. The third is a string value of the font style to use. The fourth is a Long value that specifies the height of the font.
Syntax: Function SetCellFont(ByVal Row As Long, ByVal Col As Long, ByVal FontStyle, As String, ByVal Height As Long) As Boolean

· SetCellLeftLineColor - This sets the color value for a specified cell's left line, it returns True if the cell's left line color properly changed or False otherwise. This function takes three Long value parameters. The first two specify the row number (first parameter) and the column number (second parameter) to find a particular cell. The third parameter is the color value to use.
Syntax: Function SetCellLeftLineColor(ByVal Row As Long, ByVal Col As Long, ByVal Color As Long) As Boolean

· SetCellLineColor - This sets the line color for a particular cell. It returns True if the cell's line color is properly changed or False otherwise. This function takes three Long value parameters. The first two specify the row number (first parameter) and the column number (second parameter) to find a particular cell. The third parameter is the color value to use.
Syntax: Function SetCellLineColor(ByVal Row As Long, ByVal Col As Long, ByVal Color As Long) As Boolean

· SetCellText - This places the specified text string into the specified cell. It returns True if the cell was successfully inserted or False otherwise. This function takes three parameters. It takes three parameters. The first two are Long values that specify the cell to change. The third is a string value of the text to insert into the cell.  
Syntax: Function SetCellText(ByVal Row As Long, ByVal Col As Long, ByVal Value As String) As Boolean

· SetCellTextColor - This sets the text color for a particular cell. It returns True if the cell's text color is properly changed or False otherwise. This function takes three Long value parameters. The first two specify the row number (first parameter) and the column number (second parameter) to find a particular cell. The third parameter is the color value to use.
Syntax: Function SetCellTextColor(ByVal Row As Long, ByVal Col As Long, ByVal Color As Long) As Boolean

· SetCellTopLineColor - This sets the color value for a specified cell's top line, it returns True if the cell's top line color properly changes or False otherwise. This function takes three Long value parameters. The first two specify the row number (first parameter) and the column number (second parameter) to find a particular cell. The third parameter is the color value to use.
Syntax: Function SetCellTopLineColor(ByVal Row As Long, ByVal Col As Long, ByVal Color As Long) As Boolean

· SetColumnBackgroundColor - This sets the background color value for a specified column in the GridControlObject. It returns True if the column's color properly changes or False otherwise. This function takes two Long value parameters. The first parameter indicates the column to change. The second parameter indicates the color to use.
Syntax: Function SetColumnBackgroundColor(ByVal Col As Long, ByVal Color As Long) As Boolean 

· SetRowBackgroundColor - This sets the background color value for a specified row in the GridControlObject. It returns True if the row's color properly changes or False otherwise. This function takes two Long value parameters. The first parameter indicates the row to change. The second parameter indicates the color to use.
Syntax: Function SetRowBackgroundColor(ByVal Row As Long, ByVal Color As Long) As Boolean 

· SetRowLeftLineColor - This sets the left line color value for all the cells in a specified row in the GridControlObject. It returns True if the row's left line color properly changes or False otherwise. This function takes two Long value parameters. The first parameter indicates the row to change. The second parameter is a Long value for the color. 
Syntax: Function SetRowLeftLineColor(ByVal Row As Long, ByVal Color As Long) As Boolean

· SetRowLineStyle - This sets the line style for the entire row. It returns True if the style was successfully set or False otherwise. This function takes three Long value parameters. The first indicates the row to change, the second defines the cell's Line in the cell (1=left line, 2=top line, 3=right line 4=bottom line), the third defines the LineStyle (0=None, 1=Thin, 2=Thick, 3=Double, 4=Dotted). 
Syntax: Function SetRowLineStyle(ByVal Row As Long, ByVal Line As Long, ByVal LineStyle As Long) As Boolean

· SetRowTopLineColor - This sets the top line color value for a specified row in the GridControlObject. It returns True if the row's top line color properly changes or False otherwise. This function takes two Long value parameters. The first parameter indicates the row to change. The second parameter indicates the color to use.
Syntax: Function SetRowTopLineColor(ByVal Row As Long, ByVal Color As Long) As Boolean

See Also

ReportControls Members 

	ReportControls Object Members  XE "ReportControls Object Members" 


See Also

ReportControls Overview 

Methods

	_Item Method  XE "_Item Method" 


Syntax

	Visual Basic

	Public Function _Item( _

   ByVal NameOrNumber As Variant _

) As Object


Parameters

NameOrNumber

See Also

ReportControls Object 

	Add Method  XE "Add Method" 


Description

Adds a new control to the report template. The Add method inserts a new control of a defined location and size into the current section of the report template.

Syntax

	Visual Basic

	Public Function Add( _

   ByVal ObjectType As ENUM_REPORT_TEMPLATE_OBJECTS, _

   ByVal Left As Long, _

   ByVal Top As Long, _

   ByVal Right As Long, _

   ByVal Bottom As Long _

) As Object


Parameters

ObjectType

Can be a constant or enumerated value. Use an item from the ENUM_REPORT_TEMPLATE_OBJECTS enumeration table located at the end of this documentation.

Left

Long value sets the location of the left side of the control from the left side of the editor.

Top

Long value sets the top location of the control from the top side of the editor.

Right

Long value sets the right location of the control from the left side of the editor.

Bottom

Long value sets the bottom location of the control from the top side of the editor.

Remarks

To find out what properties are available to a control, in PC-DMIS's Report Template editor, insert the control and then access its properties sheet.

Example

Private Sub Add_Arc()

    ' Inserts an arc control

    Set ArcControl = ReportObjects.Add(ID_HOB_ARC, 10, 10, 200, 200)

    ArcControl.Bottom = 100

    ArcControl.Left = 10

    ArcControl.LineStyle = 2

    ArcControl.LineWidth = 1

    ArcControl.Right = 790

    ArcControl.Top = 20

    ArcControl.Visible = False

End Sub

See Also

ReportControls Object 

	Item Method  XE "Item Method" 


Description

returns the given named or numbered control. This method returns an Object of the control identified by the name or number in the NameOrNum parameter.

Syntax

	Visual Basic

	Public Function Item( _

   ByVal NameOrNumber As Variant _

) As Object


Parameters

NameOrNumber

Required Variant that indicates which control to return. It can be either a Long or a String. If it is a Long, it is the index number given the control within the ReportControls collection of controls. If it is a String, it is the ID, (or ObjectCode property in the template editor) of the control.

Remarks

Be aware that a hidden control called "Report" always exists in the Report template and cannot be deleted or otherwise manipulated. This object is used by PC-DMIS for internal purposes only. For this reason do not give NameOrNum a value of 1, as it will try to select the Report control.

To manipulate existing report objects, you will need use this method. Once you establish a pointer to a report object, you can get or set any of its properties (similar to the ReportControls.Add method). To find the available properties, consult the dockable Properties dialog box inside PC-DMIS.

See Also

ReportControls Object | Add Method 

	Remove Method  XE "Remove Method" 


Description

Removes the specified named or numbered control from the report template. This deletes the specified control from the current section of the report template.

Syntax

	Visual Basic

	Public Function Remove( _

   ByVal NameOrNumber As Variant _

) As Long


Parameters

NameOrNumber

Required Variant that indicates which control to remove. It can be either a Long or a String. If it is a Long, it is the index number given the control within the ReportControls collection of controls. If it is a String, it is the ID, (or ObjectCode property in the template editor) of the control.

Remarks

Be aware that a hidden control called "Report" always exists in the Report template and cannot be deleted or otherwise manipulated. This object is used by PC-DMIS for internal purposes only. For this reason NameOrNum with a value of 1 will try to delete the Report control and will return False.

See Also

ReportControls Object 

Properties

	Application Property  XE "Application Property" 


Description

Read Only: Returns the Application Object. Returns an Application object.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Application() As Application


See Also

ReportControls Object 

	Count Property  XE "Count Property" 


Description

Read Only: Number of report controls on section/page. This property counts all the controls in the current section/page and returns it as a Long value.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Count() As Long


Return Type

Long value.

Remarks

Be aware that a hidden control called "Report" always exists in the Report template and cannot be deleted or otherwise manipulated. This object is used by PC-DMIS for internal purposes only. Your count value will therefore be one higher than expected due to this hidden object.

See Also

ReportControls Object 

	Parent Property  XE "Parent Property" 


Description

Read Only: Returns the parent Object. This property returns this object's parent object, a generic object interface.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Parent() As Object


Return Type

Object.

See Also

ReportControls Object 

	ReadOnly Property  XE "ReadOnly Property" 


Description

Read Only: Returns the Read Only flag. If set controls cannot be added or removed. 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property ReadOnly() As Long


See Also

ReportControls Object 

	ReportData Object  XE "ReportData Object" 


Description

The ReportData object lets you access data sent to reports during the EventReportData event. 

Remarks

This event can only be accessed inside the Properties dialog box inside the Label and Report Template Editors inside PC-DMIS versions 4.0 and higher.

Properties dialog box
Using this object in conjunction with the EventReportData event, you can access the desired information.

Example

Suppose in PC-DMIS's Label Template Editor, you use a Border object to change its background color to match the current dimension out of tolerance color. You can do this using the ReportData object. The following code works inside of the PC-DMIS's label template editor in the EventReportData event of a Border object.

Dim Count As Integer

Dim i As Integer

Dim MaxIndex As Integer

Dim MaxDev As Double

Dim CurrentDev as Variant

Dim Dev as Variant

Dim PTol as Variant

Dim MTol as Variant

Dim DevColor as Long

' Initialize Max Deviation and Max Index

MaxDev = 0.0

MaxIndex = 1

'Get the number of axes for this dimension

Count = ReportData.GetCount(132)

'Adjust the bottom of the border to fit the number of axes

Border1.Bottom = 106+((Count-1)*25)

'Loop through to find the largest deviation

'When loop is complete, MaxIndex is the index to the 

' largest deviation

For i=1 to Count

 CurrentDev = ABS(ReportData.GetValue(DIM_DEVIATION,i))

 If CurrentDev > MaxDev Then

   MaxDev = CurrentDev

   MaxIndex = i

 End If

Next i

' Using MaxIndex, acquire the axis's deviation +TOL and -TOL

Dev = ReportData.GetValue(340, MaxIndex)

PTol = ReportData.GetValue(167, MaxIndex)

MTol = ReportData.GetValue(168, MaxIndex)

' Use this information to adjust the background color of the border

DevColor = ReportData.GetTolColor(Dev,PTol,MTol)

Border1.BackColor = DevColor

Border1.ForeColor = DevColor

See Also

ReportData Members 

	ReportData Object Members  XE "ReportData Object Members" 


See Also

ReportData Overview 

Methods

	GetColorList Method  XE "GetColorList Method" 


Description

Returns the current global dimension color list. This returns the current global dimension color list.

Syntax

	Visual Basic

	Public Function GetColorList() As Variant


Return Type

Variant object.

See Also

ReportData Object 

	GetCommand Method  XE "GetCommand Method" 


Description

Returns Command Object if report data has command interface. This returns a Command Object if report data has command interface.

Syntax

	Visual Basic

	Public Function GetCommand() As Object


Return Type

Command object.

See Also

ReportData Object 

	GetCount Method  XE "GetCount Method" 


Description

Returns the number of instances of the specified data type. This returns the number of instances of the specified data type.

Syntax

	Visual Basic

	Public Function GetCount( _

   ByVal DataType As ENUM_FIELD_TYPES _

) As Long


Parameters

DataType

Use an item from the ENUM_FIELD_TYPES enumeration table located at the end of this documentation.

Return Type

Long value representing the number of instances of the specified data type.

See Also

ReportData Object 

	GetExpressionValue Method  XE "GetExpressionValue Method" 


Description

Returns the value of expression. This returns value of the specified expression in Expression.

Syntax

	Visual Basic

	Public Function GetExpressionValue( _

   ByVal Expression As String _

) As Variant


Parameters

Expression

Required expression that evaluates to a PC-DMIS ReportData object.

Return Type

This returns value of the specified expression in Expression.

See Also

ReportData Object 

	GetReferenceValue Method  XE "GetReferenceValue Method" 


Description

Returns the reference feature value of the indicated field of the command. This returns the reference feature value of the indicated field of the command.

Syntax

	Visual Basic

	Public Function GetReferenceValue( _

   ByVal refValue As Long, _

   ByVal DataType As ENUM_FIELD_TYPES, _

   ByVal TypeIndex As Long _

) As Variant


Parameters

refValue

A Long value representing the reference.

DataType

Use an item from the ENUM_FIELD_TYPES enumeration table located at the end of this documentation.

TypeIndex

Long value used to indicate which instance of the supplied field type to use when an object has more than one instance of a specified field type. In these cases, the TypeIndex must not be greater than the current number of fields of that type + 1 and TypeIndex must be greater than 1. For fields that allow only a single value, the TypeIndex is 0.

Return Type

Variant value representing the reference feature value of the field in the command.

See Also

ReportData Object 

	GetReferenceValue2 Method  XE "GetReferenceValue2 Method" 


Description

Returns the reference feature value of the indicated field of the specified command. This returns the reference feature value of the indicated field of the command.

Syntax

	Visual Basic

	Public Function GetReferenceValue2( _

   ByVal refValue As Long, _

   ByVal DataType As ENUM_FIELD_TYPES, _

   ByVal TypeIndex As Long, _

   ByVal FirstArrayIndex As Long, _

   ByVal SecondArrayIndex As Long _

) As Variant


Parameters

refValue

A Long value representing the reference. A long value representing the reference.

DataType

Use an item from the ENUM_FIELD_TYPES enumeration table located at the end of this documentation.

TypeIndex

Long value used to indicate which instance of the supplied field type to use when an object has more than one instance of a specified field type. In these cases, the TypeIndex must not be greater than the current number of fields of the that type + 1 and TypeIndex must be greater than 1. For fields that allow only a single value, the TypeIndex is 0.

FirstArrayIndex

This parameter specifies the index value for an item in the first array.

SecondArrayIndex

This parameter specifies the index value for an item in the second array.

Return Type

Variant value representing the reference feature value of the field in the command.

See Also

ReportData Object 

	GetTolColor Method  XE "GetTolColor Method" 


Description

Returns the current tolerance color based on deviation, plus tolerance, and minus tolerance. This returns a the current tolerance color based on the deviation, plus tolerance, and minus tolerance.

Syntax

	Visual Basic

	Public Function GetTolColor( _

   ByVal Deviation As Double, _

   ByVal plustol As Double, _

   ByVal minustol As Double _

) As Long


Parameters

Deviation

Double value representing the deviation.

plustol

Double value representing the plus tolerance.

minustol

Double value representing the minus tolerance.

See Also

ReportData Object 

	GetValue Method  XE "GetValue Method" 


Description

Returns the value of the indicated field of the command. This method returns the value of the indicated field of the command.

Syntax

	Visual Basic

	Public Function GetValue( _

   ByVal DataType As ENUM_FIELD_TYPES, _

   ByVal TypeIndex As Long _

) As Variant


Parameters

DataType

Use an item from the ENUM_FIELD_TYPES enumeration table located at the end of this documentation.

TypeIndex

Long value used to indicate which instance of the supplied field type to use when an object has more than one instance of a specified field type. In these cases, the TypeIndex must not be greater than the current number of fields of the that type + 1 and TypeIndex must be greater than 1. For fields that allow only a single value, the TypeIndex is 0.

Return Type

This method returns the value of the indicated field of the command.

See Also

ReportData Object 

	GetValue2 Method  XE "GetValue2 Method" 


Description

Returns the value of the indicated field of the specified command. This method returns the value of the indicated field of the command.

Syntax

	Visual Basic

	Public Function GetValue2( _

   ByVal DataType As ENUM_FIELD_TYPES, _

   ByVal TypeIndex As Long, _

   ByVal FirstArrayIndex As Long, _

   ByVal SecondArrayIndex As Long _

) As Variant


Parameters

DataType

Use an item from the ENUM_FIELD_TYPES enumeration table located at the end of this documentation.

TypeIndex

Long value used to indicate which instance of the supplied field type to use when an object has more than one instance of a specified field type. In these cases, the TypeIndex must not be greater than the current number of fields of the that type + 1 and TypeIndex must be greater than 1. For fields that allow only a single value, the TypeIndex is 0.

FirstArrayIndex

This parameter specifies the index value for an item in the first array.

SecondArrayIndex

This parameter specifies the index value for an item in the second array.

Return Type

This method returns the value of the indicated field of the command.

See Also

ReportData Object 

	HasCommandData Method  XE "HasCommandData Method" 


Description

Returns true if report data has a part program command interface. 

This method returns True if report data has a part program command interface, False otherwise.

Syntax

	Visual Basic

	Public Function HasCommandData() As Boolean


Return Type

Boolean value showing TRUE if the report data has a part program command interface, or FALSE otherwise.

See Also

ReportData Object 

Properties

	CurPage Property  XE "CurPage Property" 


Description

Read Only: Number of current page 

This property returns a the number of the report's current page as a Long value.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property CurPage() As Long


Return Type

Long value.

See Also

ReportData Object

	ReportTemplate Object  XE "ReportTemplate Object" 


Description

The ReportTemplate object allows you to get or set various settings for a report template.

Object Model

 

	[image: image475]
[image: image476]

 INCLUDEPICTURE "Images/pcdlrn~sections~158.gif" \* MERGEFORMAT \d [image: image477]
[image: image478]

 INCLUDEPICTURE "Images/pcdlrn~application~158.gif" \* MERGEFORMAT \d [image: image479]
[image: image480]

 INCLUDEPICTURE "Images/pcdlrn~parent_(reporttemplates)~158.gif" \* MERGEFORMAT \d [image: image481]
[image: image482]

 INCLUDEPICTURE "Images/pcdlrn~colors~158.gif" \* MERGEFORMAT \d [image: image483]
[image: image484]

 INCLUDEPICTURE "Images/parmult.gif" \* MERGEFORMAT \d [image: image485]

 INCLUDEPICTURE "Images/pcdlrn~item_(color)~158.gif" \* MERGEFORMAT \d [image: image486]
[image: image487]

 INCLUDEPICTURE "Images/parmult.gif" \* MERGEFORMAT \d [image: image488]

 INCLUDEPICTURE "Images/pcdlrn~application~158.gif" \* MERGEFORMAT \d [image: image489]
[image: image490]

 INCLUDEPICTURE "Images/parchild.gif" \* MERGEFORMAT \d [image: image491]

 INCLUDEPICTURE "Images/pcdlrn~add_(color)~158.gif" \* MERGEFORMAT \d [image: image492]


See Also

ReportTemplate Members 

	ReportTemplate Object Members  XE "ReportTemplate Object Members" 


See Also

ReportTemplate Overview 

Methods

	Close Method  XE "Close Method" 


Description

Closes the report template. This subroutine closes the report template. To first save any unsaved changes, use the Save method.

Syntax

	Visual Basic

	Public Sub Close() 


See Also

ReportTemplate Object 

	Save Method  XE "Save Method" 


Description

Saves the report template. This subroutine saves the report template with its already existing name. If the template has not been saved before use the SaveAs method instead, and specify a filename.

Syntax

	Visual Basic

	Public Function Save() As Boolean


See Also

ReportTemplate Object 

	SaveAs Method  XE "SaveAs Method" 


Description

Saves the report template with the given file name. 

This method saves the report template.

Syntax

	Visual Basic

	Public Function SaveAs( _

   ByVal FileName As String _

) As Boolean


Parameters

FileName

Required expression that evaluates to a String. This is the pathway and file name to which you will save the report template.

See Also

ReportTemplate Object 

Properties

	_Name Property  XE "_Name Property" 


Property type

Read-write property

Syntax

	Visual Basic

	Public Property _Name() As String


See Also

ReportTemplate Object 

	Application Property  XE "Application Property" 


Description

Read Only: Returns the Application Object. This property represents the read-only PC-DMIS Application object. The Application object includes properties and methods that return top-level objects.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Application() As Application


Return Type

Application object.

See Also

ReportTemplate Object 

	Colors Property  XE "Colors Property" 


Description

Read Only: Returns the Colors collection. This property returns a read-only Colors collection object. Through this object you will be able to access the report template's color tree. Only defined color objects will be in the collection. Color objects should be added or removed. Color objects will be retrieved using the command type ID or the COLOR_SELECTION ID.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Colors() As Colors


See Also

ReportTemplate Object 

	FullName Property  XE "FullName Property" 


Description

Read Only: Returns the full path name. This property returns a read-only string of the full path and filename of the report template.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property FullName() As String


See Also

ReportTemplate Object 

	LearnTimeProgram Property  XE "LearnTimeProgram Property" 


Description

Read/Write: Returns/Sets the Learn Time program name. This read/write string property allows you to read or write the learn time program name.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property LearnTimeProgram() As String


See Also

ReportTemplate Object 

	Name Property  XE "Name Property" 


Description

Read Only: Returns the file name. This property returns a read-only string of the report template's filename.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Name() As String


See Also

ReportTemplate Object 

	PageOrientation Property  XE "PageOrientation Property" 


Description

Read/Write: Returns/Sets the Page Orientation. This property lets you to read or write the page orientation for the report template.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property PageOrientation() As ENUM_PAGE_ORIENTATION


Return Type

Read/write ENUM_PAGE_ORIENTATION enumeration.

See Also

ReportTemplate Object 

	PageSize Property  XE "PageSize Property" 


Description

Read/Write: Returns/Sets the Page Size. This property lets you read or write the page size for the report template.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property PageSize() As ENUM_PAGE_FORMAT


Return Type

Read/write ENUM_PAGE_FORMAT enumeration.

See Also

ReportTemplate Object 

	Parent Property  XE "Parent Property" 


Description

Read Only: Returns the parent Reports Object. This property returns the report template's parent object, which is the read-only Report Templates object.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Parent() As ReportTemplates


See Also

ReportTemplate Object 

	RunTimeProgram Property  XE "RunTimeProgram Property" 


Description

Read/Write: Returns/Sets the Run Time program name. This read/write string property allows you to read or write the run time program name.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property RunTimeProgram() As String


Return Type

Read/write String value.

See Also

ReportTemplate Object 

	Sections Property  XE "Sections Property" 


Description

Read Only: returns the Sections object. This property returns a collection of all the report templates sections as a read-only Sections object.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Sections() As Sections


Return Type

Read-only Sections object.

See Also

ReportTemplate Object 

	Visible Property  XE "Visible Property" 


Description

Read/Write: Returns/Sets template editor visibility status Boolean property. Returns or sets the visibility status of the template editor. If True then Visible, if False then hidden.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Visible() As Boolean


See Also

ReportTemplate Object 

	ReportTemplates Object  XE "ReportTemplates Object" 


Description

The ReportTemplates object contains all open report templates in PC-DMIS's Report Template editor. 

Object Model

 

	[image: image493]
[image: image494]

 INCLUDEPICTURE "Images/pcdlrn~application~149.gif" \* MERGEFORMAT \d [image: image495]
[image: image496]

 INCLUDEPICTURE "Images/pcdlrn~parent_(application)~149.gif" \* MERGEFORMAT \d [image: image497]
[image: image498]

 INCLUDEPICTURE "Images/pcdlrn~open_(reporttemplate)~149.gif" \* MERGEFORMAT \d [image: image499]
[image: image500]

 INCLUDEPICTURE "Images/pcdlrn~add_(reporttemplate)~149.gif" \* MERGEFORMAT \d [image: image501]
[image: image502]

 INCLUDEPICTURE "Images/pcdlrn~item_(reporttemplate)~149.gif" \* MERGEFORMAT \d [image: image503]
[image: image504]

 INCLUDEPICTURE "Images/pcdlrn~_item_(reporttemplate)~149.gif" \* MERGEFORMAT \d [image: image505]


Remarks

Use ReportTemplates.Add to create a new report template and add it to the ReportTemplates collection.

Use ReportTemplates(index) where index is the report template name or index number to access an individual report template.

See Also

ReportTemplates Members | Add Method 

	ReportTemplates Object Members  XE "ReportTemplates Object Members" 


See Also

ReportTemplates Overview | Add Method 

Methods

	_Item Method  XE "_Item Method" 


Syntax

	Visual Basic

	Public Function _Item( _

   ByVal NameOrNumber As Variant _

) As ReportTemplate


Parameters

NameOrNumber

See Also

ReportTemplates Object 

	Add Method  XE "Add Method" 


Description

Creates a new report template. The Add function creates a new report template in PC-DMIS.

Syntax

	Visual Basic

	Public Function Add() As ReportTemplate


Example

Sub Create_Report_Template()

    ' This test subroutine was created to show how report templates can be

    ' automatically generated using PC-DMIS Automation

    ' This was created inside Microsoft Excel

    ' Make sure PC-DMIS is running

    If MsgBox("This example will use your existing part program and create an automatic Report Template with a title of your choice. Is PC-DMIS running and is your part program loaded?", vbYesNo, "Automated Report Template Creation") = vbNo Then

        MsgBox "Closing this example. Try again once PC-DMIS is running and a part program is loaded.", vbExclamation

        Exit Sub

    End If

    ' Create the PC-DMIS Application

    Dim PCDApp As PCDLRN.Application

    Set PCDApp = CreateObject("Pcdlrn.Application")

    ' Open a Part Program

    Dim PP As PartProgram

    Set PP = PCDApp.ActivePartProgram

    Dim RepTemplates As ReportTemplates

    Set RepTemplates = PCDApp.ReportTemplates

    Dim RepTemplate As ReportTemplate

    ' Add a new Report Template

    Set RepTemplate = RepTemplates.Add

    ' Use the existing default section of "Section1" for new templates

    Dim Secs As Sections

    Set Secs = RepTemplate.Sections

    Dim Sec1 As Section

    Dim Sec2 As Section

    Set Sec1 = RepTemplate.Sections.Item("Section1")

    ' Add a Text object into TestSection1 and define its Text property

    Dim RepControls As ReportControls

    Set RepControls = Sec1.ReportControls

    Dim strReportTitle As String

    strReportTitle = InputBox("Please type a title for your report that's less than 30 characters", "Report Title")

    If Len(strReportTitle) > 30 Then

        MsgBox "Length is more than 30 chars. Your report title may need some adjusting later.", vbInformation

    End If

    Set TextObj = Sec1.ReportControls.Add(ID_HOB_TEXT, 50, 50, 750, 100)

    TextObj.Font = 36

    TextObj.Alignment = 1 ' To center it

    TextObj.BackColor = RGB(128, 0, 64)

    TextObj.ForeColor = RGB(255, 255, 255)

    TextObj.Text = strReportTitle

    Sec1.ReportControls.Add ID_HOB_PCD_TEXT_REPORT_OBJECT, 50, 170, 750, 930

    ' Add a new Section named "TestSection2"

    Set Sec2 = RepTemplate.Sections.Add("MySection2")

    ' Add some objects into TestSection2

    Set TextObj2 = Sec2.ReportControls.Add(ID_HOB_TEXT, 50, 50, 750, 100)

    TextObj2.Font = 24

    TextObj2.Alignment = Center ' To center it

    TextObj2.BackColor = RGB(128, 0, 64)

    TextObj2.ForeColor = RGB(255, 255, 255)

    TextObj2.Text = "CAD Display"

    MsgBox "Now adding a CADObject into the template. Click OK here, then switch to PC-DMIS, and use the Label Layout Wizard to specify your label configuration, then click OK on that dialog box."

    Sec2.ReportControls.Add ID_HOB_PCD_CAD_REPORT_OBJECT, 0, 110, 800, 1000

    ' Save the changes to the Report Template

    RepTemplate.SaveAs ("d:\temp\TestReportTemplate.rtp")

    MsgBox "The Report Template is now created. You can open it up inside of PC-DMIS to see what it looks like.", vbInformation, "Report Template Finished"

    RepTemplate.Close

End Sub

See Also

ReportTemplates Object 

	Item Method  XE "Item Method" 


Description

Returns the report template with the given name or number. The Item function returns the ReportTemplate Object with the given name or number.

Syntax

	Visual Basic

	Public Function Item( _

   ByVal NameOrNumber As Variant _

) As ReportTemplate


Parameters

NameOrNumber

Required Variant that indicates which ReportTemplates object to return. It can be either a Long or a String. If it is a Long, it is the index number of the ReportTemplate object in the ReportTemplates collection. If it is a String, it is the ID of the ReportTemplate object.

Return Type

ReportTemplate object.

Remarks

Since the Item method is the default, the function name can be omitted if desired.

See Also

ReportTemplates Object 

	Open Method  XE "Open Method" 


Description

Opens the specified existing report template. 

The Open Function activates the report template stored in the file FileName. If the template file does not exist, nothing happens.

Syntax

	Visual Basic

	Public Function Open( _

   ByVal FileName As String _

) As ReportTemplate


Parameters

FileName

Required String. The file name of the ReportTemplate to open.

Return Type

ReportTemplate object.

See Also

ReportTemplates Object 

Properties

	Application Property  XE "Application Property" 


Description

Read Only: Returns the Application Object. This property represents the read-only PC-DMIS Application object. The Application object includes properties and methods that return top-level objects.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Application() As Application


Return Type

Application object.

See Also

ReportTemplates Object 

	Count Property  XE "Count Property" 


Description

Read Only: Returns the number of open reports. This property returns a read-only number of open report templates.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Count() As Long


See Also

ReportTemplates Object 

	Parent Property  XE "Parent Property" 


Description

Read Only: Returns the Application Object. This returns the read-only PC-DMIS Application object which is the parent object of the ReportTemplates object.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Parent() As Application


Return Type

Application object.

See Also

ReportTemplates Object 

	ReportWindow Object  XE "ReportWindow Object" 


Description

The ReportWindow object allows you to get or set various settings for the Report window.

Object Model

 

	[image: image506]
[image: image507]

 INCLUDEPICTURE "Images/pcdlrn~application~132.gif" \* MERGEFORMAT \d [image: image508]
[image: image509]

 INCLUDEPICTURE "Images/pcdlrn~parent_(partprogram)~132.gif" \* MERGEFORMAT \d [image: image510]
[image: image511]

 INCLUDEPICTURE "Images/pcdlrn~pages~132.gif" \* MERGEFORMAT \d [image: image512]


See Also

ReportWindow Members 

	ReportWindow Object Members  XE "ReportWindow Object Members" 


See Also

ReportWindow Overview 

Methods

	FullReportMode Method  XE "FullReportMode Method" 


Description

Switches to Full Report Mode. This method switches the report window to Full Report Mode.

Syntax

	Visual Basic

	Public Function FullReportMode() As Long


Return Type

Long value. This returns -1 if the function succeeds and 0 if it does not.

Example

Sub Main 

Dim App As Object

Dim PartProg As Object

Dim RepWin As Object

Set App = CreateObject("Pcdlrn.Application")

Set PartProg = App.ActivePartProgram

Set RepWin = PartProg.ReportWindow

lngRetVal = RepWin.FullReportMode()

MsgBox "PC-DMIS returned " & lngRetVal & " for setting the Report window to Full Report mode."

RepWin.RefreshReport

End Sub

See Also

ReportWindow Object 

	GenerateStatusReportBitmap Method  XE "GenerateStatusReportBitmap Method" 


Description

Generates a status report for a range of commands. 

Syntax

	Visual Basic

	Public Function GenerateStatusReportBitmap( _

   ByVal FileName As String, _

   ByVal templatename As String, _

   ByVal startCmd As Command, _

   ByVal endCmd As Command _

) As Long


Parameters

FileName

templatename

startCmd

endCmd

See Also

ReportWindow Object 

	GenerateStatusReportBitmapId Method  XE "GenerateStatusReportBitmapId Method" 


Description

Generates a status report for a range of commands. 

Syntax

	Visual Basic

	Public Function GenerateStatusReportBitmapId( _

   ByVal FileName As String, _

   ByVal templatename As String, _

   ByVal start As String, _

   ByVal end As String _

) As Long


Parameters

FileName

templatename

start

end

See Also

ReportWindow Object 

	GenerateStatusReportBitmapUid Method  XE "GenerateStatusReportBitmapUid Method" 


Description

Generates a status report for a range of commands. 

Syntax

	Visual Basic

	Public Function GenerateStatusReportBitmapUid( _

   ByVal FileName As String, _

   ByVal templatename As String, _

   ByRef HiPart As Long, _

   ByRef LoPart As Long _

) As Long


Parameters

FileName

templatename

HiPart

LoPart

See Also

ReportWindow Object 

	GetCustomReportName Method  XE "GetCustomReportName Method" 


Description

Returns the file name of the custom report at index position (0 based). Returns the name of the custom report name associated with the index value.

Syntax

	Visual Basic

	Public Function GetCustomReportName( _

   ByVal index As Long _

) As String


Parameters

index

Long value representing the specific custom report in a collection of custom reports.

Return Type

String value representing the name of the custom report.

Remarks

This only returns the file name for the custom report, not the full directory pathway to the file.

Index value for the first report starts at 0.

Example

If you have 5 custom reports for the current part program, a value of 0 would return the first report's name, a value of 6 would return the fifth report's name.

See the LoadCustomReport method for an example of this.

See Also

ReportWindow Object | LoadCustomReport Method 

	LastExecutionReportMode Method  XE "LastExecutionReportMode Method" 


Description

Switches to Last Execution Report Mode. This method switches the report window to Last Execution Report Mode.

Syntax

	Visual Basic

	Public Function LastExecutionReportMode() As Long


Return Type

Long value. This returns -1 (or True) if the function succeeds and 0 (or False) if it does not.

Example

Sub Main 

Dim App As Object

Dim PartProg As Object

Dim RepWin As Object

Set App = CreateObject("Pcdlrn.Application")

Set PartProg = App.ActivePartProgram

Set RepWin = PartProg.ReportWindow

lngRetVal = RepWin.LastExecutionReportMode()

MsgBox "PC-DMIS returned " & lngRetVal & " for setting the Report window to Last Execution Report mode."

RepWin.RefreshReport

End Sub

See Also

ReportWindow Object 

	LoadCustomReport Method  XE "LoadCustomReport Method" 


Description

Loads the specified custom report into the report window. This method loads the specified custom report into the Report window.

Syntax

	Visual Basic

	Public Function LoadCustomReport( _

   ByVal NameOrNumber As Variant _

) As Long


Parameters

NameOrNumber

This required Variant value specifies the custom report to load into the Report window. This can be either the custom report name or the index number.

Return Type

Long value. This returns -1 (or True) if the function succeeds and 0 (or False) if it does not.

Remarks

If you use an index value, a 0 in NameOrNumber represents the first custom report.

Example

Sub Main

Dim App As Object

Dim PartProg As Object

Dim RepWin As Object

Set App = CreateObject("Pcdlrn.Application")

Set PartProg = App.ActivePartProgram

Set RepWin = PartProg.ReportWindow

intResponse = InputBox("Type an index value to load the associated custom report for this part program. PC-DMIS will return its name.")

MsgBox "PC-DMIS attempting to load the report index: " & intResponse & " (" & RepWin.GetCustomReportName(intResponse) & ")"

Dim lngRetVal As Long

' Loads the custom report based on the entered number

lngRetVal = RepWin.LoadCustomReport(intResponse)

RepWin.RefreshReport

End Sub

See Also

ReportWindow Object 

	LoadReportTemplate Method  XE "LoadReportTemplate Method" 


Description

Loads the specified report template into the report window. This method loads the specified report template into the Report window.

Syntax

	Visual Basic

	Public Function LoadReportTemplate( _

   ByVal FileName As String _

) As Long


Parameters

FileName

This required String value specifies the pathway and filename of the template to load into the Report window.

Return Type

Long value. This returns -1 (or True) if the function succeeds and 0 (or False) if it does not.

Remarks

Sub Main

Dim App As Object

Dim PartProg As Object

Dim RepWin As Object

Set App = CreateObject("Pcdlrn.Application")

Set PartProg = App.ActivePartProgram

Set RepWin = PartProg.ReportWindow

' Loads the TEXTONLY.RTP report template.

RepWin.LoadReportTemplate "C:\PCDMIS43RC2\REPORTING\TEXTONLY.RTP"

RepWin.RefreshReport

End Sub

See Also

ReportWindow Object 

	PrintReport Method  XE "PrintReport Method" 


Description

Prints the current report. This method prints the contents of the Report window.

Syntax

	Visual Basic

	Public Function PrintReport() As Long


Return Type

Long value. This returns -1 (or True) if the function succeeds and 0 (or False) if it does not.

Example

Sub Main

Dim App As Object

Dim PartProg As Object

Dim RepWin As Object

Set App = CreateObject("Pcdlrn.Application")

Set PartProg = App.ActivePartProgram

Set RepWin = PartProg.ReportWindow

' Prints the contents of the Report window

RepWin.PrintReport

End Sub

See Also

ReportWindow Object 

	RefreshReport Method  XE "RefreshReport Method" 


Description

Regenerates the current report. This method reloads the report data into the report template, thereby refreshing the contents of the Report window.

Syntax

	Visual Basic

	Public Function RefreshReport() As Long


Return Type

Long value. This returns -1 (or True) if the function succeeds and 0 (or False) if it does not.

Example

Sub Main

Dim App As Object

Dim PartProg As Object

Dim RepWin As Object

Set App = CreateObject("Pcdlrn.Application")

Set PartProg = App.ActivePartProgram

Set RepWin = PartProg.ReportWindow

' Refreshes or redraws the current custom report or template

RepWin.RefreshReport

End Sub

See Also

ReportWindow Object 

	SetCurrentAsDefaultReport Method  XE "SetCurrentAsDefaultReport Method" 


Description

Sets the current report as the default report for the part program. 

This method sets the current report as the default report for the part program.

Syntax

	Visual Basic

	Public Function SetCurrentAsDefaultReport() As Long


Return Type

Long value. This returns -1 (or True) if the function succeeds and 0 (or False) if it does not.

Example

Sub Main

Dim App As Object

Dim PartProg As Object

Dim RepWin As Object

Set App = CreateObject("Pcdlrn.Application")

Set PartProg = App.ActivePartProgram

Set RepWin = PartProg.ReportWindow

' Sets the current custom report or template as the default

RepWin.SetCurrentAsDefaultReport

End Sub

See Also

ReportWindow Object 

Properties

	Application Property  XE "Application Property" 


Description

Read Only: Returns the Application Object. This property represents the read-only PC-DMIS Application object. The Application object includes properties and methods that return top-level objects.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Application() As Application


Return Type

Application object.

See Also

ReportWindow Object 

	CurrentReport Property  XE "CurrentReport Property" 


Description

Read Only: Returns the name of current report. This read-only property returns the full directory pathway to the Custom Report or Report Template used in the Report window.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property CurrentReport() As String


Return Type

Read-only String value representing the full directory pathway of the custom report or report template.

Remarks

Sub Main

Dim App As Object

Dim PartProg As Object

Dim RepWin As Object

Set App = CreateObject("Pcdlrn.Application")

Set PartProg = App.ActivePartProgram

Set RepWin = PartProg.ReportWindow

' Displays the current custom report or template

MsgBox "This part program uses this custom report or template: " & RepWin.CurrentReport

End Sub

See Also

ReportWindow Object 

	CustomReportCount Property  XE "CustomReportCount Property" 


Description

Read Only: Returns the number of custom report defined for the parent part program. This read-only property returns the number of Custom Reports defined for the current part program.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property CustomReportCount() As Long


Return Type

Read-only Long value representing the number of custom reports created for the current part program.

Remarks

Sub Main

Dim App As Object

Dim PartProg As Object

Dim RepWin As Object

Set App = CreateObject("Pcdlrn.Application")

Set PartProg = App.ActivePartProgram

Set RepWin = PartProg.ReportWindow

' Displays the number of custom reports

MsgBox "This part program uses " & RepWin.CustomReportCount & " custom reports."

End Sub
See Also

ReportWindow Object 

	Pages Property  XE "Pages Property" 


Description

Read Only: Returns the Pages object for this Report Window. Returns a collection of Page objects (one Page object for each page making up the report) as a Pages object.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Pages() As Pages


Return Type

Pages object.

Example

Sub Main

Dim App As Object

Dim PartProg As Object

Dim RepWin As Object

Dim Pages As Object

Dim Page As Object

Set App = CreateObject("Pcdlrn.Application")

Set PartProg = App.ActivePartProgram

Set RepWin = PartProg.ReportWindow

' Gets a collection of page objects

Set Pages = RepWin.Pages

End Sub

See Also

ReportWindow Object 

	Parent Property  XE "Parent Property" 


Description

Read Only: Returns the PartProgram Object. This returns the parent PartProgram object.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Parent() As PartProgram


Return Type

PartProgram object.

See Also

ReportWindow Object 

	Visible Property  XE "Visible Property" 


Description

Read/Write: Returns/Sets Visibility Status of Report Window. 

This returns or sets the visibility state of the Report window. 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Visible() As Long


Return Type

Read/write Long value.

Remarks

To turn the window on or off, give it a True or False value respectively.
Example

Sub Main

Dim App As Object

Dim PartProg As Object

Dim RepWin As Object

Set App = CreateObject("Pcdlrn.Application")

Set PartProg = App.ActivePartProgram

Set RepWin = PartProg.ReportWindow

' Hide Report Window

RepWin.Visible = False

MsgBox "Report window is now hidden."

' Show Report Window

RepWin.Visible = True

MsgBox "Report window is now visible."

End Sub

See Also

ReportWindow Object 

	RegistrySetting Object  XE "RegistrySetting Object" 


See Also

RegistrySetting Members 

	RegistrySetting Object Members  XE "RegistrySetting Object Members" 


See Also

RegistrySetting Overview 

Methods

	DeleteKey Method  XE "DeleteKey Method" 


Description

Deletes the key from use in the application. 

Syntax

	Visual Basic

	Public Sub DeleteKey() 


See Also

RegistrySetting Object 

	IsWriteable Method  XE "IsWriteable Method" 


Description

Read Only: Setting can be modified. 

Syntax

	Visual Basic

	Public Function IsWriteable() As Boolean


See Also

RegistrySetting Object 

Properties

	AccessLevel Property  XE "AccessLevel Property" 


Description

Read Only: Administrator or User. 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property AccessLevel() As RS_ACCESS


See Also

RegistrySetting Object 

	Group Property  XE "Group Property" 


Description

Read Only: Machine or User. 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Group() As RS_GROUP


See Also

RegistrySetting Object 

	KeyName Property  XE "KeyName Property" 


Description

Read Only: Section Name. 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property KeyName() As String


See Also

RegistrySetting Object 

	Type Property  XE "Type Property" 


Description

Read Only: Type 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Type() As Long


See Also

RegistrySetting Object 

	Used Property  XE "Used Property" 


Description

Read Only: Used by the application 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Used() As Boolean


See Also

RegistrySetting Object 

	Value Property  XE "Value Property" 


Description

Read/Write: Entry Value 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Value() As String


See Also

RegistrySetting Object 

	ValueName Property  XE "ValueName Property" 


Description

Read Only: Entry Name 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property ValueName() As String


See Also

RegistrySetting Object 

	RegistrySettings Object  XE "RegistrySettings Object" 


Object Model

 

	[image: image513]
[image: image514]

 INCLUDEPICTURE "Images/pcdlrn~application~138.gif" \* MERGEFORMAT \d [image: image515]
[image: image516]

 INCLUDEPICTURE "Images/pcdlrn~parent_(application)~138.gif" \* MERGEFORMAT \d [image: image517]
[image: image518]

 INCLUDEPICTURE "Images/pcdlrn~item_(registrysetting)~138.gif" \* MERGEFORMAT \d [image: image519]
[image: image520]

 INCLUDEPICTURE "Images/pcdlrn~first_(registrysetting)~138.gif" \* MERGEFORMAT \d [image: image521]
[image: image522]

 INCLUDEPICTURE "Images/pcdlrn~next_(registrysetting)~138.gif" \* MERGEFORMAT \d [image: image523]


See Also

RegistrySettings Members 

	RegistrySettings Object Members  XE "RegistrySettings Object Members" 


See Also

RegistrySettings Overview 

Methods

	First Method  XE "First Method" 


Description

Returns the first registry setting. 

Syntax

	Visual Basic

	Public Function First() As RegistrySetting


See Also

RegistrySettings Object 

	Item Method  XE "Item Method" 


Description

Returns the registry settings specified by composite name or number from the list of settings. 

Syntax

	Visual Basic

	Public Function Item( _

   ByVal Identifier As Variant _

) As RegistrySetting


Parameters

Identifier

See Also

RegistrySettings Object 

	Next Method  XE "Next Method" 


Description

Returns the next registry setting. 
Syntax

	Visual Basic

	Public Function Next( _

   ByVal Identifier As RegistrySetting _

) As RegistrySetting


Parameters

Identifier

See Also

RegistrySettings Object 

	RemoveAll Method  XE "RemoveAll Method" 


Description

Removes all of the entries from the registry. 

Syntax

	Visual Basic

	Public Sub RemoveAll() 


See Also

RegistrySettings Object 

Properties

	Application Property  XE "Application Property" 


Description

Read Only: Returns the Application Object. 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Application() As Application


See Also

RegistrySettings Object 

	Count Property  XE "Count Property" 


Description

Read Only: Returns the number of registry settings for the application. 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Count() As Long


See Also

RegistrySettings Object 

	Parent Property  XE "Parent Property" 


Description

Read Only: Returns the parent Application Object. 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Parent() As Application


See Also

RegistrySettings Object 

	ReportControls Object  XE "ReportControls Object" 


Description

The ReportControls object gives you access to a variety of controls such as buttons, text boxes, and other items that you can add to, remove, and otherwise manipulate on a particular section of a report template.

Object Model

 

	[image: image524]
[image: image525]

 INCLUDEPICTURE "Images/pcdlrn~application~94.gif" \* MERGEFORMAT \d [image: image526]


Remarks

ID_HOB_PCD_GRID_CTRL_OB (GridControlObject) Members
Inside PC-DMIS you use the Properties dialog box to set most properties of the different Reporting objects. However, for the GridControlObject, you use an additional Grid Properties dialog box to set format the grid and its cells with text, font styles, line styles, colors and so forth. You can also set these items programmatically by using these properties and methods.

	Note on Colors: Colors are defined by a COLORREF value. When specifying a RGB color, the COLORREF value has this hexadecimal form as a Long value:

0x00BBGGRR

where BB=blue GG=green RR=red

The maximum value for a single byte in the hexadecimal format is 0xFF (or 255 in decimal format).


Properties:
· NumColumns - This property of type Long defines the number of columns used in the GridControlObject.

· NumRows - This property of type Long defines the number of rows used in the GridControlObject.

Methods:
· GetCellData - This returns the current numerical (Long) value in a specified cell. It takes two Long value parameters that specify the row and the column for the cell. 
Syntax: Function GetCellData(ByVal Row as Long, ByVal Col as Long) As Long

· GetCellLeftLineColor - This retrieves the color value for a specified cell's left line. This function returns True if the color value is successfully returned or False otherwise. The COLORREF value is returned in the variable passed as the third parameter. This function takes three parameters. The first is the cell row, the second is the cell column, and the third is the color.
Syntax: Function GetCellLeftLineColor(ByVal Row As Long, ByVal Col As Long, ByVal Color As Long) As Boolean 

· GetCellLineStyle - This retrieves the line style for a specified cell. This function returns True if the line style is successfully returned or False otherwise. It takes four parameters. The first defines the cell's Row, the second defines the cell's Column, the third defines the cell's Line in the cell (1=left line, 2=top line, 3=right line 4=bottom line), the fourth defines the LineStyle (0=None, 1=Thin, 2=Thick, 3=Double, 4=Dotted). 
Syntax: Function GetCellLineStyle(ByVal Row As Long, ByVal Col As Long, ByVal Line As Long, ByVal LineStyle as Long) as Boolean 

· GetCellText - This retrieves the current text value in a specified cell. It takes two Long value parameters that specify the row number and the column number to find a particular cell.
Syntax: Function GetCellText(ByVal Row As Long, ByVal Col As Long) As String

· GetCellTextColor - This retrieves the current color for the text used in a cell. This function returns True if the color value is successfully returned or False otherwise. The color (COLORREF value) is returned in the variable passed as the third parameter. This function takes three parameters. The first is the cell row, the second is the cell column, and the third is the color. 
Syntax: Function GetCellTextColor(ByVal Row As Long, ByVal Col As Long, ByVal Color As Long) As Boolean

· GetCellTextColor - This retrieves the current color for the text used in a cell. This function returns True if the color value is successfully returned or False otherwise. The color (COLORREF value) is returned in the variable passed as the third parameter. This function takes three parameters. The first is the cell row, the second is the cell column, and the third is the color. 
Syntax: Function GetCellTextColor(ByVal Row As Long, ByVal Col As Long, ByVal Color As Long) As Boolean

· GetCellTextValue - This retrieves the current text value in a specified cell. It takes two Long value parameters that specify the row number (first parameter) and the column number (second parameter) to find a particular cell. This differs from GetCellText in that if expressions are part of the text, those expressions are solved.   
Syntax:  Function GetCellTextValue(ByVal Row As Long, ByVal Col As Long) As String

· GetCellTopLineColor - This retrieves the color value for a specified cell's top line. This function returns True if the color value is successfully returned or False otherwise. The color (COLORREF value) is returned in the variable passed as the third parameter. This function takes three parameters. The first is the cell row, the second is the cell column, and the third is the color.
Syntax: Function GetCellTopLineColor(ByVal Row As Long, ByVal Col As Long, ByVal Color As Long) As Boolean

· IsCellMerged - Returns True if the cell is merged with another cell, False if not. It takes two Long value parameters that specify the row number (first parameter) and the column number (second parameter) to find a particular cell.
Syntax: Function IsCellMerged(ByVal Row As Long, ByVal Col As Long) As Boolean

· IsCellVisible - Returns True if the cell is visible, False if hidden. It takes two Long value parameters that specify the row number (first parameter) and the column number (second parameter) to find a particular cell.
Syntax:  Function IsCellVisible(ByVal Row As Long, ByVal Col As Long) As Boolean

· IsPrimaryMergedCell - Returns True if the primary cell is merged. False if not. It takes two Long value parameters that specify the row number (first parameter) and the column number (second parameter) to find a particular cell. This differs from IsCellMerged by checking to see if the cell is the first of a merged cell. Only the contents of the primary cell are displayed in the merged cells field.
Syntax: Function IsPrimaryCellMerged(ByVal Row As Long, ByVal Col As Long) As Boolean

· MergeCells - This merges two cells together. It returns True if the two cells specified are successfully merged, False if not. It takes four Long value parameters that specify two cells to merge.
Syntax: Function MergeCells(ByVal Row As Long, ByVal Col As Long, ByVal Row2 As Long, ByVal Col2 as Long) as Boolean

· Move - This moves the object to a new position. It takes two parameters. The first defines a new X position in the editor, the second a new Y position.
Syntax: Sub Move (ByVal newX As Long, ByVal newY As Long)

· SetCellBackgroundColor - This sets the background color for the specified cell. It takes three Long value parameters. The first two specify the row number (first parameter) and the column number (second parameter) to find a particular cell. The third specifies the color.
Syntax: Function SetCellBackgroundColor(ByVal Row As Long, ByVal Col As Long, ByVal Color As Long) As Boolean

· SetCellData - This sets the specified cell's value and returns True if the cells was successfully given the new value or False otherwise. It takes three Long value parameters. The first two specify the row number (first parameter) and the column number (second parameter) to find a particular cell. The third parameter is the new value.
Syntax: Function SetCellData(ByVal Row As Long, ByVal Col As Long, ByVal Value As Long) As Boolean

· SetCellFont - This sets the font style of a particular cell, it returns True if the cell's font was successfully done, or False otherwise. This function takes four parameters. The first two are Long values that specify the cell to change. The third is a string value of the font style to use. The fourth is a Long value that specifies the height of the font.
Syntax: Function SetCellFont(ByVal Row As Long, ByVal Col As Long, ByVal FontStyle, As String, ByVal Height As Long) As Boolean

· SetCellLeftLineColor - This sets the color value for a specified cell's left line, it returns True if the cell's left line color properly changed or False otherwise. This function takes three Long value parameters. The first two specify the row number (first parameter) and the column number (second parameter) to find a particular cell. The third parameter is the color value to use.
Syntax: Function SetCellLeftLineColor(ByVal Row As Long, ByVal Col As Long, ByVal Color As Long) As Boolean

· SetCellLineColor - This sets the line color for a particular cell. It returns True if the cell's line color is properly changed or False otherwise. This function takes three Long value parameters. The first two specify the row number (first parameter) and the column number (second parameter) to find a particular cell. The third parameter is the color value to use.
Syntax: Function SetCellLineColor(ByVal Row As Long, ByVal Col As Long, ByVal Color As Long) As Boolean

· SetCellText - This places the specified text string into the specified cell. It returns True if the cell was successfully inserted or False otherwise. This function takes three parameters. It takes three parameters. The first two are Long values that specify the cell to change. The third is a string value of the text to insert into the cell.  
Syntax: Function SetCellText(ByVal Row As Long, ByVal Col As Long, ByVal Value As String) As Boolean

· SetCellTextColor - This sets the text color for a particular cell. It returns True if the cell's text color is properly changed or False otherwise. This function takes three Long value parameters. The first two specify the row number (first parameter) and the column number (second parameter) to find a particular cell. The third parameter is the color value to use.
Syntax: Function SetCellTextColor(ByVal Row As Long, ByVal Col As Long, ByVal Color As Long) As Boolean

· SetCellTopLineColor - This sets the color value for a specified cell's top line, it returns True if the cell's top line color properly changes or False otherwise. This function takes three Long value parameters. The first two specify the row number (first parameter) and the column number (second parameter) to find a particular cell. The third parameter is the color value to use.
Syntax: Function SetCellTopLineColor(ByVal Row As Long, ByVal Col As Long, ByVal Color As Long) As Boolean

· SetColumnBackgroundColor - This sets the background color value for a specified column in the GridControlObject. It returns True if the column's color properly changes or False otherwise. This function takes two Long value parameters. The first parameter indicates the column to change. The second parameter indicates the color to use.
Syntax: Function SetColumnBackgroundColor(ByVal Col As Long, ByVal Color As Long) As Boolean 

· SetRowBackgroundColor - This sets the background color value for a specified row in the GridControlObject. It returns True if the row's color properly changes or False otherwise. This function takes two Long value parameters. The first parameter indicates the row to change. The second parameter indicates the color to use.
Syntax: Function SetRowBackgroundColor(ByVal Row As Long, ByVal Color As Long) As Boolean 

· SetRowLeftLineColor - This sets the left line color value for all the cells in a specified row in the GridControlObject. It returns True if the row's left line color properly changes or False otherwise. This function takes two Long value parameters. The first parameter indicates the row to change. The second parameter is a Long value for the color. 
Syntax: Function SetRowLeftLineColor(ByVal Row As Long, ByVal Color As Long) As Boolean

· SetRowLineStyle - This sets the line style for the entire row. It returns True if the style was successfully set or False otherwise. This function takes three Long value parameters. The first indicates the row to change, the second defines the cell's Line in the cell (1=left line, 2=top line, 3=right line 4=bottom line), the third defines the LineStyle (0=None, 1=Thin, 2=Thick, 3=Double, 4=Dotted). 
Syntax: Function SetRowLineStyle(ByVal Row As Long, ByVal Line As Long, ByVal LineStyle As Long) As Boolean

· SetRowTopLineColor - This sets the top line color value for a specified row in the GridControlObject. It returns True if the row's top line color properly changes or False otherwise. This function takes two Long value parameters. The first parameter indicates the row to change. The second parameter indicates the color to use.
Syntax: Function SetRowTopLineColor(ByVal Row As Long, ByVal Color As Long) As Boolean

See Also

ReportControls Members 

	ReportControls Object Members  XE "ReportControls Object Members" 


See Also

ReportControls Overview 

Methods

	_Item Method  XE "_Item Method" 


Syntax

	Visual Basic

	Public Function _Item( _

   ByVal NameOrNumber As Variant _

) As Object


Parameters

NameOrNumber

See Also

ReportControls Object 

	Add Method  XE "Add Method" 


Description

Adds a new control to the report template. The Add method inserts a new control of a defined location and size into the current section of the report template.

Syntax

	Visual Basic

	Public Function Add( _

   ByVal ObjectType As ENUM_REPORT_TEMPLATE_OBJECTS, _

   ByVal Left As Long, _

   ByVal Top As Long, _

   ByVal Right As Long, _

   ByVal Bottom As Long _

) As Object


Parameters

ObjectType

Can be a constant or enumerated value. Use an item from the ENUM_REPORT_TEMPLATE_OBJECTS enumeration table located at the end of this documentation.

Left

Long value sets the location of the left side of the control from the left side of the editor.

Top

Long value sets the top location of the control from the top side of the editor.

Right

Long value sets the right location of the control from the left side of the editor.

Bottom

Long value sets the bottom location of the control from the top side of the editor.

Remarks

To find out what properties are available to a control, in PC-DMIS's Report Template editor, insert the control and then access its properties sheet.

Example

Private Sub Add_Arc()

    ' Inserts an arc control

    Set ArcControl = ReportObjects.Add(ID_HOB_ARC, 10, 10, 200, 200)

    ArcControl.Bottom = 100

    ArcControl.Left = 10

    ArcControl.LineStyle = 2

    ArcControl.LineWidth = 1

    ArcControl.Right = 790

    ArcControl.Top = 20

    ArcControl.Visible = False

End Sub

See Also

ReportControls Object 

	Item Method  XE "Item Method" 


Description

returns the given named or numbered control. This method returns an Object of the control identified by the name or number in the NameOrNum parameter.

Syntax

	Visual Basic

	Public Function Item( _

   ByVal NameOrNumber As Variant _

) As Object


Parameters

NameOrNumber

Required Variant that indicates which control to return. It can be either a Long or a String. If it is a Long, it is the index number given the control within the ReportControls collection of controls. If it is a String, it is the ID, (or ObjectCode property in the template editor) of the control.

Remarks

Be aware that a hidden control called "Report" always exists in the Report template and cannot be deleted or otherwise manipulated. This object is used by PC-DMIS for internal purposes only. For this reason do not give NameOrNum a value of 1, as it will try to select the Report control.

To manipulate existing report objects, you will need use this method. Once you establish a pointer to a report object, you can get or set any of its properties (similar to the ReportControls.Add method). To find the available properties, consult the dockable Properties dialog box inside PC-DMIS.

See Also

ReportControls Object | Add Method 

	Remove Method  XE "Remove Method" 


Description

Removes the specified named or numbered control from the report template. This deletes the specified control from the current section of the report template.

Syntax

	Visual Basic

	Public Function Remove( _

   ByVal NameOrNumber As Variant _

) As Long


Parameters

NameOrNumber

Required Variant that indicates which control to remove. It can be either a Long or a String. If it is a Long, it is the index number given the control within the ReportControls collection of controls. If it is a String, it is the ID, (or ObjectCode property in the template editor) of the control.

Remarks

Be aware that a hidden control called "Report" always exists in the Report template and cannot be deleted or otherwise manipulated. This object is used by PC-DMIS for internal purposes only. For this reason NameOrNum with a value of 1 will try to delete the Report control and will return False.

See Also

ReportControls Object 

Properties

	Application Property  XE "Application Property" 


Description

Read Only: Returns an Application object.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Application() As Application


See Also

ReportControls Object 

	Count Property  XE "Count Property" 


Description

Read Only: This property counts all the controls in the current section/page and returns it as a Long value.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Count() As Long


Return Type

Long value.

Remarks

Be aware that a hidden control called "Report" always exists in the Report template and cannot be deleted or otherwise manipulated. This object is used by PC-DMIS for internal purposes only. Your count value will therefore be one higher than expected due to this hidden object.

See Also

ReportControls Object 

	Parent Property  XE "Parent Property" 


Description

Read Only: This property returns this object's parent object, a generic object interface.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Parent() As Object


Return Type

Object.

See Also

ReportControls Object 

	ReadOnly Property  XE "ReadOnly Property" 


Description

Read Only: If set, controls cannot be added or removed. 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property ReadOnly() As Long


See Also

ReportControls Object 

	ReportData Object  XE "ReportData Object" 


Description

The ReportData object lets you access data sent to reports during the EventReportData event. 

Remarks

This event can only be accessed inside the Properties dialog box inside the Label and Report Template Editors inside PC-DMIS versions 4.0 and higher.

Properties dialog box
Using this object in conjunction with the EventReportData event, you can access the desired information.

Example

Suppose in PC-DMIS's Label Template Editor, you use a Border object to change its background color to match the current dimension out of tolerance color. You can do this using the ReportData object. The following code works inside of the PC-DMIS's label template editor in the EventReportData event of a Border object.

Dim Count As Integer

Dim i As Integer

Dim MaxIndex As Integer

Dim MaxDev As Double

Dim CurrentDev as Variant

Dim Dev as Variant

Dim PTol as Variant

Dim MTol as Variant

Dim DevColor as Long

' Initialize Max Deviation and Max Index

MaxDev = 0.0

MaxIndex = 1

'Get the number of axes for this dimension

Count = ReportData.GetCount(132)

'Adjust the bottom of the border to fit the number of axes

Border1.Bottom = 106+((Count-1)*25)

'Loop through to find the largest deviation

'When loop is complete, MaxIndex is the index to the 

' largest deviation

For i=1 to Count

 CurrentDev = ABS(ReportData.GetValue(DIM_DEVIATION,i))

 If CurrentDev > MaxDev Then

   MaxDev = CurrentDev

   MaxIndex = i

 End If

Next i

' Using MaxIndex, acquire the axis's deviation +TOL and -TOL

Dev = ReportData.GetValue(340, MaxIndex)

PTol = ReportData.GetValue(167, MaxIndex)

MTol = ReportData.GetValue(168, MaxIndex)

' Use this information to adjust the background color of the border

DevColor = ReportData.GetTolColor(Dev,PTol,MTol)

Border1.BackColor = DevColor

Border1.ForeColor = DevColor

See Also

ReportData Members 

	ReportData Object Members  XE "ReportData Object Members" 


See Also

ReportData Overview 

Methods

	GetColorList Method  XE "GetColorList Method" 


Description

Returns the current global dimension color list. This returns a the current global dimension color list.

Syntax

	Visual Basic

	Public Function GetColorList() As Variant


Return Type

Variant object.

See Also

ReportData Object 

	GetCommand Method  XE "GetCommand Method" 


Description

Returns Command Object if report data has command interface. This returns a Command Object if report data has command interface.

Syntax

	Visual Basic

	Public Function GetCommand() As Object


Return Type

Command object.

See Also

ReportData Object 

	GetCount Method  XE "GetCount Method" 


Description

Returns the number of instances of the specified data type. This returns the number of instances of the specified data type.

Syntax

	Visual Basic

	Public Function GetCount( _

   ByVal DataType As ENUM_FIELD_TYPES _

) As Long


Parameters

DataType

Use an item from the ENUM_FIELD_TYPES enumeration table located at the end of this documentation.

Return Type

Long value representing the number of instances of the specified data type.

See Also

ReportData Object 

	GetExpressionValue Method  XE "GetExpressionValue Method" 


Description

Returns the value of expression. This returns value of the specified expression in Expression.

Syntax

	Visual Basic

	Public Function GetExpressionValue( _

   ByVal Expression As String _

) As Variant


Parameters

Expression

Required expression that evaluates to a PC-DMIS ReportData object.

Return Type

This returns value of the specified expression in Expression.

See Also

ReportData Object 

	GetReferenceValue Method  XE "GetReferenceValue Method" 


Description

Returns the reference feature value of the indicated field of the command. This returns the reference feature value of the indicated field of the command.

Syntax

	Visual Basic

	Public Function GetReferenceValue( _

   ByVal refValue As Long, _

   ByVal DataType As ENUM_FIELD_TYPES, _

   ByVal TypeIndex As Long _

) As Variant


Parameters

refValue

A Long value representing the reference.

DataType

Use an item from the ENUM_FIELD_TYPES enumeration table located at the end of this documentation.

TypeIndex

Long value used to indicate which instance of the supplied field type to use when an object has more than one instance of a specified field type. In these cases, the TypeIndex must not be greater than the current number of fields of that type + 1 and TypeIndex must be greater than 1. For fields that allow only a single value, the TypeIndex is 0.

Return Type

Variant value representing the reference feature value of the field in the command.

See Also

ReportData Object 

	GetReferenceValue2 Method  XE "GetReferenceValue2 Method" 


Description

Returns the reference feature value of the indicated field of the specified command. This returns the reference feature value of the indicated field of the command.

Syntax

	Visual Basic

	Public Function GetReferenceValue2( _

   ByVal refValue As Long, _

   ByVal DataType As ENUM_FIELD_TYPES, _

   ByVal TypeIndex As Long, _

   ByVal FirstArrayIndex As Long, _

   ByVal SecondArrayIndex As Long _

) As Variant


Parameters

refValue

A Long value representing the reference.
DataType

Use an item from the ENUM_FIELD_TYPES enumeration table located at the end of this documentation.

TypeIndex

Long value used to indicate which instance of the supplied field type to use when an object has more than one instance of a specified field type. In these cases, the TypeIndex must not be greater than the current number of fields of the that type + 1 and TypeIndex must be greater than 1. For fields that allow only a single value, the TypeIndex is 0.

FirstArrayIndex

This parameter specifies the index value for an item in the first array.

SecondArrayIndex

This parameter specifies the index value for an item in the second array.

Return Type

Variant value representing the reference feature value of the field in the command.

See Also

ReportData Object 

	GetTolColor Method  XE "GetTolColor Method" 


Description

Returns the current tolerance color based on deviation, plus tolerance, and minus tolerance. This returns a the current tolerance color based on the deviation, plus tolerance, and minus tolerance.

Syntax

	Visual Basic

	Public Function GetTolColor( _

   ByVal Deviation As Double, _

   ByVal plustol As Double, _

   ByVal minustol As Double _

) As Long


Parameters

Deviation

Double value representing the deviation.

plustol

Double value representing the plus tolerance.

minustol

Double value representing the minus tolerance.

See Also

ReportData Object 

	GetValue Method  XE "GetValue Method" 


Description

Returns the value of the indicated field of the command. This method returns the value of the indicated field of the command.

Syntax

	Visual Basic

	Public Function GetValue( _

   ByVal DataType As ENUM_FIELD_TYPES, _

   ByVal TypeIndex As Long _

) As Variant


Parameters

DataType

Use an item from the ENUM_FIELD_TYPES enumeration table located at the end of this documentation.

TypeIndex

Long value used to indicate which instance of the supplied field type to use when an object has more than one instance of a specified field type. In these cases, the TypeIndex must not be greater than the current number of fields of the that type + 1 and TypeIndex must be greater than 1. For fields that allow only a single value, the TypeIndex is 0.

Return Type

This method returns the value of the indicated field of the command.

See Also

ReportData Object 

	GetValue2 Method  XE "GetValue2 Method" 


Description

Returns the value of the indicated field of the specified command. This method returns the value of the indicated field of the command.

Syntax

	Visual Basic

	Public Function GetValue2( _

   ByVal DataType As ENUM_FIELD_TYPES, _

   ByVal TypeIndex As Long, _

   ByVal FirstArrayIndex As Long, _

   ByVal SecondArrayIndex As Long _

) As Variant


Parameters

DataType

Use an item from the ENUM_FIELD_TYPES enumeration table located at the end of this documentation.

TypeIndex

Long value used to indicate which instance of the supplied field type to use when an object has more than one instance of a specified field type. In these cases, the TypeIndex must not be greater than the current number of fields of the that type + 1 and TypeIndex must be greater than 1. For fields that allow only a single value, the TypeIndex is 0.

FirstArrayIndex

This parameter specifies the index value for an item in the first array.

SecondArrayIndex

This parameter specifies the index value for an item in the second array.

Return Type

This method returns the value of the indicated field of the command.

See Also

ReportData Object 

	HasCommandData Method  XE "HasCommandData Method" 


Description

Returns true if report data has a part program command interface. 

This method returns True if report data has a part program command interface, False otherwise.

Syntax

	Visual Basic

	Public Function HasCommandData() As Boolean


Return Type

Boolean value showing TRUE if the report data has a part program command interface, or FALSE otherwise.

See Also

ReportData Object 

Properties

	CurPage Property  XE "CurPage Property" 


Description

Read Only: Number of current page 

This property returns a the number of the report's current page as a Long value.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property CurPage() As Long


Return Type

Long value.

See Also

ReportData Object 

	ReportTemplate Object  XE "ReportTemplate Object" 


Description

The ReportTemplate object allows you to get or set various settings for a report template.

Object Model

 

	[image: image527]
[image: image528]

 INCLUDEPICTURE "Images/pcdlrn~sections~158.gif" \* MERGEFORMAT \d [image: image529]
[image: image530]

 INCLUDEPICTURE "Images/pcdlrn~application~158.gif" \* MERGEFORMAT \d [image: image531]
[image: image532]

 INCLUDEPICTURE "Images/pcdlrn~parent_(reporttemplates)~158.gif" \* MERGEFORMAT \d [image: image533]
[image: image534]

 INCLUDEPICTURE "Images/pcdlrn~colors~158.gif" \* MERGEFORMAT \d [image: image535]
[image: image536]

 INCLUDEPICTURE "Images/parmult.gif" \* MERGEFORMAT \d [image: image537]

 INCLUDEPICTURE "Images/pcdlrn~item_(color)~158.gif" \* MERGEFORMAT \d [image: image538]
[image: image539]

 INCLUDEPICTURE "Images/parmult.gif" \* MERGEFORMAT \d [image: image540]

 INCLUDEPICTURE "Images/pcdlrn~application~158.gif" \* MERGEFORMAT \d [image: image541]
[image: image542]

 INCLUDEPICTURE "Images/parchild.gif" \* MERGEFORMAT \d [image: image543]

 INCLUDEPICTURE "Images/pcdlrn~add_(color)~158.gif" \* MERGEFORMAT \d [image: image544]


See Also

ReportTemplate Members 

	ReportTemplate Object Members  XE "ReportTemplate Object Members" 


See Also

ReportTemplate Overview 

Methods

	Close Method  XE "Close Method" 


Description

Closes the report template. This subroutine closes the report template. To first save any unsaved changes, use the Save method.

Syntax

	Visual Basic

	Public Sub Close() 


See Also

ReportTemplate Object 

	Save Method  XE "Save Method" 


Description

Saves the report template. This subroutine saves the report template with its already existing name. If the template has not been saved before use the SaveAs method instead, and specify a filename.

Syntax

	Visual Basic

	Public Function Save() As Boolean


See Also

ReportTemplate Object 

	SaveAs Method  XE "SaveAs Method" 


Description

Saves the report template with the given file name. 

This method saves the report template.

Syntax

	Visual Basic

	Public Function SaveAs( _

   ByVal FileName As String _

) As Boolean


Parameters

FileName

Required expression that evaluates to a String. This is the pathway and file name to which you will save the report template.

See Also

ReportTemplate Object 

Properties

	_Name Property  XE "_Name Property" 


Property type

Read-write property

Syntax

	Visual Basic

	Public Property _Name() As String


See Also

ReportTemplate Object 

	Application Property  XE "Application Property" 


Description

Read Only: Returns the Application Object. This property represents the read-only PC-DMIS Application object. The Application object includes properties and methods that return top-level objects.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Application() As Application


Return Type

Application object.

See Also

ReportTemplate Object 

	Colors Property  XE "Colors Property" 


Description

Read Only: Returns the Colors collection. This property returns a read-only Colors collection object. Through this object you will be able to access the report template's color tree. Only defined color objects will be in the collection. Color objects should be added or removed. Color objects will be retrieved using the command type ID or the COLOR_SELECTION ID.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Colors() As Colors


See Also

ReportTemplate Object 

	FullName Property  XE "FullName Property" 


Description

Read Only: Returns the full path name. This property returns a read-only string of the full path and filename of the report template.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property FullName() As String


See Also

ReportTemplate Object 

	LearnTimeProgram Property  XE "LearnTimeProgram Property" 


Description

Read/Write: Returns/Sets the Learn Time program name. This read/write string property allows you to read or write the learn time program name.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property LearnTimeProgram() As String


See Also

ReportTemplate Object 

	Name Property  XE "Name Property" 


Description

Read Only: Returns the file name. This property returns a read-only string of the report template's filename.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Name() As String


See Also

ReportTemplate Object 

	PageOrientation Property  XE "PageOrientation Property" 


Description

Read/Write: Returns/Sets the Page Orientation. This property lets you to read or write the page orientation for the report template.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property PageOrientation() As ENUM_PAGE_ORIENTATION


Return Type

Read/write ENUM_PAGE_ORIENTATION enumeration.

See Also

ReportTemplate Object 

	PageSize Property  XE "PageSize Property" 


Description

Read/Write: Returns/Sets the Page Size. This property lets you read or write the page size for the report template.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property PageSize() As ENUM_PAGE_FORMAT


Return Type

Read/write ENUM_PAGE_FORMAT enumeration.

See Also

ReportTemplate Object 

	Parent Property  XE "Parent Property" 


Description

Read Only: Returns the parent Reports Object. This property returns the report template's parent object, which is the read-only Report Templates object.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Parent() As ReportTemplates


See Also

ReportTemplate Object 

	RunTimeProgram Property  XE "RunTimeProgram Property" 


Description

Read/Write: Returns/Sets the Run Time program name. This read/write string property allows you to read or write the run time program name.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property RunTimeProgram() As String


Return Type

Read/write String value.

See Also

ReportTemplate Object 

	Sections Property  XE "Sections Property" 


Description

Read Only: returns the Sections object. This property returns a collection of all the report templates sections as a read-only Sections object.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Sections() As Sections


Return Type

Read-only Sections object.

See Also

ReportTemplate Object 

	Visible Property  XE "Visible Property" 


Description

Read/Write: Returns/Sets template editor visibility status Boolean property. Returns or sets the visibility status of the template editor. If True then Visible, if False then hidden.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Visible() As Boolean


See Also

ReportTemplate Object 

	ReportTemplates Object  XE "ReportTemplates Object" 


Description

The ReportTemplates object contains all open report templates in PC-DMIS's Report Template editor. 

Object Model

 

	[image: image545]
[image: image546]

 INCLUDEPICTURE "Images/pcdlrn~application~149.gif" \* MERGEFORMAT \d [image: image547]
[image: image548]

 INCLUDEPICTURE "Images/pcdlrn~parent_(application)~149.gif" \* MERGEFORMAT \d [image: image549]
[image: image550]

 INCLUDEPICTURE "Images/pcdlrn~open_(reporttemplate)~149.gif" \* MERGEFORMAT \d [image: image551]
[image: image552]

 INCLUDEPICTURE "Images/pcdlrn~add_(reporttemplate)~149.gif" \* MERGEFORMAT \d [image: image553]
[image: image554]

 INCLUDEPICTURE "Images/pcdlrn~item_(reporttemplate)~149.gif" \* MERGEFORMAT \d [image: image555]
[image: image556]

 INCLUDEPICTURE "Images/pcdlrn~_item_(reporttemplate)~149.gif" \* MERGEFORMAT \d [image: image557]


Remarks

Use ReportTemplates.Add to create a new report template and add it to the ReportTemplates collection.

Use ReportTemplates(index) where index is the report template name or index number to access an individual report template.

See Also

ReportTemplates Members | Add Method 

	ReportTemplates Object Members  XE "ReportTemplates Object Members" 


See Also

ReportTemplates Overview | Add Method 

Methods

	_Item Method  XE "_Item Method" 


Syntax

	Visual Basic

	Public Function _Item( _

   ByVal NameOrNumber As Variant _

) As ReportTemplate


Parameters

NameOrNumber

See Also

ReportTemplates Object 

	Add Method  XE "Add Method" 


Description

Creates a new report template. The Add function creates a new report template in PC-DMIS.

Syntax

	Visual Basic

	Public Function Add() As ReportTemplate


Example

Sub Create_Report_Template()

    ' This test subroutine was created to show how report templates can be

    ' automatically generated using PC-DMIS Automation

    ' This was created inside Microsoft Excel

    ' Make sure PC-DMIS is running

    If MsgBox("This example will use your existing part program and create an automatic Report Template with a title of your choice. Is PC-DMIS running and is your part program loaded?", vbYesNo, "Automated Report Template Creation") = vbNo Then

        MsgBox "Closing this example. Try again once PC-DMIS is running and a part program is loaded.", vbExclamation

        Exit Sub

    End If

    ' Create the PC-DMIS Application

    Dim PCDApp As PCDLRN.Application

    Set PCDApp = CreateObject("Pcdlrn.Application")

    ' Open a Part Program

    Dim PP As PartProgram

    Set PP = PCDApp.ActivePartProgram

    Dim RepTemplates As ReportTemplates

    Set RepTemplates = PCDApp.ReportTemplates

    Dim RepTemplate As ReportTemplate

    ' Add a new Report Template

    Set RepTemplate = RepTemplates.Add

    ' Use the existing default section of "Section1" for new templates

    Dim Secs As Sections

    Set Secs = RepTemplate.Sections

    Dim Sec1 As Section

    Dim Sec2 As Section

    Set Sec1 = RepTemplate.Sections.Item("Section1")

    ' Add a Text object into TestSection1 and define its Text property

    Dim RepControls As ReportControls

    Set RepControls = Sec1.ReportControls

    Dim strReportTitle As String

    strReportTitle = InputBox("Please type a title for your report that's less than 30 characters", "Report Title")

    If Len(strReportTitle) > 30 Then

        MsgBox "Length is more than 30 chars. Your report title may need some adjusting later.", vbInformation

    End If

    Set TextObj = Sec1.ReportControls.Add(ID_HOB_TEXT, 50, 50, 750, 100)

    TextObj.Font = 36

    TextObj.Alignment = 1 ' To center it

    TextObj.BackColor = RGB(128, 0, 64)

    TextObj.ForeColor = RGB(255, 255, 255)

    TextObj.Text = strReportTitle

    Sec1.ReportControls.Add ID_HOB_PCD_TEXT_REPORT_OBJECT, 50, 170, 750, 930

    ' Add a new Section named "TestSection2"

    Set Sec2 = RepTemplate.Sections.Add("MySection2")

    ' Add some objects into TestSection2

    Set TextObj2 = Sec2.ReportControls.Add(ID_HOB_TEXT, 50, 50, 750, 100)

    TextObj2.Font = 24

    TextObj2.Alignment = Center ' To center it

    TextObj2.BackColor = RGB(128, 0, 64)

    TextObj2.ForeColor = RGB(255, 255, 255)

    TextObj2.Text = "CAD Display"

    MsgBox "Now adding a CADObject into the template. Click OK here, then switch to PC-DMIS, and use the Label Layout Wizard to specify your label configuration, then click OK on that dialog box."

    Sec2.ReportControls.Add ID_HOB_PCD_CAD_REPORT_OBJECT, 0, 110, 800, 1000

    ' Save the changes to the Report Template

    RepTemplate.SaveAs ("d:\temp\TestReportTemplate.rtp")

    MsgBox "The Report Template is now created. You can open it up inside of PC-DMIS to see what it looks like.", vbInformation, "Report Template Finished"

    RepTemplate.Close

End Sub

See Also

ReportTemplates Object 

	Item Method  XE "Item Method" 


Description

Returns the report template with the given name or number. The Item function returns the ReportTemplate Object with the given name or number.

Syntax

	Visual Basic

	Public Function Item( _

   ByVal NameOrNumber As Variant _

) As ReportTemplate


Parameters

NameOrNumber

Required Variant that indicates which ReportTemplates object to return. It can be either a Long or a String. If it is a Long, it is the index number of the ReportTemplate object in the ReportTemplates collection. If it is a String, it is the ID of the ReportTemplate object.

Return Type

ReportTemplate object.

Remarks

Since the Item method is the default, the function name can be omitted if desired.

See Also

ReportTemplates Object 

	Open Method  XE "Open Method" 


Description

Opens the specified existing report template. 

The Open Function activates the report template stored in the file FileName. If the template file does not exist, nothing happens.

Syntax

	Visual Basic

	Public Function Open( _

   ByVal FileName As String _

) As ReportTemplate


Parameters

FileName

Required String. The file name of the ReportTemplate to open.

Return Type

ReportTemplate object.

See Also

ReportTemplates Object 

Properties

	Application Property  XE "Application Property" 


Description

Read Only: Returns the Application Object. This property represents the read-only PC-DMIS Application object. The Application object includes properties and methods that return top-level objects.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Application() As Application


Return Type

Application object.

See Also

ReportTemplates Object 

	Count Property  XE "Count Property" 


Description

Read Only: Returns the number of open reports. This property returns a read-only number of open report templates.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Count() As Long


See Also

ReportTemplates Object 

	Parent Property  XE "Parent Property" 


Description

Read Only: Returns the Application Object. This returns the read-only PC-DMIS Application object which is the parent object of the ReportTemplates object.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Parent() As Application


Return Type

Application object.

See Also

ReportTemplates Object 

	ReportWindow Object  XE "ReportWindow Object" 


Description

The ReportWindow object allows you to get or set various settings for the Report window.

Object Model

 

	[image: image558]
[image: image559]

 INCLUDEPICTURE "Images/pcdlrn~application~132.gif" \* MERGEFORMAT \d [image: image560]
[image: image561]

 INCLUDEPICTURE "Images/pcdlrn~parent_(partprogram)~132.gif" \* MERGEFORMAT \d [image: image562]
[image: image563]

 INCLUDEPICTURE "Images/pcdlrn~pages~132.gif" \* MERGEFORMAT \d [image: image564]


See Also

ReportWindow Members 

	ReportWindow Object Members  XE "ReportWindow Object Members" 


See Also

ReportWindow Overview 

Methods

	FullReportMode Method  XE "FullReportMode Method" 


Description

Switches to Full Report Mode. This method switches the report window to Full Report Mode.

Syntax

	Visual Basic

	Public Function FullReportMode() As Long


Return Type

Long value. This returns -1 if the function succeeds and 0 if it does not.

Example

Sub Main 

Dim App As Object

Dim PartProg As Object

Dim RepWin As Object

Set App = CreateObject("Pcdlrn.Application")

Set PartProg = App.ActivePartProgram

Set RepWin = PartProg.ReportWindow

lngRetVal = RepWin.FullReportMode()

MsgBox "PC-DMIS returned " & lngRetVal & " for setting the Report window to Full Report mode."

RepWin.RefreshReport

End Sub

See Also

ReportWindow Object 

	GenerateStatusReportBitmap Method  XE "GenerateStatusReportBitmap Method" 


Description

Generates a status report for a range of commands. 

Syntax

	Visual Basic

	Public Function GenerateStatusReportBitmap( _

   ByVal FileName As String, _

   ByVal templatename As String, _

   ByVal startCmd As Command, _

   ByVal endCmd As Command _

) As Long


Parameters

FileName

templatename

startCmd

endCmd

See Also

ReportWindow Object 

	GenerateStatusReportBitmapId Method  XE "GenerateStatusReportBitmapId Method" 


Description

Generates a status report for a range of commands. 

Syntax

	Visual Basic

	Public Function GenerateStatusReportBitmapId( _

   ByVal FileName As String, _

   ByVal templatename As String, _

   ByVal start As String, _

   ByVal end As String _

) As Long


Parameters

FileName

templatename

start

end

See Also

ReportWindow Object 

	GenerateStatusReportBitmapUid Method  XE "GenerateStatusReportBitmapUid Method" 


Description

Generates a status report for a range of commands. 

Syntax

	Visual Basic

	Public Function GenerateStatusReportBitmapUid( _

   ByVal FileName As String, _

   ByVal templatename As String, _

   ByRef HiPart As Long, _

   ByRef LoPart As Long _

) As Long


Parameters

FileName

templatename

HiPart

LoPart

See Also

ReportWindow Object 

	GetCustomReportName Method  XE "GetCustomReportName Method" 


Description

Returns the file name of the custom report at index position (0 based). Returns the name of the custom report name associated with the index value.

Syntax

	Visual Basic

	Public Function GetCustomReportName( _

   ByVal index As Long _

) As String


Parameters

index

Long value representing the specific custom report in a collection of custom reports.

Return Type

String value representing the name of the custom report.

Remarks

This only returns the file name for the custom report, not the full directory pathway to the file.

Index value for the first report starts at 0.

Example

If you have 5 custom reports for the current part program, a value of 0 would return the first report's name, a value of 6 would return the fifth report's name.

See the LoadCustomReport method for an example of this.

See Also

ReportWindow Object | LoadCustomReport Method 

	LastExecutionReportMode Method  XE "LastExecutionReportMode Method" 


Description

Switches to Last Execution Report Mode. This method switches the report window to Last Execution Report Mode.

Syntax

	Visual Basic

	Public Function LastExecutionReportMode() As Long


Return Type

Long value. This returns -1 (or True) if the function succeeds and 0 (or False) if it does not.

Example

Sub Main 

Dim App As Object

Dim PartProg As Object

Dim RepWin As Object

Set App = CreateObject("Pcdlrn.Application")

Set PartProg = App.ActivePartProgram

Set RepWin = PartProg.ReportWindow

lngRetVal = RepWin.LastExecutionReportMode()

MsgBox "PC-DMIS returned " & lngRetVal & " for setting the Report window to Last Execution Report mode."

RepWin.RefreshReport

End Sub

See Also

ReportWindow Object 

	LoadCustomReport Method  XE "LoadCustomReport Method" 


Description

Loads the specified custom report into the report window. This method loads the specified custom report into the Report window.

Syntax

	Visual Basic

	Public Function LoadCustomReport( _

   ByVal NameOrNumber As Variant _

) As Long


Parameters

NameOrNumber

This required Variant value specifies the custom report to load into the Report window. This can be either the custom report name or the index number.

Return Type

Long value. This returns -1 (or True) if the function succeeds and 0 (or False) if it does not.

Remarks

If you use an index value, a 0 in NameOrNumber represents the first custom report.

Example

Sub Main

Dim App As Object

Dim PartProg As Object

Dim RepWin As Object

Set App = CreateObject("Pcdlrn.Application")

Set PartProg = App.ActivePartProgram

Set RepWin = PartProg.ReportWindow

intResponse = InputBox("Type an index value to load the associated custom report for this part program. PC-DMIS will return its name.")

MsgBox "PC-DMIS attempting to load the report index: " & intResponse & " (" & RepWin.GetCustomReportName(intResponse) & ")"

Dim lngRetVal As Long

' Loads the custom report based on the entered number

lngRetVal = RepWin.LoadCustomReport(intResponse)

RepWin.RefreshReport

End Sub

See Also

ReportWindow Object 

	LoadReportTemplate Method  XE "LoadReportTemplate Method" 


Description

Loads the specified report template into the report window. This method loads the specified report template into the Report window.

Syntax

	Visual Basic

	Public Function LoadReportTemplate( _

   ByVal FileName As String _

) As Long


Parameters

FileName

This required String value specifies the pathway and filename of the template to load into the Report window.

Return Type

Long value. This returns -1 (or True) if the function succeeds and 0 (or False) if it does not.

Remarks

Sub Main

Dim App As Object

Dim PartProg As Object

Dim RepWin As Object

Set App = CreateObject("Pcdlrn.Application")

Set PartProg = App.ActivePartProgram

Set RepWin = PartProg.ReportWindow

' Loads the TEXTONLY.RTP report template.

RepWin.LoadReportTemplate "C:\PCDMIS43RC2\REPORTING\TEXTONLY.RTP"

RepWin.RefreshReport

End Sub

See Also

ReportWindow Object 

	PrintReport Method  XE "PrintReport Method" 


Description

Prints the current report. This method prints the contents of the Report window.

Syntax

	Visual Basic

	Public Function PrintReport() As Long


Return Type

Long value. This returns -1 (or True) if the function succeeds and 0 (or False) if it does not.

Example

Sub Main

Dim App As Object

Dim PartProg As Object

Dim RepWin As Object

Set App = CreateObject("Pcdlrn.Application")

Set PartProg = App.ActivePartProgram

Set RepWin = PartProg.ReportWindow

' Prints the contents of the Report window

RepWin.PrintReport

End Sub

See Also

ReportWindow Object 

	RefreshReport Method  XE "RefreshReport Method" 


Description

Regenerates the current report. This method reloads the report data into the report template, thereby refreshing the contents of the Report window.

Syntax

	Visual Basic

	Public Function RefreshReport() As Long


Return Type

Long value. This returns -1 (or True) if the function succeeds and 0 (or False) if it does not.

Example

Sub Main

Dim App As Object

Dim PartProg As Object

Dim RepWin As Object

Set App = CreateObject("Pcdlrn.Application")

Set PartProg = App.ActivePartProgram

Set RepWin = PartProg.ReportWindow

' Refreshes or redraws the current custom report or template

RepWin.RefreshReport

End Sub

See Also

ReportWindow Object 

	SetCurrentAsDefaultReport Method  XE "SetCurrentAsDefaultReport Method" 


Description

Sets the current report as the default report for the part program. 

This method sets the current report as the default report for the part program.

Syntax

	Visual Basic

	Public Function SetCurrentAsDefaultReport() As Long


Return Type

Long value. This returns -1 (or True) if the function succeeds and 0 (or False) if it does not.

Example

Sub Main

Dim App As Object

Dim PartProg As Object

Dim RepWin As Object

Set App = CreateObject("Pcdlrn.Application")

Set PartProg = App.ActivePartProgram

Set RepWin = PartProg.ReportWindow

' Sets the current custom report or template as the default

RepWin.SetCurrentAsDefaultReport

End Sub

See Also

ReportWindow Object 

Properties

	Application Property  XE "Application Property" 


Description

Read Only: Returns the Application Object. This property represents the read-only PC-DMIS Application object. The Application object includes properties and methods that return top-level objects.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Application() As Application


Return Type

Application object.

See Also

ReportWindow Object 

	CurrentReport Property  XE "CurrentReport Property" 


Description

Read Only: Returns the name of current report. This read-only property returns the full directory pathway to the Custom Report or Report Template used in the Report window.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property CurrentReport() As String


Return Type

Read-only String value representing the full directory pathway of the custom report or report template.

Remarks

Sub Main

Dim App As Object

Dim PartProg As Object

Dim RepWin As Object

Set App = CreateObject("Pcdlrn.Application")

Set PartProg = App.ActivePartProgram

Set RepWin = PartProg.ReportWindow

' Displays the current custom report or template

MsgBox "This part program uses this custom report or template: " & RepWin.CurrentReport

End Sub

See Also

ReportWindow Object 

	CustomReportCount Property  XE "CustomReportCount Property" 


Description

Read Only: Returns the number of custom report defined for the parent part program. This read-only property returns the number of Custom Reports defined for the current part program.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property CustomReportCount() As Long


Return Type

Read-only Long value representing the number of custom reports created for the current part program.

Remarks

Sub Main

Dim App As Object

Dim PartProg As Object

Dim RepWin As Object

Set App = CreateObject("Pcdlrn.Application")

Set PartProg = App.ActivePartProgram

Set RepWin = PartProg.ReportWindow

' Displays the number of custom reports

MsgBox "This part program uses " & RepWin.CustomReportCount & " custom reports."

End Sub
See Also

ReportWindow Object 

	Pages Property  XE "Pages Property" 


Description

Read Only: Returns the Pages object for this Report Window. Returns a collection of Page objects (one Page object for each page making up the report) as a Pages object.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Pages() As Pages


Return Type

Pages object.

Example

Sub Main

Dim App As Object

Dim PartProg As Object

Dim RepWin As Object

Dim Pages As Object

Dim Page As Object

Set App = CreateObject("Pcdlrn.Application")

Set PartProg = App.ActivePartProgram

Set RepWin = PartProg.ReportWindow

' Gets a collection of page objects

Set Pages = RepWin.Pages

End Sub

See Also

ReportWindow Object 

	Parent Property  XE "Parent Property" 


Description

Read Only: Returns the PartProgram Object. This returns the parent PartProgram object.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Parent() As PartProgram


Return Type

PartProgram object.

See Also

ReportWindow Object 

	Visible Property  XE "Visible Property" 


Description

Read/Write: Returns/Sets Visibility Status of Report Window. 

This returns or sets the visibility state of the Report window. 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Visible() As Long


Return Type

Read/write Long value.

Remarks

To turn the window on or off, give it a True or False value respectively.
Example

Sub Main

Dim App As Object

Dim PartProg As Object

Dim RepWin As Object

Set App = CreateObject("Pcdlrn.Application")

Set PartProg = App.ActivePartProgram

Set RepWin = PartProg.ReportWindow

' Hide Report Window

RepWin.Visible = False

MsgBox "Report window is now hidden."

' Show Report Window

RepWin.Visible = True

MsgBox "Report window is now visible."

End Sub

See Also

ReportWindow Object 

	Scan Object  XE "Scan Object" 


Description

Scan objects are created from more generic Command objects to pass information specific to the scan command back and forth. At present only DCC and Manual scans are user accessible.

Object Model

 

	[image: image565]
[image: image566]

 INCLUDEPICTURE "Images/pcdlrn~methodstart_(pointdata)~258.gif" \* MERGEFORMAT \d [image: image567]
[image: image568]

 INCLUDEPICTURE "Images/pcdlrn~methodend_(pointdata)~258.gif" \* MERGEFORMAT \d [image: image569]
[image: image570]

 INCLUDEPICTURE "Images/pcdlrn~methodinittouch_(pointdata)~258.gif" \* MERGEFORMAT \d [image: image571]
[image: image572]

 INCLUDEPICTURE "Images/pcdlrn~methodendtouch_(pointdata)~258.gif" \* MERGEFORMAT \d [image: image573]
[image: image574]

 INCLUDEPICTURE "Images/pcdlrn~methodinitdir_(pointdata)~258.gif" \* MERGEFORMAT \d [image: image575]
[image: image576]

 INCLUDEPICTURE "Images/pcdlrn~methodinittopsurf_(pointdata)~258.gif" \* MERGEFORMAT \d [image: image577]
[image: image578]

 INCLUDEPICTURE "Images/pcdlrn~methodcutplane_(pointdata)~258.gif" \* MERGEFORMAT \d [image: image579]
[image: image580]

 INCLUDEPICTURE "Images/pcdlrn~boundaryconditioncenter_(pointdata)~258.gif" \* MERGEFORMAT \d [image: image581]
[image: image582]

 INCLUDEPICTURE "Images/pcdlrn~boundaryconditionplanev_(pointdata)~258.gif" \* MERGEFORMAT \d [image: image583]
[image: image584]

 INCLUDEPICTURE "Images/pcdlrn~boundaryconditionaxisv_(pointdata)~258.gif" \* MERGEFORMAT \d [image: image585]
[image: image586]

 INCLUDEPICTURE "Images/pcdlrn~boundaryconditionendapproach_(pointdata)~258.gif" \* MERGEFORMAT \d [image: image587]
[image: image588]

 INCLUDEPICTURE "Images/pcdlrn~getcontrolpoint_(controlpoint)~258.gif" \* MERGEFORMAT \d [image: image589]


See Also

Scan Members 

	Scan Object Members  XE "Scan Object Members" 


See Also

Scan Overview 

Methods

	AddControlPoint Method  XE "AddControlPoint Method" 


Description

Adds a control point to the scan. 

Syntax

	Visual Basic

	Public Function AddControlPoint( _

   ByVal ControlPoint As ControlPoint _

) As Boolean


Parameters

ControlPoint

See Also

Scan Object 

	CreateBasicScan Method  XE "CreateBasicScan Method" 


Description

Used for DCC and Manual Scans to cause creation of basic scan object. 

This method has to be called after calling other Properties/Methods. This method creates the necessary BasicScans needed by DCC and Manual scans and inserts them into the Part Program.

Syntax

	Visual Basic

	Public Function CreateBasicScan() As Boolean


Return Type

Boolean value. Boolean returns True if the function succeeds, False if it fails.

See Also

Scan Object 

	GenerateScan Method  XE "GenerateScan Method" 


Description

Generates the points for the scan. 

Syntax

	Visual Basic

	Public Function GenerateScan() As Boolean


See Also

Scan Object 

	GetBoundaryConditionParams Method  XE "GetBoundaryConditionParams Method" 


Description

Gets the boundary condition parameters. 

Syntax

	Visual Basic

	Public Function GetBoundaryConditionParams( _

   ByRef nCrossings As Long, _

   ByRef dRadius As Double, _

   ByRef dHalfAngle As Double _

) As Boolean


Parameters

nCrossings

Required Long variable that gets the number of crossings for this boundary condition. The scan would stop after the probe crosses (breaks) the Boundary Condition like a Sphere, Cylinder, Cone, or a Plane the given number of times.

dRadius

Required Double variable that gets the radius of the boundary condition. This is used by the Spherical and Cylindrical Boundary Conditions.

dHalfAngle

Required Double variable that gets the half-angle of the cone-type boundary condition, or gets zero if the boundary condition is not of cone type.

Return Type

Boolean value. Boolean returns true if the function succeeds, false if it fails.

See Also

Scan Object 

	GetBoundaryPoint Method  XE "GetBoundaryPoint Method" 


Description

Returns the boundary point specified by the index.
Syntax

	Visual Basic

	Public Function GetBoundaryPoint( _

   ByVal index As Long, _

   ByRef X As Double, _

   ByRef Y As Double, _

   ByRef Z As Double _

) As Boolean


Parameters

Index

X

Y

Z

See Also

Scan Object 

	GetControlPoint Method  XE "GetControlPoint Method" 


Description

Returns the control point specified by the index. 

Syntax

	Visual Basic

	Public Function GetControlPoint( _

   ByVal index As Long _

) As ControlPoint


Parameters

index

See Also

Scan Object 

	GetFilterParams Method  XE "GetFilterParams Method" 


Description

Gets parameters used in filtering of scan data. 

Syntax

	Visual Basic

	Public Function GetFilterParams( _

   ByRef dCutAxisLocation As Double, _

   ByRef nAxis As Long, _

   ByRef dMaxIncrement As Double, _

   ByRef dMinIncrement As Double, _

   ByRef dMaxAngle As Double, _

   ByRef dMinAngle As Double _

) As Boolean


Parameters

dCutAxisLocation

Used for Manual scans with Filter property set to BSF_BODYAXISDISTANCE.

nAxis

Required Long variable that gets the cut axis. Returns non-zero only for axis filters. For axis filters, 0 means the X axis, 1 means the Y-axis, and 2 means the Z-axis.

dMaxIncrement

Required Double variable that gets the maximum increment. For fixed-length filters, this is simply the fixed increment. This is the Time delta values in case the filter is BSF_TIME_DELTA or BSF_VARIABLEDISTANCE for Manual scans.

dMinIncrement

Required Double variable that gets the minimum increment for Variable Distance Filters. This is the Drop Point distance when a Manual scan is being used with the filter set to BSF_VARIABLEDISTANCE.

dMaxAngle

Required Double variable that gets the maximum angle used in Variable Distance Filters.

dMinAngle

Required Double variable that gets the minimum angle used in Variable Distance Filters.

Return Type

Boolean value.

Remarks

 

	Filter
	GetFilterParams (dCutAxisLocation, nAxis, dMaxIncrement, dMinIncrement, dMaxAngle, dMinAngle)

	Distance
	,,dMaxIncrement

	BodyAxisDistance (DCC)
	,nAxis, dMaxIncrement

	BodyAxisDistance (Manual)
	NCutLocation,nAxis

	Time
	,,dMaxIncrement

	VariableDistance
	,,dMaxIncrement, dMinIncrement, dMaxAngle, dMinAngle


See Also

Scan Object 

	GetHitParams Method  XE "GetHitParams Method" 


Description

Gets parameters for the hit type used in the scan. 

Syntax

	Visual Basic

	Public Function GetHitParams( _

   ByRef nInitSamples As Long, _

   ByRef nPermSamples As Long, _

   ByRef dSpacer As Double, _

   ByRef dIndent As Double, _

   ByRef dDepth As Double _

) As Boolean


Parameters

nInitSamples

Required Long variable that gets the number of initial sample hits for the hits in this scan. It always returns zero for basic hits and vector hits.

nPermSamples

Required Long variable that gets the number of permanent sample hits for the hits in this scan. It always returns zero for basic hits and vector hits.

dSpacer

Required Double variable that gets the spacing of the sample hits from the hit center. It always returns zero for basic hits and vector hits.

dIndent

Required Double variable that gets the indent of the sample hits from the hit center. It always returns zero for basic hits, vector hits, and surface.

dDepth

Required Double variable that gets the depth of the sample hits from the hit center. It always returns zero for basic hits, vector hits, and surface.

Return Type

Boolean value. Boolean returns true if the function succeeds, false if it fails.

See Also

Scan Object 

	GetHitTValue Method  XE "GetHitTValue Method" 


Description

Returns T deviation values for specified scansion hit. 

Syntax

	Visual Basic

	Public Function GetHitTValue( _

   ByVal index As Long, _

   ByRef T As Double _

) As Boolean


Parameters

Index

T

See Also

Scan Object 

	GetMethodParams Method  XE "GetMethodParams Method" 


Description

Gets the scan method parameters. 

Syntax

	Visual Basic

	Public Function GetMethodParams( _

   ByRef bIn As ENUM_SCAN_INOUT_TYPES, _

   ByRef bCenteringType As Boolean, _

   ByRef nCenteringDirection As Long, _

   ByRef dDiameter As Double, _

   ByRef dArcAngle As Double, _

   ByRef dDepth As Double, _

   ByRef dPitch As Double _

) As Boolean


Parameters

bIn

	Value
	Description

	SCAN_INNER
	Inside scans

	SCAN_OUTER
	Outside scans

	SCAN_PLANAR
	Plane Circle scans


bCenteringType

nCenteringDirection

dDiameter

dArcAngle

dDepth

dPitch

See Also

Scan Object 

	GetMethodPointData Method  XE "GetMethodPointData Method" 


Description

Gets scan points and vectors via pointdata objects. 

This method is provided as a shortcut to getting these commonly used properties all at once.

Syntax

	Visual Basic

	Public Function GetMethodPointData( _

   ByVal MethodStart As PointData, _

   ByVal MethodEnd As PointData, _

   ByVal MethodInitTouch As PointData, _

   ByVal MethodEndTouch As PointData, _

   ByVal MethodInitDir As PointData, _

   ByVal MethodInitTopSurf As PointData, _

   ByVal MethodCutPlane As PointData _

) As Boolean


Parameters

MethodStart

Required PointData object that gets the MethodStart property.

MethodEnd

Required PointData object that gets the MethodEnd property.

MethodInitTouch

Required PointData object that gets the MethodInitTouch property.

MethodEndTouch

Required PointData object that gets the MethodEndTouch property.

MethodInitDir

Required PointData object that gets the MethodInitDir property.

MethodInitTopSurf

MethodCutPlane

Required PointData object that gets the MethodCutPlane property.

Return Type

Boolean value. Boolean returns true if the function succeeds, false if it fails.

Remarks

If scan is a ScanCommand object, and MS, ME, MIT, MET, MID, and MCP are all Dimensioned as Object, the following are equivalent:

scan.GetMethodParams MS,ME,MIT,MET,MID,MCP

set MS = scan.MethodStart
set ME = scan.MethodEnd
set MIT = scan.MethodInitTouch
set MET = scan.MethodEndTouch
set MID = scan.MethodInitDir
set MCP = scan.MethodCutPlane

See Also

Scan Object 

	GetNomsParams Method  XE "GetNomsParams Method" 


Description

Gets the parameters used in finding of scan nominals. 

Syntax

	Visual Basic

	Public Function GetNomsParams( _

   ByRef dFindNomsTolerance As Double, _

   ByRef dSurfaceThickness As Double, _

   ByRef dEdgeThickness As Double _

) As Boolean


Parameters

dFindNomsTolerance

Required Double variable that gets the Find Noms tolerance and is used only when the NominalMode property is BSCANNMODE_FINDCADNOMINAL.

dSurfaceThickness

Required Double variable that gets the surface thickness and is used only when the NominalMode property is BSCANNMODE_FINDCADNOMINAL.

dEdgeThickness

Required Double variable that gets the edge thickness and is used only when the NominalMode property is BSCANNMODE_FINDCADNOMINAL and when the Method property is BSCANMETH_EDGE.

Return Type

Boolean value. Boolean returns true if the function succeeds, false if it fails.

See Also

Scan Object 

	GetParams Method  XE "GetParams Method" 


Description

Gets the basic scanning parameters of the scan. This method is provided as a shortcut to getting these commonly used properties all at once.

Syntax

	Visual Basic

	Public Function GetParams( _

   ByRef Method As Long, _

   ByRef Filter As Long, _

   ByRef OperationMode As Long, _

   ByRef HitType As Long, _

   ByRef NominalMode As Long, _

   ByRef BoundaryCondition As Long _

) As Boolean


Parameters

Method

Required Long variable that gets the Method property.

Filter

Required Long variable that gets the Filter property.

OperationMode

Required Long variable that gets the OperationMode property.

HitType

Required Long variable that gets the HitType property.

NominalMode

Required Long variable that gets the NominalMode property.

BoundaryCondition

Required Long variable that gets the BoundaryCondition property.

Return Type

Boolean value. Boolean returns true if the function succeeds, false if it fails.

Remarks

If scan is a Scan object, and M, F, O, H, N,and B are all dimensioned as Object, the following are equivalent:

scan.GetParams M, F, O, H, N, B

M = scan.Method
F = scan.Filter
O = scan.OperationMode
H = scan.HitType
N = scan.NominalMode
B = scan.BoundaryCondition

See Also

Scan Object 

	RemoveControlPoint Method  XE "RemoveControlPoint Method" 


Description

Removes the control point at the specified index. 

Syntax

	Visual Basic

	Public Function RemoveControlPoint( _

   ByVal index As Long _

) As Boolean


Parameters

index

See Also

Scan Object 

	SetBoundaryConditionParams Method  XE "SetBoundaryConditionParams Method" 


Description

Sets the boundary condition parameters.
Syntax

	Visual Basic

	Public Function SetBoundaryConditionParams( _

   ByVal nCrossings As Long, _

   ByVal dRadius As Double, _

   ByVal dHalfAngle As Double _

) As Boolean


Parameters

nCrossings

Required Long that sets the number of crossings for this boundary condition.

dRadius

Required Double that sets the radius of the boundary condition.

dHalfAngle

Required Double that sets the half-angle of the cone-type boundary condition, or is ignored if the boundary condition is not of cone type.

Return Type

Boolean value. Boolean returns true if the function succeeds, false if it fails.

Remarks

 

	Boundary Condition
	SetBoundaryConditionParams (nCrossings, dRadius, dHalfAngle)

	Plane
	Ncrossings

	Cone
	NCrossings,, dHalfAngle

	Cylinder
	NCrossings, dRadius

	Sphere
	NCrossings, dRadius


See Also

Scan Object 

	SetBoundaryPoint Method  XE "SetBoundaryPoint Method" 


Description

Sets the boundary point specified by the index parameter. 

Syntax

	Visual Basic

	Public Function SetBoundaryPoint( _

   ByVal index As Long, _

   ByVal X As Double, _

   ByVal Y As Double, _

   ByVal Z As Double _

) As Boolean


Parameters

index

See Also

Scan Object 

	SetControlPoint Method  XE "SetControlPoint Method" 


Description

Sets the control point at the specified index. 

Syntax

	Visual Basic

	Public Function SetControlPoint( _

   ByVal index As Long, _

   ByVal ControlPoint As ControlPoint _

) As Boolean


Parameters

index

ControlPoint

See Also

Scan Object 

	SetFilterParams Method  XE "SetFilterParams Method" 


Description

Sets parameters for filtering scan data. 

Syntax

	Visual Basic

	Public Function SetFilterParams( _

   ByVal dCutAxisLocation As Double, _

   ByVal nAxis As Long, _

   ByVal dMaxIncrement As Double, _

   ByVal dMinIncrement As Double, _

   ByVal dMaxAngle As Double, _

   ByVal dMinAngle As Double _

) As Boolean


Parameters

dCutAxisLocation

Used for Manual scans with Filter property set to BSF_BODYAXISDISTANCE.

nAxis

Long variable that gets the cut axis. Returns non-zero only for axis filters. For axis filters, 0 means the X axis, 1 means the Y-axis, and 2 means the Z-axis.

dMaxIncrement

Double variable that gets the maximum increment. For fixed-length filters, this is simply the fixed increment. This is the Time delta values in case the filter is BSF_TIME_DELTA or BSF_VARIABLEDISTANCE for Manual scans.

dMinIncrement

Double variable that gets the minimum increment for Variable Distance Filters. This is the Drop Point distance when a Manual scan is being used with the filter set to BSF_VARIABLEDISTANCE.

dMaxAngle

Double variable that gets the maximum angle used in Variable Distance Filters.

dMinAngle

Double variable that gets the minimum angle used in Variable Distance Filters.

Return Type

Boolean value. Boolean returns true if the function succeeds, false if it fails.

Remarks

 

	Filter
	SetFilterParams (dCutAxisLocation, nAxis, dMaxIncrement, dMinIncrement, dMaxAngle, dMinAngle)

	Distance
	,,dMaxIncrement

	BodyAxisDistance
	,nAxis, dMaxIncrement

	VariableDistance
	,,dMaxIncrement, dMinIncrement, dMaxAngle, dMinAngle


See Also

Scan Object 

	SetHitParams Method  XE "SetHitParams Method" 


Description

Sets parameters for the hit type used in the scan. 

Syntax

	Visual Basic

	Public Function SetHitParams( _

   ByVal nInitSamples As Long, _

   ByVal nPermSamples As Long, _

   ByVal dSpacer As Double, _

   ByVal dIndent As Double, _

   ByVal dDepth As Double _

) As Boolean


Parameters

nInitSamples

Required Long that sets the number of initial sample hits for the hits in this scan. It is ignored for basic hits and vector hits.

nPermSamples

Required Long that sets the number of permanent sample hits for the hits in this scan. It is ignored for basic hits and vector hits.

dSpacer

Required Double that sets the spacing of the sample hits from the hit center. It is ignored for basic hits and vector hits.

dIndent

Required Double that sets the indent of the sample hits from the hit center. It is ignored for basic hits, vector hits, and surface.

dDepth

Required Double that sets the depth of the sample hits from the hit center. It is ignored for basic hits, vector hits, and surface.

Return Type

Boolean value. Boolean returns true if the function succeeds, false if it fails.

See Also

Scan Object 

	SetMethodParams Method  XE "SetMethodParams Method" 


Description

Sets the scan method parameters 

Syntax

	Visual Basic

	Public Function SetMethodParams( _

   ByVal bIn As ENUM_SCAN_INOUT_TYPES, _

   ByVal bCenteringType As Boolean, _

   ByVal nCenteringDirection As Long, _

   ByVal dDiameter As Double, _

   ByVal dArcAngle As Double, _

   ByVal dDepth As Double, _

   ByVal dPitch As Double _

) As Boolean


Parameters

bIn

Use an item from the ENUM_SCAN_INOUT_TYPES enumeration table located at the end of this documentation.

bCenteringType

nCenteringDirection

dDiameter

dArcAngle

dDepth

dPitch

Remarks

See Also

Scan Object 

	SetMethodPointData Method  XE "SetMethodPointData Method" 


Description

Sets scan points and vectors via pointdata objects. This method is provided as a shortcut to setting these commonly used properties all at once.

Syntax

	Visual Basic

	Public Function SetMethodPointData( _

   ByVal MethodStart As PointData, _

   ByVal MethodEnd As PointData, _

   ByVal MethodInitTouch As PointData, _

   ByVal MethodEndTouch As PointData, _

   ByVal MethodInitDir As PointData, _

   ByVal MethodInitTopSurf As PointData, _

   ByVal MethodCutPlane As PointData _

) As Boolean


Parameters

MethodStart

Required PointData object that sets the MethodStart property.

MethodEnd

Required PointData object that sets the MethodEnd property.

MethodInitTouch

Required PointData object that sets the MethodInitTouch property.

MethodEndTouch

Required PointData object that sets the MethodEndTouch property.

MethodInitDir

Required PointData object that sets the MethodInitDir property.

MethodInitTopSurf

MethodCutPlane

See Also

Scan Object 

	SetNomsParams Method  XE "SetNomsParams Method" 


Description

Sets the parameters used in finding of scan nominals Boolean value. Boolean returns true if the function succeeds, false if it fails.

Syntax

	Visual Basic

	Public Function SetNomsParams( _

   ByVal dFindNomsTolerance As Double, _

   ByVal dSurfaceThickness As Double, _

   ByVal dEdgeThickness As Double _

) As Boolean


Parameters

dFindNomsTolerance

Required Double that sets the Find Noms tolerance.

dSurfaceThickness

Required Double that sets the surface thickness.

dEdgeThickness

Required Double that sets the edge thickness.

Return Type

Boolean value. Boolean returns true if the function succeeds, false if it fails.

Remarks

If scan is a ScanCommand object, and MS, ME, MIT, MET, MID, and MCP are all dimensioned as Object, the following are equivalent:

scan.SetMethodParams MS,ME,MIT,MET,MID,MCP

set scan.MethodStart = MS
set scan.MethodEnd = ME
set scan.MethodInitTouch = MIT
set scan.MethodEndTouch = MET
set scan.MethodInitDir = MID
set scan.MethodCutPlane = MCP

See Also

Scan Object 

	SetParams Method  XE "SetParams Method" 


Description

Sets the basic scanning parameters of the scan. 

This method is provided as a shortcut to setting these commonly used properties all at once.

Syntax

	Visual Basic

	Public Function SetParams( _

   ByVal Method As Long, _

   ByVal Filter As Long, _

   ByVal OperationMode As Long, _

   ByVal HitType As Long, _

   ByVal NominalMode As Long, _

   ByVal BoundaryCondition As Long _

) As Boolean


Parameters

Method

Required Long that sets the Method property.

Filter

Required Long that sets the Filter property.

OperationMode

Required Long that sets the OperationMode property.

HitType

Required Long that sets the HitType property.

NominalMode

Required Long that sets the NominalMode property.

BoundaryCondition

Required Long that sets the BoundaryCondition property.

Return Type

Boolean value.

Remarks

If scan is a ScanCommand object, and M, F, O, H, N,and B are all dimensioned as Object, the following are equivalent:

scan.SetParams M, F, O, H, N, B

scan.Method = M
scan.Filter = F
scan.OperationMode = O
scan.HitType = H
scan.NominalMode = N
scan.BoundaryCondition = B

See Also

Scan Object 

Properties

	AutoClearPlane Property  XE "AutoClearPlane Property" 


Description

Read/Write: Boolean value indicating if auto clear planes should be used. 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property AutoClearPlane() As Boolean


See Also

Scan Object 

	BoundaryCondition Property  XE "BoundaryCondition Property" 


Description

Read/Write: Boundary Condition (Sphere, Plane Cross, Cone, etc.). Represents the boundary condition type.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property BoundaryCondition() As BSBOUNDCOND_ENUM


Return Type

Read/write of enumeration BSBOUNDCOND_ENUM.

See Also

Scan Object 

	BoundaryConditionAxisV Property  XE "BoundaryConditionAxisV Property" 


Description

Read/Write: Returns/Sets via point data object the boundary scan's axis vector. This property represents the boundary condition axis vector. This vector is used as the axis of the Cylindrical and Conical BoundaryConditions.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property BoundaryConditionAxisV() As PointData


Return Type

Read/write PointData object.

See Also

Scan Object 

	BoundaryConditionCenter Property  XE "BoundaryConditionCenter Property" 


Description

Read/Write: Returns/Sets via point data object a boundary scan's center point. This property represents the boundary condition center.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property BoundaryConditionCenter() As PointData


Return Type

Read/write PointData object.

Remarks

This point is used by all Boundary Conditions and is the location of the Boundary Condition.

See Also

Scan Object 

	BoundaryConditionEndApproach Property  XE "BoundaryConditionEndApproach Property" 


Description

Read/Write: Returns/Sets via point data object the end approach for a boundary scan. 

This property represents the boundary condition end approach vector. 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property BoundaryConditionEndApproach() As PointData


Return Type

Read/write PointData object.

Remarks

This vector is used by all Boundary Conditions and is the Approach Vector of the Probe as it crosses the Boundary condition.

See Also

Scan Object 

	BoundaryConditionPlaneV Property  XE "BoundaryConditionPlaneV Property" 


Description

Read/Write: Returns/Sets via point data object the boundary scan's plane vector. This property represents the boundary condition plane vector. This vector is the normal vector of the plane used by the Plane and OldStyle Boundary Conditions.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property BoundaryConditionPlaneV() As PointData


Return Type

Read/write PointData object.

Remarks

 

	Boundary Condition
	Properties Required

	Plane
	BoundaryConditionCenter

BoundaryConditionEndApproach

BoundaryConditionPlaneV

	Cone
	BoundaryConditionCenter

BoundaryConditionEndApproach

BoundaryConditionAxisV

	Cylinder
	BoundaryConditionCenter

BoundaryConditionEndApproach

BoundaryConditionAxisV

	Sphere
	BoundaryConditionCenter

BoundaryConditionEndApproach

 


See Also

Scan Object 

	BoundaryPointCount Property  XE "BoundaryPointCount Property" 


Description

Read/Write: Long value indicating the number of boundary points for patch scans. 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property BoundaryPointCount() As Long


See Also

Scan Object 

	DisplayHits Property  XE "DisplayHits Property" 


Description

Read/Write: Boolean value indicating whether hits should be displayed or not. 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property DisplayHits() As Boolean


See Also

Scan Object 

	Filter Property  XE "Filter Property" 


Description

Read/Write: Distance Filter Type. This property represents the filter type. Read/write of enumeration BSF_ENUM.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Filter() As BSF_ENUM


See Also

Scan Object 

	HitType Property  XE "HitType Property" 


Description

Read/Write: Scan Hit Type (Vector, Surface, Edge). 

Represents the type of hit to use. 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property HitType() As BSCANHIT_ENUM


Return Type

Read/write of enumeration BSCANHIT_ENUM.

Remarks

Not every hit type can be used with every method and filter combination. 

Example

	Method
	Vector Hit
	Surface Hit
	Basic Hit
	Edge Hit

	Open
	Y
	Y
	-
	Y

	Close
	Y
	Y
	-
	Y

	Patch
	Y
	Y
	-
	Y

	HardProb
	-
	-
	-
	Y

	TTP
	-
	-
	-
	Y


See Also

Scan Object 

	Method Property  XE "Method Property" 


Description

Read/Write: Scan Type. This property represents the method type for this scan.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Method() As BSCANMETH_ENUM


Return Type

Read/write of enumeration BSMETHOD_ENUM.

See Also

Scan Object 

	MethodCutPlane Property  XE "MethodCutPlane Property" 


Description

Read/Write: Returns/Sets via point data object the cut plane vector. 

This property represents the method’s cut plane vector. 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property MethodCutPlane() As PointData


Return Type

Read/write PointData object.

See Also

Scan Object 

	MethodEnd Property  XE "MethodEnd Property" 


Description

Read/Write: Returns/Sets via point data object the ending scan point. 

This property represents the scan’s end point. 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property MethodEnd() As PointData


Return Type

Read/write PointData object.

See Also

Scan Object 

	MethodEndTouch Property  XE "MethodEndTouch Property" 


Description

Read/Write: Returns/Sets via point data object the end touch vector. 

This property represents the method’s end touch vector. 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property MethodEndTouch() As PointData


Return Type

Read/write PointData object.

See Also

Scan Object 

	MethodInitDir Property  XE "MethodInitDir Property" 


Description

Read/Write: Returns/Sets via point data object the initial scan direction vector. 

This property represents the method’s initial direction vector. 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property MethodInitDir() As PointData


Return Type

Read/write PointData object.

See Also

Scan Object 

	MethodInitTopSurf Property  XE "MethodInitTopSurf Property" 


Description

Read/Write: Returns/Sets via point data object the initial top surface vector. 

This property represents the initial Surface Vector for the Edge method. 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property MethodInitTopSurf() As PointData


Return Type

Read/write PointData object.

See Also

Scan Object 

	MethodInitTouch Property  XE "MethodInitTouch Property" 


Description

Read/Write: Returns/Sets via point data object the initial touch vector. 

This represents the method’s initial touch vector. 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property MethodInitTouch() As PointData


Return Type

Read/write PointData object.

See Also

Scan Object 

	MethodStart Property  XE "MethodStart Property" 


Description

Read/Write: Returns/Sets via point data object the starting scan point. This property represents the scan’s start point.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property MethodStart() As PointData


Return Type

Read/write PointData object.

Remarks

	Method
	Method Start
	Method End
	Method Cutplane
	Method InitDir
	Method InitTouch
	Method InitTopSurf
	Method EndTouch

	Open
	Y
	Y
	Y
	Y
	Y
	-
	Y

	Close
	Y
	Y
	Y
	Y
	Y
	-
	-

	Patch
	-
	-
	Y
	Y
	Y
	-
	Y

	TTP
	-
	-
	Y
	Y
	Y
	-
	-

	HardProbe
	Y
	Y
	Y
	Y
	Y
	-
	-


See Also

Scan Object 

	NominalMode Property  XE "NominalMode Property" 


Description

Read/Write: Find cad nominals or use master data. This property represents how to determine the nominals for this scan.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property NominalMode() As BSCANNMODE_ENUM


Return Type

Read/write of enumeration BSCANNMODE_ENUM.

See Also

Scan Object 

	OperationMode Property  XE "OperationMode Property" 


Description

Read/Write: Scan Operation Mode. This property represents mode of operation of the scan.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property OperationMode() As BSCANOPMODE_ENUM


Return Type

Read/write of enumeration BSOPMODE_ENUM.

Remarks

	Method
	Regular Learn
	Defined Path
	Normal

	Open
	Y
	-
	Y

	Close
	Y
	-
	Y

	Patch
	Y
	-
	Y

	TTP
	Y
	-
	Y

	HardProbe
	Y
	-
	Y


See Also

Scan Object 

	SinglePoint Property  XE "SinglePoint Property" 


Description

Read/Write: Returns/Sets Single Point Mode Flag. 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property SinglePoint() As Boolean


See Also

Scan Object

	Section Object  XE "Section Object" 


Description

The Section object lets you manipulate a particular section from the collection of available Selections used by a report template.

Object Model

 

	[image: image590]
[image: image591]

 INCLUDEPICTURE "Images/pcdlrn~reportcontrols~107.gif" \* MERGEFORMAT \d [image: image592]
[image: image593]

 INCLUDEPICTURE "Images/pcdlrn~application~107.gif" \* MERGEFORMAT \d [image: image594]
[image: image595]

 INCLUDEPICTURE "Images/pcdlrn~parent_(sections)~107.gif" \* MERGEFORMAT \d [image: image596]


See Also

Section Members 

	Section Object Members  XE "Section Object Members" 


See Also

Section Overview 

Properties

	_Name Property  XE "_Name Property" 


Property type

Read-write property

Syntax

	Visual Basic

	Public Property _Name() As String


See Also

Section Object 

	Application Property  XE "Application Property" 


Description

Read Only: returns the Application Object. This property returns the PC-DMIS Application object.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Application() As Application


Return Type

Application object.

See Also

Section Object 

	Height Property  XE "Height Property" 


Description

Read/Write: Returns/Sets Section Height. This property sets or returns the section's height.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Height() As Long


Return Type

Read/write Long value.

See Also

Section Object 

	Name Property  XE "Name Property" 


Description

Read/Write: represents the name of the section. This property returns or sets the name of the section.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Name() As String


Return Type

Read/write String value.

See Also

Section Object 

	Number Property  XE "Number Property" 


Description

Read Only: returns the number of the section. This returns a read-only Long value of the index number of the current section within the Sections object. This is used with the Sections.Item property to access the current section later.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Number() As Long


Return Type

Long value.

See Also

Section Object | Item Method 

	Parent Property  XE "Parent Property" 


Description

Read Only: returns the parent Sections object. This property returns a read-only parent object of the Section, the Sections object.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Parent() As Sections


See Also

Section Object 

	ReportControls Property  XE "ReportControls Property" 


Description

Read Only: returns the ReportControls object for this section. This property returns the ReportControls object for this section. You can then access the ReportControls object to dynamically add or modify existing objects in the section.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property ReportControls() As ReportControls


Return Type

ReportControls object.

See Also

Section Object 

	Width Property  XE "Width Property" 


Description

Read/Write: Returns/Sets Section Width. This property sets or returns the section's height.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Width() As Long


Return Type

Read/write Long value.

See Also

Section Object 

	Sections Object  XE "Sections Object" 


Description

The Sections object contains a collection of all existing Section tabs for a given report template in PC-DMIS's Report Template editor. 

Object Model

 

	[image: image597]
[image: image598]

 INCLUDEPICTURE "Images/pcdlrn~application~177.gif" \* MERGEFORMAT \d [image: image599]
[image: image600]

 INCLUDEPICTURE "Images/pcdlrn~parent_(reporttemplate)~177.gif" \* MERGEFORMAT \d [image: image601]
[image: image602]

 INCLUDEPICTURE "Images/pcdlrn~add_(section)~177.gif" \* MERGEFORMAT \d [image: image603]
[image: image604]

 INCLUDEPICTURE "Images/pcdlrn~item_(section)~177.gif" \* MERGEFORMAT \d [image: image605]
[image: image606]

 INCLUDEPICTURE "Images/pcdlrn~insertsectionbefore_(section)~177.gif" \* MERGEFORMAT \d [image: image607]
[image: image608]

 INCLUDEPICTURE "Images/pcdlrn~_item_(section)~177.gif" \* MERGEFORMAT \d [image: image609]


Remarks

Use Sections.Add to create a new section and add it to the Sections collection.

Use Sections(index) where index is a section's name or index number to access the section. 

See Also

Sections Members 

	Sections Object Members  XE "Sections Object Members" 


See Also

Sections Overview 

Methods

	_Item Method  XE "_Item Method" 


Syntax

	Visual Basic

	Public Function _Item( _

   ByVal NameOrNumber As Variant _

) As Section


Parameters

NameOrNumber

See Also

Sections Object 

	Add Method  XE "Add Method" 


Description

Adds a new section to the end of the template with the given name. This method adds a new section to the end of the template with the given name

Syntax

	Visual Basic

	Public Function Add( _

   ByVal Name As String _

) As Section


Parameters

Name

Required string value that defines the name of the new section you want to add.

See Also

Sections Object 

	InsertSectionBefore Method  XE "InsertSectionBefore Method" 


Description

Inserts a new section before the named section. 

This method inserts a new section before the named section. The new section will have the default internal name of "section" followed by a number.

Syntax

	Visual Basic

	Public Function InsertSectionBefore( _

   ByVal Name As String _

) As Section


Parameters

Name

Required String value that defines the name of the existing section before which the new section will be inserted.

See Also

Sections Object 

	Item Method  XE "Item Method" 


Description

Selects a section by name or number. This method returns the Section object identified by the NameOrNum parameter.

Syntax

	Visual Basic

	Public Function Item( _

   ByVal NameOrNumber As Variant _

) As Section


Parameters

NameOrNumber

Required Variant that indicates which Section object to return. It can be either a Long or a String. If it is a Long, it is the index number of the Section object in the Sections collection. If it is a String, it is the ID, or name, of the Section object.

See Also

Sections Object 

	Remove Method  XE "Remove Method" 


Description

Removes a section by name or number. 

This method removes or deletes the Section object identified by the NameOrNum parameter.

Syntax

	Visual Basic

	Public Function Remove( _

   ByVal NameOrNumber As Variant _

) As Boolean


Parameters

NameOrNumber

Required Variant that indicates which Section object to remove. It can be either a Long or a String. If it is a Long, it is the index number of the Section object in the Sections collection. If it is a String, it is the ID, or name, of the Section object.

Return Type

Boolean value that determines whether or not the specified section was removed. If True then the section was removed. If False then the section either remained or didn't exist in the first place.

See Also

Sections Object 

Properties

	Application Property  XE "Application Property" 


Description

Read Only: Returns the Application Object. This property returns the PC-DMIS Application object.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Application() As Application


Return Type

Application object.

See Also

Sections Object 

	Count Property  XE "Count Property" 


Description

Read Only: Returns the number of sections Counts the number of sections in the Sections object.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Count() As Long


Return Type

Long value with the number of sections.

See Also

Sections Object 

	Parent Property  XE "Parent Property" 


Description

Read Only: Returns the parent Template Object. Returns this object's Parent object, in this case, a ReportTemplate object.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Parent() As ReportTemplate


Return Type

ReportTemplate object.

See Also

Sections Object 

	STATISTICS Object  XE "STATISTICS Object" 


Description

The Statistics object gives access to the properties and data members of the PC-DMIS Statistics command.

See Also

STATISTICS Members 

	STATISTICS Object Members  XE "STATISTICS Object Members" 


See Also

STATISTICS Overview 

Methods

	AddStatsDir Method  XE "AddStatsDir Method" 


Description

Adds a datapage database directory. Adds a directory to the list of statistics directory.

Syntax

	Visual Basic

	Public Function AddStatsDir( _

   ByVal Dir As String _

) As Boolean


Parameters

Dir

Required String representing the name of the directory to be added to the list of statistics directories.

Return Type

Boolean value indicating success or failure of call to method.

See Also

STATISTICS Object 

	GetStatsDir Method  XE "GetStatsDir Method" 


Description

Gets the indexed datapage database directory. Returns the specified stats directory.

Syntax

	Visual Basic

	Public Function GetStatsDir( _

   ByVal index As Long _

) As String


Parameters

index

Required Long representing the index of the directory name to be retrieved.

Return Type

Read-only String value representing the name of the stats directory at the specified index value. If index value is greater than the number of directories in the list, the string will be empty.

See Also

STATISTICS Object 

	RemoveStatsDir Method  XE "RemoveStatsDir Method" 


Description

Removes the indexed datapage database directory. Removes a directory from list of stats directories.

Syntax

	Visual Basic

	Public Function RemoveStatsDir( _

   ByVal index As Long _

) As Boolean


Parameters

index

Required Long representing the line of text to be removed.

Return Type

Boolean value indicating success or failure of call to remove directory from the list of directories. If index is greater than the number of directories in the list, the call will fail.

See Also

STATISTICS Object 

	SetStatsDir Method  XE "SetStatsDir Method" 


Description

Sets the indexed datapage database directory. Sets a specified stats directory.
Syntax

	Visual Basic

	Public Function SetStatsDir( _

   ByVal index As Long, _

   ByVal Dir As String _

) As Boolean


Parameters

index

Required Long representing the directory name to change.

Dir

Required String which is the new name of the directory.

Return Type

Boolean value indicating success or failure of call to set name of the directory specified by Index. If the index value is greater than the number of directories, the call will fail.

See Also

STATISTICS Object 

Properties

	CalcMode Property  XE "CalcMode Property" 


Description

Read/Write: Indicates whether datapage will do control calculations. 

Determines whether the calculation mode inside of DataPage is turned off or on.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property CalcMode() As ENUM_PCD_ON_OFF


Return Type

Read/write enumerated ENUM_PCD_ON_OFF value.

See Also

STATISTICS Object 

	MemoryPages Property  XE "MemoryPages Property" 


Description

Read/Write: Datapage code for number of memory pages. Returns the number of memory pages to be used by DataPage.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property MemoryPages() As Long


Return Type

Read/write Long value.

See Also

STATISTICS Object 

	NameType Property  XE "NameType Property" 


Description

Read/Write: Use the feature ID or dimension ID. 

ENUM_STAT_NAME_TYPES enumeration value indicating whether the feature name or the dimension name should be sent to DataPage. If set to PCD_STAT_FEAT_NAME (1), the feature name is used. If set to PCD_STAT_DIM_NAME (0), the dimension name is used.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property NameType() As ENUM_STAT_NAME_TYPES


Return Type

Read/write ENUM_STAT_NAME_TYPES enumeration.

See Also

STATISTICS Object 

	ReadLock Property  XE "ReadLock Property" 


Description

Read/Write: Datapage code for reading lock Long value representing the number of seconds in timeout period that DataPage uses when trying to read the port lock.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property ReadLock() As Long


Return Type

Long value.

See Also

STATISTICS Object 

	StatMode Property  XE "StatMode Property" 


Description

Read/Write: Statistics mode (i.e. Off, On, Transfer, etc.)

ENUM_PCD_STAT_TYPES enumeration value representing the mode or function of the statistics command.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property StatMode() As ENUM_PCD_STAT_TYPES


Return Type

Read/Write ENUM_PCD_STAT_TYPES enumeration.

See Also

STATISTICS Object 

	TransferDir Property  XE "TransferDir Property" 


Description

Read/Write: Directory to move stat file to String value indicating the directory to which to move the stat file.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property TransferDir() As String


Return Type

Read/write String value.

See Also

STATISTICS Object 

	WriteLock Property  XE "WriteLock Property" 


Description

Read/Write: Datapage code for writing lock Long value representing number of seconds in timeout period that DataPage uses when trying to write to the port lock.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property WriteLock() As Long


Return Type

Read/write Long value.

See Also

STATISTICS Object 

	Target Object  XE "Target Object" 


See Also

Target Members 

	Target Object Members  XE "Target Object Members" 


See Also

Target Overview 

Properties

	CrossHairSize Property  XE "CrossHairSize Property" 


Description

Read/Write: Returns target crosshair size.
Property type

Read-write property

Syntax

	Visual Basic

	Public Property CrossHairSize() As Double


See Also

Target Object 

	EdgeScanDirection Property  XE "EdgeScanDirection Property" 


Description

Read/Write: Returns target edge scan direction. 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property EdgeScanDirection() As Integer


See Also

Target Object 

	EdgeSelectionSpecifiedNum Property  XE "EdgeSelectionSpecifiedNum Property" 


Description

Read/Write: Returns target edge selection specified number. 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property EdgeSelectionSpecifiedNum() As Integer


See Also

Target Object 

	EdgeSelectionType Property  XE "EdgeSelectionType Property" 


Description

Read/Write: Returns target edge selection type. 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property EdgeSelectionType() As ENUM_VISION_TARGET_EDGE_SELECTION


See Also

Target Object 

	Focus Property  XE "Focus Property" 


Description

Read/Write: Returns target focus setting. 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Focus() As Long


See Also

Target Object 

	FocusDuration Property  XE "FocusDuration Property" 


Description

Read/Write: Returns target focus duration. 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property FocusDuration() As Integer


See Also

Target Object 

	FocusHiAccuracy Property  XE "FocusHiAccuracy Property" 


Description

Read/Write: Returns target focus high accuracy setting. 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property FocusHiAccuracy() As Long


See Also

Target Object 

	FocusRange Property  XE "FocusRange Property" 


Description

Read/Write: Returns target focus range. 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property FocusRange() As ENUM_VISION_TARGET_FOCUS_RANGE


See Also

Target Object 

	OutlierFilter Property  XE "OutlierFilter Property" 


Description

Read/Write: Returns target outlier filter setting. 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property OutlierFilter() As Long


See Also

Target Object 

	OutlierFilterDistanceThreshold Property  XE "OutlierFilterDistanceThreshold Property" 


Description

Read/Write: Returns target outlier filter distance threshold. 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property OutlierFilterDistanceThreshold() As Double


See Also

Target Object 

	OutlierFilterStdDevThreshold Property  XE "OutlierFilterStdDevThreshold Property" 


Description

Read/Write: Returns target outlier filter standard deviation threshold. 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property OutlierFilterStdDevThreshold() As Double


See Also

Target Object 

	PointDensityType Property  XE "PointDensityType Property" 


Description

Read/Write: Returns target point density type. 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property PointDensityType() As ENUM_VISION_TARGET_POINT_DENSITY


See Also

Target Object 

	Strength Property  XE "Strength Property" 


Description

Read/Write: Returns target edge strength. 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Strength() As Integer


See Also

Target Object 

	Targets Object  XE "Targets Object" 


Object Model

 

	[image: image610]
[image: image611]

 INCLUDEPICTURE "Images/pcdlrn~parent_(featcmd)~109.gif" \* MERGEFORMAT \d [image: image612]
[image: image613]

 INCLUDEPICTURE "Images/pcdlrn~application~109.gif" \* MERGEFORMAT \d [image: image614]
[image: image615]

 INCLUDEPICTURE "Images/pcdlrn~item_(target)~109.gif" \* MERGEFORMAT \d [image: image616]
[image: image617]

 INCLUDEPICTURE "Images/pcdlrn~_item_(target)~109.gif" \* MERGEFORMAT \d [image: image618]


See Also

Targets Members 

	Targets Object Members  XE "Targets Object Members" 


See Also

Targets Overview 

Methods

	_Item Method  XE "_Item Method" 


Syntax

	Visual Basic

	Public Function _Item( _

   ByVal Num As Long _

) As Target


Parameters

Num

See Also

Targets Object 

	Add Method  XE "Add Method" 


a

b

Description

Adds the target object to the targets collection. 

Syntax

	Visual Basic

	Public Sub Add( _

   ByVal a As Double, _

   ByVal b As Double _

) 


Parameters

a

b

See Also

Targets Object 

	Item Method  XE "Item Method" 


Description

Returns the target object referenced by the Num parameter. 

Syntax

	Visual Basic

	Public Function Item( _

   ByVal Num As Long _

) As Target


Parameters

Num

See Also

Targets Object 

	Remove Method  XE "Remove Method" 


Description

Removes the target object referenced by the Num parameter from the targets collection. 

Syntax

	Visual Basic

	Public Sub Remove( _

   ByVal Num As Long _

) 


Parameters

Num

See Also

Targets Object 

Properties

	Application Property  XE "Application Property" 


Description

Read Only: Returns the Application Object. 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Application() As Application


See Also

Targets Object 

	Count Property  XE "Count Property" 


Description

Read Only: Returns the current number of targets. 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Count() As Long


See Also

Targets Object 

	Parent Property  XE "Parent Property" 


Description

Read Only: Returns the parent Feature Object. 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Parent() As FeatCmd


See Also

Targets Object 

	TempComp Object  XE "TempComp Object" 


Description

The TempComp object gives access to the properties of the PC-DMIS Temperature Compensation command. For additional information about Temperature Compensation, see "Compensating for Temperature" in the "Setting Your Preferences" of the PC-DMIS Help File.

See Also

TempComp Members 

	TempComp Object Members  XE "TempComp Object Members" 


See Also

TempComp Overview 

Methods

	GetOrigin Method  XE "GetOrigin Method" 


Description

Gets the reference origin. 

Syntax

	Visual Basic

	Public Function GetOrigin( _

   ByRef X As Double, _

   ByRef Y As Double, _

   ByRef Z As Double _

) As Boolean


Parameters

X

Required Long variable that receives the X value of the temperature compensation origin.

Y

Required Long variable that receives the Y value of the temperature compensation origin.

Z

Required Long variable that receives the Z value of the temperature compensation origin.

Return Type

Boolean value.

See Also

TempComp Object 

	SetOrigin Method  XE "SetOrigin Method" 


Description

Sets the reference origin. 

Syntax

	Visual Basic

	Public Function SetOrigin( _

   ByVal X As Double, _

   ByVal Y As Double, _

   ByVal Z As Double _

) As Boolean


Parameters

X

Required Long that sets the X value of the temperature compensation origin.

Y

Required Long that sets the Y value of the temperature compensation origin.

Z

Required Long that sets the Z value of the temperature compensation origin.

Return Type

Boolean value.

See Also

TempComp Object 

Properties

	HighThreshold Property  XE "HighThreshold Property" 


Description

Read/Write: High temperature threshold. 

Double value representing the high temperature threshold.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property HighThreshold() As Double


Return Type

Read/write Double
See Also

TempComp Object 

	LowTheshold Property  XE "LowTheshold Property" 


Description

Read/Write: Low temperature threshold. 

Double value representing the low temperature threshold.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property LowTheshold() As Double


Return Type

Read/write Double
See Also

TempComp Object 

	MaterialCoefficient Property  XE "MaterialCoefficient Property" 


Description

Read/Write: Material Coefficient. 

Double value indicating the material coefficient.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property MaterialCoefficient() As Double


Return Type

Read/write Double.

See Also

TempComp Object 

	RefTemp Property  XE "RefTemp Property" 


Description

Read/Write: Reference temperature. 

Double value representing the reference temperature.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property RefTemp() As Double


Return Type

Read/write Double value.

See Also

TempComp Object 

	Sensors Property  XE "Sensors Property" 


Description

Read/Write: Comma/Dash delimited list of sensor numbers (i.e. '1-3,5'). 

String value representing the list of sensors--by number--to be used for temperature compensation. The format of the list is a series of consecutive sensor numbers. The series are specified using the hyphen between the first number and the last number of the series. Each non-consecutive sensor or group of sensors is separated by the comma (or the typical separator for the given locale).

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Sensors() As String


Return Type

Read/write String value.

Example

Example:  The sensors 2, 4, 5, 6, 8, 10, 11, 12, 13 would be represented as "2,4-6,8,10-13".

See Also

TempComp Object 

	Tip Object  XE "Tip Object" 


Description

Probe Tip Object. The Tip object describes a single tip of a probe. All of its properties are read-only.

Object Model

 

	[image: image619]
[image: image620]

 INCLUDEPICTURE "Images/pcdlrn~ijk_(pointdata)~142.gif" \* MERGEFORMAT \d [image: image621]
[image: image622]

 INCLUDEPICTURE "Images/pcdlrn~measxyz_(pointdata)~142.gif" \* MERGEFORMAT \d [image: image623]
[image: image624]

 INCLUDEPICTURE "Images/pcdlrn~parent_(tips)~142.gif" \* MERGEFORMAT \d [image: image625]
[image: image626]

 INCLUDEPICTURE "Images/pcdlrn~wristoffset_(pointdata)~142.gif" \* MERGEFORMAT \d [image: image627]
[image: image628]

 INCLUDEPICTURE "Images/pcdlrn~wristtipijk_(pointdata)~142.gif" \* MERGEFORMAT \d [image: image629]
[image: image630]

 INCLUDEPICTURE "Images/pcdlrn~xyz_(pointdata)~142.gif" \* MERGEFORMAT \d [image: image631]


See Also

Tip Members 

	Tip Object Members  XE "Tip Object Members" 


See Also

Tip Overview 

Properties

	a Property  XE "a Property" 


Description

Read Only: Returns the tilt of the tip. 

Returns the A angle of the tip. 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property a() As Double


Return Type

Read-only Double value.

See Also

Tip Object 

	b Property  XE "b Property" 


Description

Read Only: Returns the rotation of the tip. 

Returns the B angle of the tip.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property b() As Double


Return Type

Read-only Double value.

See Also

Tip Object 

	C Property  XE "C Property" 


Description

Read Only: Returns the C angle of the tip. 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property C() As Double


See Also

Tip Object 

	Date Property  XE "Date Property" 


Description

Read Only: Gets/Sets string representing date of the last calibration of the tip in the format mm/dd/yy. Returns the PC-DMIS representation of the most recent calibration date of the tip.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Date() As String


Return Type

Read-only String value.

See Also

Tip Object 

	diam Property  XE "diam Property" 


Description

Read/Write: Gets/Sets the theoretical diameter of the tip. Returns the diameter of the tip.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property diam() As Double


Return Type

Read/write Double value.

See Also

Tip Object 

	ID Property  XE "ID Property" 


Description

Read Only: Returns the ID of the tip. Returns the ID string of the tip.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property ID() As String


Return Type

String value.

See Also

Tip Object 

	IJK Property  XE "IJK Property" 


Description

Read Only: Returns a point data object with the measured vector of the tip. A PointData object that returns the vector along which the tip lies. Read-only.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property IJK() As PointData


Return Type

PointData object

See Also

Tip Object 

	MeasDiam Property  XE "MeasDiam Property" 


Description

Read/Write: Gets/Sets the measured diameter of the tip. 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property MeasDiam() As Double


Return Type

Read-only Double value.

See Also

Tip Object 

	MeasThickness Property  XE "MeasThickness Property" 


Description

Read Only: Returns the measured thickness of the tip. 
Property type

Read-write property

Syntax

	Visual Basic

	Public Property MeasThickness() As Double


Return Type

Read-only Double value.

See Also

Tip Object 

	MeasXYZ Property  XE "MeasXYZ Property" 


Description

Read/Write: Gets/Sets the measured XYZ data of the tip. 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property MeasXYZ() As PointData


Return Type

Read-only Double value.

See Also

Tip Object 

	Nickname Property  XE "Nickname Property" 


Description

Read/Write: Gets/Sets the tip's nickname.
Property type

Read-write property

Syntax

	Visual Basic

	Public Property Nickname() As String


See Also

Tip Object 

	Parent Property  XE "Parent Property" 


Description

Read Only: Returns the parent tips object. Returns the Tips collection object that contains this tip.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Parent() As Tips


Return Type

Read-only Tips object.

See Also

Tip Object 

	PrbRdv Property  XE "PrbRdv Property" 


Description

Read Only: Returns the PRBRDV value for an analog probe calibration. 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property PrbRdv() As Double


See Also

Tip Object 

	Selected Property  XE "Selected Property" 


Description

Read/Write: Determines whether tip is selected to be qualified. Determines whether tip is selected for qualification.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Selected() As Boolean


Return Type

Read/write Boolean.

See Also

Tip Object 

	StandardDeviation Property  XE "StandardDeviation Property" 


Description

Read Only: Returns the standard deviation of the measured sphere after tip qualification. 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property StandardDeviation() As Double


See Also

Tip Object 

	Thickness Property  XE "Thickness Property" 


Description

Read Only: Returns the theoretical thickness of the tip. Returns the nominal thickness of the tip.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Thickness() As Double


Return Type

Read-only Double value.

See Also

Tip Object 

	Time Property  XE "Time Property" 


Description

Read Only: Gets/Sets string representing time of the last calibration of the tip in the format HH:MM:SS. 

Returns the PC-DMIS representation of the most recent calibration time of the tip. 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Time() As String


Return Type

Read-only String value.

See Also

Tip Object 

	TipNum Property  XE "TipNum Property" 


Description

Read Only: Returns the tip number of the tip. Returns the tip number in the list of tips.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property TipNum() As Long


Return Type

Read-only Long value.

Remarks

This is PC-DMIS’s internal representation of tip number. It may be different from the number passed to Tips.Item to retrieve the tip.

See Also

Tip Object 

	TipType Property  XE "TipType Property" 


Description

Read Only: Returns the tip type of the tip. Returns the type of the tip.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property TipType() As ENUM_TIPTYPES


Return Type

Read-only ENUM_TIPTYPES object.

Remarks

The following tip types are defined. They can be combined via bitwise operations.

TIPBALL // Default
TIPDISK 
TIPSHANK 
TIPOPTIC 
TIPANALOG 
TIPANALOGBALL  = TIPANALOG + BALL
TIPANALOGDISK  = TIPANALOG + DISK
TIPANALOGSHANK  = TIPANALOG + SHANK
TIPANALOGOPTIC  = TIPANALOG + OPTIC
TIPFIXED
TIPFIXEDBALL = TIPFIXED + BALL
TIPFIXEDDISK = TIPFIXED + DISK
TIPFIXEDSHANK = TIPFIXED + SHANK
TIPFIXEDOPTIC = TIPFIXED + OPTIC
TIPSP600 // renishaw sp600 analog probe
TIPWBOPTIC // wolf and beck laser probe
TIPINFINITARM // renishaw infinite index arm
TIPSLAVE // tip belongs to slave arm

See Also

Tip Object 

	WristOffset Property  XE "WristOffset Property" 


Description

Read/Write: Returns a point data object with the wrist offset of the tip. Returns the wrist offset of the tip.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property WristOffset() As PointData


Return Type

Read-only PointData object.

See Also

Tip Object 

	WristTipIJK Property  XE "WristTipIJK Property" 


Description

Read Only: Returns a point data object with the theoretical vector of the tip. Returns the wrist tip vector of the tip.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property WristTipIJK() As PointData


Return Type

Read-only PointData object.

See Also

Tip Object 

	XYZ Property  XE "XYZ Property" 


Description

Read/Write: Gets/Sets the theoretical XYZ data of the tip. Returns the location of the tip.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property XYZ() As PointData


Return Type

Read/write PointData object.

See Also

Tip Object 

	Tips Object  XE "Tips Object" 


Description

The Tips object is the collection of all Tip objects for a Probe object. The Probe object that the Tips stores Tip objects for is contained in the Parent property.

Object Model

 

	[image: image632]
[image: image633]

 INCLUDEPICTURE "Images/pcdlrn~parent_(probe)~92.gif" \* MERGEFORMAT \d [image: image634]
[image: image635]

 INCLUDEPICTURE "Images/pcdlrn~application~92.gif" \* MERGEFORMAT \d [image: image636]
[image: image637]

 INCLUDEPICTURE "Images/pcdlrn~item_(tip)~92.gif" \* MERGEFORMAT \d [image: image638]
[image: image639]

 INCLUDEPICTURE "Images/pcdlrn~_item_(tip)~92.gif" \* MERGEFORMAT \d [image: image640]


See Also

Tips Members 

	Tips Object Members  XE "Tips Object Members" 


See Also

Tips Overview 

Methods

	_Item Method  XE "_Item Method" 


Syntax

	Visual Basic

	Public Function _Item( _

   ByVal NameOrNum As Variant _

) As Tip


Parameters

NameOrNum

See Also

Tips Object 

	Add Method  XE "Add Method" 


Description

Adds the tip object with angles a and b to the tips collection. 

This function adds a new tip position to this collection. The new tip is unqualified.

Syntax

	Visual Basic

	Public Function Add( _

   ByVal a As Double, _

   ByVal b As Double _

) As Long


Parameters

a

Required Double that is the A parameter of the new tip.

b

Required Double that is the B parameter of the new tip.

See Also

Tips Object 

	Item Method  XE "Item Method" 


Description

Returns the tip object referenced by the number or name parameter. 

Returns a specific Tip object from the Tips object.

Syntax

	Visual Basic

	Public Function Item( _

   ByVal NameOrNum As Variant _

) As Tip


Parameters

NameOrNum

Required Variant that indicates which Tip object to return. It can be either a Long or a String. If it is a Long, it is the index number of the Tip object in the Tips collection. If it is a String, it is the ID of the Tip object.

Return Type

Tip object.

Remarks

Since the Item method is the default, the function name can be omitted if desired.

See Also

Tips Object 

	Remove Method  XE "Remove Method" 


Description

Removes the tip object referenced by the Num parameter from the tips collection. 

This function removes the indicated Tip object from this collection.

Syntax

	Visual Basic

	Public Sub Remove( _

   ByVal Num As Long _

) 


Parameters

Num

Required Long that indicates which Tip object to remove.

See Also

Tips Object 

Properties

	Application Property  XE "Application Property" 


Description

Read Only: Returns the Application Object. Represents the read-only PC-DMIS application. The Application object includes properties and methods that return top-level objects.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Application() As Application


Return Type

Application object.

See Also

Tips Object 

	Count Property  XE "Count Property" 


Description

Read Only: Returns the current number of tips. Represents the number of Tip objects in the parent Probe object.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Count() As Long


Return Type

Read-only Integer.

See Also

Tips Object 

	Parent Property  XE "Parent Property" 


Description

Read Only: Returns the parent Probe Object. Returns the parent Probe object.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Parent() As probe


Return Type

Probe object.

See Also

Tips Object 

	tool Object  XE "tool Object" 


Description

Probe Calibration Tool Object. The Tool object represents a single probe calibration tool.

Object Model

 

	[image: image641]
[image: image642]

 INCLUDEPICTURE "Images/pcdlrn~shankijk_(pointdata)~130.gif" \* MERGEFORMAT \d [image: image643]
[image: image644]

 INCLUDEPICTURE "Images/pcdlrn~xyz_(pointdata)~130.gif" \* MERGEFORMAT \d [image: image645]
[image: image646]

 INCLUDEPICTURE "Images/pcdlrn~application~130.gif" \* MERGEFORMAT \d [image: image647]
[image: image648]

 INCLUDEPICTURE "Images/pcdlrn~parent_(tools)~130.gif" \* MERGEFORMAT \d [image: image649]


Remarks

Use Tools(index) where index is the index number or tool name to return a single Tool object.

See Also

tool Members 

	tool Object Members  XE "tool Object Members" 


See Also

tool Overview 

Properties

	_ID Property  XE "_ID Property" 


Property type

Read-write property

Syntax

	Visual Basic

	Public Property _ID() As String


See Also

tool Object 

	Application Property  XE "Application Property" 


Description

Read Only: Returns the Application Object. Represents the read-only PC-DMIS application. The Application object includes properties and methods that return top-level objects.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Application() As Application


Return Type

Application object.

See Also

tool Object 

	diam Property  XE "diam Property" 


Description

Read/Write: Returns/Sets the tool diameter. 

Returns the diameter of the tip. 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property diam() As Double


Return Type

Read/write Double value.

See Also

tool Object 

	ID Property  XE "ID Property" 


Description

Read/Write: Returns/Sets the tool ID. Returns the ID string of the tip.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property ID() As String


Return Type

Read-only String value.

See Also

tool Object 

	Parent Property  XE "Parent Property" 


Description

Read Only: Returns the parent Tools Collection Object. 
Property type

Read-write property

Syntax

	Visual Basic

	Public Property Parent() As Tools


Return Type

Read-only Tools object.

See Also

tool Object 

	ShankIJK Property  XE "ShankIJK Property" 


Description

Read/Write: Returns/Sets via point data object the shank ijk of the tool. Returns the shank vector of the tool as a PointData.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property ShankIJK() As PointData


Return Type

Read-only PointData object.

See Also

tool Object 

	ToolType Property  XE "ToolType Property" 


Description

Read/Write: Returns/Sets the tool type of the tool. Returns the type of the tool.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property ToolType() As TOOLTYPES


Return Type

TOOLTYPES enumerated value.

See Also

tool Object 

	Width Property  XE "Width Property" 


Description

Read/Write: Returns/Sets the tool width. 

Returns the width of the tool. 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Width() As Double


Return Type

Read-only Double.

See Also

tool Object 

	XYZ Property  XE "XYZ Property" 


Description

Read/Write: Returns/Sets via point data object the xyz location of the tool. Returns the location of the tool.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property XYZ() As PointData


Return Type

Read-only PointData.

See Also

tool Object 

	Tools Object  XE "Tools Object" 


Description

Probe Calibration Tools Collection. The Tools collection object contains the tools available to the parent PartProgram object.

Object Model

 

	[image: image650]
[image: image651]

 INCLUDEPICTURE "Images/pcdlrn~application~132.gif" \* MERGEFORMAT \d [image: image652]
[image: image653]

 INCLUDEPICTURE "Images/pcdlrn~parent_(partprogram)~132.gif" \* MERGEFORMAT \d [image: image654]
[image: image655]

 INCLUDEPICTURE "Images/pcdlrn~add_(tool)~132.gif" \* MERGEFORMAT \d [image: image656]
[image: image657]

 INCLUDEPICTURE "Images/pcdlrn~item_(tool)~132.gif" \* MERGEFORMAT \d [image: image658]
[image: image659]

 INCLUDEPICTURE "Images/pcdlrn~_item_(tool)~132.gif" \* MERGEFORMAT \d [image: image660]


Remarks

Use Tools(index) where index is the index number or tool name to return a single Tool object.

See Also

Tools Members 

	Tools Object Members  XE "Tools Object Members" 


See Also

Tools Overview 

Methods

	_Item Method  XE "_Item Method" 


Syntax

	Visual Basic

	Public Function _Item( _

   ByVal ID As Variant _

) As tool


Parameters

See Also

Tools Object 

	Add Method  XE "Add Method" 


Description

Creates a new calibration tool and adds it to the tools collection. This function adds a new tool to this collection. The new tool is unqualified.

Syntax

	Visual Basic

	Public Function Add( _

   ByVal ID As String _

) As tool


Parameters

ID

Required String that is the name of the new tool.

Return Type

Tool object.

See Also

Tools Object 

	Item Method  XE "Item Method" 


Description

Returns the tool object with the specified ID.
Syntax

	Visual Basic

	Public Function Item( _

   ByVal ID As Variant _

) As tool


Parameters

ID

Required Variant that indicates which Tool object to return. It can be either a Long or a String. If it is a Long, it is the index number of the Tool object in the Tools collection. If it is a String, it is the ID of the Tool object.

Return Type

Tool object.

Remarks

Since the Item method is the default, the function name can be omitted if desired.

See Also

Tools Object 

	Remove Method  XE "Remove Method" 


Description

Removes the calibration tool specified by ID from the tools collection. This function removes the indicated Tool object from this collection.

Syntax

	Visual Basic

	Public Function Remove( _

   ByVal ID As String _

) As Boolean


Parameters

ID

Required String that indicates which Tool object to remove.

Return Type

Boolean value. Boolean returns true if the function succeeds, false if it fails.

See Also

Tools Object 

Properties

	Application Property  XE "Application Property" 


Description

Read Only: Returns the Application Object. Represents the read-only PC-DMIS application. The Application object includes properties and methods that return top-level objects.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Application() As Application


Return Type

Application object.

See Also

Tools Object 

	Count Property  XE "Count Property" 


Description

Read Only: Returns the number of tools currently available for calibration. Represents the number of Tool objects in the parent PartProgram object.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Count() As Long


Return Type

Read-only Long value.

See Also

Tools Object 

	Parent Property  XE "Parent Property" 


Description

Read Only: Returns the parent PartProgram Object. Returns the parent PartProgram object.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Parent() As PartProgram


Return Type

PartProgram object.

See Also

Tools Object 

	TRACEFIELD Object  XE "TRACEFIELD Object" 


Description

The Tracefield object gives access to the name and value properties of the PC-DMIS Tracefield command. For additional information on this command see "Using Trace Field" in the "Tracking Statistical Data" section of the PC-DMIS documentation.

See Also

TRACEFIELD Members 

	TRACEFIELD Object Members  XE "TRACEFIELD Object Members" 


See Also

TRACEFIELD Overview 

Properties

	Name Property  XE "Name Property" 


Description

Read/Write: Name of the statistical tracefield. 

String value representing the name of the tracefield.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Name() As String


Return Type

Read/write String object.

See Also

TRACEFIELD Object 

	Value Property  XE "Value Property" 


Description

Read/Write: Value of the statistical tracefield. 

String value representing the value for the tracefield.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property Value() As String


Return Type

Read/write String value.

See Also

TRACEFIELD Object 

	tutorhit Object  XE "tutorhit Object" 


See Also

tutorhit Members 

	tutorhit Object Members  XE "tutorhit Object Members" 


See Also

tutorhit Overview 

	Variable Object  XE "Variable Object" 


Description

PC-Dmis Variable Object.
Object Model

 

	[image: image661]
[image: image662]

 INCLUDEPICTURE "Images/pcdlrn~pointvalue_(pointdata)~166.gif" \* MERGEFORMAT \d [image: image663]
[image: image664]

 INCLUDEPICTURE "Images/pcdlrn~commandvalue_(command)~166.gif" \* MERGEFORMAT \d [image: image665]


Remarks

The properties of the Variable Object allows you to return and set a variable's:

· Type

· Long value

· Double value

· String value

· Point value

· Command value

The methods of this object return an array's:
· Upper bound if variable is an array

· Lower bound if variable is an array

· Gets the array variable at a specific position

· Sets the array variable at a specified position

See Also

Variable Members 

	Variable Object Members  XE "Variable Object Members" 


See Also

Variable Overview 

Methods

	GetArrayIndexValue Method  XE "GetArrayIndexValue Method" 


Description

Gets the array variable at specified position. This returns the array variable at the specified index position.

Syntax

	Visual Basic

	Public Function GetArrayIndexValue( _

   ByVal index As Long _

) As Variable


Parameters

index

Long value of the index position.

See Also

Variable Object 

	GetArrayLowerBound Method  XE "GetArrayLowerBound Method" 


Description

If variable is type array, returns the lower bound, otherwise 0. This returns the lower bound if the variable is an array. Otherwise it returns zero.

Syntax

	Visual Basic

	Public Function GetArrayLowerBound() As Long


Return Type

Long value.

See Also

Variable Object 

	GetArrayUpperBound Method  XE "GetArrayUpperBound Method" 


Description

If variable is type array, returns the upper bound, otherwise 0. This returns the upper bound if the variable is an array. Otherwise it returns zero.

Syntax

	Visual Basic

	Public Function GetArrayUpperBound() As Long


Return Type

Long value.

See Also

Variable Object 

	SetArrayIndexValue Method  XE "SetArrayIndexValue Method" 


Description

Sets the array variable at specified position. This sets the array variable at the specified index position.

Syntax

	Visual Basic

	Public Function SetArrayIndexValue( _

   ByVal index As Long, _

   ByVal Variable As Variable _

) As Boolean


Parameters

index

Long value specifying the index position.

Variable

Array Variable value to be set.

Return Type

Boolean value.

See Also

Variable Object 

Properties

	CommandValue Property  XE "CommandValue Property" 


Description

Read/Write: Returns/Sets the command value of the variable. 

This returns / sets the command value of the variable.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property CommandValue() As Command


Return Type

Read/write Command object.

See Also

Variable Object 

	DoubleValue Property  XE "DoubleValue Property" 


Description

Read/Write: Returns/Sets the double value of the variable. 

This returns / sets the double value of the variable. 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property DoubleValue() As Double


Return Type

Read/write Double value.

See Also

Variable Object 

	LongValue Property  XE "LongValue Property" 


Description

Read/Write: Returns/Sets the long value of the variable. 

This returns / sets the long value of the variable. 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property LongValue() As Long


Return Type

Read/write Long value.

See Also

Variable Object 

	PointValue Property  XE "PointValue Property" 


Description

Read/Write: Returns/Sets the point value of the variable. 

This returns / sets the point value of the variable.

Property type

Read-write property

Syntax

	Visual Basic

	Public Property PointValue() As PointData


Return Type

Read/write PointData object.

See Also

Variable Object 

	StringValue Property  XE "StringValue Property" 


Description

Read/Write: Returns/Sets the string value of the variable. 

This returns / sets the string value of the variable. 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property StringValue() As String


Return Type

Read/write String value.

See Also

Variable Object 

	VariableType Property  XE "VariableType Property" 


Description

Read/Write: Returns/Sets the current variable type. 

This returns / sets the current variable type. 

Property type

Read-write property

Syntax

	Visual Basic

	Public Property VariableType() As VARIABLE_TYPE_TYPES


Return Type

Read/write VARIABLE_TYPE_TYPES enumeration.

See Also

Variable Object 

	VariableArray Object  XE "VariableArray Object" 


See Also

VariableArray Members 

	VariableArray Object Members  XE "VariableArray Object Members" 


See Also

VariableArray Overview 

Methods

	GetSize Method  XE "GetSize Method" 


Syntax

	Visual Basic

	Public Function GetSize() As Long


See Also

VariableArray Object 

	GetValue Method  XE "GetValue Method" 


Syntax

	Visual Basic

	Public Function GetValue( _

   ByVal ArrayPosition As Long _

) As Double


Parameters

ArrayPosition

See Also

VariableArray Object 

	SetSize Method  XE "SetSize Method" 


Syntax

	Visual Basic

	Public Sub SetSize( _

   ByVal NewSize As Long _

) 


Parameters

NewSize

See Also

VariableArray Object 

	SetValue Method  XE "SetValue Method" 


Syntax

	Visual Basic

	Public Sub SetValue( _

   ByVal ArrayPosition As Long, _

   ByVal NewValue As Double _

) 


Parameters

ArrayPosition

NewValue

See Also

VariableArray Object

Index



_AddRegistrySetting Method
154

_Copy Property
400

_ID Property
312, 477, 875

_Item Method
247, 253, 265, 355, 419, 513, 525, 607, 649, 675, 695, 703, 719, 739, 769, 789, 837, 853, 871, 879

_Name Property
169, 520, 626, 734, 784, 833

_Number Property
602

_Standard Property
273

_Visible Property
258, 410

A Note on Enumerated Constants:
110

a Property
861

AboutAxis Property
141

Abs Function
1

Accessing an Object's Propreties, Methods, and Events
109

Accessing Event Subroutines
110

Accessing Methods and Properties
112

AccessLevel Property
707, 757

Activate Method
612

ActiveComponent Property
668

ActiveConnection Property
670

ActiveMachine Property
626

ActivePartProgram Property
169

ActiveTip Object
133

ActiveTip Object Members
133

ActiveTipCommand Property
313

Add Method
279, 289, 356, 513, 526, 650, 675, 719, 740, 769, 790, 838, 853, 871, 879

AddArgument Method
493

AddAxes Method
363

AddBestFitFeat Method
137

AddBoundaryPoint Method
537

AddControlPoint Method
208, 807

AddFeature Method
538

AddIndexSet Method
195

AddInputFeat Method
425

AddLevelFeat Method
138, 539

AddManualScanHit Method
426

AddOriginFeat Method
138, 539

AddRotateFeat Method
139, 539

AddSkipNum Method
494

AddStatsDir Method
841

AdminPrivileges Property
169

AlignCmnd Object
137

AlignCmnd Object Members
137

AlignmentCommand Property
313

AlignWorkPlane Property
444

Angle Property
134, 141, 364, 478

AngleOffset Property
502

AppActivate Statement
1

Application Object
153

Application Object Members
154

Application Property
243, 248, 251, 254, 258, 265, 273, 284, 294, 314, 360, 410, 421, 516, 520, 528, 591, 602, 608, 626, 652, 670, 677, 712, 722, 734, 743, 752, 762, 772, 784, 793, 802, 833, 839, 854, 873, 875, 881

ApplicationEvents Property
170

ApplicationObjectEvents Object
183

ApplicationObjectEvents Object Members
183

ApplicationSettings Object
191

ApplicationSettings Object Members
191

ApplicationSettings Property
170

ArcCos Method
540

ArcSin Method
540

ArrayIndex Object
195

ArrayIndex Object Members
195

ArrayIndexCommand Property
314

ArrowMultiplier Property
364

Asc Function
2

AsyncExecute Method
612

Atn Function
2

Attach Object
199

Attach Object Members
199

AttachCommand Property
315

AttachedAlign Property
199

AutoAdjustPh9 Property
655

AutoCircularMove Property
444

AutoClearPlane Property
225, 445, 823

AutoCreateGroupsForAudiMessPrograms Method
612

AutoLabelPosition Property
655

Automation Objects
109

AutoMove Property
445

AutoMoveDistance Property
446

AutoPH9 Property
446

AutoReadPos Property
447

Autotrigger Object
203

Autotrigger Object Members
203

autotriggeron Property
203

AverageError Property
142

AXIS Property
142, 365

AxisLetter Property
365

b Property
862

Background Property
284, 294

BasicScan Object
205

BasicScan Object Members
208

BasicScanCommand Property
315

Beep Statement
3

beepingon Property
203

BeginTask Method
693

BestFit2D Method
541

BestFit3D Method
541

BestFitMathType Property
447

BFOffset Property
143

Bonus Property
366

BothArms Property
315

Bound Property
447

BoundaryCondition Property
226, 824

BoundaryConditionAxisV Property
226, 824

BoundaryConditionCenter Property
227, 824

BoundaryConditionEndApproach Property
227, 825

BoundaryConditionPlaneV Property
228, 825

BoundaryPointCount Property
228, 826

BoxLength Property
448

BoxWidth Property
448

BufferSize Property
487

BuildColortable Method
280, 290

C Property
862

CadCollectionSlice Method
237

CadModel Object
237

CadModel Object Members
237

CadModel Property
627

CadPointOnSurface Object
243

CadPointOnSurface Object Members
243

CadPoints Property
251

CadPointsOnSurface Object
247

CadPointsOnSurface Object Members
247

CadPolyLineOnSurface Object
251

CadPolyLineOnSurface Object Members
251

CadPolyLinesOnSurface Object
253

CadPolyLinesOnSurface Object Members
253

CADSlice Method
238

CadSurface Property
243

CadToPartMatrix Property
143

CadWindow Object
257

CadWindow Object Members
257

CadWindows Object
263

CadWindows Object Members
265

CadWindows Property
627

CalcAdjustTransform Method
612

CalcMode Property
843

CalculateDeviation Method
139

CalculateMatrices Method
140

CalculateNominals Method
426

CalculateStatistics Method
140

Calibrate Method
541

Calibration Object
269

Calibration Object Members
269

CalibrationCommand Property
316

Call Statement
4

CanBeCompleted Property
699

CancelChanges Method
676

Caption Property
170

CatchMotionError Method
542

CBool Function
5

CDate Function
5

CDbl Function
6

ChDir
1, 4, 6

ChDrive
1

ChDrive Statement
7

Check
3, 4, 9, 14, 21, 8, 21, 23, 31, 80

Check Boxes
14

Check D2HBCheck35
16

Check D2HBCheck59
3

Check Method
543

CheckBox
8

Choose Function
9

Chr Function
9

Cint Function
10

CircularRadiusIn Property
449

CircularRadiusOut Property
449

ClearAllBreakpoints Method
357

ClearAllTADs Method
613

ClearAllTips Method
665

ClearExecutionBlock Method
613

ClearMarked Method
357

ClearPlane Method
543

ClearTADs Method
613

ClearVerifyFeaturesFlag Method
614

CLng Function
10

Close Method
519, 614, 733, 783

Close Statement
11

CloseAll Method
650

CloseCommConnection Method
544

Closed Property
252

Color Object
271

Color Object Members
271

ColorParentType Property
273

Colors Collection
279, 289

Colors Collection Members
279, 289

Colors Property
735, 785

Column132 Method
544

Command Object
299

Command Object Members
300

Command Property
423

CommandMode Method
405

Commands Object
355

Commands Property
627

CommandValue Property
889

Comment
80

Comment Method
544

Comment Property
390

CommentCommand Property
316

ComponentCount Property
671

ComponentDescription Method
665

ConnectedInDriveMode Property
171, 628

ConnectedInRelayMode Property
171, 628

ConnectedToMaster Property
171, 628

ConnectedToSlave Property
171, 629

ConnectionCount Property
671

ConnectionDescription Method
666

Const Statement
12

Contents
19, 42

Control Structures
3

Copy
2

Copy Property
401

CopyMeasToNom Property
317

CornerRadius Property
449

Cos
13

dialogs
4

forms
4

Count Property
248, 254, 266, 285, 295, 318, 360, 422, 516, 528, 608, 653, 677, 696, 704, 713, 722, 743, 763, 772, 793, 840, 855, 873, 881

CountHits Method
426

CreateBasicScan Method
208, 808

CreateID Method
545

CreateObject
13

CreateReplaceMap Property
680

CrossHairSize Property
847

CSng Function
15

CStr Function
16

CurDir Function
16

CurPage Property
731, 781

CurrentArm Property
629

CurrentCommand Property
361

CurrentProbeName Property
630

CurrentReport Property
753, 803

CurrentTask Property
694

CurrentUserDirectory Property
172

Custom Property
603

CustomReportCount Property
753, 803

Cut
6

CVar Function
17

Data Types
2

DataTypes Property
318

Date Function
17

Date Property
862

DateSerial
19

DateValue
19

Datum1 Property
366

Datum1Modifier Property
366

DATUM2 Property
367

Datum2Modifier Property
367

Datum3 Property
367

Datum3Modifier Property
368

Day Function
20

DCCFindNomsMode Property
450

DCCMeasureInMasterMode Property
450

Debug Property
274

Declare Statement
20

DefaultAxes Method
545

DefaultFilePath Property
172

DefaultHits Method
546

DefaultMachineName Property
173

DefaultProbeFile Property
173

Delete
2

create
4

designer
4

dialog
4

editor
4

DeleteKey Method
707, 757

DeleteRegistryKey Method
155

DeleteRegistryValue Method
155

Depth Property
451

DevAngle Property
368

Deviation Property
368, 451

Dialog Dialog Function
22

Dialog Method
300, 666

Dialog2 Method
300

diam Property
478, 863, 876

Dim Statement
23

DimensionBackground Property
285, 295

DimensionCmd Object
363

DimensionCmd Object Members
363

DimensionCommand Property
319

DimensionEndCommand Property
320

DimensionId Property
389

DimensionModifier Property
369

DimFormat Method
546

DimFormatCommand Property
320

DimInfo Object
385

DimInfo Object Members
385

DimInfoCommand Property
321

Dir$ Function
24

DiscardChanges Method
271, 280, 290

DisplayConeAngle Property
452

DisplayHits Property
229, 826

DisplayMetaFileCommand Property
321

DlgControlId Function
19

DlgEnable Statement
25

DlgFocus Statement DlgFocus() Function
20

DlgListBoxArray DlgListBoxArray()
20

DlgSetPicture
21

DlgText Statement
26

DlgValue DlgValue()
21

DlgVisible Statement
27

DmisDialog Object
393

DmisDialog Object Members
393

DmisMatrix Object
395

DmisMatrix Object Members
395

DMISMode Method
405

DmisOut Method
614

DmisOut2 Method
615

Do...Loop Statement
27

dialog
4

DoubleValue Property
889

Duplicated Property
603

EdgeMeasureOrder Property
452

EdgeScanDirection Property
847

EdgeSelectionSpecifiedNum Property
847

EdgeSelectionType Property
848

EdgeThickness Property
453

EditRulesFile Method
615

EditWindow Property
631

EditWindowTextAll Property
631

End Statement
29

EndA Property
680

EndAlign Method
547

EndAngle Property
453, 478, 681

EndAngle2 Property
453, 479

EndB Property
681

EndC Property
681

EndDim Method
547

EndFeature Method
547

EndGetFeatPoint Method
548

EndNum Property
502

EndScan Method
548

Eof
29

EquateAlign Method
548

Erase
30

ErrorDialogEnabled Property
173

ErrorMode Property
503

ErrorType Property
503

Evaluate Method
363, 427

EXECUTE Method
301, 615

EXECUTE Property
199

ExecutedCommands Property
632

ExecuteDialogVisible Property
632

ExecuteMode Property
682

ExecutionWasCancelled Property
632

Exit
2

Exit Statement
31

Exp
1, 31

ExpectsHits Property
700

ExpectsMiss Property
321

ExpectsUserInput Property
700

Export Method
616

ExportRegistrySettings Method
155

Expression Property
487, 504

ExternalCommand Property
322

ExternalCommandEvent Method
616

ExternalFileID Property
144

ExternalID Property
144

F Property
479

FailIfExists Property
488

Feat1 Property
369

Feat2 Property
370

Feat3 Property
370

FeatData Object
477

FeatData Object Members
477

FeatID Property
144

FeatID2 Property
145

Feature
74

Feature Method
549

Feature Property
322

FeatureCommand Property
323

FileCopy
1, 32

FileIO Object
487

FileIO Object Members
487

FileIOCommand Property
324

FileIOType Property
488

FileLen Function
32

FileName Property
504, 535

FileName1 Property
489

FileName2 Property
489

FileOpenType Property
490

FilePointerID Property
490

Filter Property
229, 827

FilterType Property
454

Find D2HBFind80
3

Find Next D2HBFind_Next80
3

FindByUniqueID Method
358, 419

FindCad Property
145

FindHole Property
454

Finish Method
705

First Method
711, 761

Fix Function
33

Flatness Method
549

FlowControlCmd Object
493

FlowControlCmd Object Members
493

FlowControlCommand Property
324

Focus Property
848

FocusDuration Property
848

FocusHiAccuracy Property
849

FocusRange Property
849

For...Next Statement
33, 34

designer
4

FPanel Object
511

FPanel Object Members
511

FreeFile Function
44

full Property
531

FullName Property
174, 521, 633, 671, 735, 785

FullReportMode Method
745, 795

Function Statement
45

GapOnly Method
550

GenerateHits Method
427

GenerateScan Method
208, 808

GenerateStatusReportBitmap Method
746, 796

GenerateStatusReportBitmapId Method
746, 796

GenerateStatusReportBitmapUid Method
747, 797

GenericAlignMode Property
455

GenericDisplayMode Property
455

GenericType Property
455

GetArgumentDescription Method
494

GetArgumentExpression Method
495

GetArgumentName Method
495

GetArrayIndexValue Method
887

GetArrayLowerBound Method
888

GetArrayUpperBound Method
888

GetBFIterations Method
140

GetBitmapData Method
659

GetBitmapDataSize Method
659

GetBoolSetting Property
174

GetBoundaryConditionParams Method
209, 808

GetBoundaryPoint Method
210, 809

GetCircMoveItem Method
428

GetColorList Method
726, 776

GetColorTableColor Method
281, 291

GetCommand Method
726, 776

GetCommandText Method
406

GetControlPoint Method
210, 810

GetControlState Method
697

GetControlText Method
697

GetCount Method
727, 777

GetCustomReportName Method
747, 797

GetData Method
428

GetDataTypeCount Property
325

GetDimData Method
550

GetDimOutTol Method
551

GetDoubleSetting Property
174

GetDWORDSetting Property
175

GetEditText Method
697

GetExpression Method
301

GetExpressionValue Method
727, 777

GetFeatData Method
552

GetFeatID Method
553

GetFeatPoint Method
553

GetFeature Method
554

GetFeatureIdByIndex Method
140

GetFieldFormat Method
385

GetFieldValue Property
325

GetFilterParams Method
211, 810

GetFormError Method
429

GetHeadingType Method
381

GetHelpMap Method
156

GetHit Method
430

GetHitParams Method
212, 811

GetHitTValue Method
213, 812

GetInputID Method
431

GetInputOffset Method
431

GetIntSetting Property
175

GetLeftSideOfExpression Method
496

GetLocationAxis Method
385

GetLowerBound Method
195

GetMethodParams Method
213, 812

GetMethodPointData Method
214, 813

GetNomsParams Method
215, 814

GetOrigin Method
857

GetParams Method
216, 815

GetPH9Status Method
555

GetPoint Method
432

GetProbeOffsets Method
555

GetProbeRadius Method
555

GetProgramOption Method
556

GetProgramValue Method
556

GetPrompt Method
698

GetReferenceValue Method
728, 778

GetReferenceValue2 Method
728, 778

GetRegistryBool Method
156

GetRegistryDouble Method
156

GetRegistryDWORD Method
157

GetRegistryInt Method
157

GetRegistryPoint Method
157

GetRegistrySettings Method
158

GetRegistryString Method
158

GetRightSideOfExpression Method
496

GetSampleHit Method
433

GetSelectionPrompt Method
698

GetShankVector Method
133

GetSize Method
893

GetSkipNum Method
496

GetStatsDir Method
841

GetStringSetting Property
175

GetSurfaceVectors Method
434

GetText Method
302

Getting Started
109

GetToggleString Method
303

GetToggleValue Property
326

GetTolColor Method
729, 779

GetTool Method
679

GetTopMachineSpeed Method
556

GetTruePosAxis Method
386

GetType Method
271, 557

GetUniqueID Method
303

GetUnits Method
557

GetUpperBound Method
196

GetValue Method
730, 780, 893

GetValue2 Method
730, 780

GetVariableValue Method
617

GetVector Method
435

Global Statement
46

GoTo Statement
47

GraphicalAnalysis Property
371

Group Property
708, 758

Guess Method
617

HasBreakpoint Property
327

HasCommandData Method
731, 781

HasField Property
328

Height Property
175, 258, 411, 604, 834

Help Method
159

Hex
48, 50

HighLightBackground Property
286, 296

HighlightElement Method
238

HighPointSearchMode Property
456

HighThreshold Property
858

Hit Method
558

HitType Property
230, 827

Hour Function
48

HTMLDialog
50

I Property
244, 480, 662

ID Property
146, 200, 328, 371, 456, 480, 505, 863, 876

If...Then...Else Statement
5, 50

IgnoreLearnModeHits Method
618

IgnoreMotionError Method
558

IJK Method
661

IJK Property
863

Import Method
618

ImportRegistrySettings Method
159

ImportUGDCI Method
618

Increment Property
457

IncrementA Property
682

IncrementB Property
682

IncrementC Property
683

Indent Property
457

Indent2 Property
457

Indent3 Property
458

InitHits Property
458

InitID Property
146

Inner Property
459

Input # Statement
51

Input Function
52

InputBox Function
53

InsertionPointAfter Method
358

InsertSectionBefore Method
838

InStr
53

InteriorHit Property
460

Introduction to Automation Objects
109

Inverse Property
401

IsActiveTip Property
328

IsAlignment Property
329

IsAllowed Method
281, 291

IsArray Function
54

IsArrayIndex Property
329

IsAttach Property
330

IsBasicScan Property
330

IsCalibration Property
331

IsComment Property
331

IsConstructedFeature Property
332

IsDate
54

IsDCCFeature Property
332

IsDimension Property
333

IsDimFormat Property
333

IsDimInfo Property
333

IsDisplayMetaFile Property
334

IsEmpty
55

IsExpressionValid Method
304, 497

IsExternalCommand Property
334

IsFeature Property
335

IsFileIOCommand Property
335

IsFlowControl Property
336

IsHit Property
336

IsIdentity Property
401

IsLeapfrog Property
337

IsLoadMachine Property
337

IsLoadProbe Property
338

IsLocationAxis Property
371

IsMeasuredFeature Property
338

IsModal Property
338

IsMove Property
339

IsNumeric
56

IsObject Function
56

IsOptionProbe Property
339

IsOptMotion Property
340

IsProbeAnalog Method
619

IsScan Property
340

IsStatistic Property
341

IsTempComp Property
341

IsTraceField Property
342

IsTruePosAxis Property
372

IsValidLeftHandValue Method
497

IsValidSubroutineArgumentName Method
498

IsWriteable Method
707, 757

Item Method
247, 253, 265, 282, 292, 304, 359, 395, 421, 515, 527, 607, 651, 676, 695, 703, 711, 720, 742, 761, 770, 792, 838, 854, 872, 880

ItemIndex Property
342

Iterate Method
559

IterativeLevelAxis Property
146

IterativeOriginAxis Property
147

IterativeRotateAxis Property
147

J Property
244, 480, 662

K Property
244, 481, 663

KeyName Property
708, 758

Kill Statement
57

Label Property
505

LabelControls Object
513

LabelControls Object Members
513

LabelControls Property
521

LabelTemplate Object
519

LabelTemplate Object Members
519

LabelTemplates Object
525

LabelTemplates Object Members
525

LabelTemplates Property
176

LandScape Property
604

LastCommand Property
361

LastExecutionReportMode Method
406, 748, 798

LBound Function
58

LCase Function
58

LEAPFROG Object
531

LEAPFROG Object Members
531

LeapfrogCommand Property
342

leapfrogtype Property
531

LearnTimeProgram Property
736, 786

Left
59

Left Property
176, 259, 411

Len
60

Length Property
372, 481

Let Statement
60

Level
12, 76

Level Method
559

Line Input # Statement
61

Line3D Property
460

List Boxes Combo Boxes and Drop-down List Boxes
13

LoadCustomReport Method
749, 799

LoadLayout Method
619

LoadMachine Object
533

LoadMachine Object Members
533

LoadMachineCommand Property
343

LoadProbe Method
560

LoadProbeCommand Property
343

LoadReportTemplate Method
750, 800

LocalAlign Property
200

LocaleID Property
176

LOF
62

Log
62

LongValue Property
890

LowForce Property
593

LowTheshold Property
859

MachineName Property
533

Machines Property
177

MachineToPartMatrix Property
147

MajorVersion Property
177

ManFineProbing Property
593

ManualPrePosition Property
460

Mark Method
305

MarkAll Method
359

Marked Property
274, 344

MarkedBackground Property
275

MasQ Enable Dialog Designer
4

MasterArm Property
344

MasterSlaveDlg Property
633

MaterialCoefficient Property
859

Max Property
373

MaxForce Property
594

Maximize Method
159

MaxMinAve Method
560

MaxXAcceleration Property
599

MaxYAcceleration Property
599

MaxZAcceleration Property
600

MeasAllFeat Property
148

MeasAllFeatAlways Property
148

MeasAngle Property
461

MeasDiam Property
461, 864

MeasHeight Property
462

MeasLength Property
462

MeasMajorAxis Property
462

MeasMinorAxis Property
463

MeasPinDiam Property
463

MeasSmallLength Property
464

MeasThickness Property
864

Measured Property
373

MeasureSlotWidth Property
464

MeasXYZ Property
864

MemoryPages Property
843

MessageBox Method
620

Method Property
231, 828

MethodCutPlane Property
231, 828

MethodEnd Property
231, 829

MethodEndTouch Property
232, 829

MethodInitDir Property
232, 829

MethodInitTopSurf Property
233, 830

MethodInitTouch Property
233, 830

Methodstart Property
233

MethodStart Property
830

Mid Function
63

Min Property
373

Minimize Method
160

MinorVersion Property
177

Minus Property
374

Minute Function
64

MissedHit Property
344

MkDir
65

ModalCommand Property
345

Mode
107

Mode D2HBMode120
72

Mode Method
561

Mode Property
683

Modified Property
286, 296

Month Function
66

Move
19

Move Method
561

MoveCommand Property
346

Moved Property
269

MoveSpeed Method
562

MoveSpeed Property
684

MsgBox
66

Multiply Method
396

Name Property
178, 522, 634, 672, 736, 786, 834, 883

NameType Property
844

Next Method
305, 712, 762

NextStep Method
705

Nickname Property
865

NoActiveProbesObject Property
634

NOMINAL Property
374

NominalMode Property
234, 831

Normalize Method
396

Now Function
68

NumArguments Property
506

Number Property
604, 834

Numbers
11, 20, 67, 69, 89, 96, 100

Numbers D2HBNumbers88
38

NumHits Property
465, 532, 684, 700

NumHitsPerRow Property
465

NumInputs Property
149

NumLevels Property
684

NumRows Property
465

NumSteps Property
706

NumTableColors Property
287, 297

Object Hierarchy Chart
120

Oct Function
69

Offset Property
149, 402

OK and Cancel Buttons
12

OKButton
70

Convert
5

OldBasic Object Members
537

OldBasic Property
634

OLE Automation
25

What is OLE Automation?
25

OnAddObject Event
183, 640

OnClosePartProgram Event
183

OnConnectSlave Event
184

OnDisconnectSlave Event
184

OnEndExecution Event
185, 641

OnExecuteDialogErrorMsg Event
641

OnExecuteDialogStatusMsg Event
642

OnGuess Event
642

OnObjectAboutToExecute Event
185, 643

OnObjectAboutToExecute2 Event
186, 643

OnObjectExecuted Event
186, 643

OnObjectExecuted2 Event
187, 644

OnOpenPartProgram Event
187

OnOpenRemotePanelDialog Event
188

OnOpenRemotePanelDialog2 Event
188

OnReadCncVar Event
644

OnSavePartProgram Event
189

OnStartExecution Event
190, 645

OnToolOffset Event
645

OnUpdateStatusMessage Event
190

OnWorkOffset Event
646

OnWriteCncVar Event
647

Open
1

Open Method
527, 651, 742, 792

Open Statement
74

OpenCommConnection Method
562

OperationMode Property
235, 832

OperatorMode Property
178

Operators
3

OptimizedSetExpression Method
306

OptimizedSolveExpression Method
306

Option Base Statement
75

Option Buttons and Group Boxes
16

Option Explicit
76

OPTIONPROBE Object
593

OPTIONPROBE Object Members
593

OptionProbeCommand Property
346

OptMotion Object
599

OptMotion Object Members
599

OptMotionCommand Property
346

OutlierFilter Property
849

OutlierFilterDistanceThreshold Property
850

OutlierFilterStdDevThreshold Property
850

OutputMode Property
375

OutTol Property
275, 375

OverrideExecuteSpeed Method
621

P1 Property
482

P2 Property
482

Page Object
601

Page Object Members
602

PageOrientation Property
736, 786

Pages Object
607

Pages Object Members
607

Pages Property
754, 804

PageSize Property
737, 787

PanelSelector Property
511

ParallelPerpendicular Property
376

Parent Property
149, 240, 245, 248, 252, 254, 259, 266, 276, 287, 297, 347, 362, 376, 412, 422, 466, 512, 517, 522, 529, 591, 605, 609, 635, 653, 672, 678, 713, 722, 737, 743, 755, 763, 772, 787, 793, 805, 835, 840, 855, 865, 874, 877, 882

PartName Property
201, 635

PartProgram Object
611

PartProgram Object Members
611

PartPrograms Object
649

PartPrograms Object Members
649

PartPrograms Property
179

PartProgramSettings Object
655

PartProgramSettings Object Members
655

PartProgramSettings Property
636

Paste
2

Path Property
179, 636, 673

PermHits Property
466

PHSAPriority Property
685

PHSTol Property
685

PictureData Object
659

PictureData Object Members
659

Plus Property
377

PointData Object
661

PointData Object Members
661

PointDensityType Property
850

PointOnlyMode Property
656

PointTolerance Property
150

PointValue Property
890

Polar Property
467

PositionalAccuracy Property
594

Post Method
160

PrbRdv Property
865

PreHit Method
563

PreHit Property
686

Prev Method
306

PrevStep Method
706

PrimaryAxis Property
402

Print
2

Print # Statement
77

Print Method
76, 257

Print Preview
2

PrintEditWindow Method
406

PrintReport Method
750, 800

probe Object
665

probe Object Members
665

ProbeAccuracy Property
594

ProbeComp Method
564

Probes Object
675

Probes Object Members
675

Probes Property
636

ProbingMode Property
595

Profile Property
377

Project Overview
125

Properties
203

PutData Method
435

PutFeatData Method
564

PutPoint Method
437

PutSurfaceVectors Method
438

PutText Method
307

PutVector Method
439

QualificationSettings Object
679

QualificationSettings Object Members
679

QualificationSettings Property
673

Qualify Method
667

Qualify2 Method
667

QuickStart Object
693

QuickStart Object Members
693

QuickStart Property
637

QuickStartAddedCommands Object
695

QuickStartAddedCommands Object Members
695

QuickStartStep Object
697

QuickStartStep Object Members
697

QuickStartSteps Object
703

QuickStartSteps Object Members
703

QuickStartTask Object
705

QuickStartTask Object Members
705

Quit Method
161, 621

Radius Property
204

RadiusType Property
377

Randomize Statement
79

ReadCommBlock Method
565

ReadLock Property
844

ReadOnly Property
723, 773

RecalculateINOUT Property
347

RecallEx Method
565

RecallIn Method
566

ReDim Statement
79

ReDraw Method
308

ReferenceID Property
467

ReferenceType Property
468

RefreshPart Method
621

RefreshReport Method
751, 801

RefTemp Property
859

RegistryKeyExists Method
161

RegistrySetting Object
707, 757

RegistrySetting Object Members
707, 757

RegistrySettings Object
711, 761

RegistrySettings Object Members
711, 761

RegistryValueExists Method
161

Rem Statement
80

RemotePanelMode Property
179

Remove Method
272, 308, 515, 652, 721, 771, 839, 854, 872, 880

RemoveAll Method
712, 762

RemoveArgument Method
498

RemoveControlPoint Method
217, 816

RemoveExpression Method
308

RemoveHit Method
693

RemoveIndexSet Method
196

RemoveInputFeat Method
440

RemoveLastLearnHit Method
622

RemoveManualScanHits Method
440

RemoveSkipNum Method
499

RemoveStatsDir Method
842

RepierceCad Property
150

Replace D2HBReplace80
3

ReportAutoPrint Property
506

ReportControls Object
715, 765

ReportControls Object Members
719, 769

ReportControls Property
605, 835

ReportData Object
725, 775

ReportData Object Members
726, 776

ReportMode Method
407

ReportTemplate Object
733, 783

ReportTemplate Object Members
733, 783

ReportTemplates Object
739, 789

ReportTemplates Object Members
739, 789

ReportTemplates Property
180

ReportWindow Object
745, 795

ReportWindow Object Members
745, 795

ReportWindow Property
637

Reset Method
396

Restore Method
161

Retract Method
566

RetroOnly Method
567

ReturnData Property
595

ReturnSpeed Property
595

RevisionNumber Property
637

Right Function
80

RmDir Statement
81

RMeasFeature Property
469

Rnd
82

Rotate Method
567

RotateByAngle Method
397

RotateCircle Method
568

RotateOffset Method
568

RotateToPoint Method
397

RotateToVector Method
398

Roundness Method
569

RunJournalFile Method
622

RunOut Method
569

RunTimeProgram Property
737, 787

Sample Automation Script 1
114

Sample Automation Script 2
115

Sample Automation Script 3
116

Sample Automation Script 4
119

Sample Automation Scripts
114

Save Method
519, 622, 733, 783

SaveAlign Method
570

SaveAs Method
520, 623, 734, 784

SaveChanges Method
272, 283, 293, 677

ScaleToFit Method
239

Scan Object
807

Scan Object Members
807

ScanAcceleration Property
596

ScanCommand Property
348

ScanOffsetForce Property
596

ScanPointDensity Property
596

Second Function
82

SecondaryAxis Property
403

Section Object
833

Section Object Members
833

Section Property
605

Sections Object
837

Sections Object Members
837

Sections Property
738, 788

Seek Function
84

Select All
2

SelectAllTips Method
667

Selected Property
866

SendKeys
87

Sensors Property
860

SerialNumber Property
638

Set Statement
87

SetActive Method
162

SetArgumentDescription Method
499

SetArgumentExpression Method
500

SetArgumentName Method
500

SetArrayIndexValue Method
888

SetAutoParams Method
570

SetAutoVector Method
572

SetBothArms Method
309

SetBoundaryConditionParams Method
217, 816

SetBoundaryPoint Method
218, 817

SetControlPoint Method
219, 818

SetControlState Method
698

SetCurrentAsDefaultReport Method
752, 802

SetDMISOutputOptions Method
407

SetEditText Method
699

SetExecutionBlock Method
623

SetExpression Method
309

SetFieldFormat Method
386

SetFilterParams Method
219, 818

SetHeadingType Method
381

SetHit Method
440

SetHit2 Method
441

SetHitParams Method
220, 819

SetInputFeat Method
443

SetInputOffset Method
443

SetLeftSideOfAssignment Method
501

SetLocationAxis Method
387

SetLowerBound Method
197

SetMasterArm Method
310

SetMatrix Method
398

SetMethodParams Method
221, 820

SetMethodPointData Method
222, 821

SetNoms Method
572

SetNomsParams Method
224, 821

SetOrigin Method
858

SetParams Method
224, 822

SetPrintOptions Method
408, 573

SetPrintOptionsEx Method
409

SetProgramOption Method
574

SetProgramValue Method
574

SetReportOptions Method
575

SetRightSideOfAssignment Method
501

SetRMeasMode Method
575

SetScanHitParams Method
576

SetScanHitVectors Method
576

SetScanParams Method
577

SetScanVectors Method
578

SetShankVector Method
133

SetSize Method
893

SetSlaveArm Method
310

SetSlaveMode Method
579

SetStatsDir Method
842

SetTheos Method
579

SetToggleString Method
311

SetTool Method
679

SetTruePosAxis Method
388

SetUpperBound Method
197

SetValue Method
894

SetVariableValue Method
624

SetVerifyFeaturesFlag Method
624

ShankCheck Property
686

ShankHits Property
686

ShankIJK Property
877

ShankOffset Property
687

Shell
24, 88

ShowAlignments Property
412

ShowAllIDs Property
638

ShowComments Property
412

ShowDevSymbols Property
382

ShowDimensions Property
413

ShowDimensionText Property
383

ShowDimensionTextOptions Property
383

ShowDimId Property
389

ShowFeatId Property
390

ShowFeatures Property
413

ShowHeaderFooter Property
414

ShowHeadings Property
384

ShowHits Property
414

ShowIDOnCad Property
348

ShowMoves Property
414

ShowOutTolOnly Property
415

ShowStdDev Property
384

ShowTips Property
415

ShowXYZWindow Method
581

Sin
89

SinglePoint Property
235, 832

SkipCount Property
506

Skipped Property
348

SlaveArm Property
349

Sleep Method
581

SlotType Property
349

SmallDiam Property
482

SolveExpression Method
312

Space
89

Spacer Property
469

SpawnNewInstance Method
162

Speed Property
639

SphereID Property
269

Sqr
90

Standard Property
276

StandardBackground Property
277

StandardDeviation Property
866

StartA Property
687

StartAlign Method
581

StartAngle Property
469, 483, 687

StartAngle2 Property
470, 483

StartB Property
688

StartC Property
688

StartDim Method
582

StartFeature Method
583

StartGetFeatPoint Method
584

StartNum Property
507

StartScan Method
585

Static
91

StatisticCommand Property
350

STATISTICS Object
841

STATISTICS Object Members
841

StatMode Property
844

Stats Method
586

StatsCount Property
639

StatusBar Property
180

StepHint Property
700

Steps Property
706

Stop
92

Str Function
92

Straitness Method
587

StrComp Function
93

Strength Property
851

String Function
94

StringValue Property
890

Sub Statement
94

SubName Property
507

Subroutines and Functions
6

Naming conventions
6

SummaryMode Method
410

Target Object
847

Target Object Members
847

Targets Object
853

Targets Object Members
853

Targets Property
470

TempComp Object
857

TempComp Object Members
857

TempCompCommand Property
350

TertiaryAxis Property
403

Text
95

Text Boxes and Text
14

TextBox
96

TextualAnalysis Property
378

The Dialog Function
18

The Dialog Function Syntax
18

TheoAngle Property
471

TheoDiam Property
471

TheoHeight Property
471

TheoLength Property
472

TheoMajorAxis Property
472

TheoMinorAxis Property
473

TheoPinDiam Property
473

TheoSmallLength Property
474

Thickness Property
474, 867

Time Function
97

Time Property
867

Timer Event
97

TimeSerial - Function
98

TimeValue - Function
98

Tip Method
587

Tip Object
861

Tip Object Members
861

TipID Property
134

TipNum Property
867

Tips Object
871

Tips Object Members
871

Tips Property
674

TipType Property
868

ToggleMasterSlaveMode Method
625

Tolerance Property
474

tool Object
875

tool Object Members
875

ToolID Property
270

ToolMoved Property
688

ToolOnRotaryTable Property
689

ToolOverideI Property
689

ToolOverideJ Property
690

ToolOverideK Property
690

Tools Object
879

Tools Object Members
879

Tools Property
639

ToolType Property
877

Top Property
180, 260, 416

Touchspeed Method
588

Touchspeed Property
690

TP Property
484

Trace Method
588

TRACEFIELD Object
883

TRACEFIELD Object Members
883

TraceFieldCommand Property
350

TracksErrors Property
351

TransferDir Property
845

TransformDataBack Method
399

TransformDataForward Method
400

Translate Method
589

TranslateOffset Method
589

TriggerForce Property
597

Trim LTrim Rtrim Functions
99

TruePositionDatumModifier Property
378

TruePositionModifier Property
379

TruePosUseAxis Property
379

tutorhit Object
885

tutorhit Object Members
885

Type Property
351, 708, 758

Type Statement
100

Type/Functions/Statements
1

TypeDescription Property
352

UBound Function
102

UCase Function
102

Undo
2

UnexpectedHit Property
352

UnHighlightElement Method
240

Units Property
379, 640

UpdateDimensionNominals Method
312

UpperForce Property
597

UseBodyAxis Property
151

Used Property
709, 759

UsedColor Method
283, 293

UsePin Property
475

User Defined Types
101

UserDefinedCalibrationMode Property
691

UserDefinedCalibrationOrder Property
691

UserDefinedUniqueID Property
353

UserExit Property
181

UseTheoValuesForBestfit Property
475

UseWristMap Property
674

Using the Object Browser in Other Editors
113

Val
103

Value Property
709, 759, 883

ValueName Property
709, 759

Variable Object
887

Variable Object Members
887

VariableArray Object
893

VariableArray Object Members
893

VariableID Property
491

VariableType Property
891

VarType
103

VerboseDialogs Property
181

VersionString Property
181

Visible Property
182, 260, 393, 416, 522, 640, 678, 738, 755, 788, 805

VisionMag Property
476

VisionTargetColor Property
476

VisionTargetType Property
476

Wait
87

Wait Method
590

WaitUntilExecuted Method
625

WaitUntilReady Method
162

WarningDefaultNoSavePrg Property
191

WarningDefaultOkRotPh9 Property
191

WarningDefaultOverwritingAlignment Property
192

WarnLoadProbe Property
656

WarnNoSavePrg Property
192

WarnOkMovPh9 Property
192

WarnOkRotPh9 Property
193

WarnOverwritingAlignment Property
193

Weekday Function
104

While...Wend Statement
105

Width Property
182, 261, 416, 606, 836, 878

WinHelp Method
163

With Statement
105

Workplane Method
590

Workplane Property
151

WristOffset Property
869

WristTipIJK Property
869

Write # - Statement
107

WriteCommBlock Method
590

WriteLock Property
845

WriteRegistryBool Method
163

WriteRegistryDouble Method
164

WriteRegistryDWORD Method
165

WriteRegistryInt Method
166

WriteRegistryPoint Method
166

WriteRegistrySettings Method
167

WriteRegistryString Method
168

X Property
245, 484, 663

XAxisOffset Property
508

XYZ Method
661

XYZ Property
869, 878

Y Property
245, 484, 663

YAxisOffset Property
508

Year
107

Z Property
246, 485, 664

ZAxisOffset Property
509



